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The goal of the present paper is to understand whether it is possible to define interacting quantum
field theory in global anti–de Sitter spacetime with Lorentzian signature, in its covering spacetime (whose
time coordinate is not periodic) and in its Poincaré patch. We show that in global anti–de Sitter spacetime
there are certain problems with defining quantum field theory properly. This is due to an additional
UV singularity of the Feynman propagator which is sitting on the light cone emanating from the antipodal
point of the source. There is no such singularity in flat spacetime. At the same time quantum field theory in
the Poincaré region of the anti–de Sitter (AdS) spacetime can be well defined and is related to the one
in Euclidean AdS via the analytical continuation. In principle one can also define and analytically
continue quantum field theory in the covering anti–de Sitter spacetime. However, to do that one has to use
an unusual iϵ prescription in the Feynman propagator which cannot be used in loop calculations in
nonstationary situations.
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I. INTRODUCTION

Classical and quantum field theory in anti–de Sitter
(AdS) space is quite well developed: see [1,2] for reviews
and, e.g., [3–5] for the approach close to the one adopted
in the present paper. Loop corrections in AdS have
been considered in many places: see, e.g., [6–12] for an
incomplete list of references.
However, to the best of our knowledge in all of these cases

quantum loop corrections have been calculated in AdS space
with Euclidean signature (EAdS). Meanwhile, loop correc-
tions in Lorentzian AdS space have some peculiarities [13]
related to the presence of additional UV singularities in the
propagators, which are sitting on the light cone emanating
from the antipodal point of the source. Such singularities are
not present in flat spacetime or in EAdS.
The goal of the present paper is to understand whether it

is possible to define interacting quantum field theory in
global AdS spacetime with Lorentzian signature, in its
covering spacetime (CAdS) and in its Poincaré patch (PP).
Namely, in this paper we show that both in global AdS

and in CAdS there are certain problems with defining

quantum field theory properly. That is exactly due to the
additional UV singularity of the propagator. Quantum field
theory in the PP of the AdS spacetime can be well defined
and is related to the one in EAdS via the analytical
continuation. One also can define quantum field theory
in the CAdS, but with the use of a peculiar iϵ shift of the
UV singularities of the Feynman propagator in the coor-
dinate space.
The paper is organized as follows. In Sec. II we consider

classical focusing of geodesics in global AdS spacetime
and study how generic it is for asymptotically AdS spaces
in two or more dimensions. We would like to understand if
there is a general relation of this focusing to the presence of
the additional (nonlocal) singularity in the Feynman propa-
gator. In Sec. III we study in detail the singular behavior of
the two-point Wightman function of the free scalar field
theory in two-dimensional asymptotically AdS spaces. We
also consider higher dimensions and discuss the relation of
the extra singularity to the geodesic focusing for generic
spacetimes of a certain class. The problems associated with
perturbation theory and possible approaches to loop cal-
culations in global AdS spacetime are discussed in Sec. IV.
Section V is dedicated to the isometry invariance of
correlation functions in interacting theories in the CAdS
spacetime and in the PP. We also study the analytical
continuation in quantum field theories from CAdS and the
PP to the Euclidean AdS. To make the paper self-contained
we provide some technical details in the Appendixes.
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II. GEODESICS IN ASYMPTOTICALLY
ANTI–DE SITTER SPACETIMES

We start our discussion with the classical focusing of
geodesics, which may be related to the presence of
anomalous nonlocal UV singularities in propagators in
global AdS spacetime. In this paper we refer to the standard
UV singularity of the propagator as local: it is located on
the light cone emanating from the source—it becomes truly
local after the analytical continuation to the Euclidean
signature. We call the UV singularity nonlocal when it
appears on the light cone emanating from the antipodal
point of the source.
The d-dimensional AdS space with the Lorentzian

signature is the hyperboloid in the (dþ 1)-dimensional
flat embedding spacetime. We adopt the signature of the
metric of the embedding space as follows: ð−; �� �;−;þ;þÞ.
The equation for the hyperboloid is

XAXA ¼ R2; ð2:1Þ

where XA, I ¼ ð0;…; dÞ are coordinates in the embedding
flat spacetime. To simplify the equations below we set
R ¼ 1. One can introduce the global coordinates para-
metrizing the entire hyperboloid:

Xi ¼ ψ i tan θ; Xd−1 ¼ cos τ
cos θ

; Xd ¼ sin τ
cos θ

; ð2:2Þ

where i ¼ 1;…; d − 2 and ψ i are coordinates on a (d − 2)-
dimensional sphere of unit radius

P
iðψ iÞ2 ¼ 1. The map is

single valued if τ ∈ ½0; 2πÞ and θ ∈ ½0; π=2� for d > 2 or
θ ∈ ½−π=2; π=2� for d ¼ 2.
The AdS metric in terms of these coordinates is as

follows:

ds2AdSd ¼
dτ2 − dθ2 − sin2 θdΩ2

d−2
cos2 θ

¼ dτ2 − dΩ2
d−1

cos2 θ
; ð2:3Þ

where dΩ2
d−1 is the metric on (d − 1)-dimensional sphere.

This metric is conformally equivalent to the one of the
Einstein static universe (ESU)—the S1 × Sd−1 space.
However, in ESU the range of the θ coordinate is as
follows: θ ∈ ½0; π� for d > 2 and θ ∈ ð−π; π� for d ¼ 2.
Thus, the AdS space can be Weyl mapped only onto half

of the ESU. This means that to define quantum field theory
on the AdS spacetime one has to impose boundary
conditions at θ ¼ π=2 (or at θ ¼ �π=2 for d ¼ 2). In fact,
the lightlike geodesics can approach this boundary in finite
proper time of the internal AdS observer. This problem
was studied in [14]. Avis et al.’s brief review for the d ¼ 2
case is given in Appendix A. In summary, we impose
the reflective boundary conditions, i.e., we assume that
the modes are zero at the boundary. We will do the same
also in asymptotically AdS spacetimes, which will be
defined below.

We denote the embedding map (2.2) by XA ¼ fAðxÞ,
where xμ are the coordinates in the AdS spacetime. The
AdS isometry invariant,

ζðx; x0Þ ¼ fAðxÞfAðx0Þ ¼
cosðτ − τ0Þ − sin θ sin θ0ψ iψ 0i

cos θ cos θ0
;

ð2:4Þ

is related to the geodesic distance between two points x
and x0 of the AdS space dðx; x0Þ. Namely, cos dðx; x0Þ ¼
ζðx; x0Þ. The separation between two points is timelike if
jζj < 1 and spacelike if ζ > 1. If ζ < −1 both real and
imaginary parts of d are nonzero and there are no geodesics
connecting x and x0. For convenience we will call the
separation between two points spacelike if they cannot be
connected by a timelike geodesics.
The global AdS manifold is not globally hyperbolic for

two reasons: First, due to the presence of the boundary that
we have discussed above and due to the presence of closed
timelike geodesics, because τ ∈ ½0; 2πÞ. Second, in global
AdS space all geodesics originated from a point x intersect
again at its antipodal point, which we denote as x̄ [X̄ ¼ −X
if X ¼ fðxÞ]:

τ̄ ¼ τ þ π; ψ̄ ¼ −ψ ; θ̄ ¼
�
θ; d > 2;

−θ; d ¼ 2:
ð2:5Þ

This fact is related to the necessity to impose the afore-
mentioned boundary conditions for the massless fields.
In the CAdS, which has the same metric as Eq. (2.3) but

with τ ∈ ð−∞;þ∞Þ, the problem of the presence of the
closed timelike geodesics is resolved. But the manifold is
still not globally hyperbolic due to the necessity to impose
boundary conditions on top of initial ones. Due to the 2π
periodicity of geodesics the condition jζj < 1 of timelike
separation still holds.
Also in the CAdS spacetime one encounters the phe-

nomenon of the focusing of timelike geodesics, which is
the remnant of the presence of closed timelike curves in
global AdS. In this paper we discuss this phenomenon from
different perspectives on classical and quantum levels. The
main goal of this study is to understand the interrelation
between the presence of such a focusing and the presence
of the extra UV singularity of the propagators in global
AdS and CAdS spacetimes.
Another frequently used coordinate chart in AdS space is

the one where the metric is conformally flat. It covers only
half of the AdS space—the PP Xd−1 > X0:

X0 ¼ z2 − 1þ x2 − t2

2z
; Xi ¼ xi

z
;

Xd−1 ¼ z2 þ 1þ x2 − t2

2z
; Xd ¼ t

z
; ð2:6Þ
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where z > 0. The metric and the isometry invariant (which
is related to the geodesic distance) of this chart are as
follows:

ds2 ¼ dt2 − dz2 −
P

iðdxiÞ2
z2

;

ζðx; x0Þ ¼ ðz2 þ z02Þ þ ðx − x0Þ2 − ðt − t0Þ2
2zz0

: ð2:7Þ

Note that the antipod of any point in the PP lies outside
of the patch, unless the point is sitting on the boundary of
the PP. In the latter case the antipodal point is also sitting on
the boundary.

A. Classical geodesic focusing in asymptotically
AdS spacetimes

In this section we want to understand the physical origin
of the classical focusing of geodesics and its relation to the
presence of the nonlocal UV singularity in the propagators
for general spacetimes of a certain class, which is specified
below. For simplicity we consider a two-dimensional
Lorentzian manifold which can be Weyl mapped into half
of the ESU—the asymptotically AdS spacetime. We adopt
the terminology of [1].
It is convenient to move to the CAdS spacetime by

unfolding the time coordinate. The general metric of
interest for us is as follows:

ds2¼fðθÞðdτ2−dθ2Þ; τ∈ ð−∞;þ∞Þ; θ∈ ð−π=2;π=2Þ:
ð2:8Þ

We assume that the function fðθÞ is positive and symmetric
fðθÞ ¼ fð−θÞ (as we will see, this condition is necessary
for geodesics to intercept in the antipodal point) and has
powerlike singularities when θ approaches the boundary
�π=2:

fðθÞ ≈ C
ðπ=2 − θÞα ; θ → � π

2
; C > 0; ð2:9Þ

where α > 0. The latter condition is not essential for a
classical consideration, but it will be used in the quantum
problem in the section that follows.
The geodesics can be found via the solution of the

Hamilton-Jacobi equation:

�∂S
∂τ
�

2

−
�∂S
∂θ
�

2

¼ m2fðθÞ; ð2:10Þ

where S is the minimum single particle action and m is its
mass. This mass can be absorbed into fðθÞ (so we can set
m ¼ 1). In the pure AdS case we have fAdSðθÞ ¼ m2

cos2 θ. In
such a case it means that in Eq. (2.9) C ¼ m2.

The variables can be separated by the standard sub-
stitution S ¼ −ωτ þ Sθ, ω > 0, and then

Sθ ¼
Z

θ

θ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − fðθ1Þ

q
dθ1: ð2:11Þ

For a given ω we have two geodesics corresponding to two
directions emanating from θ0—one for θ starting to change
in the direction θ > θ0. Then such a geodesic can reflect
before the boundary and θ may become less than θ0 in the
course of time evolution, while the other type of geodesics
is obtained when θ is starting to change in the opposite
direction θ < θ0.
In Eq. (2.11) we have a family of solutions parametrized

by ω. The geodesic equation is given by − ∂S
∂ω ¼ τ0 for some

constant τ0:

τ ¼ τ0 þ
∂Sθ
∂ω ; ð2:12Þ

i.e., the initial point of the geodesic is ðτ0; θ0Þ.
There are two turning points�θt (the points of reflection

near the boundary): fðθtÞ ¼ ω2, θt > 0, and we assume
that the integration domain in Eq. (2.11) can contain
some number of turns in �θt. Due to the symmetry of
fðθÞ ¼ fð−θÞ the geodesics under consideration intersect
after each half period at θ ¼ �θ0. If the action over one
period between the turning points is S,

S ¼
I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − fðθÞ
q

dθ; ð2:13Þ

then for intersection points Sθ ¼ n
2
S, where n is the number

of half periods. As follows from Eq. (2.12), these points
are focal for all geodesics (for all ω) originating in ðθ0; τ0Þ
only if

∂S
∂ω ¼ const: ð2:14Þ

For large ω (i.e., when ω2 ≫ C) the minimal action
can be estimated. The turning points can be found from
Eq. (2.9):

π

2
− θt ≈

C
1
α

ω
2
α

→ 0; ω → ∞: ð2:15Þ

Therefore, in this limit we can approximate the spacetime
geometry by the infinite rectangular well with boundaries
at θ ¼ � π

2
. This can be adopted as the zeroth-order

approximation of fðθÞ. Then S ≈ 2πω, as ω2 ≫ C ∼m2

and intersection points are as follows:

τn ¼ τ0 þ nπ; θn ¼ ð−1Þnθ0: ð2:16Þ
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The condition (2.14) is always satisfied asymptotically
(when ω → ∞), so we may refer to these points as
asymptotic focal. If true focal points do exist, they have
to coincide with the asymptotic ones. Hence, from
Eq. (2.12) the condition of their existence is as follows:

S ¼ 2πωþ δ; ð2:17Þ

where δ is a constant. This relation is definitely true in AdS2.
In the latter situation ðτ1;θ1Þ¼ðτ̄0; θ̄0Þ and δ¼−2πm,
where m is the mass. This can be shown by the direct
calculation of the integral in Eq. (2.13) when fðθÞ ¼ m2

cos2 θ.

Finally, let us show that fðθÞ ¼ m2

cos2 θ is the only
symmetric potential with the focusing property within
the class (2.9) under consideration.1 To do that we will
use the standard method of the recovering of the potential
from the period of oscillations.
The focusing condition (2.14) can be written in the

following form:

Tðω2Þ≡ 1

ω

∂S
∂ω ¼

I
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − fðθÞ
p dθ ¼ 2π

ω
: ð2:18Þ

The integral on the lhs is a period of oscillations TðEÞ of a
nonrelativistic particle with mass 2 and energy E ¼ ω2 in
the potential fðθÞ [15]. If the potential is symmetric, has
only one minimum at θ ¼ 0 and is zero at this point, it can
be uniquely deduced from TðEÞ. Let fð0Þ ¼ m2, then
gðθÞ ¼ fðθÞ −m2 satisfies these conditions. The period in
such a potential is TgðEÞ ¼ TðEþm2Þ. The inverse
function θðgÞ for θ > 0 can be expressed as follows:

θðgÞ ¼ 1

4π

Z
g

0

TgðEÞdEffiffiffiffiffiffiffiffiffiffiffi
g − E

p

¼ 1

2

Z
g

0

dEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg − EÞðEþm2Þ

p
¼ 1

2
arccos

m2 − g
m2 þ g

: ð2:19Þ

Hence, we obtain

fðθÞ ¼ m2 þ gðθÞ ¼ m2

cos2 θ
¼ fAdSðθÞ: ð2:20Þ

However, without the symmetry condition the solution is
not unique. The function θðfÞ is double valued, so let θ1ðfÞ
denote the part with θ ≤ 0, and θ2ðfÞ—the part with θ ≥ 0.
Then

θ1ðfÞ ¼ − arccos
mffiffiffi
f

p þ hðfÞ; θ2ðfÞ ¼ arccos
mffiffiffi
f

p þ hðfÞ;

ð2:21Þ

where hðfÞ is such a function that limf→þ∞ hðfÞ ¼ 0. If the
function hðfÞ approaches zero slower that 1ffiffi

f
p , then for f

sufficiently close to þ∞ there exists a solution with either
θ2 > π=2 or θ1 < −π=2. It appears to be because
arccos mffiffi

f
p ¼ π=2 − mffiffi

f
p þ oð1= ffiffiffi

f
p Þ. We consider solutions

which do not cross the boundaries at θ ¼ �π=2; hence,
hðfÞ should decay faster that 1ffiffi

f
p and in the leading order

the singularities of the potential at the boundaries are
determined by the arccos terms and hence are still
quadratic.

III. THE NONLOCAL UV SINGULARITY
OF THE PROPAGATOR

In this section we study the behavior of two-point
correlation functions of massless and massive free scalar
field theories on global AdS manifold, CAdS and asymp-
totically AdS spacetimes. Our goal is to understand the
physical origin of another UV singularity in generic
spacetimes and its relation to the geodesic focusing. We
mostly concentrate on the two-dimensional case, but at
the end of this section we extend our considerations to
any dimension. The coordinates are the same as in the
previous sections.
For the beginning let us point out a few important

features of the action of the isometry group in global AdS
and CAdS. The isometries of AdS can be extended to the
CAdS. Namely, it has the same algebra of Killing vectors
(see more details in Appendix A) as AdS manifold. Hence,
the isometry group (more precisely its connected compo-
nent of unity) is an exponential of this algebra. We will now
show that the relative position of two points in the CAdS
cannot change significantly under the action of this group.
Let us consider a point x in the CAdS spacetime and the set
XðxÞ ¼ fx0∶jζðx; x0Þj ¼ 1g. It consists of light cones
emanating from x, x̄ and the images of these points under
time translations τ → τ þ 2πk, k ∈ Z. This set divides
the CAdS spacetime into regions with ζ > 1 (Sþn series),
ζ < −1 (S−n series) and jζj < 1 (Cn series, such points can
be connected to x by a timelike geodesic). The enumeration
rule is demonstrated in Fig. 1 for the case d ¼ 2, x ¼ 0—
the order of S�n increases by 1, when t increases by 2π;
while the order of Cn is increased by 1, when t increases
by π. And there is no C0 and S−0 . Generalization to higher
dimensions and arbitrary x is straightforward, although in
the 2D case both Sþn and S−n in fact consist of two
disconnected regions. The isometries transform light cones
into light cones, hence XðgxÞ ¼ gXðxÞ for an isometry g.
As we consider only the connected subgroup, this isometry

1As will be shown in the section that follows, interestingly
enough the second singularity in the propagator can appear for a
wider class of potentials.
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preserves the order of regions: Cn → Cn, S�n → S�n under
the action of g. This is an important difference of the
situation in CAdS with respect to the one in global AdS.We
say that A (which can be either S�n or Cn) is a relative
region of x and x0 if x ∈ Aðx0Þ.
Now let us continue with the properties of the correlation

functions. TheWightman functionWðx; x0Þ≡ hϕðxÞϕðx0Þi,
say, of the real scalar field, in global AdS spacetime has an
additional UV singularity at the antipodal point [13,14].2

The extra singularity is due to the reflective boundary
conditions. In fact, as we will see in the next section, the
spectrum of modes is discrete and has an additional
symmetry under the exchange x → x̄.
As is shown in [13], such a singularity may lead to the

presence of nonlocal counterterms in an interacting theory
if one adopts the standard Feynman’s iϵ prescription in the
propagators for both the standard and additional UV
singularities. Such an iϵ prescription is due to an unusual
time ordering, which for the scalar field ϕðxÞ and for the
compact time coordinate in global AdS is as follows:

TϕðxÞϕðx0Þ ¼ θ½sinðτ − τ0Þ�ϕðxÞϕðx0Þ
þ θ½sinðτ0 − τÞ�ϕðx0ÞϕðxÞ: ð3:1Þ

Such a time ordering respects the isometry in global AdS
spacetime if the points x and x0 are timelike or lightlike
separated. To show it one can rewrite the θ function in
terms of embedding space coordinates: θ½sinðτ − τ0Þ� ¼
θ½Xd−1X0d − XdX0d−1�. This expression is invariant with
respect to SOð2; d − 1Þ acting on XA if jζðx; x0Þj ≤ 1. Due
to 2π periodicity of sinðτ − τ0Þ this expression is also
invariant for timelike and lightlike separated points in
CAdS. Such an invariance means that if x ∈ Cnðx0Þ
(and therefore is timelike separated from x), then
sign sinðτ − τ0Þ ¼ ð−1Þn−1. This relation definitely holds
if x0 ¼ 0—then ðn − 1Þπ < jτj < nπ, and for generic x0
there is an isometry g such that 0 ¼ gx0.
At the same time the usual time ordering

T0ϕðxÞϕðx0Þ ¼ θ½τ − τ0�ϕðxÞϕðx0Þ þ θ½τ0 − τ�ϕðx0ÞϕðxÞ
ð3:2Þ

is not isometry invariant [16] for timelike separated points.
In fact, the time coordinate in global AdS is compact:
τ; τ0 ∈ ½0; 2πÞ. A time translation τ → ðτ þ ΔτÞ mod 2π
can be represented as a rotation in the embedding
Minkowski spacetime and is, therefore, an isometry. It is
easy to see that in general it does not preserve the ordering:
if τ1 þ τ0 < 2π and τ2 þ τ0 > 2π, then τ2 > τ1, but after
the translation ðτ2 þ τ0 − 2πÞ < τ1 þ τ0. Prescription (3.1)
does not have this problem. Note that such a transformation
also changes the relative region of x and x0.
However, for any two points there exists a subset

of isometries that preserves their relative region. It therefore
also preserves the conventional time ordering (3.2) if
jτ0 − τj ≥ jθ0 − θj [or equivalently x0 ∉ Sþ0 ðxÞ]—this isom-
etry acts on x and x0 the same way as in covering
space. Hence, it does not change their relative region.
The only region which has points with τ0 > τ and
τ0 < τ (and so the order can be changed) is Sþ0 . A general
isometry can be represented as a composition of isometry
from this subset and an additional τ translation which
moves either τ or τ0 out of domain ½0; 2πÞ and shifts
τ − τ0 → τ − τ0 � 2π.

A. Free massive scalar field in 2D AdS spacetime

The Wightman function for the free scalar field theory
in the global AdS spacetime was calculated in [17] for
d > 2 via the mode expansion. Because in the 2D case
the variable θ has a different domain, it is instructive
to do a separate calculation. We start from the following
action:

FIG. 1. The Penrose diagram of the covering AdS.

2The regular UV singularity of the propagator is located on the
light cone emanating from the source x0. The additional singu-
larity in AdS spacetime appears when x sits on the light cone
emanating from x̄0—the antipodal point of the source x0.

INTERACTING QUANTUM FIELDS IN VARIOUS CHARTS OF … PHYS. REV. D 103, 045009 (2021)

045009-5



S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂μϕÞ2 −

1

2
m2ϕ2

�

¼
Z

dτdθ

�
1

2
ημν∂μϕ∂νϕ −

1

2

m2

cos2θ
ϕ2

�
; ð3:3Þ

where we have used the explicit metric of the global AdS
spacetime (2.8) and ημν is the flat metric with Lorentzian
signature ðþ;−Þ.
This theory is equivalent to the one on the stripe with the

θ-dependent mass term. Hence, the mode decomposition of
the field is as follows:

ϕðτ; θÞ ¼
X∞
n¼1

½angnðτ; θÞ þ H:c:�;

gnðτ; θÞ ¼ e−iωnτunðθÞ; n ∈ N; ωn > 0; ð3:4Þ

where “H.c.” stands for Hermitian conjugate terms. The
only nontrivial commutation relations for the creation
and annihilation operators an and a0†n are ½an; a†n0 � ¼ δnn0 .
The functions gn should satisfy the equation of motion

�
□þ m2

cos2 θ

�
gn ¼ 0; ð3:5Þ

where □ is the flat spacetime d’Alembert operator.
Therefore, the equation for un is as follows:

u00n þ ω2
nun −

m2

cos2 θ
un ¼ 0; ð3:6Þ

where a prime denotes the θ derivative.
This equation can be interpreted as the stationary

Schrödinger equation for a particle of mass 1=2 with
energy En ¼ ω2

n in the potential VðθÞ ¼ m2

cos2 θ. The potential
is singular at θ ¼ �π=2. Due to the reflective boundary
conditions described in Sec. II, namely, unð�π=2Þ ¼ 0,
the spectrum is discrete.
We also have to impose the normalization condi-

tions [18]

ðgn; gn0 Þ ¼ δnn0 ; ðgn; g�n0 Þ ¼ 0; ðg�n; g�n0 Þ ¼ −δnn0 ;

ð3:7Þ

where we use the scalar product compatible with the
equations of motion

ðϕ1;ϕ2Þ ¼ −i
Z
τ¼const

½ϕ1ðxÞ∂τϕ
�
2ðxÞ − ϕ�

2ðxÞ∂τϕ1ðxÞ�dθ:

ð3:8Þ

In terms of un this means that

hunjun0 i ¼
Z

π=2

−π=2
u�nðθÞun0 ðθÞdθ ¼ δnn0

2ωn
: ð3:9Þ

Therefore, the modes are wave functions with the standard
quantum mechanical normalization up to a constant factor.
It is convenient to reparametrize the mass in the standard

way:

m2 ¼ sðs − 1Þ; s > 1: ð3:10Þ

The substitutions un ¼ coss θan and y ¼ sin2 θ bring the
Schrödinger equation into the standard hypergeometric
form:

yð1− yÞ∂2
yan þ

�
1

2
− ð1þ sÞy

�
∂yan −

1

4
ðs2 −ω2

nÞan ¼ 0:

ð3:11Þ

Therefore, the general solution is as follows:

un ¼C1cossθ2F1

�
s−ωn

2
;
sþωn

2
;
1

2
;sin2θ

�

þC2 sinθcossθ2F1

�
s−ωnþ1

2
;
sþωnþ1

2
;
3

2
;sin2θ

�
;

ð3:12Þ

where 2F1 is the hypergeometric function.
This solution should be regular at θ ¼ �π=2, i.e., at

sin2 θ ¼ 1. The hypergeometric functions are singular at
this point except for the case when one of their first two
arguments is a negative integer. Otherwise one can show
using their transformation relations that un ∼ cos1−s θ, as
θ → �π=2, which is singular (see, e.g., [19]).
As ωn > 0 and s > 1 we find that either ωn − s ¼ 2k or

ωn − s ¼ 2kþ 1, k ∈ N ∪ f0g. Using the relation between
the hypergeometric functions and Jacobi polynomials

Pðα;βÞ
n , one can rewrite the modes as

ωn ¼ sþ n − 1; u2n−1 ¼ AncossθP
ð−1=2;s−1=2Þ
n−1 ðcos 2θÞ;

u2n ¼ Bncossθ sin θP
ð1=2;s−1=2Þ
n−1 ðcos 2θÞ: ð3:13Þ

The normalization constants An and Bn and the Wightman
function are calculated in Appendix B. These modes are
quasiperiodic:

gnðx̄Þ ¼ e−iπsgnðxÞ: ð3:14Þ

They are single valued on the CAdS only when 2π periodic
in τ. This condition is satisfied if s ∈ N—the modes can be
defined in global AdS space only for the discrete spectrum
of masses. We will, however, consider general values of s to
obtain the Wightman function on the CAdS, where there
are no such restrictions.
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With the modes under consideration one can calculate
the Wightman function Wðx; x0Þ over the Fock vacuum,
where x ¼ ðτ; θÞ, x0 ¼ ðτ0; θ0Þ. The vacuum is defined as a
state which is annihilated by all an operators. Then the
expression for the given mass, i.e., s, is as follows:

WðsÞðx; x0Þ ¼ hϕðxÞϕðx0Þi

¼
X∞
n¼1

gnðxÞg�nðx0Þ

¼
X∞
n¼1

e−iωnðτ−τ0−iϵÞunðθÞu�nðθ0Þ: ð3:15Þ

Here an iϵ term is added for the convergence in singular
points. This function is quasiperiodic due to the quasiper-
iodicity of modes—this fact leads to additional singular-
ities. In Appendix B we find that

WðsÞðx; x0Þ ¼ 1

2π
Qs−1½ζ þ iϵ sinðτ − τ0Þ�; ð3:16Þ

where Qs−1 is the Legendre function of the second kind
and ζ is the invariant defined in Eq. (2.4). When jτ − τ0j <
jθ − θ0j (in this region ζ > 1) the value is the same as of the
standard Legendre function defined on the plane with cut at
ð−∞; 1Þ. This result coincides with the one obtained in [13]
via a different calculation.
After the translation τ → τ þ 2π the argument of the

Legendre function [ζ þ iϵ sinðτ − τ0Þ] encircles the line
segment ½−1; 1� counterclockwise. Due to monodromy
properties of Qs−1, it gets multiplied by e−2iπs. This agrees
with the relation (3.14). Hence, the rhs of Eq. (3.16) is well
defined on the Riemann surface, which is fibering over
the complex ζ plane with the cut along the ½−1; 1� line,
such that each time translation by 2π lifts up to a new sheet.
Such a behavior and the fact that τ − τ0 on the global AdS
varies from −2π to 2π (and hence the segment ½−1; 1�
is encircled two times) means that the Wightman function
is not invariant with respect to global AdS isometries
unless s ∈ N.
Let us show that this function is, however, invariant with

respect to the isometries of the CAdS spacetime. If there is
an isometry violating the invariance, it should move ζ to
another sheet of the Riemann surface. But the sheet is
uniquely determined by the relative region of x and x0—one
can see this directly from Eq. (3.16) and the constancy of
sign sinðτ − τ0Þ when x ∈ Cnðx0Þ, i.e., when jζj < 1. As the
relative region does not change under isometries, the sheet
cannot change either and, hence, the Wightman function is
invariant. This invariance is a rather expected outcome, as
isometries of the CAdS spacetime are symmetries of the
action.
Using the ordinary time-ordering prescription (3.2),

we can find the expression for the Feynman propagator
F̃sðx; x0Þ on the CAdS spacetime:

F̃ðsÞðx; x0Þ

¼
(

e−2iπns
2π Qs−1ðζ þ iϵÞ; n < jτ−τ0j

2π < nþ 1
2
;

e−2iπðnþ1Þs
2π Qs−1ðζ − iϵÞ; nþ 1

2
< jτ−τ0j

2π < nþ 1;

ð3:17Þ

where n ∈ N ∪ f0g. In this formula Qs−1 is defined on the
complex ζ plane with the standard for Legendre functions
cut at ð−∞; 1Þ. This function is also isometry invariant on
the CAdS spacetime: when x0 ∉ Sþ0 ðxÞ the standard time
ordering is invariant, hence, the whole function is invariant
due to the invariance of the Wightman function. And when
x0 ∈ Sþ0 ðxÞ we have jτ − τ0j < π, so the Feynman propa-
gator is given by 1

2πQs−1ðζ þ iεÞ, which is clearly invariant.
As the Wightman function is global AdS isometry

invariant only when s ∈ N ∪ f0g (in other cases it is not
periodic), the causal propagator constructed with AdS time
ordering is also invariant only for these values of s.
However, it is still possible to formally define such a
propagator in global AdS. Namely, we define it as

FðsÞðx; x0Þ ¼ 1

2π
Qs−1ðζ þ iϵÞ: ð3:18Þ

As is discussed in Sec. V, this propagator can be associated
with the theory of the same mass defined in Poincaré patch.
In Sec. IV we use the propagator for massless theory

m ¼ 0, i.e., s ¼ 1. Hence, let us consider this case
separately. The frequencies, normalized modes and the
Wightman function are as follows:

ωn ¼ n; un ¼
1ffiffiffiffiffiffi
πn

p sin

�
n

�
θ −

π

2

��
;

Wðx; x0Þ ¼ 1

4π
log

�
ζ þ 1þ iϵ sinðτ − τ0Þ
ζ − 1þ iϵ sinðτ − τ0Þ

�
: ð3:19Þ

In this case we can define the Feynman propagator using
the invariant time ordering (3.1):

Fðx; x0Þ ¼ 1

4π
log
�
ζ þ 1þ iϵ
ζ − 1þ iϵ

�
: ð3:20Þ

This expression coincides with the formally defined peri-
odic propagator (3.18) when s ¼ 1.

B. Massive field in a general static
asymptotically AdS manifold

In this section we consider the static asymptotically
AdS manifold (2.8). We restrict our attention to the case
when the conformal factor fðθÞ behaves as in Eq. (2.9).
Our goal is to find out how generic the phenomenon of the
presence of the nonlocal UV singularities in the propa-
gators is. We will show here that there is the UV singularity

INTERACTING QUANTUM FIELDS IN VARIOUS CHARTS OF … PHYS. REV. D 103, 045009 (2021)

045009-7



localized on the light cone emanating from the antipodal
point when α ≤ 2.
Now instead of Eq. (3.3) the action is

S ¼
Z

dτdθ

�
1

2
ημν∂μϕ∂νϕ −

1

2
m2fðθÞϕ2

�
; ð3:21Þ

where the function f satisfies the condition (2.9). Again m
can be absorbed into f so we can set m ¼ 1.
The mode decomposition and the normalization con-

ditions, Eqs. (3.4) and (3.9), remain the same. The
equations of motion for the modes are as follows:

u00n þ ω2
nun − fðθÞun ¼ 0: ð3:22Þ

Now the “potential” fðθÞ in this equation grows to infinity
at the boundary of the region jθj < π=2. Hence, naively the
spectrum is discrete. However, we will see in a moment that
the situation is a bit more tricky for the case when α ≤ 2.
This equation cannot be solved exactly for general f,

but the main contribution to the UV singularities of the
Wightman function comes from high-frequency modes.
Hence, below we look for the high-energy asymptotic
behavior of the modes.
As we have observed in Sec. II A, at zeroth order the

effect of generic f can be approximated by the infinite
potential well. Then the situation is analogous to the case of
massless field (3.19), where

ωn ¼ nþ Δn; jΔnj ≪ n; n → ∞: ð3:23Þ

However, it is still possible that jΔnj is nonvanishing as
n → ∞. For example, from Eq. (3.13) one can find that for
the massive field in AdS jΔnj ¼ s − 1. Such a contribution
to ωn does affect the singular behavior, as we will see
below. Therefore we should take it into account. Our goal
now is to find it for generic fðθÞ.
More accurate approximation for the frequencies can be

found from the semiclassical (WKB) method. The WKB
action in this case coincides with the action (2.13).
Therefore, the quantization rule for WKB frequencies ω̃n
is as follows:I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω̃2
n − fðθÞ

q
dθ ¼ 2πðnþ γÞ; ð3:24Þ

where γ is the Maslov index [20]. For very large values
of n the difference between the exact ωn and semiclassical
ω̃ is vanishing. Hence, the WKB spectrum is sufficient to
determine the most singular part of the correlation function.
Thus, to continue we can replace ω̃n with ωn in

Eq. (3.24):

Sn ¼
I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
n − fðθÞ

q
dθ ¼ 2πðnþ γÞ: ð3:25Þ

It is probably worth stressing here that when α < 2 [see
Eq. (2.9)] the modes, which grow in the classically
forbidden zone, also become normalizable. This means
that the potential barrier in the region ½θt; π=2� becomes
penetrable as the integral for the action on this interval is
convergent. As a result, the spectrum becomes continuous.
Therefore, to restrict ourselves to the asymptotically AdS
case we need to impose the Dirichlet boundary conditions
unð�π=2Þ ¼ 0. That makes the spectrum discrete for any α.
Furthermore, the WKB approximation is applicable

when jλ0ðθÞj ≪ 1, where λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n−fðθÞ

p is the de Broglie

wavelength. Near the boundaries �π=2 this condition
reduces to

ðπ=2 ∓ θÞα2−1 ≪ 1; θ → �π=2: ð3:26Þ

It is satisfied if α > 2, so in this case WKB wave functions
can be used in the forbidden region jθj > θt. In this case the
characteristic scale of the significant change of the potential
near the turning point,

Δθ ¼
���� f0ðθtÞfðθtÞ

���� ∼ π

2
− θt; ð3:27Þ

is much greater than the scale a, where WKB becomes
valid (jλ0ðθt þ aÞj ∼ 1),

a ¼
�
π

2
− θt

�αþ1
3

: ð3:28Þ

Here we have used the linear approximation of the
potential. As there is a region where both WKB and
the linear approximation work, the Maslov index is the
standard one: γ ¼ − 1

2
. It differs from the usually used 1=2

(e.g., [21]) as we count states starting from n ¼ 1 rather
than n ¼ 0.
In the case α < 2 the WKBmethod cannot be used in the

classically forbidden zone near the boundaries. However, in
this case near the turning points θt the de Broglie wave-
length λ ∼ ðπ=2 − θtÞα2 is much greater than π=2 − θt. Then
the wave function does not change significantly on the scale
Δθ and for high-energy modes we can ignore the presence
of the potential. Hence, the infinite potential well approxi-
mation (for which γ ¼ 0) can be used to define the finite
part of ωn. The most singular part of the Wightman
function is then exactly the same as in the massless theory.
The case α ¼ 2 is the most nontrivial. The WKB

approximation can be used only far from the turning point,
when fðθÞ can be neglected. Near the boundary we have to
solve the Schrödinger equation with the potential given by
Eq. (2.9). For large values of ωn the solution can be glued to
the one of the WKB approximation. Hence, γ depends only
on C from Eq. (2.9). This means that we can use the exact
result for massive theory in exact AdS to calculate γ, as in
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this case α ¼ 2. Then the spectrum is given by Eq. (3.13),
and the action by Eq. (2.17) with δ ¼ −2πm ¼ −2π

ffiffiffiffi
C

p
.

In all, we obtain the following possible values of γ in
Eq. (3.25) depending on the value of α:

γ ¼
8<
:

− 1
2
; α > 2;

0; α < 2;

s − 1 −
ffiffiffiffi
C

p
; α ¼ 2;

ð3:29Þ

where s ¼ 1þ ffiffiffiffiffiffiffiffiffi
1þ4C

p
2

, because sðs − 1Þ ¼ C.
Before continuing with the full solution of the WKB

approximation (3.25), let us establish some connection
with the considerations of Sec. II A. Let us assume that
ωn ¼ nþ β, β > 0. It means that the WKB modes are
quasiperiodic in the sense of Eq. (3.14) with s ¼ β þ 1.
Equation (3.25) turns into the geodesic focusing condition
(2.17) with δ ¼ 2πðγ − βÞ for ω ¼ ωn. Then, if Eq. (2.17)
is satisfied for a set fωng, n ∈ N, it is also satisfied for each
ω > 0 because SðωÞ is a monotonically increasing func-
tion. Therefore, the existence of a geodesic focal point is
equivalent to quasiperiodicity of WKB modes. However,
we have observed that in the case of exact global AdS
the exact modes are also quasiperiodic, but with different
phase multipliers. We have also shown that global AdS
spacetime is the only manifold with symmetric fðθÞ having
the geodesic focusing property by solving the inverse
problem—deduction of fðθÞ from SðωÞ. The analogous
problem in the quantum case is to deduce the potential
from the exact spectrum ωn. This is much more compli-
cated, but for symmetric potentials it is possible to prove
(see, e.g., [22]) that the solution is unique. Therefore,
the only asymptotically AdS manifold with the spectrum
ωn ¼ nþ β; β > 0 is AdS space itself, because according
to Eq. (3.13) all such spectra were obtained from massive
field theories in AdS space.
Thus, for the case α < 2 we have seen that the infinite

well approximation can be used and there is the nonlocal
UV singularity, as in the massless case. Now we need to
estimate the lhs of Eq. (3.25) when α ≥ 2. Below in this
section we will omit all quantities vanishing in the n → ∞
limit. Let us use the series expansion

Sn ≈ ωn

I �
1 −

X∞
k¼1

ð2k − 3Þ!!
k!2k

�
fðθÞ
ω2
n

�
k
�
dθ: ð3:30Þ

The first term here is 4θtωn. Using the expression (2.15) for
turning points, we find that

4θtωn ≈ 2πωn − 4C
1
αω

1−2
α

n : ð3:31Þ

The second term can give a nonvanishing contribution only
near turning points where fðθÞ ∼ ω2

n. The characteristic
size of such an area is Δθ ∼ 1=ω

2
α, defined in Eq. (3.27), the

terms of the sum have zero order in ωn near θt. Hence, their

contribution is of the same order as −ωnΔθ ∼ −ω1−2
α

n .
Combining this with Eq. (3.31), we find

Sn ≈ 2πωn −Dω
1−2

α
n ; D > 0: ð3:32Þ

The correction is nonvanishing when ωn → ∞ if α ≥ 2. In
this case it is possible to show that D depends only on an
asymptotic behavior of its potential and is equal to

D ¼ 2
ffiffiffi
π

p
C

1
α
Γðα−1α Þ
Γð3α−2

2α Þ : ð3:33Þ

This value is found in Appendix C.
As a result, the WKB mode frequencies are as follows:

ωn ≈ nþ γ þ D
2π

n1−
2
α: ð3:34Þ

Because the potential fðθÞ is an even function the modes
are either even or odd functions. According to the oscil-
lation theorem [21], the wave function of the nth state has
n − 1 zeros. Hence, it is symmetric for even n and
antisymmetric for odd. Near the origin the potential can
be neglected, hence for n ≫ 1 we can use the following
approximation:

un ≈
1ffiffiffiffiffiffi
πn

p sin

�
ωnθ −

πn
2

�
: ð3:35Þ

We use the zeroth-order approximation for the normaliza-
tion coefficients, i.e., take them the same as in Eq. (3.19).
Corrections to the latter after substitution into the expres-
sion for Wightman function (3.15) do not create singular
terms—the corresponding series are absolutely convergent.
Therefore, near the singularities the Wightman function
Wfðx; x0Þ can be expressed as follows:

Wfðx;x0Þ

≈
X
n

e−iωnðτ−τ0−iεÞ sin
�
ωnθ−

πn
2

�
sin

�
ωnθ

0−
πn
2

�

¼
X
n

1

4πn
ðe−iωnðτ−τ0−iε−ðθ−θ0ÞÞ þe−iωnðτ−τ0−iεþðθ−θ0ÞÞ

þð−1Þne−iωnðτ−τ0−iε−ðθþθ0ÞÞ þð−1Þne−iωnðτ−τ0−iεþðθþθ0ÞÞÞ;
ð3:36Þ

ωn here are WKB frequencies. It is always singular when
τ − τ0 ¼ �ðθ − θ0Þ—the usual local singularity. Other sin-
gularities can be located at τ − τ0 ¼ 2πl� ðθ − θ0Þ and τ −
τ0 ¼ 2πðl − 1=2Þ � ðθ þ θ0Þ for l ∈ Z as ωn ¼ nþ Δn ∼ n
for large n. However, these points are singular if the series

INTERACTING QUANTUM FIELDS IN VARIOUS CHARTS OF … PHYS. REV. D 103, 045009 (2021)

045009-9



S ¼
X
n

eiπlΔn−εn; l ≠ 0; ð3:37Þ

is divergent after taking the limit ε → 0. According to the
formula for the frequencies (3.34),

S ≈
X
n

exp

�
iπl

�
γ þ D

2π
n1−

2
α

�
− εn

�
: ð3:38Þ

It is divergent only for α ≤ 2 and the additional singularities
in this case have the phase multipliers. Using the expres-
sions (3.33) and (3.29) for D and γ, respectively, one can
show that they coincide with the phase multiplier in
massive theory in AdS with m ¼ ffiffiffiffi

C
p

.
To summarize: for α < 2 the singularities of the

Wightman function are the same as in massless theory
in AdS, for α ¼ 2—as in massive theory in AdS with mass
m ¼ ffiffiffiffi

C
p

and for α > 2 there is only the standard local UV
singularity.

C. Higher dimensions

To conclude this section we discuss the generalization
of the above observations to the dimensions higher than
two. We consider a d-dimensional asymptotically AdS
spacetime

ds2d ¼ fðθÞðdτ2 − dθ2 − sin2 θdΩ2
d−2Þ; ð3:39Þ

where fðθÞ satisfies Eq. (2.9). The Weyl transformation
now acts on the field nontrivially: the conformal weight of a
scalar field is d−2

2
. Then the transformation ϕ → f

2−d
4 ϕ

changes the action into the following form:

S ¼
Z

ddx
ffiffiffiffiffiffi
−h

p �
1

2
hμν∂μϕ∂νϕ

−
d − 2

8
ϕ2

�
f00

f
þ d − 6

4

�
f0

f

�
2
�
−
1

2
fm2ϕ2

�
; ð3:40Þ

where h is a metric on the ESU. The second term here has
quadratic singularity at θ ¼ π=2, hence it can be combined
with the third one into 1

2
gϕ2. The equation of motion for the

modes (3.4) where un ¼ uωðθ;Ωd−2Þ is as follows:

∂2
θun þ ðd − 2Þ cot θ∂θun þ

1

sin2 θ
Δd−2un

þ ω2un − gðθÞun ¼ 0; ð3:41Þ

where Δd−2 is a Laplace operator on Sd−2. The first
θ derivative can be eliminated via substitution un ¼
vnðsin θÞ2−d2 :

∂2
θvn þ

1

sin2 θ
Δd−2vn

þ
�
ω2 − gðθÞ þ d − 2

2
−
ðd − 2Þðdþ 4Þ

4
cot2 θ

�
vn ¼ 0;

ð3:42Þ

un can be chosen as an eigenfunction of Δd−2. As a result,
we obtain a one-dimensional Schrödinger equation. The
only term singular at θ ¼ π=2 is gðθÞ, at θ ¼ 0 the
singularities are quadratic. Hence, this problem can be
treated similarly to the two-dimensional case.
The calculation of the Maslov index in this case is much

more complicated, but the divergent term in Δn which is
defined similarly to Eq. (3.23) (in the conformally coupled
theory the frequencies are integers [17]) can be estimated.
As the difference between f and g has quadratic singularity
at π=2, calculations similar to the d ¼ 2 case show that
such a divergent term does exist also when α > 2—the
same condition as before. However the local singularity
should be ∼ 1

ðsðx;x0ÞÞd−2 rather than log sðx; x0Þ as in the two-

dimensional case, where sðx; x0Þ is a geodesic distance
between x and x0. This means that nonlocal UV singularity
does appear for every potential, but for α > 2 it is of lower
order than the local one.
This argument can be extended to general manifolds

with a boundary where the metric is singular. Namely, the
structure of singularities depends only on the behavior of
high-frequency modes near the boundary. Hence we can
conclude that the nonlocal singularities are absent if and
only if the singularity of metric at the boundary is stronger
than quadratic.

IV. PRINCIPAL CHIRAL FIELD AN
PERTURBATION THEORY IN GLOBAL AdS

So far we have considered only free (Gaussian) theories
over asymptotically AdS spacetimes. To see the conse-
quences of the second UV singularity in the propagators in
this section we consider an interacting theory in global
AdS. We will find that the second singularity leads to the
appearance of nonlocal counterterms [13]. We will make a
few comments on other difficulties in global AdS and then
calculate the effective action for principal chiral field
theory.

A. Problems with perturbation expansion
in global AdS

Consider an interacting scalar field theory in global
Lorentzian AdS spacetime. Besides the boundary, global
AdS also has closed timelike geodesics. As we already
pointed out in Sec. II, this property means that the time
ordering cannot be defined in the usual way. The isometry
invariant definition is given by Eq. (3.1). The problem with
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this definition is that it is not transitive, i.e., one cannot use
it for more than two fields.
Instead of that, for the free theory one can use Wick’s

theorem as a definition. However, it does not work for
interacting fields. We can only define the perturbative
expressions using Feynman rules, but this approach is in
some way inconsistent. To show the latter point, let us
consider the massless free field theory:

S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p 1þ ε

2
ð∂μϕÞ2; ε > 0: ð4:1Þ

By the field redefinition ϕ → ϕffiffiffiffiffiffi
1þε

p this action obviously can

be transformed into the standard form (3.3). Hence, the
Feynman propagator F ðx; x0; εÞ should be as follows:

F ðx; x0; εÞ ¼ Fðx; x0Þ
1þ ε

; ð4:2Þ

where Fðx; x0Þ is defined in Eq. (3.20).
On the other hand, one should be able to calculate the

propagator treating ε
2
ð∂μϕÞ2 as a perturbation. The first-

order correction in ε is as follows:

F ð1Þðx; x0Þ ¼ iε
Z

d2y
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p ∂y
μFðx; yÞ∂yμFðy; x0Þ; ð4:3Þ

here ∂y
μ ¼ ∂

∂yμ. Integrating by parts, we get

F ð1Þðx; x0Þ ¼ −iε
Z

d2y
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
Fðx; yÞ□yFðy; x0Þ

þ iε
Z
∂AdS

Fðx; yÞ∂μFðy; x0Þdyμ; ð4:4Þ

where □y ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp ∂μÞ and ∂AdS is the boundary of

AdS at θ ¼ �π=2. Using Eq. (3.20), one can show that the
boundary term is zero. The function Fðy; x0Þ satisfies the
wave equation almost everywhere except for y0 − x00 ¼ 0

and jy0 − x00j ¼ π, where the step functions in the defi-
nition (3.1) have discontinuities. From the canonical
commutation relations and the quasiperiodicity (3.14) for
massless theory we obtain

□yFðy; x0Þ ¼ −iδAdSðy; x0Þ − iδAdSðy; x̄0Þ; ð4:5Þ

here δAdSðx; yÞ is the delta function for the measureffiffiffiffiffiffi−gp
d2y and x̄0 is the antipodal to x point. Hence, it

follows that

F ð1Þðx; x0Þ ¼ −ε½Fðx; x0Þ þ Fðx; x̄0Þ�: ð4:6Þ

The rhs of this expression can be rewritten in terms of the
commutator Cðx; x0Þ ¼ ½ϕðxÞ;ϕðx0Þ�:

F ð1Þðx; x0Þ ¼ −εfθ½sinðτ − τ0Þ�Cðx; x0Þ
þ θ½sinðτ0 − τÞ�Cðx0; xÞg; ð4:7Þ

where we have used that Wðx; x0Þ ¼ −Wðx̄; x0Þ. This result
does not coincide with the first-order expansion following
from Eq. (4.2).
The correct answer can be obtained by replacing Fðy; x0Þ

with the function FPðy; x0Þ which satisfies Eq. (4.5) with
only the local delta function on the rhs, which is zero at the
boundary and is 2π periodic in y0. The latter condition is
required to avoid the boundary terms at y0 ¼ �π=2. Such a
propagator is constructed in the next subsection. However,
it turns out to be ill defined in the massless case and for all
massive theories with isometry-invariant Wightman func-
tions. There is also a possibility to consider the theory in the
covering manifold with τ ∈ ð−∞;þ∞Þ and restore the iϵ
prescription after calculations, but the propagator does not
decay as τ → �∞. We will come back to the discussion of
this point in the next section.

B. Another way to define the propagator
in global AdS

Yet another way to define the propagator in global AdS is
with the use of the path integral:

FPðx; x0Þ ¼
R
DϕϕðxÞϕðx0ÞeiS½ϕ�R

DϕeiS½ϕ�
; ð4:8Þ

with the periodic time τ ∈ ½0; 2πÞ and periodic boundary
conditions for the field. Let us be more specific. A natural
way is to impose ϕðτ ¼ 0Þ ¼ ϕðτ ¼ 2πÞ, the reflective
boundary conditions are not essential here. In the
Hamiltonian formalism the expression under consideration
is as follows:

FPðx; x0Þ ¼
TrðT0fϕðxÞϕðx0Þge−2iπHÞ

Tre−2iπH
; ð4:9Þ

where T0 denotes the usual time ordering, as we have
already denoted it above.
As τ interval is finite, the contribution of excited states is

not suppressed. Hence, the expression under consideration
obviously does not define the average over the vacuum
state. It resembles the Matsubara Green’s function but with
imaginary temperature 2iπ. The main advantage of this
expression is that it is manifestly 2π periodic in Lorentzian
time τ. Moreover, Eq. (4.9) is isometry invariant—the
measure is considered to be invariant and the periodic
boundary conditions are consistent with the invariance.
Hence, this propagator is well defined in global AdS, unlike
the one over the vacuum state.
Furthermore, in the free theory FPðx; x0Þ does satisfy

Eq. (4.5) with only one local delta function on the rhs. That
is due to the conventional time ordering. Using the mode
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decomposition (3.4) and the standard basis of Fock states,
one can obtain the explicit expression

FPðx; x0Þ ¼ F̃ðx; x0Þ þ
X
ω

1

e2πiω − 1
½hωðxÞh�ωðx0Þ

þ h�ωðxÞhωðx0Þ�; ð4:10Þ

where F̃ðx; x0Þ is a vacuum expectation value of
T0fϕðxÞϕðx0Þg. Note that it is ill defined when at least
one of the ω is an integer.
In the case of two-dimensional massive theory with

m2 ¼ sðs − 1Þ, s > 1 the spectrum is defined by Eq. (3.13):
ωn ¼ sþ n − 1, n ∈ N. Such a simple form allows for the
exact calculation of this “thermal” propagator:

FðsÞ
P ¼ F̃ðsÞðx; x0Þ þWðsÞðx; x0Þ þWðsÞðx0; xÞ

e2πis − 1
; ð4:11Þ

where F̃ðsÞ is defined in Eq. (3.17) and WðsÞ in Eq. (3.16).
Using the definition

F̃ðsÞðx; x0Þ ¼ θðτ − τ0ÞWðsÞðx; x0Þ þ θðτ0 − τÞWðsÞðx0; xÞ
ð4:12Þ

and the monodromy properties established in Sec. III A one

can show that FðsÞ
P ðx; x0Þjx0¼0 ¼ FðsÞ

P ðx; x0Þjx0¼2π , i.e., it is
periodic.
To prove the isometry invariance of the propagator in

question we refer to the discussion at the beginning of
Sec. III. We have already seen that the propagator F̃ðsÞ and
the Wightman functions are invariant under the action of a
subset of isometries preserving the relative region of x and
x0 (as they belong to the isometry group of the CAdS
spacetime). Because any other isometry can be obtained by
an additional time translation shifting τ − τ0 → τ − τ0 � 2π,
the invariance with respect to the whole group follows from

2π periodicity of the function FðsÞ
P —the Wightman function

is not invariant separately due to its nontrivial monodromy.
Another feature of this propagator is that it cannot be
defined as a boundary value of some analytic function of
ζ—the functions WðsÞðx; x0Þ and WðsÞðx0; xÞ are defined on
different parts of the Riemann surface.

C. Effective action for the principal chiral field

To show the consequences of the nonlocal UV singu-
larity and of different ways of defining propagators, we
consider the principal chiral field theory in 2D global
AdS spacetime. Our goal is to calculate the one loop UV
counterterms.
The tree-level action is as follows:

S ¼ −
1

2e20

Z
d2x

ffiffiffi
g

p
TrR2

μ; Rμ ¼ g∂μg−1; ð4:13Þ

where gðxÞ ∈ G—a compact simple Lie group. The stan-
dard method is to decompose the field into the classical
and quantum components and then integrate out the latter.
Substituting gðxÞ ¼ hðxÞgclðxÞ, where gcl is a classical
field and h ¼ eϕ;ϕ ∈ LieðGÞ is the quantum one.
Expanding the action up to the second-order terms in ϕ,
we get

S ¼ 1

2e20

Z
d2x

ffiffiffi
g

p
Trð−Rcl2

μ þ ϕ□ϕ − Rcl
μ ½ϕ; ∂μϕ�Þ;

ð4:14Þ

where □ is the Laplace-Beltrami operator in AdS space-
time. We also omitted the first-order terms as they generate
only tadpole diagrams.
Let us choose a basis tI in the Lie algebra (ϕ ¼ iϕItI),

for which the Killing form is diagonal, and

TrtItJ ¼ 1

2
δIJ; ½tI; tJ� ¼ ifIJKtK: ð4:15Þ

After the additional rescaling ϕI →
ffiffiffiffiffiffiffi
2e20

p
ϕI we obtain

S ¼ Scl þ
1

2

Z
d2x

ffiffiffi
g

p
ϕIðδIJ□ − ifIJKRclK

μ ∂μÞϕJ; ð4:16Þ

where Scl ¼ S½gcl�.
The free theory of quantum field ϕI is massless. Hence,

the periodic propagator (4.9) is infinite and thus cannot
be defined. It is possible to use the embedding space
path integral with τ ∈ ð−∞;∞Þ, but in the path integral
approach the Feynman propagator has conventional time
ordering and therefore it is not isometry invariant, as we
have discussed above.
The isometry-invariant propagator FIJðx; x0Þ can be

defined via AdS time ordering. Due to the simple structure
of color indices of the free field term, this propagator is
given by FIJðx; x0Þ ¼ δIJFðx; x0Þ, where Fðx; x0Þ is given
by Eq. (3.20):

Fðx; x0Þ ¼ 1

4π

�
log

1

ζ − 1þ iϵ
− log

1

ζ þ 1þ iϵ

�
: ð4:17Þ

Because both singularities have the Feynman ϵ prescrip-
tion, we expect the appearance of the nonlocal counterterm
[13]. Figure 2 shows the diagrams which provide the first
loop correction. The external lines stand for the classical
field RclK

μ and the crosses on the internal lines denote the
derivatives ∂μ.
Via integration by parts one can shows that the con-

tributions of the two diagrams coincide if ∇μRclμ ¼ 0,
which is the classical equation of motion. However, in the
general case the difference between them is UV finite,
because the integrand has only one of the derivatives in the
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integral acting on the propagator. In fact, in the general
case, the difference between the contributions of the two
diagrams is proportional toZ

d2xd2x0
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
RclI
μ ðxÞð∇νRclI

ν Þðx0Þ

× ∂μ
xFðx; x0Þ · Fðx; x0Þ: ð4:18Þ

As x → x0, the propagator has a logarithmic divergence [in
terms of either ζ or the interval in the embedding space,
see Eq. (4.21) below]. Hence, the singular part of the
integrand ∂μFðx; x0Þ · Fðx; x0Þ behaves as log jx−x0j

jx−x0j , which
gives a UV-finite result after the integration over d2x.
Therefore, the expression which contains the divergent

contribution is as follows:

δSð2Þ ¼ iCvðGÞ
4

Z
d2xd2x0

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
RclI
μ ðxÞ

× RclI
ν ðx0Þ∂μ

xFðx; x0Þ∂ν
x0Fðx; x0Þ; ð4:19Þ

where CvðGÞ is the value of the Casimir operator in the
adjoint representation fIKLfJKL ¼ CvðGÞδIJ.
It is possible to calculate the integral in the AdS local

coordinates, but we will use another approach to make the
AdS covariance manifest. Namely, we move to the embed-
ding R3 space where we use Cartesian coordinates XA with
the metric ηAB described in Sec. II. One can restrict

integration from R3 to AdS by introducing the delta
function:

ffiffiffiffiffiffi−gp
d2x ¼ 2δðX2 − 1Þd3X. The embedding of

AdS in R3 is given by functions XAðxÞ ¼ φAðxÞ defined in
Eq. (2.2). Hence, the pushforward of vector fields on AdS
to R3 and the pullback inverse are as follows:

RAðXÞ ¼ RμðxÞ∂μφ
AðxÞ; RμðxÞ ¼ RAðXÞ∂μφ

AðxÞ:
ð4:20Þ

In terms of AdS vector fields one can write the integrand as
Rcl
x ðFðx; x0ÞÞ · Rcl

y ðFðx; x0ÞÞ. In order to use this expression
in the embedding space we have to extend the propagator
on to R3. The extension is not unique, but Rcl is tangent to
AdS, hence the result does not depend on the choice.

When X ¼ φðxÞ and X0 ¼ φðx0Þwe have ζ þ 1 ¼ ðXþX0Þ2
2

and ζ − 1 ¼ − ðX−X0Þ2
2

. We therefore use the following
extension for the propagator:

FðX;X0Þ¼ 1

4π

�
log

1

−ðX−X0Þ2þ iϵ
− log

1

ðXþX0Þ2þ iϵ

�
:

ð4:21Þ

It is convenient to introduce the variables Y ¼ X0−X
2

and
Ȳ ¼ X0þX

2
. Then, using Eq. (4.20), we obtain

δSð2Þ ¼ iCvðGÞ
4π2

Z
d3Yd3ȲδððY þ ȲÞ2 − 1Þδð4YȲÞRclAðȲ − YÞRclBðȲ þ YÞ

×

�
−

YAYB

ðY2 − iϵÞ2 þ
ȲAȲB

ðȲ2 þ iϵÞ2 þ
YAȲB þ ȲAYB

ðY2 − iϵÞðȲ2 þ iεÞ
�
: ð4:22Þ

Here we have transformed the delta-functional term for convenience.
The first two terms in the last expression are logarithmically divergent and can be calculated in the usual way via Wick

rotation. The third term there is convergent and can be omitted. Then the UV-divergent parts of the first and the second terms
are as follows:

δSð2Þloc ¼ −
iCvðGÞ
4π2

Z
d3Yd3ȲδðY2 − 1Þδð4YȲÞRclAðYÞRclBðYÞ ȲAȲB

ðȲ2 − iϵÞ2 ;

δSð2Þnon-loc ¼
iCvðGÞ
4π2

Z
d3Yd3ȲδðY2 − 1Þδð4YȲÞRclAð−YÞRclBðYÞ ȲAȲB

ðȲ2 þ iϵÞ2 : ð4:23Þ

FIG. 2. The second-order correction to the effective action.

INTERACTING QUANTUM FIELDS IN VARIOUS CHARTS OF … PHYS. REV. D 103, 045009 (2021)

045009-13



In the first term we have interchanged the variables Y and
Ȳ. These expressions are manifestly isometry covariant as
the isometries, being Lorentz transformations of the am-
bient spacetime, are coordinate independent. Due to the
symmetry considerations the term ȲAȲB can be replaced
with 1

2
ðηAB − YAYBÞȲ2 as Ȳ is orthogonal to Y and Y2 ¼ 1

because of the delta functions. Furthermore, RclAðYÞ is
tangent to AdS, meaning that RclAYA ¼ 0 when Y2 ¼ 1.
Then only the contribution from ηAB term survives. What
remains to be calculated is the following integral:

I� ¼
Z

d3Ȳδð4YȲÞ Ȳ2

ðȲ2 � iϵÞ2 : ð4:24Þ

As Y2 ¼ 1 and the integrand except for the delta function is
Lorentz invariant, it is possible to set Y ¼ ð0; 0; 1Þ by
Lorentz transformations and integrate out the delta func-
tion. What is left is a two-dimensional integral which can
be calculated after the Wick rotation Ȳ1 → �iȲ1. Intro-
ducing the UV cutoff 1

Λ at small Ȳ, we obtain

I� ¼∓ πi
2
logΛþ UV finite terms: ð4:25Þ

Using the pullback (4.20) and the relation ∂μφ
AðxÞ×

∂νφAðxÞ ¼ gμνðxÞ alongside the property ϕðx̄Þ ¼ −ϕðxÞ
of our coordinate choice, we obtain the effective action
Γ½gcl� up to the second order:

Γ½gcl�¼−
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p
Tr

��
1

e20
−
CvðGÞ
4π

logΛ
�
Rcl
μ ðxÞRclμðxÞ

−
CvðGÞ
4π

logΛζμνðx;x̄ÞRμðxÞRνðx̄Þ
�
; ð4:26Þ

where ζμνðx; x0Þ is a bitensor defined as follows:

ζμνðx; x0Þ ¼ ∂μφAðxÞ∂νφAðx0Þ ¼ ∂μ
x∂ν

x0ζðx; x0Þ: ð4:27Þ

The local term in Eq. (4.26) coincides with the result in flat
space. Apparently the Lagrangian (4.26) is covariant, but it
contains the nonlocal term. A similar term was obtained in
the scalar field theory [13]. Such a term does not appear if
only the local singularity has the Feynman iϵ prescription.
That is the case only if the propagator satisfies the equation
with only a local delta function on the rhs of an equation
such as Eq. (4.5).

D. Effective action from the periodic propagator
in global AdS

In the case of massive theory the effective action in
global AdS can also be defined using the periodic propa-
gator (4.9). Due to the discussion in Sec. III A, in this case
the perturbation theory is more justified than in the previous
subsection. However, as we will see now the structure of
this propagator leads to severe UV divergences.
To illustrate the origin of such UV divergences let us

consider the real scalar ϕ4 theory with the mass m and
coupling constant λ. The calculation of the effective action
is similar to [13], but with the use of the periodic propagator
(4.9) instead of the AdS time-ordered one. The contribution
to the loop correction, which is of interest to us, is as
follows:

δSWW ∝ iλ2
Z

d4xd4x0
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
ϕ2ðxÞϕ2ðx0Þ

×Wmðx; x0ÞWmðx0; xÞ; ð4:28Þ

where Wmðx; x0Þ is the Wightman function of the theory.
There is a coordinate system where Wmðx; x0Þ asymptoti-
cally coincides with the Wightman function in Minkowski
space for close x and x0. Hence, the qualitative expression
for the contribution coming from the local singularity (x0 is
on a light cone emanating from x) is as follows:

δSðMÞ
WW ∝ iλ2

Z
d4xd4x0

ϕ2ðxÞϕ2ðx0Þ
ððx − x0Þ2 − iϵsignðx0 − x00ÞÞððx − x0Þ2 þ iϵsignðx0 − x00ÞÞ ; ð4:29Þ

where we used the expression for the Wightman function in Minkowski spacetime for close x and x0. The leading UV term
is mass independent. The signature of the metric is ðþ;−;−;−Þ. Introducing the coordinates y ¼ x0−x

2
and y0 ¼ x0þx

2
, we can

rewrite the latter term as

δSðMÞ
WW ∝ iλ2

Z
d4yd4ȳ

ϕ2½ȳ − y�ϕ2½ȳþ y�
ðy0 − jyj − iϵÞðy0 þ jyj − iϵÞðy0 − jyj þ iϵÞðy0 þ jyj þ iϵÞ ; ð4:30Þ

where y ¼ ðy1; y2; y3Þ. As one can see there are poles in both the upper and lower half planes of y0. The y0 integration is
now divergent when ϵ → 0. The most divergent part can be obtained by setting y0 ¼ �jyj in the denominator and
calculating the y0 integral by closing the contour in the upper half plane:
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δSðMÞ
WW ∝

iλ2

ϵ

Z
d4y0d3y

�
ϕ2½y0 − y�ϕ2½y0 þ y�jy0¼jyj þ ϕ2½y0 − y�ϕ2½y0 þ y�jy0¼−jyj

jyj2
�
: ð4:31Þ

The remaining integral is convergent.
In this case it is natural to associate ϵ with UV cutoff 1

Λ.
Hence, the divergence is powerlike, but it cannot be
subtracted by a local counterterm as is usually done with
powerlike divergences due to the obvious nonlocality in
Eq. (4.31). This nonlocality is concentrated on the light
cone emanating from y0. Due to the quasiperiodicity of the
Wightman function on AdS, a similar singularity will
appear on the light cone emanating from the antipodal
point of the source.
A divergence as in Eq. (4.31) is drastically different from

what one usually obtains in flat space quantum field theory,
because it comes from the product of two Wightman
functions with different order of the same points, and,
hence, with different signs of iϵ prescription. In the usual
situation the time ordering of the Feynman propagator,
Fmðx; x0Þ ¼ θðt − t0ÞWmðx; x0Þ þ θðt0 − tÞWmðx0; xÞ, pre-
vents such cases—the product of two step functions is
definitely zero.

V. LOOP CORRECTIONS IN THE CAdS AND PP

A. Theory in the CAdS spacetime

In the CAdS spacetime the theory is free of nonlocal
counterterms if one uses the conventional time ordering and
the corresponding iϵ prescription [13]. However, there still
can be problems in loops due to the quasiperiodicity of the
propagator, because naively in the CAdS spacetime one
repeats the same contribution of the global AdS an infinite
number of times. Note that due to the quasiperiodicity in
time in CAdS the Feynman propagator does not decay with
the increase of the timelike distance between its two points.
In this section we will show that such a theory can be

properly defined by analytical continuation from the
Euclidean theory and hence is free from these problems.
However, this demands an unusual iϵ shift in the propa-
gators. Furthermore, in the general case the theory is not be
strictly causal: the commutator function h½ϕðxÞ;ϕðx0Þ�i
may be nonzero for spacelike separations between x and
x0 if jτ − τ0j > π.
First, let us discuss the analytic properties of the

propagator. We start from the Wightman function
WðsÞðx; x0Þ of the free massive theory. For simplicity we
set x0 ¼ 0 (we can always do this by CAdS isometries). As
we are interested in the behavior of the Wightman function
in the complex τ plane, it is not very convenient to use the
expression (3.16), because ζ is periodic in τ. Hence, the
expression (B7) in terms of power series obtained in
Appendix B is more suitable:

WðsÞðx; 0Þ ¼ ΓðsÞ
2
ffiffiffi
π

p
Γðsþ 1=2Þ cos

sθe−isðτ−iϵÞ

×
X∞
k¼0

e−ikð2τ−iϵÞ
ðsÞk

ðsþ 1=2Þk
× Pð−1=2;s−1=2Þ

k ðcos 2θÞ: ð5:1Þ

We see that this function is clearly analytic in the lower half
plane Imτ < 0 as the series is convergent and for real τ
the iϵ prescription yields the lower boundary value. The
function Wð0; xÞ can be obtained by simply changing the
sign of τ, as the general expression (3.15) is symmetric with
respect to the interchange of θ and θ0. Hence, WðsÞð0; xÞ is
analytic in the upper half plane.
The Legendre function (3.16) has branching points at

ζ ∈ f1;−1;∞g (for the moment we forget about the iε
shift), which corresponds to cos τ ¼ � cos θ and cos θ ¼ 0,
i.e., τ ∈ f�θ þ πk; π=2þ πkg, k ∈ Z. In the region −jθj <
τ < jθj (the separation is spacelike, since ζ > 1) the
Wightman functions Wðx; 0Þ and Wð0; xÞ both coincide
and are given by 1

2πQs−1ðζÞ, as ζ > 1 and the branch cut in
the ζ plane is ð−∞; 1�. Therefore, the commutator function
h½ϕðxÞ;ϕð0Þ�i is zero in this region.
However, the theory is not completely causal for generic

mass or s. In fact, while ζ is periodic and the spacelike
regions jζj > 1 appear every π period, the functions
WðsÞðx; 0Þ and WðsÞð0; xÞ get multiplied by e−iπs and
eiπs, respectively. They coincide and therefore the causality
is satisfied only if s is an integer, i.e., when the Wightman
function can be correctly defined on global AdS.
In the same way as it is done in Minkowski spacetime

quantum field theory the functionsWðsÞðx;0Þ andWðsÞð0;xÞ
can be glued together into the Feynman propagator
F̃ðsÞðx; 0Þ through the cut −jθj < τ < jθj [the expression
is given in Eq. (3.17)]. This region is in fact Sþ0 ð0Þ. The
propagator is analytic in Cnfð−∞;−jθj� ∪ ½jθj;þ∞Þg as a
function of τ. If τ ∈ R we choose the lower boundary value
for τ > 0 and the upper one for τ ≤ 0. However, similar to
the discussion in Sec. III A, the causality in Sþ0 ð0Þ is
enough for the propagator to be invariant under the
isometry group of the CAdS spacetime.
In perturbation theory one has to calculate the integrals

involving F̃ðsÞðx; 0Þ over the τ axis. To do that one has to
specify the integration contour. The standard contour
parallel to the real axis and going slightly above or below
(depending on the signτ) is not consistent in CAdS for
sufficiently large jτj. In fact, along such a contour the
Feynman propagator in CAdS is quasiperiodic and does not
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decay at infinity. As a result, the loop integrals are ill
defined. However, such a choice of the contour is the
standard one in Minkowski spacetime: it is the proper
contour to define the time evolution of correlation functions
in the Schwinger-Keldysh diagrammatic technique.
The well-defined choice in CAdS is provided by the

contour e−iϵR for π ≫ 0. As one can see, it is quite different
from the standard way of doing the iϵ shift in Minkowski
spacetime quantum field theory. For this new type of
contour the correlation function exponentially decays at
infinity in CAdS, which can be seen directly from the
expression for Wightman function (5.1) and the fact that
s > 1 (in the upper half plane we should change τ to −τ).
An example of such a contour with the branching points
and branch cuts in the τ plane is shown in Fig. 3.
More importantly, the contour can be deformed into the

Euclidean one with ϵ ¼ π=2. After such a Wick rotation
τ ¼ −iβ the covering space is mapped into the upper half of
EAdS, which is maximally symmetric. In the d-dimen-
sional case we have

Xi ¼ ψ i tan θ; Xd−1 ¼ cosh β
cos θ

;

X̃d ¼ sinh β
cos θ

; ζðx; 0Þ ¼ cosh β
cos θ

> 1; ð5:2Þ

where Xd ¼ −iX̃d, the Wick-rotated time in the embed-
ding space.
In the Euclidean theory the Feynman propagator

F̃ðsÞðx; 0Þ is singular only when x ¼ 0. Hence all diver-
gences are local and the nonlocal counterterms, which we
observed in the previous section, do not arise. As the upper
half of EAdS is maximally symmetric, the correlation
functions and loop corrections depend only on the isometry
invariants (there are no problems associated with branch
cuts as ζ ≥ 1 for every two points in EAdS). The analytic

continuation back to Minkowski space violates this
property—the iϵ prescription in the ζ plane, which is
ζ þ iϵ sin jτj depends on τ. Instead we get the invariance
under the isometry of the CAdS spacetime. In the next
subsection we will show that the theory in the PP can also
be Wick rotated to EAdS theory, but the analytic continu-
ation in this case preserves the invariance—the propagator
depends only on ζ.

B. Theory in the Poincaré patch

The PP is defined in Eq. (2.6). Comparing this with the
global embedding (2.2), we see that standard time ordering
in the PP corresponds to AdS-invariant ordering (3.1) for
timelike separated points. Hence, the Feynman propagator
in the PP has the same iϵ prescription as the AdS time-
ordered one in the global chart. The propagator depends
only on the isometry invariants, ζ ¼ XX0 and signΔt. It is
also straightforward to see that theWightman’s prescription
t − t0 − iϵ for two-point function hϕðxÞϕðx0Þi corresponds
to the shift ζðx; x0Þ þ iϵsignðt − t0Þ.
The isometry invariant in this case (2.7) is not periodic

in time, unlike the case discussed above—the dependence
is almost the same as in flat Minkowski space. Hence, the
simple i shift in the complex t plane is enough to correctly
define the theory. Also ζ does not encircle branching points
after any t translations. Hence, the monodromy phase
multipliers like in Eq. (3.17) do not appear.
The Feynman propagator Fðx; x0Þ therefore has the

following form:

Fðx; x0Þ ¼ Fðζ þ iϵÞ: ð5:3Þ

It is the boundary value of a function, regular in the upper
half plane which satisfies the equations of motion. It means
that in the case of two-dimensional massive scalar field

FIG. 3. The complex τ plane of the Feynman propagator with the integration contour: branching points are marked by crosses and
branch cuts by red lines.
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theory it should coincide with FðsÞðx; x0Þ as defined
in Eq. (3.18).
Let us consider now loop corrections in a quantum field

theory in the PP of AdS. There are isometry transforma-
tions, which move the PP in the global AdS. Hence, naively
if one integrates over the PP in the loop integrals the
isometry is broken. However, now we will show that loop
corrected correlators are still functions of the isometry
invariant for the AdS isometry state, i.e., for the Feynman
propagator defined above. The arguments in this subsection
are very similar to those in [23,24] for the expanding
Poincaré region of de Sitter spacetime with the Bunch-
Davies initial state exactly at past infinity.
Consider a vertex of order n in a loop contribution. In

terms of the embedding space coordinates with the measure
discussed in Sec. (IV C) the integration in the vertex is as
follows:

I¼
Z

ddþ1Y2δðY2−1ÞθðYd−1−Y0Þ
Yn
i¼1

FðY;XiÞ: ð5:4Þ

The step function θðYd−1 − Y0Þ restricts the domain of
integration to the PP and, hence, naively violates the AdS
isometry, while δðY2 − 1Þ andQn

i¼1 FðY; XiÞ are invariant.
To probe the AdS invariance of loop corrections one should
check how I is changed under a transformation which does

not preserve the PP, i.e., affects θðYd−1 − Y0Þ. For example,
consider an infinitesimal boost in the ð0; dÞ plane:

X0 → X0 þ εXd; Xd → Xd þ εX0: ð5:5Þ

The consideration of other boosts and rotations moving
either X0 or Xd−1 is similar. The corresponding change of I
is as follows:

δεI ¼ −ε
Z

2ddþ1YδðY2 − 1ÞδðYd−1 − Y0ÞYd
Yn
i¼1

FðY;XiÞ:

ð5:6Þ

Let us take into account that FðY; XiÞ ¼ FðYXi þ iϵÞ and

YX ¼ 1

2
½Xd−1 þ X0ÞðYd−1 − Y0Þ

þ ðXd−1 − X0ÞðYd−1 þ Y0Þ� þ XdYd − XiYi;

i ¼ 1;…; d − 2: ð5:7Þ

Therefore, if all points Xi are in the PP, after integrating out
δðYd−1−Y0Þ using dYd−1dY0¼1

2
dðYd−1þY0ÞdðYd−1−Y0Þ

we find that

δεI ¼ −ε
Z

dðYd−1 þ Y0Þdd−1YδðY2 − 1ÞYd−1
Yn
j¼1

F

�
1

2
ðXd−1

j −X0
jÞðYd−1 þ Y0 þ iϵÞ þXd

jY
d −Xi

jY
i

�
; i¼ 1;…; d− 2:

ð5:8Þ

Here we have used that Xd−1 − X0 > 0 in the PP. In
Eq. (5.8) we can close the integration contour in upper
half of the complex ðYd−1 þ Y0Þ plane where the integrand
has no poles. As a result we obtain that δI ¼ 0 and the
integral I (and hence the loop correction) does not change
under isometry transformations. Hence, I depends only on
isometry invariants, such as ζ and the sign of Δt. This is in
agreement with the possibility of the Wick rotation, which
we will discuss now.
The theory in the PP also admits the Wick rotation

t → −it. It is equivalent to the transformation Xd → −iXd

in terms of embedding space, which brings the PP to the
upper sheet of the two-sheeted EAdS space. On the other
hand, the Wick rotation of the theory in the CAdS
spacetime discussed in Sec. VA transforms it into the very
same sheet of EAdS. However, the embedding coordinates
transform differently—it leads to a different choice of
Euclidean time. As we have discussed above, the upper
half of EAdS is maximally symmetric. Hence, the corre-
lation function of isometry-invariant Euclidean theory

(along with loop integrals) depends only on ζ. The
analytical continuation back to the PP requires the simple
shift ζ → ζ þ iϵ. Hence, it preserves the invariance. Also
the counterterms are inherited from the Euclidean theory
and therefore local.
Another consequence of the possibility of Wick rotation

is that the propagators on the CAdS and the PP are analytic
continuations of the same function of ζ, but with different
choices of the complex parameter. As a result, the only
difference between them is iϵ prescription—on the CAdS
space its sign depends on time, which leads to complicated
behavior. Moreover, the Feynman propagator on the CAdS
space, F̃ðx; 0Þ, is equal to F½ζðx; 0Þ þ iϵ� if τ ∈ ð−π; πÞ.
This is so because τ ¼ 0 also belongs to the Euclidean
contour. Hence, the function at this point is the same as the
Euclidean one. Next, the region including τ ¼ 0 where the
ζ-plane iϵ prescription on the covering space (ζ þ iϵ sin jτj)
coincides with the one on the PP is ½−π; π�—we observed
it in the case of d ¼ 2 massive free theory. If we increase
τ further so that the iϵ prescription is again the same
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(e.g., τ ∈ ½2π; 3π�), ζ encircles the branching points, so
nontrivial monodromy may change its value.

VI. CONCLUSION

In this paper we discuss quantum field theory in
asymptotically AdS spacetimes, covering of global AdS
manifold and in the Poincaré patch. The relation of the
presence of nonlocal UV singularities of the Wightman
function to the classical geodesic focusing is investigated;
we find that the latter takes place only in specific cases,
while the UV singularity emanating from the antipodal
point of the source appears for a wider class of asymp-
totically AdS metrics.
Then we consider interacting field theories in 2D global

AdS, its covering space and the Poincaré region. We
consider different possible definitions of the Feynman
propagator with a focus on the interplay between the time
ordering, iϵ shift and isometry invariance. For an isometry-
invariant propagator we find that perturbation theory
becomes inconsistent or leads to the appearance of nonlocal
counterterms in global AdS spacetime. This is demon-
strated in the example of a principal chiral field. We also
show that such problems are absent for the theory in the
Poincaré patch. In the latter case quantum field theory over
the AdS-invariant state can be defined via analytical
continuation from the Euclidean AdS space.
In the covering global AdS spacetime the analytical

continuation can also be done for a specific choice of the iϵ
shift of the UV singularity in coordinate space. In such a
case one can use the isometry–invariant propagator and can
Wick rotate it to the Euclidean AdS. But the iϵ shift in
question is different from the standard one used to define
the Feynman propagator in flat spacetime.
Let us clarify the last point. If one were considering a

non-Planckian initial distribution in covering AdS space-
time, one would use the Schwinger-Keldysh diagrammatic
technique rather than the Feynman one to calculate the time
evolution of the distribution. In that technique there is the
matrix of propagators, one component of which is the
Feynman propagator. To define the latter propagator one
cannot use the iϵ shift adopted in our paper.
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APPENDIX A: BOUNDARY CONDITIONS AND
CONSERVATION LAWS

We consider the two-dimensional theory in global AdS
spacetime with the following action:

S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂μϕÞ2 − VðϕÞ

�
: ðA1Þ

Following [14], we impose the condition of the conservation
of charges corresponding to the conserved currents. Namely,
AdS2 has three-dimensional isometry group SOð2; 1Þ gen-
erated by three Killing vectors Kμ

AB, A < B. The covariantly
conserved currents can be expressed as follows:

JμAB ¼ Tμ
νKν

AB; ðA2Þ

where Tμν is a stress-energy tensor of the theory:

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμνð∂λϕÞ2: ðA3Þ

As there are conservation laws of the form
∂μð ffiffiffiffiffiffi−gp

JμABÞ ¼ 0, for each current there is a corresponding
charge:

QAB ¼
Z
τ¼const

dθ
ffiffiffiffiffiffi
−g

p
J0AB ¼

Z
τ¼const

dθ
ffiffiffiffiffiffi
−g

p
g00T0μK

μ
AB:

ðA4Þ

Conservation of these charges means that there is no flux offfiffiffiffiffiffi−gp
JμAB through the boundaries θ ¼ �π=2:

ð ffiffiffiffiffiffi
−g

p
g11T1μK

μ
ABÞjθ¼π

2
− ð ffiffiffiffiffiffi

−g
p

g11T1μK
μ
ABÞjθ¼−π

2
¼ 0:

ðA5Þ

Note that this condition is Weyl invariant.
The isometries of AdS correspond to Lorentz trans-

formations of the embedding space (2.2) generated by the
Killing vectors KAB ¼ XA∂B − XB∂A. They are tangent to
AdS, hence KAB are their restrictions to X2 ¼ 1. In terms of
local coordinates ðτ; θÞ we find

K01 ¼ sin τ sin θ∂τ − cos τ cos θ∂θ;

K12 ¼ ∂τ;

K02 ¼ − cos τ sin θ∂τ − sin τ cos θ∂θ: ðA6Þ

Substituting these explicit expressions into Eq. (A5), we
obtain

T10jθ¼π
2
¼ T10jθ¼−π

2
¼ 0: ðA7Þ

As T10 ¼ ∂1ϕ∂0ϕ, at θ ¼ �π=2 either ∂0ϕ ¼ 0 or
∂1ϕ ¼ 0. Hence, there are four types of boundary
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conditions. In terms of modes the first condition means that
the modes are zero at the boundary (as they are eigen-
functions of ∂0), and the second condition means that their
derivatives are zero. If we additionally impose the condition
of maximal decay of the Wightman function at infinity, we
have to choose the first one. Therefore,

unðπ=2Þ ¼ unð−π=2Þ ¼ 0; ðA8Þ

where un are defined in Eq. (3.4).

APPENDIX B: NORMALIZATION OF
MODES AND WIGHTMAN FUNCTION OF

MASSIVE THEORY

Let us denote vn ¼ u2n−1, wn ¼ u2n from Eq. (3.13). To
find the normalization constants we have to calculate the
scalar products and use the condition (3.9):

hvnjvni¼A2
n

Z
dθcos2sθðPð−1=2;s−1=2Þ

n−1 ðcos2θÞÞ2

¼A2
n

2s

Z
1

−1
dxð1þxÞs−1=2ð1−xÞ−1=2ðPð−1=2;s−1=2Þ

n−1 ðxÞÞ2

¼A2
n

2s
2sΓðn−1=2ÞΓðnþs−1=2Þ

ð2ðn−1ÞþsÞΓðnþs−1ÞΓðnÞ; ðB1Þ

where we used the orthogonality relation for Jacobi poly-
nomials and the change of the integration variables
cos 2θ ¼ x. Therefore,

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðnþ sÞðn − 1Þ!
2Γðn − 1=2ÞΓðnþ s − 1=2Þ

s
: ðB2Þ

Next,

hwnjwni¼B2
n

Z
dθcos2sθsin2θðPð1=2;s−1=2Þ

n−1 ðcos2θÞÞ2

¼ B2
n

2sþ1

Z
1

−1
dxð1þxÞsþ1=2ð1−xÞ1=2ðPð1=2;s−1=2Þ

n−1 ðxÞÞ2

¼ B2
n

2sþ1

2sþ1Γðnþ1=2ÞΓðnþs−1=2Þ
ð2nþs−1ÞΓðnþsÞΓðnÞ : ðB3Þ

And, hence,

Bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðnþ sÞn!
2Γðnþ 1=2ÞΓðnþ s − 1=2Þ

s
: ðB4Þ

Now we can calculate the Wightman function using
Eq. (3.15):

Wðx; x0Þ ¼
X∞
n¼1

ðeiðsþ2n−2Þðτ0−τþiϵÞvnðθÞvnðθ0Þ

þ eiðsþ2n−1Þðτ0−τþiϵÞwnðθÞwnðθ0ÞÞ: ðB5Þ

As the answer is AdS invariant, we can set θ0 ¼ 0; τ0 ¼ 0.
Then there will be no contribution from wn as wnð0Þ ¼ 0.
Using

Pðα;βÞ
n ð1Þ ¼ Γðαþ 1þ nÞ

Γðαþ 1Þn! ; ðB6Þ

we obtain

WðsÞðx; x0Þ ¼
X∞
n¼1

e−iðsþ2n−2Þðτ−iϵÞcossθ
Γðnþ s − 1Þ

2
ffiffiffi
π

p
Γðnþ s − 1=2ÞP

ð−1=2;s−1=2Þ
n−1 ðcos 2θÞ

¼ ΓðsÞ
2
ffiffiffi
π

p
Γðsþ 1=2Þ cos

sθe−isðτ−iϵÞ
X∞
k¼0

ðe−ið2τ−iϵÞÞk ðsÞk
ðsþ 1=2Þk

Pð−1=2;s−1=2Þ
k ðcos 2θÞ

¼ ΓðsÞ
2
ffiffiffi
π

p
Γðsþ 1=2Þ

e−isðτ−iϵÞcossθ
ð1þ e−ið2τ−iÞÞs 2F1

�
s
2
;
sþ 1

2
; sþ 1

2
;
2e−ið2τ−iϵÞðcos 2θ þ 1Þ

ð1þ e−ið2τ−iϵÞÞ2
�
; ðB7Þ

where ðxÞn is a Pochhammer symbol:

ðxÞn ¼
Yn−1
k¼0

ðxþ kÞ: ðB8Þ

The answer for the infinite sum is given in [25]. In this case
the expression for the geodesic parameter is as follows:

ζ ¼ fAðxÞfAðx0Þ ¼
cos τ
cos θ

; ðB9Þ

Using the standard expression for the Legendre function
[26], we find

WðsÞðx; x0Þ ¼ 1

2π
Qs−1½ζ þ iϵ sinðτ − τ0Þ�: ðB10Þ

That is the propagator used in the body of the paper.
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APPENDIX C: THE WKB CORRECTION TO
FREQUENCIES

According to Eq. (3.32), we have to calculate the
nonvanishing part of the following expression when
ωn → ∞:

Dn ¼ 2πωn −
I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
n − fðθÞ

q
dθ

¼ 4

�
πωn

2
−
Z

θt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n − fðθÞ

q �
: ðC1Þ

As the integrand significantly differs from ωn only near the
boundary, we can use the asymptotic expression (2.9).
Also, changing the lower limit of integration in Eq. (C1) to
−L (L > 0) can be compensated for by the term Lωn as the
additional corrections to this compensation vanish when
ωn → ∞. Hence,

Dn ≈ 4 lim
L→∞

 
ωn

�
Lþ π

2

�
−
Z

θt

−L
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n −

C
ðπ=2 − θÞα

s !

¼ 4 lim
L→∞

 
ωnL −

Z
L

θ̃t

dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n −

C
θα

r !
; ðC2Þ

where θ̃t ¼ ð C
ω2
n
Þ1=α, α ≥ 2. One can show that the limit is

finite. Let L ¼ θ̃ta, then

Dn ≈ 4 lim
a→∞

C
1
αω

1−2
α

n

�
a −

Z
a

1

dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

θα

r �
: ðC3Þ

Let us calculate this integral:

IðaÞ ¼
Z

a

1

dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

θα

r
¼ =x

¼ 1

θα
= ¼ 1

α

Z
1

a−α
dxx−1−

1
α

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
: ðC4Þ

Integrating by parts, one obtains

IðaÞ ¼ a −
1

2

Z
1

a−α

x−
1
αffiffiffiffiffiffiffiffiffiffiffi

1 − x
p : ðC5Þ

In the limit a → ∞ the second term here turns into the Euler
beta function. Therefore,

Dn ≈ 2C
1
αω

1−2
α

n

Z
1

0

dx
x−

1
αffiffiffiffiffiffiffiffiffiffiffi

1 − x
p ¼ 2

ffiffiffi
π

p
C

1
αω

1−2
α

n
Γð1 − 1

αÞ
Γð3

2
− 1

αÞ
:

ðC6Þ

As according to Eqs. (C1) and (3.32) Dn ≈Dω
1−2

α
n , we find

that

D ¼ 2
ffiffiffi
π

p
C

1
α
Γð1 − 1

αÞ
Γð3

2
− 1

αÞ
; ðC7Þ

which is used in the body of the paper.
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