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In this paper the scattering between a wobbling kink and a wobbling antikink in the standard ϕ4 model is
numerically investigated. The dependence of the final velocities, wobbling amplitudes and frequencies of
the scattered kinks on the collision velocity and on the initial wobbling amplitude is discussed. The fractal
structure becomes more intricate due to the emergence of new resonance windows and the splitting of those
arising in the nonexcited kink scattering. Outside this phase the final wobbling amplitude exhibits a linear
dependence of the collision velocity, which is almost independent of the initial wobbling amplitude.
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I. INTRODUCTION

Over the last 50 years, topological defects have played
an essential role in explaining a wide variety of nonlinear
phenomena arising in several physical contexts, including
condensed matter [1–4], cosmology [5,6], optics [7–9],
molecular systems [10,11], biochemistry [12], etc. This
broad range of applications underlies the fact that topo-
logical defects are solutions of nonlinear partial differential
equations, which behave as extended particles in the
physical substrate. Solitons and kinks are paradigmatic
examples of this type of solutions, which have been
profusely studied both in physics and mathematics. They
arise, respectively, in the sine-Gordon and ϕ4 field theory
models, which are endowed with two opposite properties:
integrability versus nonintegrability. Curiously, kink scat-
tering in nonintegrable systems exhibits a richer behavior
than the one found for integrable systems. The study of
the collision between kinks and antikinks in the ϕ4 model
was initially addressed in the seminal references [13–16].
The complex relation between the final velocity vf of the
scattered kinks and the initial collision velocity v0 was

displayed in these papers. There exist two different scatter-
ing channels: bion formation and kink reflection. In the first
case a bound state (called bion) is formed, where kink and
antikink collide and bounce back over and over emitting
radiation in every impact. In the second case, kink and
antikink emerge after the impact and move away with a
certain velocity vf. If the initial collision velocity v0 is low
enough, a bion is always formed while for large velocities
v0 the kinks are reflected. However, the most striking
feature in this scheme is that the transition between the
two previously described regimes is characterized by a
sequence of initial velocity windows with a fractal structure
where the kinks collide several times before definitely
escaping, see Fig. 1. The fractal nature displayed by this
final velocity versus initial velocity diagram is twofold:
(i) the first two-bounce window arises approximately in the
range v0 ∈ ½0.1920; 0.2029� and it is infinitely replicated
by progressively narrower windows up to the beginning of
the one-bounce kink reflection regime at (approximately)
v0 ≈ 0.26, see Fig. 1. (ii) Two-bounce windows are
surrounded by three-bounce windows, and these ones, in
turn, are surrounded by four-bounce windows and so on.
Consequently, the previously mentioned diagram displays
three clearly differentiated parts: the first one corresponds
to zero velocity where the bion state is formed, the second
part approximately occurs in the interval [0.19,0.26], where
the fractal structure emerges, and the third one refers to the
one-bounce kink reflection regime, characterized by a
continuous increasing curve starting at zero final velocity,
which we shall call the one-bounce tail. Notice that there is
no one-bounce windows in the fractal region.
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The presence of the n-bounce windows can be explained
by means of the resonant energy transfer mechanism. As it
is well known the second order small kink fluctuation
operator involves two discrete eigenfunctions: a zero mode
(which generates an infinitesimal translational movement
of the kink) and a shape mode (an infinitesimal perturbation
associated with the internal vibration of the kink). The
presence of these modes is the consequence of two different
evolutions: (a) the kink travels with constant velocity and
(b) the kink vibrates by changing its size. This last behavior
defines the so-called wobbling kink. The previously men-
tioned mechanism allows an energy exchange between the
zero and shape kink modes. For example, a kink and an
antikink could approach each other with initial velocity v0,
collide, and bounce back. The impact could excite the
shape mode, which would absorb a part of the kinetic
energy. As a consequence, a wobbling kink and a wobbling
antikink would emerge after the collision and move away.
If the kinetic energy of the resulting kinks was not large
enough to make the kinks escape, then they would end up
approaching and colliding again. The new impact would
cause a redistribution of the energy among the zero and
vibrational modes. It is clear that the wobbling kinks play
an important role in the fractal structure of the n-bounce
windows. In this sense the present study is important to
understand the n-bounce scattering since after the first
collision a wobbling kink and a wobbling antikink emerge
with, in general, higher amplitudes than the initial one.
A part of the vibrational energy could return to the zero
mode making it possible for the kinks to move away
and eventually escape. This describes a two-bounce kink
scattering event. In general, a n-bounce event arises when
the resulting kinks need to collide n times before escaping.
It is worthwhile to mention that the resonant energy transfer
mechanism does not arise for the soliton scattering in the
sine-Gordon model. It is assumed that the reason for this
is the lack of vibrational (shape) modes in this model.
However, this mechanism and other related phenomena are
present in a large variety of one-component scalar field
theory models, such as in the double sine-Gordon model
[17–23], in deformed ϕ4 models [24–33], in ϕ6 models

[34–39], and in other more complex models [40–46].
Kink dynamics has also been analyzed in coupled two-
component scalar field theory models, see [47–54]. The
effect of impurities, defects, or inhomogeneities on kink
dynamics has been discussed in several models, see
Refs. [55–68]. The previous description constitutes an
heuristic explanation of the resonant energy transfer
mechanism, although this phenomenon has revealed to
be more complicated than expected. It has been proved
that it can be triggered by the discrete eigenfunctions of
combined kink configurations when kink and antikink are
close enough and also by quasinormal modes [41,69–71].
This complexity turns the search for an analytical explan-
ation of this phenomenon into a very elusive problem.
Indeed, the collective coordinate method was initially
introduced in [13] to explain the kink dynamics in the
ϕ4 model and was used later on to explain the resonant
energy transfer mechanism in a satisfactory way. However,
the presence of typographical errors in the original paper
has been proved [72]. The corrected terms were not
sufficient to make the collective coordinate approach fit
the data outcome of the scattering process using the
harmonic approximation. A recent paper [73] shows that
the inclusion of more terms, up to second order, in the
effective Lagrangian improves the fit between analytical
and simulation data.
Another important topic in this context is the study of the

evolution of the wobbling kink in the ϕ4 model. This issue
was initially discussed by Getmanov [74], who interpreted
the wobbling kink as a bound state of three nonoscillatory
kinks. Some perturbation expansion schemes have been
employed to explore the properties of the wobbling
kinks, see for example [48,60,75–78]. These publications
show that the amplitude aðtÞ of the wobbling mode at
fourth order in the expansion decays. As a consequence
the wobbling kink emits radiation. When að0Þ is small,
the decay becomes appreciable only after long times
t ∼ jað0Þj−2, see [75,76].
In this paper we shall investigate the scattering between

wobbling kinks. This analysis is interesting for several
reasons. The original kink scattering problem, where the

FIG. 1. Final velocity vf of the scattered kinks as a function of the initial collision velocity v0 of the colliding kinks. The final velocity
of a bion is assumed to be zero. The color code is used to specify the number of bounces suffered by the kinks before escaping. The
resonance window has been enlarged and inserted in the figure.
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resonant energy transfer mechanism was initially discov-
ered, involves the collisions of wobbling kinks after the
first impact. In other words, a n-bounce scattering process
presumably includes n − 1 wobbling kink collisions. For
example, in a two-bounce event the kinks collide and a
part of the kinetic energy is transferred to the vibrational
mode, such that the second collision is a wobbling kink
scattering process. Indeed, this last impact causes the
more (at first sight) astonishing phenomenon, the two
kinks acquire more velocity than they initially had before
colliding. For this reason, the study of the wobbling kink
scattering can bring new insight in the original problem,
particularly those one-bounce events, where the ampli-
tude and velocity of colliding wobbling kinks can be
monitored. This allows us to study the resonant energy
transfer mechanism in a more direct way. Obviously, the
major part of the results displayed in this paper comes
from numerical analysis due to the previously mentioned
fact that there are no satisfactory analytical methods to
study this problem.
The organization of this paper is as follows: in Sec. II the

theoretical background of the ϕ4 model is introduced.
The study of the kink and its linear stability leads us to the
description of the wobbling kinks. The kink-antikink
scattering is also discussed. Section III is devoted to the
numerical analysis of the wobbling kink scattering. Here
we shall address the scattering between weakly wobbling
kinks and the scattering between strongly wobbling kinks
in two different subsections. The distinction underlies the
fact that the amplitude of the wobbling kinks decreases in
the course of time. This effect is small for weakly wobbling
kinks. So, we can assume in our numerical experiments
that the amplitude of these kinks does not significantly
change in the interval in which they are initially approach-
ing before the collision. Finally, some conclusions are
drawn in Sec. IV.

II. THE ϕ4 MODEL AND THE KINK-ANTIKINK
SCATTERING

The dynamics of the ϕ4 model in (1þ 1) dimensions is
governed by the action

S ¼
Z

d2xLð∂μϕ;ϕÞ; ð1Þ

where the Lagrangian density Lð∂μϕ;ϕÞ is of the form

Lð∂μϕ;ϕÞ ¼
1

2
∂μϕ∂μϕ − VðϕÞ; VðϕÞ ¼ 1

2
ðϕ2 − 1Þ2:

ð2Þ

The use of dimensionless variables and Einstein summation
convention is assumed in (1) and (2). The Minkowski
metric gμν has been chosen as g00 ¼ −g11 ¼ 1 and

g12 ¼ g21 ¼ 0. The solutions of this model verify the
nonlinear partial differential equation

∂2ϕ

∂t2 −
∂2ϕ

∂x2 ¼ −
dV
dϕ

¼ −2ϕðϕ2 − 1Þ; ð3Þ

which derives from the Euler-Lagrange equations associ-
ated with the functional (1). The energy-momentum con-
servation laws imply that the total energy and momentum

E½ϕ� ¼
Z

dx

�
1

2

�∂ϕ
∂t

�
2

þ 1

2

�∂ϕ
∂x

�
2

þ VðϕÞ
�
;

P½ϕ� ¼ −
Z

dx
∂ϕ
∂t

∂ϕ
∂x ð4Þ

are system invariants. The integrand of the total energy
E½ϕ�

ε½ϕðxÞ� ¼ 1

2

�∂ϕ
∂t

�
2

þ 1

2

�∂ϕ
∂x

�
2

þ VðϕÞ

is the energy density of a configuration ϕðxÞ. Time and
space independent solutions of (3) are ϕV ¼ �1. Therefore,
the set M of the vacua in this model is M ¼ f−1; 1g.
Finite energy static solutions of (3) are of the form

ϕð�Þ
K ðx; x0Þ ¼ � tanhðx − x0Þ; ð5Þ

which are called kink/antikink ðþ=−Þ and connect the two
elements of the set M. The kink/antikink energy density

ε½ϕð�Þ
K ðx; x0Þ� ¼ sech4ðx − x0Þ is localized around the point

x ¼ x0, which represents the center of the kink (the value
where the field profile vanishes and the energy density is
maximal). The Lorentz invariance can be used to construct
traveling kinks/antikinks in the form

ϕð�Þ
K ðt; x; x0; v0Þ ¼ � tanh

�
x − x0 − v0tffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v20
p

�
: ð6Þ

Obviously, the kink center xC for (6) moves in the real line
following the expression xC ¼ x0 þ v0t, such that v0 is
interpreted as the kink velocity.
Now, in order to examine the linear stability of the

solution, we consider fluctuations around the static kink/
antikink solution (5) by adding a small perturbation as

ϕ̃ð�Þ
K ðt; x; x0Þ ¼ ϕð�Þ

K ðx; x0Þ þ ψðt; x; x0Þ: ð7Þ

Expanding the equation of motion (3) up to first order in ψ
and using the standard separation of variables ansatz,

ψðt; x; x0Þ ¼ aeiωtψω2ðx; x0Þ;

results the Schrödinger-like equation
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�
−

d2

dx2
þ UðxÞ

�
ψω2ðx; x0Þ ¼ ω2ψω2ðx; x0Þ; ð8Þ

where

UðxÞ ¼ d2V
dϕ2

����
ϕð�Þ
K

¼ 4 − 6sech2ðx − x0Þ:

Equation (8) has one zero mode, one excited mode with
eigenvalue ω2 ¼ 3, and a continuous spectrum on the
threshold value ω2 ¼ 4, whose eigenfunctions are given by

ψω2¼0ðx; x0Þ ¼ sech2ðx − x0Þ ¼
∂ϕK

∂x ;

ψω2¼3ðx; x0Þ ¼ sinhðx − x0Þsech2ðx − x0Þ;
ψω2¼4þq2ðx; x0Þ ¼ eiqðx−x0Þ½−1 − q2 þ 3tanh2ðx − x0Þ

− 3iq tanhðx − x0Þ�:

The zero mode ψω2¼0 describes an infinitesimal translation
of the static kink (5) or, in other words, an infinitesimal
evolution of the traveling kink (6). The shape mode
ψω2¼3ðx; x0Þ describes a vibrational state of the kink/
antikink whose width oscillates with frequency ω ¼ ffiffiffi

3
p

.
For small amplitudes a, a traveling wobbling kink/antikink

ϕð�Þ
WK is described by the expression

ϕð�Þ
WKðt; x; x0; v0; aÞ ¼ � tanh

�
x − x0 − v0tffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v20
p

�

þ aeiωt sinh

�
x − x0 − v0tffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v20
p

�

× sech2
�
x − x0 − v0tffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v20
p

�
; ð9Þ

which is a good approximation up to first order. The
maximum deviation of the wobbling kink (9) from the
kink (6) takes places at the points

xð�Þ
M ¼ xC �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v20

q
arccosh

ffiffiffi
2

p
; ð10Þ

where xC is the kink center. The same result applies to the
antikink. The deviation at these points is given by half the
wobbling amplitude

jϕWKðxð�Þ
M Þ − ϕKðxð�Þ

M Þj ¼ 1

2
jaj: ð11Þ

We shall analyze the evolution of the kink/antikink at
these points to study the excitation of the shape mode in the
kink scattering processes. For larger amplitude a higher
order corrections in ψ need to be taken into account. Then
the magnitude a becomes a function of the time variable.

Indeed, it has been proved that the amplitude aðtÞ of the
wobbling mode at fourth order in the expansion decays
following the expression

jaðtÞj2 ¼ jað0Þj2
1þ ωξIjað0Þj2t

; ð12Þ

where ξI is a constant and ω ¼ ffiffiffi
3

p
. When að0Þ is small,

the decay becomes appreciable only after a long time
t ∼ jað0Þj−2, see [75,76].
The scattering between a kink and an antikink [whose

shape eigenfunctions are unexcited, i.e., a ¼ 0 in (9)] has
been thoroughly analyzed in the physical and mathematical
literature. In this case, a kink and antikink, which are well
separated, are pushed together with initial collision velocity
v0. Taking into account the spatial reflection symmetry of
the system, the kink can be located at the left of the antikink
or vice versa. Such an initial configuration at t ¼ t0 can be
characterized by the concatenation

ϕð�Þ
K ðt0; x; x0; v0Þ ∪ ϕð∓Þ

K ðt0; x;−x0;−v0Þ

¼
8<
:

ϕð�Þ
K ðt0; x; x0; v0Þ if x < 0

ϕð∓Þ
K ðt0; x;−x0;−v0Þ if x ≥ 0

ð13Þ

for a large enough x0. Two different scattering channels
have been found in this situation:
(1) Bion formation: in this case, kink and antikink

approach each other, then collide and bounce back.
After the impact an exchange of energy from the
translational mode to the shape and continuous
modes takes place in such a way that the kinetic
energy of these two kinks is not big enough to
allow them to escape. Therefore, they approach each
other again, collide, and bounce back over and over.
This is a long living bound kink-antikink state
called “bion.”

(2) Kink reflection: now, kink and antikink approach
each other, collide, and bounce back. After the
impact a redistribution of the energy among the
normal modes occurs. After colliding a finite num-
ber n of times, kink and antikink emerge and move
away with final velocity vf. These processes will be
referred to as n-bounce scattering events.

If we plot the final velocity vf of the scattered kinks as
a function of the initial collision velocity v0 we find the
diagram displayed in Fig. 1. Here, it is assumed that the
final velocity for a bion state is zero. It is clear that the bion
formation regime arises for low enough values of the
collision velocity v0. On the other hand, if v0 is greater
than 0.25988 then kink and antikink reflect each other after
colliding once (blue curve in Fig. 1). We will refer to this
piece of curve as “the one-bounce tail.” Note that a color
code has been used in Fig. 1 to specify the number of
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collisions that the kinks suffer before escaping. The
convention used in this work is that the zeroes of the
evolving configuration determine the presence of kink/
antikink solutions. In every collision the two zeroes (which
specify the centers of kink and antikink) disappear.
Therefore, the number of bounces can be measured by
the number of these periods where the evolving solution
does not vanish. A surprising fractal pattern turns up in
the interval [0.18, 0.25988], where the bion formation and
kink reflection regimes are interlaced (see enlarged area
in Fig. 1).
As previously mentioned, after the first collision in a

n-bounce scattering process the following collisions
involve wobbling kinks due to the fact that the first impact
usually excites the shape mode of the initially colliding
kinks. It is difficult to monitor the velocities and amplitudes
of the resulting kinks after the first impact in an n-bounce
event because the period of time between bounces is
usually very short. For this reason, it seems reasonable
to directly investigate the collision between wobbling
kinks. In this situation the velocity and amplitude of the
colliding and scattered wobbling kinks can be monitored, at
least, in the one-bounce processes. In any case, this type of
scattering events can provide us with a lot of information
about the resonant energy transfer mechanism.

III. SCATTERING BETWEEN WOBBLING KINKS

The goal of this paper is to analyze the scattering
between wobbling kinks. In order to accomplish this task
we shall employ numerical approaches based on the
discretization of the partial differential equation (3). The
numerical procedure used in this paper corresponds to an
energy conservative second-order finite difference algo-
rithm implemented with Mur boundary conditions. The
effect of radiation in the simulation is controlled by this
algorithm because the linear plane waves are absorbed at
the boundaries. As an alternative method to verify the
reliability of the previous numerical scheme, the algorithm
described in [79] by Kassam and Trefethen has been
employed. This scheme is spectral in space and fourth
order in time and was designed to solve the numerical
instabilities of the exponential time-differencing Runge-
Kutta method introduced in [80]. The initial settings for our
scattering experiments are described by two initially well
separated wobbling kinks which are pushed together with
initial collision velocity v0. This situation is characterized
by the concatenation

ϕð�Þ
WKðt0; x; x0; v0; aÞ ∪ ϕð∓Þ

WKðt0; x;−x0;−v0; aÞ

¼
8<
:

ϕð�Þ
WKðt0; x; x0; v0; aÞ if x < 0

ϕð∓Þ
WKðt0; x;−x0;−v0; aÞ if x ≥ 0

; ð14Þ

where x0 is large enough and

ϕð�Þ
WKðt; x; x0; v0; aÞ

¼ � tanh

�
x − x0 − v0tffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v20
p

�

� a sinðωtÞsech
�
x − x0 − v0tffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v20
p

�
tanh

�
x − x0 − v0tffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v20
p

�

ð15Þ

has been chosen to comply with the initial condition

ϕð�Þ
WKð0; x; x0; v0; aÞ ¼ ϕð�Þ

K ð0; x; x0; v0Þ. This involves a
particular choice of the initial phase in the vibration of
the shape mode. It has been checked that this does not alter
the global properties discussed in this section. The con-
figuration (14) consists of a wobbling kink/antikink with
center −x0 located at the left side of an wobbling antikink/
kink with center x0. It is clear that if x0 ≫ 0 and a ≪ 1 the
partial differential equation (3) is verified by (14) with high
accuracy. The initial conditions for our problem can be
derived from (14) by simply taking t ¼ 0, that is,
ϕð0; x; x0; v0; aÞ and ∂ϕ

∂t ð0; x; x0; v0; aÞ define the starting
point of the numerical algorithm.
We remark that (15) has been used to construct the initial

conditionsofournumerical simulations.Wewill discussnow
therangeofvalidityof thisprocedure.Perturbationtheorycan
be used to obtain approximations of the evolving wobbling
kink up to some order in a small parameter ϵ. The expression

ϕWKðx; tÞ
¼ tanh xþ ϵðCsech2xþ Aeiωtsechx tanh xÞ þ oðϵ2Þ;

ð16Þ

where ψ0 ¼ sech2x is the zero mode and ψω ¼ sechx tanh x
is the shape mode of the kink fluctuation operator (8), is an
approximation of the traveling wobbling kink up to second
order in the parameter ϵ [75]. This approximation assumes
that two physical magnitudes must be small, the traveling
velocity v0 and the wobble amplitude a. For example, the
expansion of the boosted kink

ϕKðx; tÞ ¼ tanh

�
x − v0tffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v20

p
�
≈ tanh x − tv0sech2xþ oðv20Þ

reveals that the factor ϵC in (16) must be equal to−tv0. This
implies that, in general,v0mustbe small.However, the initial
conditions in our problemcan be determined by the behavior
of the solution for t ≈ 0, so the perturbation parameter ϵC ¼
−tv0 is small for all thevelocitiesv0 in this limit.On the other
hand, the expansion of the boosted solution (15)

ϕWKðx; tÞ ≈ tanh x − tv0sech2x

þ a sinðω0tÞsechx tanh xþ…
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reproduces formula (16). This means that (9) verifies the
equations of motion up to second order in the small param-
etersaandv0.Theexpression (9) is agoodapproximation for
small a and v0. In order to check the reliability of the
numerical approach for larger initial velocities, the evolution
of a single wobbling kink configuration starting with the
previous initial conditions has been systematically analyzed
bymeansofnumericalsimulations.Nosubstantialchangesin
the evolution of the wobbling solution were detected. It is
assumed that the difference between the correct and approxi-
mate initial conditions is dissipated bymeans of a very small
radiation emission in a very short period of time at the
beginning of the simulation and that this does not affect the
later evolution.
The configuration (14) is invariant under a spatial

reflection transformation x ↦ −x, as it is also the evolution
equation (3), so all the scattering processes will preserve
this symmetry. This means that we can extract all the
scattering information by analyzing the features of only one
of the scattered kinks. In particular, our numerical experi-
ments have been carried out in a spatial interval x ∈
½−100; 100� where the kink and antikink centers are
initially separated by a distance d ¼ 2x0 ¼ 60. These kink
centers have been monitored during the evolution, as well
as the number of bounces suffered by the topological
defects. In the kink reflection regime this information is
used to work out the final velocity of the scattered kinks
by employing a linear regression when the kinks are far
enough apart from each other. This scheme has been
performed for a range of initial velocities v0 usually
covering the interval v0 ∈ ½0.1; 0.9� with initial velocity
steps Δv0 ¼ 0.001, which is decreased to Δv0 ¼ 0.00001
in the resonance range. These data allow us to study the
dependence of the separation velocity of the scattered kinks
as a function of the collision velocity v0, which can be
graphically represented by means of diagrams similar to
Fig. 1. Once the position and the velocity of the kink centers
have been determined, the wobbling amplitude and fre-
quency are also estimated. To do this, the difference between
the numerical profile and a nonexcited traveling kink, both of
them with the same center xC and velocities vf, is evaluated
at the points x�M for every time step in the simulation. The
choice of these points underlies the fact that the shape
fluctuation has its maximum/minimum values at the points
x�M. The time series constructed in this way were analyzed by
using a fast Fourier transform algorithm.
In order to explore the dependence of the final velocity

on the initial wobbling amplitude of the colliding kinks the
previously described numerical scheme has been replicated
for different values of the amplitude a considered in the
initial configuration. In these numerical experiments we
considered only positive values of a. Negative values of a
are simply related with the positive ones by adding a phase
in the argument of the oscillatory factor sinðωtÞ in (15).
To get a better understanding of the phenomena associated

with this type of scattering processes it is convenient to
distinguish two different regimes which depend on the
magnitude of the amplitude a. They are determined as
follows:
(1) Scattering between weakly wobbling kinks: this

scenario comprises those scattering processes where
the initial amplitude a of the colliding wobbling
kinks is jaj < 0.05. In these cases the amplitude
decay effect is assumed to be negligible such that the
wobbling amplitude of the evolving kinks at the time
of impact is approximately equal to the initial one.
It is clear that this kind of events allows a better
control on the variables of the scattering problem.
The mechanisms that begin to deform the velocity
diagram with respect to the pattern found in Fig. 1
when a is increased can already be perceived in
these cases. These novel behaviors will be discussed
in Sec. III A.

(2) Scattering between strongly wobbling kinks: the
more intense phenomena are expected to take place
when the wobbling amplitudes of the colliding kinks
are relatively large. We assumed that these cases
are determined by the condition jaj ≥ 0.1. Now, the
amplitude decay suffered by the wobbling kinks in
the time period lapsed between the beginning of the
simulation and the kink collision [approximately
d=ð2v0Þ] could be significant. Therefore, it is diffi-
cult to estimate the value of the wobbling amplitude
immediately before the impact, which is from our
point of view the more significant variable. Despite
this fact, this type of events plays an essential role
in the resonance mechanism and for this reason it
will be discussed in Sec. III B. We shall analyze the
dependence of some scattering parameters on the
initial wobbling amplitude of our numerical experi-
ments taking into account that the value of the
collision amplitude will be smaller than the initial
one. Obviously, the higher the initial magnitude is,
the higher the collision amplitude is.

A. Scattering between weakly wobbling kinks

In this section, we shall consider the scattering of kinks
whose initial wobbling amplitudes a are small. As pre-
viously mentioned, it is assumed that in these cases the
decay of the wobbling amplitude is a residual effect. Thus,
the magnitude of the wobbling amplitude of the kinks just
before colliding must be approximately equal to the initial
one. This first regime of kink scattering has been numeri-
cally investigated in the initial wobbling amplitude range
a ∈ ½0; 0.05� taking an amplitude step Δa ¼ 0.001 for
0 ≤ a ≤ 0.02 and Δa ¼ 0.01 for a > 0.02. A characteristic
velocity diagram is displayed in Fig. 2, where the depend-
ence of the final velocity vf of the scattered kinks on the
initial collision velocity v0 is graphically represented for the
initial wobbling amplitude a ¼ 0.02. Although this value is
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relatively small the diagram displayed in Fig. 2 introduces
novel features with respect to the classical diagram shown
in Fig. 1.
It can be observed that the complexity of the fractal

structure grows as the initial wobbling amplitude a
increases. A first sign of this fact is that the fractal structure
interval is widened as a increases. For example, this
interval is approximately [0.155, 0.277] for the case
a ¼ 0.02, whereas it is approximately [0.18, 0.26] for

the case a ¼ 0. A second indicator is the growth in the
number of resonance windows. Indeed, this effect is caused
by a resonance window splitting mechanism, which is
illustrated in Fig. 3. Before examining this process it is
worthwhile to bring our attention to another novel property
of the diagram in Fig. 2: the presence of isolated one-
bounce windows in the fractal structure, which, in turn, are
surrounded by other n-bounce windows with n ≥ 2. This
feature does not arise in the classical velocity diagram with

FIG. 3. Velocity diagrams for the wobbling kink scattering with initial amplitudes a ¼ 0.013, a ¼ 0.014, and a ¼ 0.015 for the initial
velocity interval v0 ∈ ½0.2260; 0.2907�. This sequence of graphics illustrates the formation of isolated one-bounce windows and the two-
bounce window splitting mechanism.

FIG. 2. Final velocity vf of the scattered kinks as a function of the initial collision velocity v0 of the colliding wobbling kinks with
initial amplitude a ¼ 0.02. The final velocity of a bion is assumed to be zero. The color code is used to specify the number of bounces
suffered by the kinks before escaping. The resonance window has been zoomed and inserted in the figure.
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zero initial energy on the shape mode displayed in Fig. 1
and seems to originate from two different procedures.
Figure 2 shows the existence of two isolated one-bounce
windows approximately in the intervals [0.246, 0.251] and
[0.261, 0.272], each of them generated by different chan-
nels. They are described as follows:
(1) One-bounce reflection tail splitting: this process is

based on the oscillatory behavior of the one-bounce
tail arising for large initial velocities and represented
by blue curves in Figs. 1 and 2. For a ¼ 0 this one-
bounce tail is a monotonically increasing function
(see Fig. 1). However, this curve ceases to follow
that behavior and begins to oscillate as the amplitude
a grows (see Fig. 2). The amplitude of these
oscillations becomes bigger as the value of a grows,
overall at the beginning of the one-bounce tail.
When the amplitude a is large enough the minima
of the previously mentioned oscillations can inter-
cept the v0 axis, reaching a zero final velocity. As a
consequence an isolated one-bounce window arises
and the gap between this window and the one-
bounce tail is filled with new n-bounce windows.
This phenomenon can be triggered repeatedly as a
increases giving rise to several isolated one bounce
windows embedded in the resonance regime. The
previously described mechanism can be visualized
in Fig. 3, where final velocity versus initial velocity
diagrams have been plotted for three close initial
amplitudes: a ¼ 0.013, a ¼ 0.014, and a ¼ 0.015.
We can observe the formation of an isolated one-
bounce window approximately in the interval
v0 ∈ ½0.26; 0.273�.

(2) Spontaneous emergence in the resonance phase: the
other process, instead, is characterized by the ap-
pearance of windows inside the resonance interval.
In these new windows the wobbling kinks collide
only once before escaping. The additional energy
stored in the shape mode carried by the excited kinks
allows them to escape in initial velocity windows
where this was not possible before. For example, the
formation of the first window of this kind happens

approximately for a ¼ 0.011 around the value
v0 ¼ 0.249. As the value of a increases the width
of these windows widens. Indeed, this first window
can be observed in Fig. 3 for the initial amplitudes
a ¼ 0.013, a ¼ 0.014, and a ¼ 0.015. The second
window of this class arises for a ¼ 0.030 around
v0 ¼ 0.233. From here the number of the windows
grows enormously (see Fig. 4).

Figure 4 illustrates the combined effect of the previously
mentioned processes of production of isolated one-bounce
reflection windows. This figure shows the evolution of
the velocity diagrams associated to one-bounce events as
the initial wobbling amplitude a increases from a ¼ 0
(red curve) to a ¼ 0.1 (dark blue curve). For the sake of
clarity, n-bounce processes with n ≥ 2 are not included
in this plot. Together with the reflection tail splitting and
the spontaneous emergence processes, another curious
behavior is displayed in Fig. 4; the oscillations of final
versus initial velocity curves for different values of the
amplitude a have common nodes, they intersect each
other at the same points (at least in a large degree of
approximation).
Now, let us return to the previously mentioned resonance

window splitting mechanism. If we observe Fig. 3 around
the initial velocity v0 ¼ 0.24, we will witness the split of a
two-bounce window into other two narrower two-bounce
windows. As before, the gap between these two new two-
bounce windows is occupied by new n-bounce windows
with n > 2. To emphasize the behavior of this novel
feature, the evolution of the first two-bounce window
found in the classical velocity diagram for a ¼ 0 (see
Fig. 1) as the value of the wobbling amplitude a increases is
shown in Fig. 5. It can be observed that the initial two-
bounce window v0 ∈ ½0.1920; 0.2028� (represented by a
red curve) gives rise to three new two-bounce windows
v0 ∈ ½0.1940; 0.1946�, v0 ∈ ½0.1990; 0.1998�, and v0 ∈
½0.2039; 0.2046� (represented by blue curves) for a ¼ 0.02.
This process is repeated for the majority of the resonance
windows as the initial wobbling amplitude grows escalat-
ing the complexity of the fractal pattern in the reso-
nance phase.

FIG. 4. Velocity diagram associated with one-bounce scattering events for initial wobbling amplitudes ranging in the interval
a ∈ ½0; 0.10�. This graphics illustrates the formation of isolated one-bounce windows. For the sake of clarity, n-bounce processes with
n ≥ 2 have not been included in this figure.
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Note that the formation of isolated one-bounce windows
leads to an ambiguity in the concept of the critical velocity
vc. This term was introduced in the context of kink-antikink
scattering [14,19] and was defined as the lowest velocity at
which the one-bounce reflection regime takes place, or
alternatively, the lowest velocity at which the one-bounce
tail starts and no more bion states or more multibounces are
observed. These two definitions coincide when the two
colliding kinks are not wobbling because there is only one
(blue) piece of one-bounce curve (see Fig. 1), but they can
differ in other cases. In order to remove this ambiguity we
shall distinguish these two velocities, referring to the first
one as the one-bounce reflection minimum escape velocity
vr, whereas the second one will be called one-bounce tail
minimum escape velocity vt. Since more energy in the
vibrational mode means that more energy can be released to
the translation mode in the scattering process through the
resonant energy transfer mechanism, it is expected that one-
bounce windows become more prevalent as the value of the
wobbling amplitude a grows. Consequently, it is presumed
that the velocity vr is a decreasing function of the amplitude
a. On the other hand, the isolated one-bounce window

formation previously explained implies that the velocity vt
must grow as the amplitude a increases. In the transition
from initial amplitude a0 ¼ 0 to a0 ¼ 0.014 the escape
velocity vt is observed to increase logarithmically; how-
ever, this pattern is broken by the existence of a disconti-
nuity due to the formation of the first isolated one-bounce
window from the reflection tail.
After discussing the features of the velocity diagram as a

function of the initial amplitude a, we shall illustrate some
particular processes. In Fig. 6 (left) a wobbling kink and a
wobbling antikink with collision velocity v0 ¼ 0.285 and
initial amplitude a ¼ 0.02 approach each other, collide,
bounce back, and move away with final velocity vf ¼
0.144805 and wobbling amplitude af ¼ 0.175462 after the
collision. These dynamical parameters are the same for the
kink and the antikink, which is in agreement with spatial
reflection symmetry. Once they do not collide back after the
first bounce the energy stored in the vibrational mode
remains there and propagates within the kinks. The process
displayed in Fig. 6 (right) describes a three-bounce event
with initial velocity v0 ¼ 0.25737 and amplitude a ¼ 0.02.
In this case, the scattered kink and antikink travel away

FIG. 5. Evolution of the first two-bounce window found in the velocity diagram for a ¼ 0 (red curve) as the value of the initial
wobbling amplitude increases up to a ¼ 0.02 (dark blue curves). For the sake of clarity, only two-bounce scattering events have been
included in this graphics.

FIG. 6. Scattering processes between two wobbling kinks with initial amplitude a0 ¼ 0.02 and collision velocities v0 ¼ 0.285 (left)
and v0 ¼ 0.25737 (right). The final velocities and wobbling amplitudes for these events are, respectively, vf ¼0.144805, af¼0.175462
and vf ¼ 0.219, af ¼ 0.003085.
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with velocity vf ¼ 0.219 and wobbling amplitude af ¼
0.003085. We can see the resonant energy transfer mecha-
nism in action in these cases. In the one-bounce event the
outcome amplitude af is bigger than the initial amplitude
a, which evinces an energy transfer from the translational
mode to the shape mode being the final separation velocity
vf less than the initial one v0. On the other hand, in the
three-bounce process this mechanism takes place three
times redistributing the energy between the kinetic and
vibrational energy pools after every collision. Clearly, in
the first impact the shape mode gains energy at the
expense of the zero mode, which finally recovers part
of that energy in the third collision allowing the kinks to
escape. Note that radiation emission is also involved in
these processes.
In Fig. 7 we have decided to illustrate the behavior of

two extreme scattering events, which are near to metastable
configurations. In the first process, left plot, kink and
antikink approach each other with initial velocity v0 ¼
0.24691 and wobbling amplitude a ¼ 0.013, collide and
bounce back. For a long time, they apparently remain
motionless at a fixed distance. In this particular simulation
this situation takes approximately 400 time units in the
dimensionless coordinates introduced in Sec. II. Finally,
the lumps end up approaching again to form a bion state.
In the second simulation Fig. 7 (right) the kinks initially
travel with velocity v0 ¼ 0.27420 and wobbling amplitude
a ¼ 0.015; after colliding the kink and antikink remain in
a similar quasimetastable state, which was previously
described, although in this case after the second collision
the kinks are able to escape with final velocity vf ¼
0.147041 and wobbling amplitude af ¼ 0.15351. This
type of scattering events are difficult to monitor because
there will always be processes whose metastable phase will
last more than any simulation time. Indeed, this is the
reason for the gap in the velocity diagram introduced in
Fig. 3 (middle) around v0 ¼ 0.274.

Clearly, in the previous simulations the wobbling mode
is strongly excited after the first collision. This is a general
pattern as we can observe in Fig. 8, which exhibits the final
wobbling amplitude of the scattered kinks after the last
collision as a function of the initial velocity v0 for two
different values of the initial wobbling amplitude a ¼ 0.0
and a ¼ 0.02. The analysis of these data, specially for the
one-bounce events, can lead to a very valuable information
to understand the resonant energy transfer mechanism.
One-bounce events can be considered as elementary
processes in the kink scattering because n-bounce events
can be understood as a reiteration of n one-bounce events.
The most surprising fact is that the final amplitude for the
one-bounce processes is almost independent of the initial
wobbling amplitude of the colliding kinks. We can observe
that this magnitude follows a linear dependence on v0 very
approximately, which can be fitted by the expression

aðv0Þ ¼ 0.084þ 0.34v0: ð17Þ

What is clear from Fig. 8 is that all the one-bounce events
produce a strong excitation of the wobbling mode, which
in all the cases range approximately in the interval
af ∈ ½0.15; 0.4�. Obviously, the more the impact velocity
of the colliding kinks is, the more excited the scattered
kinks become. For moderate collision impact the final
wobbling amplitude is in the range af ∈ ½0.15; 0.25�. A first
consequence of this high vibrational excitation in one-
bounce scattering events for initially weakly wobbling
kinks is that the n-bounce events in this regime necessarily
involve the scattering of strongly wobbling kinks in one or
several of the intermediate collision processes (at least in
the second one). A second consequence is that the direction
of energy transfer in these one-bounce events is always
from kinetic energy to vibrational energy. Notice that the
final velocity vf of the scattered kinks in one-bounce events
displayed in Fig. 2 is always less than the initial velocity v0.

FIG. 7. Scattering processes between two wobbling kinks with initial velocities and amplitudes v0 ¼ 0.24691, a ¼ 0.013 (left) and
v0 ¼ 0.27420, a ¼ 0.015 (right). In the first case a bion state is formed whereas in the second case the scattered kinks have vf ¼
0.147041 and af ¼ 0.15351.
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The isolated one-bounce windows found in this regime
prove that there exist some initial velocity intervals where
less energy is transferred to the shape mode, which allows
the kinks keep enough kinetic energy to escape. The reverse
processes must involve the scattering between strongly
wobbling kinks.
The wobbling frequency ωf of the scattered kinks has

also been analyzed. Note that the shape mode coming from

the second order small kink fluctuation operator expressed
in (8) vibrates with the frequency ω ¼ ffiffiffi

3
p

. It seems
reasonable to assume that this frequency is kept constant
at least by the time the scattered kinks are far away. Figure 9
shows this magnitude as a function of the initial velocity v0
for the wobble amplitudes a ¼ 0 and a ¼ 0.02. The color
solid curves describe the frequencies measured in the
inertial system attached to the kink center. We can observed

FIG. 9. Wobbling frequency of the scattered kinks after the last impact as a function of the collision velocity for the initial amplitude
a ¼ 0 (top panel) and a ¼ 0.02 (bottom panel). The color solid curves determine the frequencies measured in the inertial system
attached to the kink center, whereas the gray curves use the motionless inertial system. The same color code employed in previous
figures is used to specify the number of bounces suffered by the kinks before escaping.

FIG. 8. Wobbling half-amplitude af=2 [maximum deviation from the nonexcited kink (11)] of the scattered kinks after the last impact
as a function of the collision velocity for the initial amplitude a ¼ 0 (top panel) and a ¼ 0.02 (bottom panel). The same color code
employed in the previous figures is used to specify the number of bounces suffered by the kinks before escaping.
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that the previously mentioned behavior is confirmed. The
gray solid curves determine the frequencies measured in the
motionless inertial system. The two curves are related by
the relativistic transverse Doppler effect [75].
As previously mentioned in this section, the scattering

between strongly wobbling kinks is always present in
the resonance phenomenon because, independently of
the initial velocity v0, the second collision will involve a
strongly wobbling kink scattering event. For this reason,
the next section will be devoted to discuss the properties of
this kind of more violent events. We shall emphasize the
deviations of this new scenario from that introduced in the
present section.

B. Scattering between strongly wobbling kinks

This class of kink scattering processes is characterized
by a relatively large value of the initial wobbling amplitude,
which is assumed to be jaj ≥ 0.1. In this section this regime
has been analyzed for events with an initial amplitude a in
the interval a ∈ ½0.1; 0.2� by taking an amplitude step
Δa ¼ 0.01. As usual we shall begin by examining the
dependence of the final velocity vf of the scattered kinks on
the initial velocity v0. This function has been plotted in
Fig. 10 for the particular cases a ¼ 0.1 and a ¼ 0.2, which
exhibits the representative properties of this regime. The
global behavior of these velocity diagrams is similar to that
described in Sec. III A, see Fig. 2, although they include
important differences.
First of all, the fractal structure becomes even more

intricate than the scenario found in Sec. III A. The interval
where the resonance phenomenon takes place keeps

widening as a grows. In addition to this, when the value
of a is large enough the number of isolated one-bounce
windows explodes and the sequence of these windows
forms a fractal structure clustered near the origin of the
graphics (see bottom panel in Fig. 10). The initial
velocities v0 around the peak of these windows can
define initial velocity intervals where the scattered kinks
move faster than the colliding kinks, vf > v0. In these
cases a part of the vibrational kink energy accumulated in
the shape mode is transferred to the kinetic energy, which
becomes bigger than its initial value. It can be observed
that this phenomenon occurs for low initial velocities and
ceases to happen for high values (when the kinetic energy
is large). For example, for a ¼ 0.2 the height of the
windows in the resonance phase exceeds the elastic limit
approximately when v0 < 0.34. Obviously, as the value
of the initial amplitude a increases this threshold velocity
grows, because the vibrational energy becomes bigger.
This scenario is a fundamental link in the chain of the
resonant energy transfer mechanism because it allows
relatively slow scattered wobbling kinks to escape in a
multiple bounce event in the last collision by transferring
vibrational energy to the kinetic energy pool. Figure 11
illustrates this kind of processes: a kink and antikink
with initial velocity v0 ¼ 0.1506 and wobbling amplitude
a ¼ 0.2 approach each other and collide only once before
escaping. As we can see, the scattered kink and antikink
move away with final velocity vf ¼ 0.246454 while its
wobbling amplitude is approximately a ¼ 0.0215. The
final outcome in this event is that the kink and antikink
are sped up whereas its wobbling is softened.

FIG. 10. Final velocity vf of the scattered kinks as a function of the initial collision velocity v0 of the colliding wobbling kinks with
initial amplitudes a ¼ 0.1 (top panel) and a ¼ 0.2 (bottom panel). The final velocity of a bion is assumed to be zero. The color code is
used to specify the number of bounces suffered by the kinks before escaping. The part of the resonance window has been zoomed and
inserted in the figure.
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Figure 7 (right) represents a two-bounce kink scattering
process, which was introduced in Sec. III A. Here, kink and
antikink approach each other with initial velocity v0 ¼
0.2742 while vibrating with amplitude a ¼ 0.015. Notice,
thus, that the first collision is a weakly wobbling kink
scattering event. As we know, after this first impact an
important part of the kinetic energy is devoted to excite the
shape mode and emit radiation, such that the resulting kink
and antikink move very slowly but vibrate intensely. In

these circumstances, the attraction force between the kink
and the antikink makes them approach again. This evolution
is now described by a strongly wobbling kink scattering
event. The lumps collide and bounce back, but now the
resonant energy transfer mechanism is reversed and the
kink and antikink velocities are large enough to let them
escape. They travel away with final velocity vf ¼ 0.147041
and final wobbling amplitude a ¼ 0.153513. Figure 6 (right)
represents a three-bounce kink scattering process, where a
similar behavior takes place, although the intermediate stages
are much shorter. They finally move away with velocity
vf¼0.219006 and wobbling amplitude a¼0.00308.
The behavior of the final wobbling amplitude af as a

function of the initial velocity is plotted in Fig. 12. The
amplitude can undergo important fluctuations when the
initial velocity varies, which increases as the value of a
grows. These oscillations can be observed, for example, in
the one-bounce reflection tail. The range of the wobbling
amplitudes found in these cases is similar to that described
in Sec. III A for weakly wobbling kink scattering processes.
The minima of these fluctuations can reach very low values.
In the resonance phase these oscillations are more accen-
tuated for these one-bounce events than in the previous
regime. Obviously, the detailed behavior of the amplitude
in the resonance phase is completely particular for every
value of a due to the presence of the fractal structure.
Besides, the dependence of the final frequency ωf on the
initial velocity v0 completely resembles the result found in
Sec. III A (see Fig. 13).

FIG. 12. Wobbling half-amplitude af=2 [maximum deviation from the nonexcited kink (11)] of the scattered kinks after the last impact
as a function of the collision velocity v0 for the initial amplitude a ¼ 0.1 (top panel) and a ¼ 0.2 (bottom panel). The same color code
employed in previous figures is used to specify the number of bounces suffered by the kinks before escaping.

FIG. 11. Scattering between two wobbling kinks with initial
amplitude a0 ¼ 0.2 and collision velocity v0 ¼ 0.1406. The final
velocity vf of the scattered kinks is vf ¼ 0.246454, so the kinks
move faster after the collision.
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IV. CONCLUSIONS AND FURTHER COMMENTS

In this paper we have addressed the scattering between
wobbling kinks in the ϕ4 model. In addition to its intrinsic
interest the study of these processes can give us some
insight into the resonant energy transfer mechanism. We
must take into account that two traveling nonexcited kinks
become wobbling kinks after the first collision due to the
energy exchange between the translational mode and the
shape mode. In this sense, a n-bounce scattering process
can be considered as the reiteration of n one-bounce
collisions, most of them between wobbling kinks. In this
work the influence of the collision velocity and the initial
wobbling amplitude on the scattering processes have been
directly investigated. The fractal structure arising in the
resonance regime of the final versus initial velocity diagram
becomes more intricate as the value of the initial wobbling
amplitude of the colliding kinks increases. This growing
complexity is caused by two different mechanisms: the
one-bounce reflection tail splitting and the spontaneous
emergence of resonance windows. The first case is pro-
duced by the oscillations of the one-bounce reflection tail
when the initial wobbling amplitude grows. When the
amplitude is large enough, this tail can intercept the v0 axis,
creating an isolated one-bounce window in the resonance
regime. The gap between this new window and the one-
bounce tail is filled with new n-bounce windows, with
n > 1. The same phenomenon is replicated for n-bounce
windows, which are broken up into narrower new n-bounce
windows, and as before the gap between them is occupied
with N-bounce windows, with N > n. The second

mechanism is directly triggered by the extra energy carried
by the initially excited shape mode of the wobbling kinks.
New bounce windows emerge for ever-smaller initial
velocities as the value of the amplitude increases. As a
consequence, the fractal structure interval becomes larger
as a grows. On the other hand, the final wobbling
amplitude of the scattered kinks involve very approxi-
mately a linear dependence on the initial velocity outside
the resonance phase, although some oscillations arise for
large enough values of the initial amplitude. one-bounce
events between weakly wobbling kinks always give rise to
strongly wobbling kinks moving away. On the other hand,
weakly wobbling kinks can emerge from the collision
between strongly wobbling kinks only for relatively small
values of the initial velocity.
It is worthwhile to mention that for strongly wobbling

kink collisions there exist one-bounce windows where the
scattered kinks will travel faster than the colliding kinks.
This occurs for relatively low values of the initial velocity.
This behavior implies that the last collision in every
n-bounce scattering event with n > 1 must involve the
presence of strongly wobbling kinks approaching each other
at a relatively low speed. In a multiple bounce scattering
process the kinks approach each other and bounce back
again and again until the next collision velocity and
wobbling amplitude fall into one of the previously men-
tioned one-bounce windows. In the bion formation regime
the successive collisions are not able to excite the shape
mode enough to trigger this escape manoeuvre.
The research introduced in the present work opens some

possibilities for future investigations. An inherent goal of

FIG. 13. Wobbling frequency of the scattered kinks after the last impact as a function of the collision velocity v0 for the initial
amplitude a ¼ 0 (top panel) and a ¼ 0.02 (bottom panel). The color solid curves determine the frequencies measured in the inertial
system attached to the kink center, whereas the gray curves use the motionless inertial system. The same color code as in previous figures
is used to specify the number of bounces suffered by the kinks before escaping.
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this paper is to bring insight into the interaction of the shape
and zero modes when a kink and an antikink collide. It
would be very interesting to construct an effective finite-
dimensional dynamical system (for example, by means of
the collective coordinate approach), which is able to
quantitatively explain the results found in this paper.
This would allow us to get a better understanding of the
resonance phenomenon and the connection between chaos
and the fractal pattern arising in the velocity diagrams. On
the other hand, the scattering between wobbling kinks can
be numerically explored in other models. For example, the
ϕ6 model involves a similar resonance regime as the ϕ4

model, although it does not present vibrational eigenstates
in the second order small fluctuation operator. The char-
acteristics of the scattered wobbling kinks can be analyzed
to study their influence on the resonant energy transfer
mechanism. Alternatively, a twin model to the ϕ6 model
involving internal modes can be constructed, and we could
compare the scattering processes of the twin model with
those of the standard ϕ6 model. In this way the role played

by the shape modes in the collision process could be
carefully examined. Moreover, many other different topo-
logical defects (kinks in the double sine-Gordon model,
deformed ϕ4 models, hybrid and hyperbolic models, etc)
could be studied in the new perspective presented here.
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