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We revisit here the analytical continuation approach usually employed to compute quasinormal modes
(QNM) and frequencies of a given potential barrier V starting from the bounded states and respective
eigenvalues of the Schrödinger operator associated with the potential well corresponding to the inverted
potential −V. We consider an exactly soluble problem corresponding to a potential barrier of the Poschl-
Teller type with a well defined and behaved QNM spectrum, but for which the associated Schrödinger
operator H obtained by analytical continuation fails to be self-adjoint. Although H admits self-adjoint
extensions, we show that the eigenstates corresponding to the analytically continued QNM do not belong to
any self-adjoint extension domain and, consequently, they cannot be interpreted as authentic quantum
mechanical bounded states. Our result challenges the practical use of the this type of method when H fails
to be self-adjoint since, in such cases, we would not have in advance any reasonable criterion to choose the
initial eigenstates of H which would correspond to the analytically continued QNM.
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I. INTRODUCTION

Usually, the quasinormal mode (QNM) analysis [1,2]
consists in looking for solutions of the form Ψðt; xÞ ¼
e−iωtuðxÞ of an (1þ 1)-dimensional wave equation, with
uðxÞ obeying a Schrödinger-like equation

�
−ϵ2

d2

dx2
þ VðxÞ

�
u ¼ ω2u; ð1Þ

on a certain domain ofR, with ϵ standing for some intrinsic
scale parameter of the problem. Typically, as for instance in
the problems involving asymptotically flat black-hole
situations [1,2], the modes u are defined on the entire real
line R, which is usually assumed to be spanned by a
tortoise-coordinate x, and VðxÞ is a positive potential
barrier, vanishing sufficiently fast when approaching the
horizon (x → −∞) and the spatial infinity (x → ∞). The
QNM frequencies are the complex values of ω such that
the solutions of (1) behave as outgoing waves at infinity
and ingoing ones at the horizon, which, according to our
definition for Ψ, correspond, respectively, to solutions such

that u ∝ e
iωx
ϵ for x → ∞ and u ∝ e−

iωx
ϵ for x → −∞. Also

according to our definition, the modes will be exponentially
suppressed in time, and consequently could be interpreted
as asymptotically stable perturbations, if ℑω < 0.
There are several strategies to solve a QNM problem in

pratice, see [1,2] for comprehensive reviews on this vast
issue. The analytical continuation method, introduced
decades ago with the pioneering works of Blome,
Ferrari, and Mashhoon [3–5], is one of the best options
to have analytical answers and gain some physical insights
on the problem. This method consists basically in a formal
map between the QNM solutions of (1) and the bounded
states of the quantummechanical problem corresponding to
the case of the inverted potential barrier −VðxÞ, which
would be governed by the Schrödinger operator

H ¼ −ℏ2
d2

dx2
− VðxÞ: ð2Þ

We know that for VðxÞ vanishing sufficiently fast, the
bounded states of H will decay exponentially, i.e., ψ ∝
e∓

ffiffiffiffiffi
−E

p
x
ℏ for x → �∞, with Hψ ¼ Eψ . We will adopt here

the analytical continuation prescription introduced recently
by Hatsuda [6], which is based in the key observation that,
taking formally ℏ ¼ iϵ in (2), one can map the quantum
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mechanical bound states of H in the QNM of (1) with
frequencies formally given by

ω2 ¼ −Eðℏ ¼ iϵÞ: ð3Þ

The converse path is also possible, and we will indeed
explore it here. Starting with the QNMmodes of a potential
barrier, one can obtain the associated bounded states for the
inverted potential Schrödinger operator H by formally
setting ϵ ¼ −iℏ in (1) and reversing (3). Although this
construction is not entirely rigorous and, in particular, we
cannot assure that all pertinent solutions of the problem
may be found by the analytical continuation in the
parameters ϵ and ℏ, the obtained solutions are certainly
valid ones as we can check by direct calculations.
This kind of analytical continuation approach has proved

to be rather efficient and, in fact, it has been used for a vast
range of QNM analysis recently. In the present paper, we
unveil a potential pitfall when the Schrödinger operator H
fails to be self-adjoint, which is a rather common situation,
for instance, when the problem is restricted to the half real
line Rþ, see [7–10] for further references on this kind of
problem. We will exhibit an explicit example of a problem
onRþ with a well defined and behaved QNM spectrum, but
for which the associated Schrödinger operator H obtained
by the analytical continuation ϵ ¼ −iℏ fails to be self-
adjoint. Moreover, we show that, although H admits self-
adjoint extensions, the eigenstates corresponding to the
analytically continued QNM are not in the domain of any
self-adjoint extension of H and, consequently, they cannot
be interpreted as authentic quantum mechanical bounded
states. This means that, if we had chosen to solve this
problem starting with the quantum mechanical analytically
continued H, we would not have any hint or practical
prescription to choose the initial eigenstates of H which
would correspond to the analytically continued QNM.
Practically, we would not succeed in applying the analytical
continuation method for this kind of problem.

II. THE QNM PROBLEM

We will be concerned here with a specific case where the
domain of the QNM is the half real line Rþ. This could
correspond, for instance, to the case of naked singularities
[11,12], but certainly there will be other similar cases in
distinct situations, see, for instance, [13,14] for examples
involving asymptotically AdS spacetimes. We will consider
specifically the infinite potential barrier on Rþ given by

VðxÞ ¼ V0

sinh2 x
þ V1

cosh2 x
; ð4Þ

where V0 > 0 and x ∈ ð0;∞Þ, which is known to be
exactly integrable since the seminal works of Poschl and
Teller, see for instance [13,14] and the references therein.

We know, on physical grounds, that the QNM modes
associated the potential (4) should correspond to solutions
of (1) obeying the boundary conditions uð0Þ ¼ 0 (infinite
impenetrable barrier) and u ∝ eiωx for x → ∞ (outgoing
wave in the spatial infinity). Wewill follow [13] closely and
introduce the variable z ∈ ð0; 1� such that z ¼ 1=cosh2 x, in
terms of which Eq. (1) reads

zð1 − zÞu00 −
�
1 −

3

2
z

�
u0 þ 1

4

�
ω2

z
−

V0

1 − z
− V1

�
u ¼ 0;

ð5Þ
where the tilde denotes derivation with respect to z.
Equation (5) can be easily solved in terms of hyper-
geometric functions and its general solution can be written
as combination of the functions [13]

u ¼ zαð1 − zÞβ2F1ða; b; c; zÞ; ð6Þ
where

a ¼ αþ β þ γþ; ð7Þ

b ¼ αþ β þ γ−; ð8Þ

c ¼ 2αþ 1; ð9Þ

α ¼ � iω
2
; ð10Þ

β ¼ 1

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4V0

p �
; ð11Þ

γ� ¼ 1

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4V1

p �
: ð12Þ

The general solution of the second order linear differential
equation (5) involves two linearly independent functions
which can be written as a combination of the possible
choices of α and β according to (10) and (11). However,
notice that in the spatial infinity limit x → ∞ (z → 0þ), one
has u ¼ zα ¼ e∓iωx for any choice of β. Moreover, as one
can see from the Wronskian in the spatial infinity limit,
the functions u corresponding to the two possible choices
for α are linearly independent regardless the value chosen
for β. Hence, we can choose without loss of generality the
positive sign for β for the general solution of (5). However,
the solution (6) is obtained under the condition of c ∉ Z, in
fact, the case with c an integer positive or negative will
explore later on.
The boundary condition of an outgoing wave at spatial

infinity z → 0þ requires to select only the α ¼ − iω
2
mode in

the general solution. On the other hand, the x → 0þ limit
corresponds to z → 1−, and thus in order to impose the
second QNM boundary condition limx→0þ u ¼ 0, we need
to determine the behavior of our solution for z → 1−. By
exploring the well-known identity 15.3.6 of [15],
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2F1ða; b; c; zÞ ¼
ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ 2F1ða; b; aþ b − cþ 1; 1 − zÞ

þ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ ð1 − zÞc−a−b2F1ðc − a; c − b; c − a − bþ 1; 1 − zÞ; ð13Þ

and that z ¼ 1 − x2 þOðx4Þ for x → 0þ, we have the
following behavior for uðxÞ near x ¼ 0

u ¼ Ax2βð1þOðx2ÞÞ þ Bx1−2βð1þOðx2ÞÞ; ð14Þ

where

A ¼ Γð1 − iωÞΓð1
2
− 2βÞ

Γð1 − β − γþ − iω
2
ÞΓð1 − β − γ− − iω

2
Þ ð15Þ

and

B ¼ Γð1 − iωÞΓð2β − 1
2
Þ

Γðβ þ γþ − iω
2
ÞΓðβ þ γ− − iω

2
Þ : ð16Þ

Since β > 1
2
, the second term in (14) is always singular for

x → 0þ, but it can be indeed removed by exploring the
Γ-function poles in (16). Explicitly, we will have
limx→0þ u ¼ 0 if the QNM frequencies ω are such that

ω� ¼ −i
�
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 þ

1

4

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− V1

r �
; ð17Þ

with n ∈ Z≥0 This result coincides with the pertinent limit
of the calculations presented in [13]. Notice that, with the
choice (17) for the frequencies, the coefficient A given by
(15) reads

A� ¼
�
−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 þ 1

4

q �
n�

−ðnþ 1Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 þ 1

4

q
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− V1

q �
n

; ð18Þ

where ðÞn stands for the usual falling factorial function

ðx − 1Þn ¼
ΓðxÞ

Γðx − nÞ : ð19Þ

Also, one can see from (14) that the QNM are solutions
uðxÞ such that

uðxÞffiffiffi
x

p ¼ Axδð1þOðx2ÞÞ; ð20Þ

and

ffiffiffi
x

p
u0ðxÞ ¼

�
1

2
þ δ

�
Axδð1þOðx2ÞÞ; ð21Þ

with the prime now denoting differentiation with respect to
x, A given by (18), and

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ V0

r
: ð22Þ

Finally, we have that the QNM are solutions uðxÞ for which

lim
x→0þ

x−δ
� ffiffiffi

x
p

u0ðxÞ − 1ffiffiffi
x

p
�
1

2
þ δ

�
uðxÞ

�
¼ 0: ð23Þ

This expression for the effective boundary condition
obeyed by the QNM at x ¼ 0 will be important in the
self-adjointness analysis of H in the next section.
It is worth mentioning that the simple exact spectrum

(17) illustrates clearly all qualitative behaviors that QNM
can exhibit. First, reminding that V0 > 0, we see that for
V1 >

1
4
, the QNM frequencies will have the well-known

form

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 −

1

4

r
− i

�
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 þ

1

4

r �
; ð24Þ

denoting that the associated QNM are the usual exponen-
tially suppressed oscillatory modes. On the other hand, for
V1 ≤ 1

4
, we have the so-called algebraically special QNM,

for which the associated frequencies are purely imaginary
quantities. Notice that if V1 is small enough, one could
effectively attain regimes with ℑω− > 0, denouncing the
presence of exponentially amplified modes. We will return
to this point in the last section, but we can advance that
these unstable modes are related to the existence of a region
with VðxÞ < 0 for negative V1.
If c ¼ l ∈ Z≥1 then the second solution of the hyper-

geometric equation contains a logarithmic branch [15]. The
latter term is discarded provided it blows up as z → 1−, that
is, one has to deal with only one solution given by the
following expression:

u2 ¼ zαð1 − zÞβ2F1ða; b;l; zÞ; ð25Þ

where this solution ensures the condition of having an
outgoing wave at infinity as long as α ¼ α−. One has to
inspect the behavior of (25) near x → 0 to see whether or
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not u2 vanishes. Making use of (13) and (14) one concludes
that the coefficients in (14) are similar to (15) and (16) but
now the specific condition c ¼ l ∈ Z≥1 must be enforced.
The term proportional to x2β goes to zero and the Gamma
function Γð1 − iωÞ is well-behaved provided l is not a
negative integer. However, the second term in (14) diverges
for 2β > 1 then it is mandatory that the coefficient B
must goes to zero. The latter possibility is reached when
2ðβ þ γ�Þ − iω ¼ −2n with n ∈ Z≥0, which agrees with
(17) and with the result reported in [13] about the QNMs
for pure De Sitter in the massless limit. Notice also that the
spectrum (17) corresponds to the poles of the Γ-functions in
the denominator of the coefficient B in (16) and, hence, we
are assuming that the respective numerator is regular in
these points. Although this is always the case when V1 >

1
4
,

we can have situations with algebraically special modes for
which the numerators have exactly the same poles of the
denominators. This is the case, for instance, of c ¼ 1 − iω�
being zero or a negative integer, which implies that the
second solution of the hypergeometric equation admits
a logarithmic branch and one has to get rid of it [15],
yielding to

u3¼ z−αð1− zÞβ2F1ða−cþ1;b−cþ1;2−c;zÞ; ð26Þ

where one selects α ¼ αþ to reproduce the right behavior at
infinity, u3 ∝ eþiωx. As one would expect the condition
c ¼ 1 − iω� ∈ Z≤0 has some kind of impact in the QNMs.
In order to see that more clearly, it is convenient to assume
that V0 ¼ μðμþ 1Þ and V1 ¼ νð1 − νÞ. Applying the
same identity (13) for the hypergeometric function

2F1ða − cþ 1; b − cþ 1; 2 − c; zÞ with the new coeffi-
cients, one can read off the QNM spectrum and show that
it reduces to

ωþ ¼ −ið2nþ 1þ μþ νÞ; ð27Þ

ω− ¼ −ið2nþ 1þ μ − ðν − 1ÞÞ; ð28Þ

with n ∈ Z≥0. Once again, the previous analysis is con-
sistent with the one reported in [13]. Equations (27)–(28)
tell us that whenever μ� ν is a positive integer, the poles of
Γð2 − cÞ ¼ Γð1 − iωÞ coincide with those ones in the
denominators of u3ðxÞ when the hypergeometric function

2F1ða − cþ 1; b − cþ 1; 2 − c; zÞ is rewritten with the
help of (13), and consequently we cannot enforce the
boundary condition limx→0þ u3 ¼ 0 without having trivi-
ally u3ðxÞ ¼ 0. There are no QNMs in this case, and such a
behavior is a remnant of the curious phenomenon of the so-
called reflectionless eigenstates for the Poschl-Teller poten-
tials in quantum mechanics, see [16].
We finish mentioning that, since β > 1

2
, the QNM limit

u ∝ x2β for x → 0þ assures that the energy integral

E ¼
Z

½ð∂tΨÞ2 þ ð∂xΨÞ2 þ VðxÞΨ2�dx ð29Þ

always converges for x → 0þ, confirming that the QNM are
rather well behaved for the potential barrier (4).

III. THE QUANTUM MECHANICAL PROBLEM

We will address now the following problem: would it be
possible to obtain the QNM of the last section by means of
an analytical continuation approach as described in Sec. I?
As we will see, the answer is no, at least in the usual sense
of associating QNM and bounded states of the Schrödinger
operator (2) by an analytical continuation in the parameters
ϵ and ℏ. The equivalent quantum mechanical problem can
be formulated by means of the formal map ϵ ¼ −iℏ of the
first section. Notice that the parameter ϵ is a “hidden” scale
in the QNM problem, we have absorbed it in our calcu-
lations so far with the tacit rescalings V ↔ V=ϵ2 and
ω ↔ ω=ϵ. Assuming also ℏ ¼ 1, we have that the ana-
lytical continuation will map the QNM u of the potential
barrier in eigenstates ψ of the potential well corresponding
to the inverted potential barrier according to

ψ ¼ uðV → −V;ω → −iωÞ: ð30Þ

The associated eigenvalues (energies) will be given by

E ¼ ω2ðV → −VÞ; ð31Þ

and from (17) we have

E� ¼ −
�
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− V0

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ V1

r �2

: ð32Þ

Such expression for the energy shows that, in contrast with
the QNM analysis of the potential barrier, now we have
necessarily to deal with two qualitatively distinct cases
accordingly with the attractiveness of the inverted potential
at x → 0þ: 0 < V0 ≤ 1

4
and V0 >

1
4
. This is hardly a

surprise, this class of behavior for an attractive 1=x2

potential is well known in the literature, see [8,9] for
instance. Moreover, since one can have complex values of
E for V0 >

1
4
or V1 <

1
4
, the self-adjointness of H is clearly

an issue here.
The self-adjointness analysis of a Schrödinger operators

H always starts [7–10] with the deficiency indexes nþ and
n−, which stand here for the respective dimensions of the
so-called deficiency subspaces N� ⊂ DðH†Þ defined by

N� ¼ fϕ ∈ DðH†Þ;Hϕ ¼ �iϕg; ð33Þ

whereH† is the adjoint ofH andDðH†Þ ⊂ L2½0;∞Þ stands
for its domain. The deficiency subspaces N� can be
constructed directly form the formulas of the previous
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section. For instance, in order to determine Nþ, one needs
to consider the case ω2 ¼ i, leading to two linearly
independent solutions which behavior at spatial infinity

will be ϕ� ∝ e�ið1þiffiffi
2

p Þx. However, only ϕþ is square inte-
grable, and hence we have just concluded that nþ ≤ 1.
Furthermore, we have also from the results of Sec. II that,
for x → 0þ,

ϕþ ¼ ffiffiffi
x

p ðAþxδ þ Bþx−δÞ; ð34Þ

with δ given by the substitution V0 → −V0 in (22) and Aþ
and Bþ obtained by setting ω ¼ 1þiffiffi

2
p in the expressions (15)

and (16), respectively. Notice that (34) is square integrable
for x → 0þ and no other restriction is necessary on ϕþ.
We have just established that nþ ¼ 1. Since similar results
hold for N−, we have that H is not self-adjoint, but the
von Neumann formulas [9] assure that H admits a one-
parameter family of self-adjoint extensions. In order to
construct such extensions, we need the function ϕ−, i.e., the
square integrable solution for Hϕ ¼ −iϕ. Its behavior for
x → 0þ is

ϕ− ¼ ffiffiffi
x

p ðA−xδ þ B−x−δÞ; ð35Þ

with the constants A− and B− defined as in (34), but now
for ω ¼ i−1ffiffi

2
p . The self-adjoint extensions of H are deter-

mined by the boundary conditions on ψ ∈ DðH†Þ such that

hϕ;Hψi − hHϕ;ψi ¼ lim
x→0þ

½ϕ̄ðxÞψ 0ðxÞ − ϕ̄0ðxÞψðxÞ� ¼ 0;

ð36Þ

where the inner product is the usual L2½0;∞Þ product and ϕ
is a linear combination of ϕþ and ϕ−, which we write
without loss of generality as

ϕ ¼ ϕþ þ λ̄ϕ−; ð37Þ

where λ is a free complex parameter. From (36), we have
that the self-adjoint extensions of H will be given by the
following boundary conditions on the eingenstates ψ

lim
x→0þ

� ffiffiffi
x

p ½Aλxδ̄þBλx−δ̄�ψ 0ðxÞ

−
1ffiffiffi
x

p
��

1

2
þ δ̄

�
Aλxδ̄þ

�
1

2
− δ̄

�
Bλx−δ̄

�
ψðxÞ

�
¼ 0; ð38Þ

where

Aλ ¼ Āþ þ λĀ− ð39Þ

and

Bλ ¼ B̄þ þ λB̄−: ð40Þ

For each value of the free parameter λ, we have a distinct
self-adjoint extension of the Schrödinger operator H
characterized by the boundary condition (38) at x ¼ 0.
Notice that (38) coincides wit the usual self-adjoint
boundary condition of 1=x2 attractive potentials, the so-
called Calogero problem, see [8,9].
Now, let us consider the QNM boundary condition (23),

which the analytically continued eigenstates would also be
expected to obey in the quantum mechanical problem. We
have two qualitatively distinct cases. Let us consider first
the case of real nonzero δ, i.e., 0 < V0 <

1
4
. The QNM

boundary condition requires a value for λ such that Aλ ¼ 0

in order to select the x−δ terms in (38). However, in this case
one has

lim
x→0þ

x−δ
� ffiffiffi

x
p

u0ðxÞ − 1ffiffiffi
x

p
�
1

2
− δ

�
uðxÞ

�
¼ 0; ð41Þ

which clearly does not coincide with (23), meaning that no
self-adjoint extension of H can accommodate the QNM
boundary condition for the case of real nonzero δ. The so-
called critical case δ ¼ 0 could be analyzed in a similar
way, but in this case the deficiency subspaces N� are
generated by the solutions

ϕ� ¼ ffiffiffi
x

p ðA� þ B� ln xÞ; ð42Þ

see [8,9] for further details on this particular case of the
1=x2 potential. The situation for imaginary δ is analogous.
We need to have Bλ ¼ 0, to select the xδ̄ terms, but we will
end up with (41) once more, implying again that no self-
adjoint extension of H will be able to accommodate the
QNM boundary condition for the case of imaginary δ
as well.
In summary, although H fails to be self-adjoint in the

quantummechanical problem corresponding to the inverted
potential (4), it admits self-adjoint extensions. However, the
eigenstates corresponding to the analytically continued
QNM are not in the domain of any self-adjoint extension
of H and, consequently, they cannot be interpreted as
authentic quantum mechanical bounded states. In particu-
lar, they can fail to have real eigenvalues, see (32), and to be
square-integrable.

IV. FINAL REMARKS

Let us return to the unstable algebraically special modes
presented in (17) for negative V1. Although the behavior of
the potential barrier (4) depends only on V0 for x → 0þ, the
situation for x → ∞ is clear different, since we have

VðxÞ ¼ 4ðV0 þ V1Þ
e2x

ð1þOðe−2xÞÞ ð43Þ

in this limit. As one can see, for V0 þ V1 < 0, the potential
V approaches zero for x → ∞ from below and, hence,
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it must have a minimum somewhere inRþ. It is indeed easy
to locate this minimum, it corresponds to the point x ¼ x�
such that

tanh4 x� ¼ −
V0

V1

; ð44Þ

for which we have simply

Vðx�Þ ¼ −ð
ffiffiffiffiffiffi
V0

p
−

ffiffiffiffiffiffiffiffiffi
−V1

p
Þ2; ð45Þ

remembering that V0 > 0 and V1 < −V0. Figure 1 illus-
trates a typical unstable algebraically special QNM. The
curious observation is that the unstable QNM with a purely
imaginary QNM frequency (17) corresponds, in fact, to a
bounded state of the potential barrier! The deficiency
indexes for the Schrödinger operator associated with the
original potential (4) are nþ ¼ n− ¼ 0 since no solution of
Hu ¼ �iu is square integrable, implying that H for the
case of a repulsive potential is self-adjoint and, in particu-
lar, it may admit bounded states as that one depicted
in Fig. 1.

V. SUMMARY

We have shown that the QNM solutions u of the potential
barrier V given by (4) can be analytically continued in
eigenstates ψ of the Schrödinger operator H associated
with the inverted potential −V. However, the eigenstates ψ
are not in the domain of any self-adjoint extension of H,
challenging the practical use of the analytical continuation
method for this kind of potential barrier. If we had tried to
solve this problem starting with the states of H, we would
not have any physical or mathematical criterion to select the
states ψ which would given origin to the QNM u via the
analytical continuation. Furthermore, if we have tried
starting with a genuine quantum state of H, after the
analytical continuation we would get a solution of the
QNM problem which does not obey the correct boundary
conditions. In other words, this result poses a serious
challenge on how to extend the analytic continuation
method in several spacetimes (naked singularity, pure de
Sitter, etc) to obtain the proper QNMs. Whether the analytic
continuation approach can be applied to other more
complex scenarios or not is something that deserves to
be explored in the future. For instance, one may wonder
about its applicability in the case of a Dirac field propa-
gating on those backgrounds [13,17]. The so-called PT-
symmetric extensions of the Schrödinger operator (see,
for instance, [18] and references therein) and the pseudo-
spectrum of non-self-adjoint operators [19] are also inter-
esting points to be explored in the context of our QNM
analysis.
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