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Investigation of quasibound states of black holes is significant for expected ultralight particles, as well as
black holes through gravitational waves. We first investigate quasibound states of a massive scalar field for
dilatonic charged black holes via numerical analysis. We study the complex eigenfrequencies of the
massive scalar field in a wide range of gravitational fine structure constant μM in detail, and show the
effects of charge. Further, we study the eigenfrequencies of the massive field through an analytical
approach by matching the near horizon solution and far field solution, and find its spectra for excited states
by the iteration method. We demonstrate that the numerical solution and analytical solution perfectly agree
with each other in the region where charge of the black hole is large, both for real and imaginary parts of the
eigenfrequencies.
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I. INTRODUCTION

Study of the bound system of the Sun and planets
initiates classical mechanics, and study of the bound state
of hydrogen atoms initiates quantum mechanics. With the
discovery of gravitational waves and confirmation of black
holes, bound state, scattering state, and quasinormal exci-
tation take more and more significant status in black hole
dynamics and astroparticle physics. Because of the dis-
tinctive properties of black holes, generally there are no real
bound states for black holes, since any wave will infiltrate
to the interior of the hole via quantum effects. The matter
waves around a black hole will decay slowly or swiftly.
Thus we call such state a quasibound state.
For astrophysical black holes, the mass of the quasi-

bound particle is so tiny that it is difficult to observe at
colliders or accelerators in terrestrial labs. For example, the
axion, which is supposed to explain strong CP violation in
QCD, is illusive in terrestrial labs, since its mass is expected
to be 10−5 eV or much smaller [1,2]. Black holes present
increasing prominence to probe ultralight particles. The
particles around a hole may excite more similar ones if they
have the proper frequencies. This type of radiation is a
nonthermal one (superradiance), which is different from
Hawking radiation. At the same time, the particles will leak
into the black hole because of quantum tunneling. If the
two processes get a detailed balance, the particles can form
a “cloud” around a hole [3–8]. Through explorations of a
high-resolution image of a black hole filmed by the Event
Horizon Telescope, it expected to probe the ultralight

bosonic particles based on the birefringent effects of
electromagnetic waves [9].
Gravitational waves become a powerful probe to several

dark astrophysical processes, which are difficult to see by
traditional optical or electromagnetic observations, espe-
cially for the object which has no electromagnetic inter-
action, for example, dark matter. Nothing can escape from
gravity interaction. The ultralight particles surrounding
black holes imprint gravitational waves of black hole
binaries. Actually, even a single gravitational-wave meas-
urement can effectively sense the existence of ultralight
bosons surrounding the gravitational wave source [10]. The
observations of gravitational waves also reveal signals for
bosonic clouds composed by the bound state of ultralight
particles through spin-induced multipole moments and tidal
Love numbers [11]. Recently, it is shown that one could
find the signal of dark matter around black hole binary from
gravitational tail wavelets [12].
Quasibound states of a black hole have been studied

under several different conditions [13–23]. The minimal
extension of general relativity, i.e., the dilatonic gravity or
called scalar tensor theory, can be traced back to Kluza-
Klein compactification and Dirac’s large number hypoth-
esis, in which only one new degree is introduced. The
quasinormal modes of the charged dilatonic black hole is
studied in Refs. [24,25]. The superradiant instability and
charged scalar clouds of the dilatonic black hole is studied
in Refs. [26–32]. Recently, the scattering properties of such
a hole is studied in Ref. [33]. In this paper, we will discuss
the quasibound state of a charged dilatonic black hole.
This paper is organized as follows. In the next section,

we present the theory frame and our numerical method in
detail. In Sec. III, we develop an analytical approach for the
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complex eigenfrequency, especially for a black hole with
large charge. In Sec. IV, we present our main result, and
demonstrate that the results from the numerical method are
well consistent with results from the analytical method,
particularly in the case of large charge limit. In Sec. V, we
concisely conclude this article.

II. MASSIVE SCALAR FIELD IN THE
GMGHS SPACETIME

A. The background metric

The action of the four-dimensional Einstein-Maxwell-
Dilaton theory is given by [34,35]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R − 2ð∇ϕÞ2 − e−2aϕFμνFμν�; ð1Þ

where ϕ is the dilaton, and Fμν ¼ ∂μAν − ∂νAμ is the
Maxwell tensor. The coupling between the dilaton and the
Maxwell field is governed by the parameter a. When a ¼ 0,
the action reduces to the Einstein-Maxwell action, while
a ¼ 1 corresponds to the low-energy limit of string theory.
In this case, the static spherical charged black hole solution
was first found by Gibbons and Maeda [34], and inde-
pendently by Garfinkle, Horowitz, and Strominger [35]
(GMGHS). In the Einstein frame, the line element of the
GMGHS black hole is given by

ds2 ¼ −Fdt2 þ F−1dr2 þ r2Gðdϑ2 þ sin2 ϑdφ2Þ; ð2Þ
with

FðrÞ ¼ 1 −
2M
r

; and GðrÞ ¼ 1 −
Q2

Mr
; ð3Þ

where M and Q are the mass and charge of the black hole,
respectively. The Maxwell field and dilaton field read

FM ¼ Q sin ϑdϑ ∧ dφ; ð4Þ
and

e−2ϕ ¼ e−2ϕ0

�
1 −

Q2

Mr

�
; ð5Þ

respectively. ϕ0 denotes the value of the dilaton ϕ at
spacelike infinity. ϕ0 ¼ 0 implies an asymptotic flat mani-
fold. The event horizon of the GMGHS black hole is
located at rþ ¼ 2M. The area of the sphere goes to zero
when r ¼ r− ¼ Q2=M and the surface is singular. For
Q < Qmax ≡

ffiffiffi
2

p
M, the singularity is enclosed by the event

horizon. In the extremal caseQ ¼ Qmax, and the singularity
coincides with the horizon. Following Ref. [33], we
introduce a normalized charge q ¼ Q=Qmax. To better
manifest the behavior of quasibound state frequencies in
the near extremal limit, we also parametrize the black hole
charge by

q ¼ 1 − e−η: ð6Þ

Clearly, the black hole charge q increases monotonically
with η. The Schwarzschild black hole corresponds to
η ¼ 0ðq ¼ 0Þ, while the extremal GMGHS black hole
corresponds to η → ∞ðq → 1Þ.

B. Massive Klein-Gordon equation

The massive Klein-Gordon equation governs a scalar
field Φ of mass μ is ∇μ∇μΦ ¼ μ2Φ. Decomposing the
scalar field as Φ ¼ e−iωtRωlðrÞYlmðϑ;φÞ yields the radial
equation

Δ
d
dr

�
Δ
dRωl

dr

�
þ ½GðrÞ2ω2r4 −U�Rωl ¼ 0; ð7Þ

where

U ¼ Δ½lðlþ 1Þ þ μ2r2GðrÞ�: ð8Þ

It is useful to introduce a new radial function as

ψωlðrÞ ¼
RωlðrÞ
r

ffiffiffiffiffiffiffiffiffiffi
GðrÞp : ð9Þ

Then the radial equation becomes

d2

dx2
ψωl þ ½ω2 − VlðrÞ�ψωl ¼ 0; ð10Þ

where x ¼ R
dr=F is the tortoise coordinate, and the

effective potential is given by

VlðrÞ ¼
FðrÞ
GðrÞ

�
F0ðrÞ
r

þ lðlþ 1Þ
r2

þ μ2GðrÞ
�

−
2M2q2

r4
FðrÞ
GðrÞ2

�
1þ q2

2

�
1 −

6M
r

��
: ð11Þ

Clearly, if we take q ¼ 0, then GðrÞ ¼ 1 and VlðrÞ reduces
to the effective potential of the massive scalar field in the
Schwarzschild spacetime. q ¼ 0 also implies that the
dilaton ϕ vanishes. Thus the dilaton ϕ is not an independent
hair.
At the horizon, VlðrÞ vanishes for q ≠ 1,1 so the

asymptotic solution to Eq. (10) is a superposition of
ingoing and outgoing waves. Regularity requires a purely
ingoing wave solution at the horizon,

ψωl ∼ e−iωx ∼ ðr − rþÞ−2iMω: ð12Þ

At infinity, the potential tends to μ2, and the radial
function has the following asymptotic behavior:

1We only consider the nonextremal case, i.e., 0 ≤ q < 1.
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ψωl ∼ rχeρr; ð13Þ

where

χ ¼ Mðμ2 − 2ω2Þ
ρ

; with ρ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
: ð14Þ

The behavior of the radial function at large distance is
determined by the sign of the real part of ρ. If ReðρÞ > 0,
the function is divergent, whereas if ReðρÞ < 0, the
function tends to zero. Here, we are interested in quasi-
bound state solutions and choose ReðρÞ < 0. Before
proceeding, it would be helpful to analyze the behavior
of the effective potential.
In Fig. 1, we present the potential of the l ¼ 0 state, as a

function of x. The left panel shows the effect of η on the
potential. We fix μM ¼ 0 and gradually increase the values
of η. In the Schwarzschild case (η ¼ 0), a potential barrier
appears at x=M ≈ 0; For η < 5 (or q < 0.993), both the
height and width of the potential increase with η;
Interestingly, when η > 5, the width continues to increase
with η, while the height remains unchanged. In this case,
the height of the potential is ð2lþ 1Þ2=ð16M2Þ.
To be more concrete, we define the width of the effective

potential by jx2 − x1j, where x1;2 are the tortoise coordinate,
at which Vðx ¼ x1;2Þ ¼ Vmax=2, where Vmax is the maxi-
mum value of the potential barrier. In Fig. 2, we present the
width of the potential as a function of η. We see that the
width is indeed increased monotonically with η. Especially,
such growth is uniform when η > 5. Therefore, in the limit
of η → ∞, the GMGHS black hole becomes extremal and
the potential barrier can be infinitely wide. This property is
crucial for the existence of long-lived modes of massive
scalar field adhered to a GMGHS black hole.
The right panel of Fig. 1 compares potentials for

different values of μM. For μM ≠ 0, the potential tends

to μ2 at infinity, and there is a potential well between the
barrier and spatial infinity. Awave with ω < μ will bounce
back and forth in the well, leaking its energy to the black
hole each time due to the tunneling effect of the potential
barrier. Such a tunneling effect will be heavily suppressed
in the near extremal limit η ≫ 1, since the width of the
potential barrier can be infinitely wide in this limit, as we
have shown in the left panel in this figure. Thus, we expect
that a surrounding massive scalar field could be notably
long-lived for a near extremal GMGHS black hole.

C. Quasibound states

By imposing appropriate boundary conditions at the
horizon and infinity, Eq. (10) defines an eigenvalue problem
of ω. Solutions of Eq. (10) with boundary conditions (13)
and (12) are called quasibound states of a massive scalar
field. The two boundary conditions select a discrete set of
complex frequencies (expressed by ω ¼ ωR þ iωI), which
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FIG. 1. Effective potential of l ¼ 0 state as functions of x. In the left panel, we fix μM ¼ 0 and compare the potential for different
values of η, whereas in the right panel, we set η ¼ 20 and compare the potential for different values of μM.
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FIG. 2. Width of the effective potential with l ¼ 0 as a function
of η.
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are called quasibound state frequencies. The unstable mode
corresponds to ωI > 0, whereas ωI < 0 corresponds to
the stable mode with an e-folding decaying timescale:
τ ¼ jωIj−1.
Previous studies have shown that in the limit μM ≪ l,

the real part of the quasibound state frequency resembles
that of the hydrogen atom

ωn ≈
�
1 −

μ2M2

2ñ2

�
μ; ð15Þ

where ñ ¼ nþ lþ 1 is the principal quantum number of
the state. This formula also applies to the case of a massive
scalar field around the GMGHS black hole.
In the following text, we shall derive a more accurate

frequency spectrum of the quasibound states of a massive
scalar field around the GMGHS black hole. More promi-
nently, we shall show that the imaginary part of frequency
tends to zero for a near extremal black hole (η → ∞).

III. NUMERICAL METHOD

In this work, we apply the continued fraction method to
compute the quasibound state frequencies. In Ref. [36], the
authors have used this method to find the quasinormal
modes of massive scalar field in Kerr-Sen black hole
spacetime. In this article, we apply it under quite different
boundary conditions at infinity.
As discussed in Sec. II, for quasibound states the radial

function decays exponentially at infinity. Thus we may
write the radial solution as

RωlðrÞ ¼
�
r − rþ
r − r−

�
−iσ

ðr − r−Þχ−1eρr

×
X∞
n¼0

an

�
r − rþ
r − r−

�
n
; ð16Þ

where ρ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
, χ¼Mðμ2−2ω2Þ=ρ, and σ ¼ 2Mω.

Substituting this equation into Eq. (7) yields a three-term
recurrence relation among the expansion coefficients an,

α0a1 þ β0a0 ¼ 0; ð17aÞ

αnanþ1 þ βnan þ γnan−1 ¼ 0; for n > 0; ð17bÞ

where αn, βn and γn are, respectively, given by

αn ¼ ð1þ nÞð1þ n − 4iωÞ; ð18Þ

βn ¼ −2n2 − 2

�
1 − 4iωþ ð2q2 − 3Þρþ ω2

ρ

�
n

− lðlþ 1Þ − ð1 − 4iωÞ
�
1þ ð2q2 − 3Þρþ ω2

ρ

�
þ 8ω2 þ 4ð1 − q2Þð2ω2 − μ2Þ; ð19Þ

and

γn¼ n2−4iωn−8ω2þ2ðn−2iωÞð2ω2−μ2Þ
ρ

þμ4

ρ2
: ð20Þ

Here, we set M ¼ 1, and all other quantities are measured
by M. Then, the quasibound state frequencies are obtained
by solving numerically the following equation [37]:

0 ¼ β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

� � � : ð21Þ

IV. ANALYTICAL METHOD

In the near-extremal limit (q → 1), the eigenvalue
problem introduced in the previous section can be solved
analytically. It is convenient to introduce the following
dimensionless quantities

z≡ r − rþ
rþ

; τ≡ rþ − r−
rþ

¼ 1 − q2: ð22Þ

Then, the radial equation (7) becomes

zðzþ τÞ d
2R
dz2

þ ð2zþ τÞ dR
dz

þ VR ¼ 0; ð23Þ

with

V ¼ 4τϵ2

z
− lðlþ 1Þ þ 4ð1þ 2τÞϵ2 − 4τμ2s

þ 4½ϵ2 þ ð1þ τÞðϵ2 − μ2sÞ�zþ 4ðϵ2 − μ2sÞz2: ð24Þ

where ϵ ¼ ωM and μs ¼ μM are the dimensionless fre-
quency and mass, respectively.

A. Near horizon solution

Close to the event horizon z → 0, we can omit higher
order terms of z. Hence, Eq. (23) becomes

zðzþ τÞ d
2R
dz2

þ ð2zþ τÞ dR
dz

þ
�
4τϵ2

z
þ 1

4
− β2

�
R ¼ 0;

ð25Þ

where

β2 ¼
�
lþ 1

2

�
2

þ 4τμ2s − 4ð1þ 2τÞϵ2: ð26Þ

The ingoing wave solution of Eq. (25) is

RðzÞ∼
�
z
τ

�
−2iϵ

2F1

�
1

2
− β− 2iϵ;

1

2
þ β− 2iϵ; 1− 4iϵ;−

z
τ

�
;

ð27Þ
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where 2F1ða; b; c; zÞ is the hypergeometric function.
Considering the limit z ≫ τ, and using the property of
the hypergeometric function

2F1ða;b;c;zÞ¼
ΓðcÞΓðb−aÞ
Γðc−aÞΓðbÞu3þ

ΓðcÞΓða−bÞ
Γðc−bÞΓðaÞu4; ð28Þ

where

u3 ¼ ð−zÞ−a2F1

�
a; aþ 1 − c; aþ 1 − b;

1

z

�
; ð29aÞ

u4 ¼ ð−zÞ−b2F1

�
b; bþ 1 − c; bþ 1 − a;

1

z

�
; ð29bÞ

the near horizon solution can be written as

RðzÞ ∼ Γð1 − 4iϵÞΓð2βÞ
Γð1

2
þ β − 2iϵÞ2

�
z
τ

�
−1
2
þβ

þ ðβ → −βÞ: ð30Þ

Here the second term ðβ → −βÞ refers to a replacement of β
with −β of the first term.

B. Far region solution

Now we consider the far region solution of the radial
equation. For z ≫ τ, Eq. (23) becomes

z2
d2R
dz2

þ 2z
dR
dz

þ
�
1

4
− β2 þ 2κkz − k2z2

�
R ¼ 0; ð31Þ

where β is given in Eq. (26), and

κ ¼ 4ϵ2 − ð1þ τÞk2
2k

; ð32Þ

with k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s − ϵ2

p
. The solution of Eq. (31) is

RðzÞ ¼ C1e−kzð2kÞ12þβz−
1
2
þβM

�
1

2
þ β − κ; 1þ 2β; 2kz

�
þ C2 × ðβ → −βÞ; ð33Þ

where Mða; c; zÞ is the confluent hypergeometric function,
and fC1; C2g are constants to be determined by the
matching and boundary conditions. For z ≫ 1, the con-
fluent hypergeometric function behaves as

Mða; c; zÞ ∼ ΓðcÞ
ΓðaÞ e

zza−c þ ΓðcÞ
Γðc − aÞ ð−1Þ

az−a: ð34Þ

Hence, for z ≫ 1, the far region solution (33) reduces to

Rðz → ∞Þ ∼
�
C1

Γð1þ 2βÞ
Γð1

2
þ β − κÞ þ C2 × ðβ → −βÞ

�

× ð2kÞ−κz−1−κekz

þ
�
C1

Γð1þ 2βÞ
Γð1

2
þ β þ κÞ ð2kÞ

κz−1þκð−1Þ12þβ−κ

þ C2 × ðβ → −βÞ
�
e−kz: ð35Þ

For quasibound states, the radial function tends to zero at
infinity. Therefore, the coefficient of the first term in
Eq. (35) equals to zero,

C1

Γð1þ 2βÞ
Γð1

2
þ β − κÞ þ C2 × ðβ → −βÞ ¼ 0: ð36Þ

C. Matching the two solutions

For near extremal GMGHS black holes with τ ≪ 1, there
is an overlap region τ ≪ z ≪ 1 in which the two solutions
should match each other. We have obtained the z ≫ τ
behavior of the near horizon solution, see Eq. (30). On the
other hand, the z ≪ 1 limit of the far region solution (33) is

RðzÞ ∼ C1ð2kÞ12þβz−
1
2
þβ þ C2 × ðβ → −βÞ: ð37Þ

Comparing this equation with Eq. (30), we obtain

C1ðβÞ ¼
�

τ

2k

�
1=2 Γð1 − 4iϵÞΓðþ2βÞ

Γð1
2
þ β − 2iϵÞ2 ð2kτÞ−β; and

C2ðβÞ ¼ C1ð−βÞ: ð38Þ

Substituting this equation into Eq. (36), we have

Γð1
2
− β − κÞ

Γð1
2
þ β − κÞ ¼

Γð1
2
þ β − 2iϵÞ2Γð−2βÞ2

Γð1
2
− β − 2iϵÞ2Γðþ2βÞ2 ð2kτÞ

2β: ð39Þ

This is the equation of the quasibound state frequency in
the near extremal limit. For given values of fl; μ; τg, we
compute the eigenvalues of ϵ by solving Eq. (39) numeri-
cally. If ϵ < μs < L=2, this equation can also be solved
iteratively. For τ ≪ 1, the right-hand side of Eq. (39) is very
small. Therefore, we obtain the approximation of ϵ by
requiring that the left-hand side equals to zero. Using the
property of the Gamma function 1=Γð−nÞ ¼ 0, we have

1

2
þ β − κ ¼ −n: ð40Þ

This equation can be solved by assuming
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ϵ ¼ μs

�
1þ

X∞
i¼1

Ciμ
2i
s

�
: ð41Þ

Substituting Eq. (41) into Eq. (40), the coefficients Ci can
be solved order by order for arbitrary i. Here we list the first
third Ci:

C1 ¼ −
1

2ñ2
; ð42aÞ

C2 ¼ −
2ð1þ τÞ
ñ3L

þ τ þ 15=8
ñ4

; ð42bÞ

C3 ¼ −
2ð1þ τÞ2
ñ3L3

þ 6ðτ þ 1Þ2
ñ4L2

ð42cÞ

þ 8τ2 þ 27τ þ 17

ñ5L
−
40τ2 þ 152τ þ 145

16ñ6
; ð42dÞ

where ñ ¼ nþ lþ 1 and L ¼ lþ 1=2. For long-lived
modes with ωI ≪ ωR, Eq. (41) may be treated as an
approximation of the real part ωR. Clearly, in the small
mass limit μs ≪ 1, we can omit Ci for i ≥ 2, and recover
the hydrogenic spectrum, see Eq. (15). However, if μs is
comparable to L, i.e., μs ≲ L=2, it is necessary to consider
higher order terms to get more accurate results.
Comparing to the real part, we derive the imaginary part

via a different way. The imaginary part ωI can be obtained
perturbatively. Substituting ϵ ¼ ωR þ iωI into Eq. (39), we
obtain the equation for ωI. Then, we treat both ωI and
the right-hand side of Eq. (39) as small numbers, and
expand the equation in terms of ωI . Finally, we obtain
the approximation of ωI by letting the linear part of the
expansion equal to zero. The whole procedure is tediously
lengthy, and the resulting formula is too cumbersome to be
presented here. In brief, we find

ωIM ∝ −e−2β̃η; ð43Þ

where η is defined in Eq. (6) and

β̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lþ 1

2

�
2

− 4ω2
R

s
: ð44Þ

V. RESULTS

In this section, we systematically demonstrate our numeri-
cal and analytical results of the frequencies of quasibound
states, both for ground states and excited states. Significantly,
we find that thenumerical resultsagreewellwith theanalytical
results, especially for near extremal black holes.
First, we show the complex frequencies of the ground

quasibound state of the GMGHS black hole with different
charges varies with respect to fine structure constants μM.
Figure 3 compares the spectra of l ¼ 0 states for different
values of black hole charge q. Here, the Schwarzschild case
(q ¼ 0) is also plotted in comparison. For a very small fine
structure constant μM ≪ 1, the Compton wavelength of the
scalar field is much larger than the size of the black hole. In
this case, the real part of the frequency is well described
by Eq. (15), and the effect of q is negligible. Physically, a
very long wave hardly senses the existence of charge.
Similar phenomena appear in scattering of GMGHS
black holes and Reissner-Nordstrom black holes [33]. As
the mass coupling μM is increased, the effect of q on ωR
becomes significant. The physical explanation is that a
shorter wavelength yields a smaller expectation of spatial
radius of the wave function, which implies that the
surrounding massive particle is nearer to the central black
hole than the weak coupling case. The gravitational effect
of the charge decreases with respect to r much faster than
that of the mass. Thus for a neutral particle far away from a
charged mass point, it almost does not sense the gravity of
charge. But when it is put nearer and nearer to the charged
mass point, the gravity effects of the charge of the hole
become more and more evident.
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FIG. 3. The frequencies of the ground quasibound state of the l ¼ 0 state as functions of μM. The left panel shows the real part ωR,
whereas the right panel shows the corresponding lines for the imaginary part ωI .
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As for the imaginary part of the frequency, the effect of q
is significant, even in the limit μM ≪ 1. From the right
panel of Fig. 3, we see that for a given value of μM, jωIj
decreases with the increase of q. Such trends are more
notable in the near extremal limit. For example, when
μM ¼ 0.2, the value of jωIj for q ¼ 0.9 is about 4 times that
for q ¼ 0.99; And the value of jωIj for q ¼ 0.99 is again
about 4 times that for q ¼ 0.999, whereas the increase of q

is only one-tenth of the former case. Physically, from Fig. 1
it is clear that a larger q leads to a wider potential. Awider
potential is more difficult to penetrate, which is equal to say
a smaller imaginary part of the frequency.
In Fig. 4, we present energy spectra for different angular

momentum l. This figure shows that for small values of
μM, the real part of the frequency is well approximated by
Eq. (15), and the imaginary part ωI tends to zero in the limit
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FIG. 4. Spectra of the quasibound states, with n ¼ 0, for l ¼ 0, 1, and 2. The black hole charge is q ¼ 0.99. The left panel shows the
real part ωR (or more precisely 1 − ωR=μ), whereas the right panel shows the corresponding lines for the imaginary part ωI . In the left
panel, the dashed lines denote numerical results, whereas the solid lines denote the analytic results; see Eq. (15).
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FIG. 5. Spectra of l ¼ 0 state for different values of η. The upper panel shows the real part ωR (or more precisely 1 − ωR=μ), whereas
the bottom panel shows the corresponding lines for the imaginary part ωI . The analytical result in this figure is given by Eq. (15).
The excitation number n ¼ 0, 1, and 2 for the left, middle, and right panels, respectively.
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μM ≪ 1. This means that the ultralight scalar field can be
very long-lived around the GMGHS black hole. Similar
results have been found for massive scalar and Dirac fields
around a Schwarzschild or a Reissner-Nordström black
hole [17,22,23].
From the analysis in Sec. II B, we expect that ωI tends to

zero in the extremal limit. Figure 5 compares the spectra of
l ¼ 0 state for different values of η. The upper panel shows
more clearly that the real part of the frequency of the
quasibound states with the same value of ñ ¼ nþ lþ 1
degenerate in the limit μM ≪ 1 and such degeneracy does
not depend on the black hole charge, as predicted by
Eq. (15). From Eqs. (41) and (42), the parameter η only
affects ωR when the coupling constant μM is comparable to
L. The effects of η on ωI is much more notable. We see that
for a given μM, jωIj decreases with the increase of η. This
confirms our physical analysis from Fig. 3.
In Fig. 6, we compare the imaginary part of the

frequency of the ground state (with n ¼ l ¼ 0) for different

values of η. The plot shows again that jωIj decreases with
the increase of the black hole charge. We find that for μM <
0.25 the logarithm of jωIj almost decreases uniformly as η
increases. This means that jωIj swiftly goes to zero in the
limit η → ∞.
In Fig. 7, we show the quasibound state frequencies of

l ¼ 0 state as functions of η, for different values of μM. For
both the real and imaginary parts of the frequency,
numerical results agree quite well with the analytical ones,
especially for large value of η. As expected, the imaginary
part jωIj tends to zero exponentially.
Figure 8 compares the imaginary part of the frequencies

of l ¼ 1 state for different values of μM. Again, we see
that jωIj tends to zero exponentially at large η. For lower
mass coupling μM, jωIj goes down faster. A smaller
coupling μM implies a larger Compton wavelength, which
denotes a larger expectation of r for the wave function.
And a lower probability of tunneling follows a smaller
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FIG. 6. Imaginary part of the quasibound state frequencies,
with n ¼ l ¼ 0, as a function of μM for different values of η.
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FIG. 7. The lowest quasibound state frequencies of l ¼ 0 state as functions of η, for μM ¼ 0.1, 0.15, 0.2. The left panel shows the real
part ωR of the frequency, and the right panel shows the imaginary part (or more precisely, jωIj). In this plot, the solid lines denote the
numerical results, while the dashed lines denote the analytical results obtained from Eq. (39).

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

0 1 2 3 4 5 6 7 8

FIG. 8. The lowest quasibound state frequencies of the l ¼ 1
state as functions of η, for μM ¼ 0.3, 0.4, 0.5, 0.6. The solid lines
denote the numerical results, while the dashed lines denote the
analytical results obtained from Eq. (39).
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coupling μM, that is to say a smaller imaginary part of the
eigenfrequency.

VI. DISCUSSION AND CONCLUSION

The bound state of the hydrogen atom has fundamental
importance, not only for quantization of matter, but also for
quantization of electromagnetic field. Through transition
between different energy levels, one directly demonstrates
that the electromagnetic field is quantized. As it is well
known, the quantization of gravity is a long-standing
problem. A main reason why a full-fledged quantum
gravity theory is still in absence is that we have no guide
to develop such a theory from lab experiments or astro-
physical observations. Similar to the case of the hydrogen
atom, the transition between different energy levels of the
(quasi)bound state should emit or absorb gravitons, i.e., a
gravitational wave at a given frequency. It is very difficult,
if not impossible, to detect the quantum property of
gravitational waves from binary black holes [38–40].
The transition between different energy levels of the
quasibound state of a black hole leave fingerprints in the
gravitational wave signals, if the progenitors of the wave
have surrounding bounded articles. It may be beneficial to
probe the quantum property of the gravity field through
analysis of gravitational waves from such progenitors.

The GMGHS black hole is a charged solution in
dilatonic gravity. Dilatonic gravity is a minimal extension
of general relativity, in which a new dilaton degree is
introduced. The GMGSH solution is not a hairy black hole,
since the dilatonic charge is determined by the electro-
magnetic charge. Thus the dilatonic charge is not an
independent new charge.
In this article, we study the quasibound state of

massive scalar fields in the GMGHS black hole spacetime.
We computed the eigenfrequencies of the quasibound
state via both analytical and numerical method. Results
obtained from the two approaches finely agree with each
other.
We found that in the extremal limit η → ∞ (or q → 1),

the imaginary part of the frequency tends to zero exponen-
tially. This implies that massive scalar field configurations
around a near extremal GMGHS black hole may be notably
long-lived.
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