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We present a consistent and complete description of the coupling to matter in the Teleparallel Equivalent
to General Relativity (TEGR) theory built from a Cartan connection, as we proposed in previous works.
A first theorem allows us to obtain parallel transport from the Cartan connection into a proper Ehresmann
connection, while a second ensures to link the TEGR-Cartan connection to the Ehresmann one-form that
contains the Levi-Civita connection. This yields a coupling to matter in agreement with observations and
the Equivalence Principle. As the fundamental fields proceed from the Cartan connection, if one insists on
interpreting TEGR as a gauge theory of translations, such translation gauge field can be extracted from the
consistent theory presented. However, this would entail a fundamental change in the structures known for
gauge theory and a split between gauge field and connection is imperative. The willingness to take such a
step is left to the reader.
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I. INTRODUCTION

In this paper we describe how a coupling to matter can be
obtained in a new mathematical framework for the
Teleparallel Equivalent to General Relativity (TEGR) using
a reductive Cartan connection. We start from the Levi-
Civita connection, or its corresponding one-form in the
Cartan (tetrads) formalism, to describe the coupling to
matter fields, which, from observational grounds, is known
to describe it well.
TEGR is the well known theory in which the effect of

gravity does not manifest itself, as in General Relativity
(GR), through induced curvature to spacetime, but by
instead giving it torsion. Although being equivalent to
GR, this approach yields both an alternative description and
interpretation to gravity. It has been presented with various
perspectives: in Ref. [1] for its translation-gauge presen-
tation, in Ref. [2] for the “pure tetrads formalism”
approach, while in Ref. [3], tensorial formalism is used
to present it, together with another gravitation equivalent to

GR, first introduced in Ref. [4], the Symmetric TEGR
(STGR). TEGR has also provided a stout base for modified
gravities, such as fðTÞ [5,6] theories, further generalized
with fðR; TÞ [7], fðT; BÞ [8]. Additional important gen-
eralizations comprise Conformal TEGR [2,9,10], or
Teleparallel Equivalent to Lovelock Gravity [11], which
are also actively studied.
Although the familiar tensorial formalism can be used to

formulate TEGR as in Ref. [3], its presentation as a gauge
theory for the translation group (see Refs. [1,12] and
references herein) allows one to obtain the torsion as the
curvature of a connection defined in the principal bundle of
translations. Recently, some of the authors pointed out a
difficulty in this formalism: the connection one-form is
implicitly identified with another mathematical object
required to define the torsion, the so-called canonical
one-form. This one-form is only defined in the bundle
of frames and is not a connection, two properties turning
the identification problematic [13–15].
The idea of relating TEGR, and, more generally, gravity,

to translations is a very natural one, since the Noether
current associated with them is the energy-momentum
tensor. On the other hand, extending that link to a gauge
theory of the translations group could be more question-
able. Indeed, gauge theories are very successful in the
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standard model of particle physics describing fundamental
interactions, except gravity, in Minkowski space. There, the
gauge groups (Uð1Þ, SUð2Þ, etc.) only act on fields, not on
spacetime (their action is often said to be “internal”). The
aim of these theories is to implement the local invariance of
a matter equation (usually the Dirac equation), under their
respective symmetry group. This is achieved by introducing
gauge fields which couple minimally to matter fields. In
that context, local invariance means that the action of the
symmetry group on matter fields depends on the position in
spacetime.
In gravity the group of invariance involved is the group

of local diffeomorphisms of R4 Diffð4;RÞ, that is the
changes of coordinates mapping spacetime. Its appearance
is motivated by the Equivalence Principle (EP) translated
operationally into the General Covariance Principle (GCP).
In the Cartan (tetrads) formulation, any spacetime tensor is
mapped by tetrads to a Lorentz tensor.1 Thus, all fields,
except the tetrads themselves, are viewed as scalars under
changes of coordinates. These fields also belong to repre-
sentations of the Lorentz group. Indeed, using the appro-
priate representation of the Lorentz group, spinorial fields
can also be taken into account, which is a central feature of
the tetrad approach. In this formalism the GCP translates
into two invariances: the invariance as a scalar under the
change of coordinates, and the invariance under the local
Lorentz transformations in the corresponding representa-
tion [16]. In this tetrad framework, the coupling of matter
fields to gravity is usually obtained by the minimal
coupling prescription, where the partial derivatives are
replaced by the covariant Fock-Ivanenko derivative. In this
derivative the coupling term is the spin (or Lorentz)
connection, a one-form valued in the Lorentz Lie algebra
soð1; 3Þ. Then, from a gauge theory perspective, if that
coupling can be associated with a local Lorentz invariance,
the relation with the local diffeomorphism invariance
(already satisfied) is not that obvious. Moreover, the status
of tetrads, as representing the gravitational field, is, in a
gauge theory framework, unclear.
Indeed, a large amount of work since the 1960s has been

done to clarify this situation.2 Different theories, using
different symmetry group (R4, Poincaré, GLð4;RÞ ⋊ R4,
SO(1,4), …), not limited to the diffeomorphism group
Diffð4;RÞ, have been obtained. A comprehensive review
of this gauge approach is Ref. [18].

We will not directly address here this gauge problem in
its generality. Instead, we will describe a mathematical
framework for TEGR in which the diffeomorphism invari-
ance is canonically satisfied. In this framework, the
minimal coupling, through the Levi-Civita connection
one-form, is consistent with current observations, and
derives from a specific Cartan connection, chosen such
that curvature is the torsion. In the tetrad formalism, this
amounts to retrieving the usual Fock-Ivanenko covariant
derivative. Such derivation from a connection is suitable
from a gauge theory perspective of TEGR. This basis will
enable us to map out the modifications required on the
established framework of gauge theories, if we insist on
interpreting our result as a gauge theory for translations:
mainly, the dissociation of the gauge field from a con-
nection, and the restriction to the translation “gauge” group,
appearing only through its algebra.
The structure of the paper is as follows: Sec. II reviews

the motivations in the choice of a reductive Cartan con-
nection; Sec. III summarizes the relevant issues involved in
coupling gravity to matter with a Cartan connection and
gives a setup for the derivation of that coupling to matter;
technical details are the subject of Sec. IV; we then discuss
Sec. V, the extensions of the gauge paradigm which could
be considered in order to interpret TEGR, obtained from
our results, as a gauge theory for translations; we finally
conclude Sec. VI; some complements on technical details
are given in Appendices.
For general notions and definitions regarding differential

geometry we refer the reader to Refs. [19–22].

II. WHICH CONNECTION FOR TEGR?

In this section we remind of our motivation in using a
Cartan connection to describe TEGR. For the sake of
completeness let us first recall some defining properties of
the Cartan connection. A more detailed account in the
context of gravity may be found in Refs. [23,24], while a
comprehensive mathematical reference is Ref. [25].

A. About Cartan connection

Let us first recall some facts about Ehresmann con-
nections on principal G-bundle (a principal fiber bundle of
Lie group G). Each tangent space on a point of the fiber
bundle contains a vertical subspace defined as the tangent
space of the fiber at this point. Any complementary
subspace of this vertical space is said to be horizontal.
An Ehresmann connection defines in a unique way the
notion of horizontality in a principal G-bundle: it specifies
horizontal subspaces. This is usually done through a
connection one-form ωE whose kernel defines a horizontal
space at each point of the total space. Such a one-form is
defined by the following properties:
(1) it takes its values in the Lie algebra g of the Lie

group G,

1This corresponds to the usual change of indices: T…a…
…b…ðxÞ ¼

eaμðxÞeνbðxÞT…μ…
…ν…ðxÞ.

2To illustrate how that point has been already recognized since
the birth of gauge theories let us quote the introduction of a
review of 1985 by Ivanenko and Sardanashvily (page 4 of
Ref. [17]): “The main dilemma which during 25 years has been
confronting the establishment of the gauge gravitation theory, is
that gauge potentials represent connections on fiber bundles,
while gravitational fields in GR are only metric or tetrad
(vierbein) fields.”
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(2) it is G-invariant: R�
gω ¼ Adg−1ω, Rg being the right

action of G on the bundle,
(3) it reduces to the Maurer-Cartan formωG of the group

G along the fibers: ωEðVÞ ¼ ωGðVÞ, for any vertical
vector V.

Now, let us recall the definition properties of a Cartan
connection on a principalH-bundle,H being a subgroup of
a Lie group G. The Cartan connection is defined through
the one-form ωC such that
(1) it takes values in the algebra g ⊃ h of G ⊃ H,
(2) it is H-invariant: R�

hω ¼ Adh−1ω, Rh being the right
action of H on the bundle,

(3) it reduces to the Maurer-Cartan form ωH of the
group H along the fibers,

(4) it is, at each point p of the H-bundle, a linear
isomorphism between the tangent space TpP at p
and the Lie algebra g. This property requires that G
has the same dimension as the tangent space TpP.

The properties (1) and (4) distinguish the Cartan connection
from Ehresmann’s. As a consequence of the above proper-
ties, the tangent space of the base manifold M can be
locally identified with the tangent space g=h of the
homogeneous space3 G=H. Indeed, the condition (4)
precisely states that the H-principal bundle is soldered to
its base M.
For a (3þ 1)-dimensional manifold there are only three

possible homogeneous spaces: both (anti-)de Sitter spaces,
and the Minkowski space. The corresponding Cartan
geometries have the property of being reductive (see page
197 of Ref. [25] for a definition), implying that, the Cartan
connection takes the form

ωC ¼ ωþ θ;

where ω is an h-valued connection one-form of Ehresmann
type, and θ a g=h-valued one-form, both defined on the
principal H-bundle. The reductive property also implies
that the curvature of the Cartan connection splits into two
parts:

ΩðωCÞ ¼ ΩðωÞ þ ΘðωÞ;

where ΩðωÞ ¼ dωþ ω ∧ ω is the curvature of the con-
nection ω and ΘðωÞ ¼ dθ þ ω ∧ θ its torsion.

B. Cartan connection in TEGR

In previous works [13,15] we found that one encounters
difficulties in the formulation of TEGR as a gauge theory of
translations, mainly because of the problematic implicit

identification of the Ehresmann translation connection,
defined in a principal translation bundle (R4-bundle), with
the canonical one-form θ appearing in the definition
of torsion: ΘðωÞ ¼ dθ þ ω ∧ θ, and which is not an
Ehresmann connection. The R4-valued one-form θ is
defined in the bundle of frames LM, a principal
GLð4;RÞ-bundle, and its sub-bundle of orthonormal
frames OM, a principal SO(1,3)-bundle, through

ðθðeÞ; VÞ ¼ ðe−1; π�VÞ; ð1Þ
where e is a frame in LM over a point x of the base
manifold M, V a vector of TLM, and π the projection on
the base. In coordinates the above relation reads θaðeÞ½V� ¼
ea½π�V� ¼ Va.
In an attempt to remedy this situation, we proposed to

consider a Cartan connection directly defined over the
bundle of orthonormal frames OM. The choice of a Cartan
connection is first of all motivated by the fact that, when
defined on OM, it can be chosen such that its curvature is
the torsion, a central property for TEGR. This is related to
the property for the Cartan connection on OM to be
reductive (see Sec. II A). In this case the curvature-less
and torsion-full Cartan connection one-form reads

ωC ¼ ωW þ θ; ð2Þ
where the Ehressman term, ωW , is the curvature-less
Weitzenböck one-form connection and where the term,
θ, coincides with the canonical one-form on OM.
We remark that the term θ of the Cartan connection (2)

takes its values precisely in the translation subalgebra
g=h ¼ R4 of the Poincaré algebra, thus local translations
are implemented in the Cartan connection although θ is not
a connection by itself.

III. THE COUPLING TO MATTER: OVERVIEW

This section aims to summarize how we obtain the Levi-
Civita covariant derivative from the reductive Cartan
connection we proposed as a possible connection to
describe TEGR as a gauge theory.
The connections usually used in gauge theories are of

Ehresmann type. They are associated to parallel transport
and covariant derivative. These two notions are not directly
available for a Cartan connection. Therefore, to obtain a
covariant derivative from a Cartan connection leads to
associate it to an Ehresmann connection. An obvious way
to realize this mapping in the case of a reductive Cartan
connection is to define parallel transport through the
Ehresmann part of the connection. In our context, this
part is the Weitzenböck connection ωW , which obviously
cannot give the Levi-Civita coupling.4 We thus have to
consider a different way to implement parallel transport.

3Note that both G=H, with H a closed subgroup of G, being a
homogeneous space, and the fact that g=h can be identified with
its tangent space are known results of differential geometry of Lie
groups (see for instance [19], page 294, for the former statement,
and [25], page 163, for the latter).

4Note that the Levi-Civita coupling would respect observa-
tional evidence and the Equivalence Principle.

TELEPARALLEL GRAVITY AS A GAUGE THEORY: COUPLING … PHYS. REV. D 103, 044061 (2021)

044061-3



We remark that the use of the Weitzenböck connection
for the parallel transport would imply that the space-
time manifold be parallelizable—which corresponds to a
trivial bundle of frames—and thus the theory not strictly
equivalent to GR.5 Another, more general, way to build a
covariant derivative from a Cartan connection is to use a
theorem (proven by Richard Sharpe in Ref. [25] and
reproduced in Appendix A) which, essentially, gives a
map between the set of Cartan connections and that of
Ehresmann connections satisfying a technical condition
(detailed in Sec. IVA). We will, in Sec. IV B, make use of
this theorem to map the Cartan connection ωC defined on
the orthonormal frame bundle OM to an affine connection
on the principal Poincaré bundle AM (the affine extension
of OM viewed as a principal Lorentz bundle). The
specialization to the orthonormal bundle, which can be
related to the Equivalence Principle, allows us to introduce
the contorsion one-form in order to obtain a Levi-Civita
connection as the Lorentz part of the affine (Poincaré)
connection (this is detailed in Sec. IV B). This affine
connection is then mapped back onto the orthonormal
frame bundle OM where it divides into two parts: the Levi-
Civita connection ωLC and the canonical one-form θ.
However, the Levi-Civita connection obtained that way
appears as the combination of the Weitzenböck connection
and its related contorsion κW , namely ωLC ¼ ωW − κW, a
well-known result, reformulated in the case of fiber bundle
in theorem 6.2.5 on page 79 of Ref. [28]. Thus, we finally
recover the Levi-Civita coupling to matter under the form
obtained in [1], opening the possibility to relate this
connection to (local) translations.

IV. THE COUPLING TO MATTER: DETAILS

In this section we detail our proposal to obtain the Levi-
Civita covariant derivative from the reductive Cartan
connection (2). Our approach mainly relies on a theorem,
hereafter referred as Sharpe theorem relating Cartan and
Ehresmann connections. This theorem is proved in
Ref. [25] and reproduced in Appendix A. We first examine
this theorem, and then show how to switch from the
Weitzenböck to the Levi-Civita connection in the
Lorentz sector. Finally, we use these properties to obtain
the covariant derivative on the spacetime manifold.

A. The Sharpe theorem

Let us first consider the main ingredients of the Sharpe
theorem (Theorem A.1) and how it specializes in our
context. The theorem is concerned by a principal H-bundle
PðM;HÞ and its so-called G-extension6: the principal G-
bundle QðM;GÞ ¼ P ×H G. In our framework, a bundle

formalism for TEGR with a Cartan connection [13], P is
the bundle of orthonormal frames OM identified with the
principal Lorentz ðSO0ð1; 3ÞÞ bundle, andQ is the Poincaré
bundle AM, its corresponding affine bundle with structure
group P ≔ SO0ð1; 3Þ ⋊ R4.
A central assumption of the theorem is the existence of

an H-bundle map. φ∶P → Q, which is a continuous map
such that φðphÞ ¼ φðpÞh with p ∈ P and h ∈ H ⊂ G. The
theorem states that φ� is a one-to-one correspondence
between the set of Ehresmann connections on Q (here
AM), whose kernel does not contains non-null vectors of
φ�ðTPÞ (the technical condition we mention in Sec. III),
and the set of Cartan connections on P (here OM).
Our goal is to obtain explicitly the expression, on a

Cartan connection one-form ωC, of the inverse map of φ�,
that is ðφ�Þ−1ðωCÞ. In Theorem A.1, ðφ�Þ−1 is not for-
mulated in a closed form. Instead, it is obtained as the
extension of a general Cartan connection ωC to a one-form
on the product P ×G: jðωCÞ, in Eq. (A1). This one-form
jðωCÞ is proven to be the pull-up from Q to P ×G of an
Ehresmann connection ωE whose kernel intersection with
φ�ðTPÞ is reduced to zero, which is precisely the image of
ωC by ðφ�Þ−1.
An explicit expression of ωE ¼ ðφ�Þ−1ðωCÞ for a Cartan

connection ωC requires to specify Eq. (A1) in a local
trivialization.
We first recast it for our matrix Lie group:

jðωCÞ ¼ g−1ωCgþ g−1dg; ð3Þ
taking into account the projections appearing in Eq. (A1)
by recalling, for a product of manifolds M × N, that one
can always write Tðm;nÞðM × NÞ ¼ TmM ⊕ TnN. In this
form, ωC acts on TP and g−1dg, the Maurer-Cartan form of
G, acts on TG.
To simplify matters, let us specify a local trivialization—

fa∶π−1ðUaÞ → Ua × F, where π is the projection on the
base, fUag an open covering ofM andF a fiber—by the local
product U × F for some open set U of the covering. We
then set

PU ≔ U ×H;

QU ≔ U × G;

and accordingly, ðP ×GÞU ¼ PU ×G. Local coordinates for
points p ∈ PU, q ∈ QU will be hereafter denoted by p ¼
ðx; hÞ and q ¼ ðx; gÞ respectively, with x ∈ U.
In a local trivialization corresponding to U × G, G being

a matrix Lie group, a connection one-form ω can be
decomposed as

ωðx; gÞ ¼ g−1ωUðxÞgþ g−1dg; ð4Þ
where ωUðxÞ acts on tangent vectors of TxU ⊂ TxM and
g−1dg is the Maurer-Cartan form acting on vectors of TgG.
Applying Eq. (4) to the Cartan connection ωC in the
trivialization corresponding to PU gives

5Note, however that the solutions excluded from GR by the
parallelizability are discarded on a physical basis [26,27].

6See for instance [20] and Appendix B.
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ωCðx; hÞ ¼ h−1ωU
CðxÞhþ h−1dh: ð5Þ

Inserting Eq. (5) in Eq. (3) gives the expression of jðωCÞ
in the local trivialization corresponding to PU ×G:

ðjðωCÞÞðx;h;gÞ¼g−1ðh−1ωU
CðxÞhþh−1dhÞgþg−1dg: ð6Þ

In the trivializations defined above, the mapping from
P ×G to Q, which allows us to relate jðωCÞ to ωE, can be
obtained by setting the coordinate on the fiber H of PU to
the neutral element e and identifying the result with QU:

U × feg ×G ¼ QU:

This corresponds to the quotient operation performed
in defining Q as the associated bundle P ×H G (see
Appendix B for details). Performing this quotient in
Eq. (6) gives ðφ�Þ−1ðωCÞ, the Ehresmann connection we
are looking for, in the local trivialization corresponding
to QU:

ωEðx; gÞ ¼ g−1ωU
CðxÞgþ g−1dg: ð7Þ

Now, observe that Eq. (4) also applies, in particular, to
the Ehresmann connection ωE in the trivialization corre-
sponding to QU. Then, comparing Eq. (4) for ωE with the
above Eq. (7) leads to

ωU
E ðxÞ ¼ ωU

CðxÞ: ð8Þ

B. Levi-Civita coupling from Weitzenböck one-form

The above considerations show us that, when restricted
to the base manifold, both the original Cartan connection
and the Ehresmann connection obtained from it, thanks to
Sharpe’s Theorem A.1, are the same on the base manifold,
see Eq. (8). They differ mainly through the Maurer-Cartan
form between Eqs. (7) and (5). In particular, for the
reductive Cartan connection of Eq. (2), the Weitzenböck
term remains untouched by the map ðφ�Þ−1, which thus
cannot lead to a Levi-Civita coupling.
To remedy this problem, one starts by observing that any

Ehresmann connection is related to any other by a G-
invariant7 horizontal g-valued one-form. This can be seen
as follows. First, let us consider the difference of any pair of
Ehresmann connection one-forms ω1 and ω2. Using Eq. (4)
repeatedly for ω1 and ω2, and subtracting the result one
obtains, in the same local trivialization,

ω2 − ω1 ¼ g−1ðωU
2 − ωU

1 Þg:
This g-valued one-form is manifestly G-invariant and
horizontal. Second, if α is aG-invariant horizontal g-valued
one-form in Q, the sum ωþ α, where ω is an Ehresmann

connection, is both G-invariant and g-valued. In addition,
since α is horizontal, ωþ α reduces to the Maurer-Cartan
form along fibers. Thus the g-valued one-form ωþ α is G-
invariant, and reduces to the Maurer-Cartan form along the
fibers, it is consequently an Ehresmann connection one-
form.
This property allows us to recast Eq. (7), up to a

redefinition of ωE under the form

ðωE þ αÞðx; gÞ ¼ g−1ðωU
CÞðxÞgþ g−1dg; ð9Þ

where α is aG-invariant horizontal g-valued one-form inQ.
Equation (8) in the trivialization corresponding to QU
becomes accordingly

ωU
E ðxÞ þ αUðxÞ ¼ ωU

CðxÞ:
Then Eq. (9) can be recast under the form

ωEðx; gÞ ¼ g−1ðωU
C − αUÞðxÞgþ g−1dg: ð10Þ

Now, let us specialize to our framework in which
P ¼ OM, Q ¼ AM and ωC ¼ ωW þ θ. In that case, one
can show (theorem 6.2.5 on page 79 of Ref. [28]) that, for a
given Ehresmann one-form ω on P ¼ OM, there exists a
unique one-form κω on P ¼ OM, the so-called contorsion
one-form, such that ω − κω ¼ ωLC, the Levi-Civita one-
form. The contorsion κω being thus the difference between
two Ehresmann connections it has the properties required to
enter in Eq. (10) as the one-form α. We can therefore set α
to the contorsion corresponding to the Weisenböck con-
nection,

α ¼ κωW
≕ κW;

in order to obtain the Levi-Civita one-form in the
Ehresmann connection ωE when the Ehresmann part of
the reductive Cartan connection ωC is ωW . Finally Eq. (10)
specializes to

ωEðx; gÞ ¼ g−1ððωW þ θÞU − κUWÞðxÞgþ g−1dg: ð11Þ

C. The AM → OM map, and the
covariant derivative

In the two previous sections we have shown how, starting
from the Cartan-Weitzenböck one-form (2) in P ¼ OM,
one can obtain the Ehresmann-Levi-Civita one-form ωE ¼
ωLC þ θ in Q ¼ AM, the principal Poincaré bundle.
As a last step, the covariant derivative, corresponding to

the Levi-Civita connection, over the base manifold M, can
now be obtained thanks to a theorem shown in proposition
3.1 on page 127 of Ref. [22] which states8 the existence of a

7By G-invariance we mean the property for a one-form α to
satisfy:R�

gα ¼ Adg−1ðαÞ, that is formatrix Lie groupR�
gα ¼ g−1αg.

8We specialize here this theorem to the sub-bundle of ortho-
normal frame OM and its affine extension AM.
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map, hereafter β, which associates to an affine connection,
generically ωþ ϕ defined on AM, the pair ðω;ϕÞ on OM.
This applies in particular to the affine connection ωE

given in Eq. (11) for which β∶ωE ↦ ðωLC; θÞ. This map
allows us to define the covariant derivative, associated to
the reductive Cartan connection (2), as the usual covariant
derivative of GR, that is the Fock-Ivanenko derivative. This
is the main result of this section.
However, let us emphasize that the Levi-Civita connec-

tion appearing in this covariant derivative should be con-
sidered as a function of ωW , θ and η (the Minkowskian
metric) these two last quantities entering in the definition of
the contorsion κW . As a consequence, the Levi-Civita
connection one-form should not be associated to the gauge
field mediating gravity.

V. VIEWING TEGR AS A GAUGE THEORY
OF TRANSLATIONS?

A. Gauge field vs connection

In gauge theories of particle physics, the gauge fields
(associated with gauge bosons) are those fields which, at
our present energy scale, mediate one of the fundamental
interactions (electromagnetic, weak or strong) between
matter fields. They are termed gauge field since their
dynamical free equations (uncoupled from matter), involv-
ing gauge fields through their field strength, exhibit gauge
invariance. On the mathematical side, the gauge fields are
recognized to be sections of Ehresmann connections
defined on a principal bundle, whose structure group G
is a global symmetry group of the free (in the sense of
uncoupled through gauge fields) matter equations. The
field strengths are (sections of) the curvature of these
connections one-form. The coupling between a matter field
and a gauge field renders the interacting theory of matter
field locally invariant under the symmetry group G. Thus,
in these theories, on the physical side, the gauge field is a
dynamical field which fulfills two related roles: to mediate
an interaction and to ensure local invariance under some
symmetry.
In classical gravity the spacetime is a metric manifold

ðM; gÞ, the metric being, in the Cartan view, induced by
orthonormal (co)frames (tetrads) through ηðe; eÞ ¼ g. This
manifold is canonically the base of a frame bundle FM. It is
a principal Glð4;RÞ-bundle which contains the orthonor-
mal bundle OM as a principal SO(1,3)-sub-bundle. A
specific structure, the canonical one-form θ, is always
defined on FM. It realizes the so-called soldering9 and is
independent of the existence of any connection on FM. In
particular, it is worth noting that θ is not a connection one-
form by itself. When an Ehresmann connection is present
on FM, the canonical one-form allows us to define the
torsion. The one-form θ is specific of the frame bundle,

with no equivalent in the mathematical framework of
particle physics gauge theory just described, where the
Frame bundle, although always defined, is not used. As a
consequence, the particle physics framework can be
expected to be too restrictive to encompass a gauge theory
of gravity involving torsion, such as TEGR.
The above remarks lead us to consider the role played by

θ in our proposal to describe TEGR with the help of the
reductive Cartan connection ωC ¼ ωW þ θ. The canonical
one-form appears in two places:
(1) in the definition of ωC Eq. (2), where as a one-form

valued in R4, the translation part of the Poincaré
algebra, it is identified with the term θ,

(2) in the definition of the contorsion one-form used to
rewrite the Levi-Civita one-form as the combination
ωLC ¼ ωW − κW (see Sec. IV C).

Thus, we observe that the canonical one-form θ is, first,
the part of the Cartan connection related to the local
translation invariance, and second, enters in an essential
way in the coupling with matter. These two characteristics
are reminiscent of those retained at the beginning of the
present section to identify a gauge field. Since such a field
is defined on the base manifold, let us examine the
pullback, on the base manifold, of the canonical one-form
and its associated Levi-Civita connection, which is the
connection that enters the usual gravitational covariant
derivative on the base. In the present context, the pullback
along some section σ of the canonical form θ reads

σ�θ ¼ e; ð12Þ

where e is a local field of frame (a tetrad), and that of the
connection ωLC, in some open set U of the base, reads

ωU
LC ¼ ωU

W − κUW: ð13Þ

Equation (12) will play a central role in the translation-
gauge interpretation, because it relates θ, a canonical
structure, to the dynamical field e. Indeed, Eq. (12) can
be read of as the one-to-one relation between σ and e
induced by θ: to choose a section is to choose a frame. Now,
e, in the Cartan view of gravity, is the solution of the gravity
field equations. These are known to exhibit gauge invari-
ance, the choice of a gauge, that is the choice of a particular
frame e, being, in the fiber bundle context, precisely the
choice of a section σ. These facts point towards the
interpretation of the frame e as the gauge field of the theory.
Equation (13), on the other hand, can be viewed as the

definition of a “fake gauge field,” in the sense that the Levi-
Civita term corresponds to the implementation of the local
Lorentz invariance through the covariant derivative, but has
no proper dynamics, other than that being induced by the
tetrad e. Indeed, the first term on the rhs of Eq. (13), the
Weitzenböck connection one-form, only involves local
Lorentz transformations and has a null curvature (field9Note that θ is not the solder form by itself (see Ref. [13]).
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strength), while the second term on the rhs of Eq. (13),
the contorsion one-form, is built on η, the constant
Minkowskian metric, and the field e. The tetrad e thus
appears here as a dynamical fieldwhich “drives” the Lorentz
invariance.
We finally come to the conclusion that, at least in the

context of TEGR, a distinction should be made between the
gauge field and the connection. Note that, such a distinction
does not imply any change in particle physics theory (at
least at our energy scale), since the structures involved in
that extension are not present (not used) in the particle
physics framework.

B. A new gauge paradigm for TEGR?

This observation shows us a possible way to interpret
TEGR as a gauge theory of translations if we allow one to
broaden the structure of a gauge theory by introducing a
distinction between the gauge field and the connection. In
this view, the gauge field is defined as the pullback on the
base manifold, along some section σ, of the canonical form
θ, that is as a frame e. To remind of the motivations for such
an interpretation, let us recall that the field e:
(1) is a dynamical field, whose equation exhibits gauge

invariance,
(2) mediates the interaction through the Levi-Civita

connection, Eq. (13), which in the present context
is induced by the field e, as described at the end of
Sec. VA,

(3) is to some extent responsible for the local Lorentz
invariance in the sense that the Levi-Civita con-
nection is here determined by e and structural
elements as η.

These three properties are characteristic of a gauge field
(Sec. VA). Then, if we insist to interpret TEGR as a gauge
theory, we can describe it using e as the gauge field of
translations associated with the Cartan connection ωC
[Eq. (2)].
As explained at the end of Sec. VA, this interpretation does

not require any changes in the usual framework of particle
physics gauge theories since the departure from that frame-
work relates to extraneous quantities: θ, e. Nevertheless, it
requires a distortion of the attributes of the gauge field, in the
sense that the field associated to translations, the tetrad e, does
not implement a local invariance nor mediates the interaction
in the same way as the gauge field of particle physics would
do. This is of course related to the nature of that field,which is
not a connection.
Here, the coupling made through the Levi-Civita con-

nection, although induced by the translation field e, relates
to Lorentz invariance. Furthermore, coupling to matter
involves the corresponding representation of the Lorentz
group, in particular matter’s spin. For a scalar field, as it is
spinless, that coupling reduces to zero. Since gravity seems
to couple universally to matter, that is independently of its
spin, the gravitational coupling should also arise from

elsewhere. Indeed, since the generators of the translations
span the space g=h ¼ R4 of the Poincaré algebra and, as
seen in Sec. II A, this space is identified to the tangent space
of the base manifold, the expansion of the partial derivative
operator on the tetrad basis in a neighborhood of some
point x,

∂μ ¼ ð∂μÞaeaðxÞ
shows that the partial derivatives are related to local
translations. The universal coupling to gravity should thus
be assigned to the partial differential operator, and related
to local and infinitesimal translations. We remark that this
interpretation is reminiscent of that of the translation-only
gauge theory (see Sec. 5.3 of Ref. [1]), although it avoids
the problematic identification of the gauge field with a
connection mentioned in the Introduction (Sec. I).
Here, we point out that, although the structure of the

coupling to matter of our Cartan-TEGR formulation is
mathematically well defined, the gauge interpretation of the
tetrad is more a matter of opinion. The conceptual split
between the concepts of gauge field and connection being
sound, objections can be raised on the protracted reasoning
that leads to the link between translations and the gauge
field e. In particular, gauging translations in the present
context does not correspond to replacing a global symmetry
by a local one, the translations generated by the g=h part of
the Poincaré algebra being always local (and infinitesimal).
We offer such interpretation to the adhesion from the
reader, but abstain from claiming it.

VI. CONCLUSION

The main aim of this article is to show that it is possible
to retrieve the correct coupling to matter in TEGR starting
from a Cartan connection and following a well-defined and
robust procedure to obtain the familiar Levi-Civita form
which of course fits all presently available data. To achieve
this we use a powerful theorem by Richard Sharpe that
yields a one-to-one correspondence between Cartan con-
nections and Ehresmann affine connections, we apply the
Equivalence Principle to extract the Levi-Civita connection
from TEGR’s Weitzenböck one-form, we eventually map
the results from the Affine bundle to the Frame bundle.
Following these steps the coupling to matter is then given
by the usual Fock-Ivanenko covariant derivative appearing
as a consequence of the structure descending from the
initial choice of Cartan connection.
Beside showing how to coherently retrieve the correct

coupling to matter from TEGR with a Cartan connection,
we adventure in discussing how the usual paradigm of
gauge theories in classical particle physics needs to be
enlarged if one insists on interpreting the structure of the
TEGR as a gauge theory for the translation group. More
precisely, it appears that a distinction between the con-
nection (on spacetime) and the gauge field is required: in
such interpretation torsion appears as the field strength of
the Cartan connection, justifying the Cartan structure to
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reproduce TEGR in a bundle framework, and the coframe
(tetrad) as the gauge field related to local translation
invariance. We note furthermore that the Lorentz invariance
is also driven, although indirectly, by the coframe.
As an interpretation of the theory here described, the

gauge theoretic nature of TEGR could certainly still be
discussed and adhesion to such interpretation is left to the
reader. Nevertheless, the Cartan connection approach gives
a new and consistent theoretical description of TEGR.
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APPENDIX A: RELATING EHRESMANN AND
CARTAN CONNECTIONS

For convenience we reproduce here the theorem
(Proposition 3.1 on page 365 of Ref. [25]), relating
Ehresmann to Cartan connections, which we use to obtain
a covariant derivative.
Let G be a Lie group and H a subgroup of G, P ≔

PðM;HÞ a principal bundle.
Let Q ≔ QðM;GÞ ¼ P ×H G be the principal G-bundle

associated to P by the action by left multiplication of H on
G. The principal bundle P is a sub-bundle of the principal
bundle Q through the canonical inclusion p ↦ ðp; eGÞ.
Let EQ be the set of Ehresmann connection ωE on Q

such that KerðωEÞ ∩ φ�ðTPÞ ¼ 0, and CP the set of g-
valued Cartan connections on P.
Theorem A.1.—Let ðG;HÞ be a Klein geometry10 and let

P and Q be principal H- and G-bundles, over a manifold
M, respectively. Assume that dim G ¼ dim P and that
φ∶P ↦ Q is an H-bundle map. Then the correspondence
φ�∶EQ → CP, is a bijection of sets.

The inverse map of φ� is defined as follows: let ωC be a
g-valued Cartan connection on PðM;HÞ, it can be extended
to a one-form jðωCÞ on P ×G defined by the expression,

jðωCÞ ≔ Adg−1π
�
PωC þ π�GωG; ðA1Þ

where ωG is the Maurer-Cartan form on G, while πP
and πG are the projections on P and G respectively. This
one-form on P ×G is proven to be the pull-up, from Q to
P ×G, of the Ehresmann connection ωE such that
φ�ðωEÞ ¼ ωC.

APPENDIX B: ASSOCIATED BUNDLE Q

In Ref. [13], we commented on associated bundles, and
in particular, on associated vector bundles. Here we recall
some facts about associated Lie group bundles in relation to
our application of the Sharpe theorem to the Cartan
connection in Sec. IVA.
Let us remind from Appendix 4 of Ref. [13] that11

P ×H F, whereP ¼ PðM;H; πÞ is a principal leftH-bundle
and F anH-space, is a manifold whose points are the orbits
(the equivalence classes) for the right action RHðp; fÞ ↦
RHðp; fÞ ≔ ðph; h−1fÞ of H on the product space P × F.
The projection map π of P induces a projection π̂ from
P ×H F onto the base M. The fiber of P ×H F over some
x ∈ M is then defined as π̂−1ðxÞ. Then, one can show that the
local differentiable structure of P ensures that P ×H F is a
fiber bundle with base M, fiber F, and structure group H.
In the Sharpe theorem, the resulting associated bundle

Q ¼ P ×H G is, in fact, a principal G-bundle. This is
because the Lie group G (the Poincaré group in our
particular framework) contains the Lie group H (the
Lorentz group) as a subgroup. Indeed, Q is the so-called
G-extension of P (see Sec. 5.3.3 of Ref. [20]). As a
consequence, following our notations in Sec. IVA, a local
trivialization of Q ¼ P ×H G corresponds to the local
product U ×G, U being some open set of trivialization,
corresponding local coordinates on Q are ðx; gÞ.
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