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Thomas-Whitehead (TW) gravity is a projectively invariant model of gravity over a d-dimensional
manifold that is intimately related to string theory through reparametrization invariance. Unparametrized
geodesics are the ubiquitous structure that ties together string theory and higher dimensional gravitation.
This is realized through the projective geometry of Tracy Thomas. The projective connection, due to
Thomas and later Whitehead, admits a component that in one dimension is in one-to-one correspondence
with the coadjoint elements of the Virasoro algebra. This component is called the diffeomorphism field D,
in the literature. It also has been shown that in four dimensions, the TW action collapses to the Einstein-
Hilbert action with cosmological constant when D, is proportional to the Einstein metric. These previous
results have been restricted to either particular metrics, such as the Polyakov 2D metric, or were restricted to
coordinates that were volume preserving. In this paper, we review TW gravity and derive the gauge
invariant TW action that is explicitly projectively invariant and general coordinate invariant. We derive the
covariant field equations for the TW action and show how fermionic fields couple to the gauge invariant
theory. The independent fields are the metric tensor g,;,, the fundamental projective invariant I1¢;., and the

diffeomorphism field D,,,.
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I. INTRODUCTION

The geometric classification of manifolds via their geo-
desics as opposed to distances between points (metrical) is
an old notion. Indeed in his inaugural professorial lecture at
Cambridge University in 1863, Cayley remarked that
“descriptive geometry includes metrical geometry” and
“descriptive geometry is in fact all geometry” [1]. In this
reference, descriptive geometry corresponds to projective
geometry. The question of whether the family of geodesics
could uniquely determine the metric for general relativity
was investigated by Cartan in [2,3] and further developed

*sbrensingerl @udayton.edu

"kenneth-heitritter @uiowa.edu

*vincent-rodgers @uiowa.edu

§kory_sti‘fﬂer@brown.edu; Also at Department of Physics and
Astronomy, The University of lowa, Iowa City, lowa 52242, USA.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021/103(4)/044060(25)

044060-1

by Thomas [4,5] and Whitehead [6]. The answer is that
connections can only be determined up to equivalences
classes. A resurgence of investigations into the physical
ramifications of metrical versus descriptive (projective)
geometry can be found in the literature [7—11]. On the
other hand, the Virasoro algebra [12] is considered to be at
the heart of string theory. It is usually viewed through its
relationship with conformal symmetry, where two copies of
the Virasoro algebra define the conformal algebra.
However, the relationship between string theory and the
Virasoro algebra also has an even more primitive origin
through its identity as a one-dimensional vector space [13]
and projective structure [2,14,15]. Since the coadjoint
orbits admit a natural symplectic structure, their geometric
actions provide an avenue to the two-dimensional field
theories that can be associated with quantum gravity
[16—-18]. Furthermore, when married with an affine Lie
algebra (a Kac-Moody algebra), one finds that the coadjoint
elements appear as background sources for the two-
dimensional gravitation (Virasoro sector) and gauge
(Kac-Moody sector) theories. The background fields in
the Kac-Moody sector correspond to the vector potentials
which serve as the gauge connections, A,, for Yang-Mills

Published by the American Physical Society
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theories. It was suggested in [19] that the coadjoint
elements of the Virasoro sector also could be put on an
equivalent footing with the Kac-Moody sector if the
coadjoint elements of the Virasoro algebra could also have
an associated “gauge” field in higher dimensions. The
posited field was dubbed the diffeomorphism field, D,,.
This realization was recently established in [20], when
Kirillov’s observation [14,15] that the coadjoint elements of
the Virasoro algebra are in one-to-one correspondence with
Sturm-Liouville [21,22] operators was reexamined. The
authors were able to use the one-dimensional projective
structure to provide a bridge between the Virasoro algebra
and projective geometry in higher dimensions. Thus the
analogous “gauge” symmetry due to reparametrization
invariance in the Virasoro sector is projective invariance
and the diffeomorphism field corresponds to projective
connections. With this, the diffeomorphism field that
appears in two dimensions through the geometric action
as a background field has a different interpretation than that
of expectation values of external energy-momentum ten-
sors, as in conformal field theories. Furthermore the
diffeomorphism field can acquire dynamics as a funda-
mental field through the projective curvature squared terms.
Some of the entangled relationship between conformal
geometry and projective geometry has been studied in
[11,23-27]. For a good review see [28].

So far, discussions of dynamical projective connections
[20,29] have been restricted to particular metrics that are
focused on the 2D Polyakov metric [30,31] or Einstein
geometries in four dimensions where compatibility has
been enforced. In this paper we generalize those consid-
erations for any space-time dimensions and exhibit a
Lagrangian that is explicitly projectively invariant and
general coordinate invariant, i.e., gauge invariant. We will
briefly review the salient features of the study of geodesics
through the Thomas-Whitehead connection, the Thomas
cone and tensor and fermion representations on the Thomas
cone. Then, by using the Palatini [32] formalism, we
explicitly construct the gauge invariant Thomas-
Whitehead gravitational action (TW) [20], the gauge
invariant Dirac action and covariant field equations, its
coupling to arbitrary Yang-Mills theories, and the energy-
momentum tensor. This work can be extended to include
higher-order interactions, using the projective version of
Lovelock gravity [33] to classically maintain an initial
value formulation. We will conclude with remarks on
geodesic deviations as it is there that contributions through
gravitational radiation may become manifest.

II. FROM GEODESICS TO
PROJECTIVE CURVATURE

In its most pragmatic form, string theory can be thought
of as regulating the Feynman diagrams in gravitational
theories by adding a small spacelike curve to the point
particle. This activity already endows the string with a

projective structure. The curves are parametrized by vector
fields, say {* = %, which allows one to take the intrinsic or
absolute derivative of any vector field along these curves. In
one dimension the Virasoro algebra is the algebra of
centrally extended vector fields on a line or circle and a
projective structure emerges [2,3,15].

A. Geodetics

In any dimension, the intrinsic (or absolute) derivative of
a vector field v“ along a curve C parametrized by o is given
by

Dv*  dv*

do do

+ 1070, (1)

where %, are connection coefficients associated with a
connection V, and {* is the tangent vector %= along the
curve C. The connection is assumed to be torsion-free and
therefore satisfies the symmetry relation 'Y, =1%,,. An
affine geodesic generalizes the notion of a straight line and
£ is said to be geodesic if the change of (¢ along the curve
C parametrized by o is to be proportional to itself, i.e.,

D¢t
do

flo)e, (2)

where f (o) is the proportionality function. This yields the
affine geodesic equation,

d*x? e
do? b de do

dx? dx* dx®
I

(3)

One may change the parametrization from o to u(c) by
writing
d dod
_ 4
du dudo “)

and for a suitable choice u(c) we can eliminate the right-
hand side of Eq. (3) to write the geodetic equation

d?x°

dx? dx*
du2+ra e de =0

"du du

(5)

Here the parameter u is said to be an affine parameter with
respect to the connection V,, as

dx?

—V,u=1.
du b¥

Although the parametrization may have changed, the
curves remain the same. Furthermore different connections,

say @a and V, can sometimes admit the same geodesics. If

so, then Vand V belong to the same projective equivalence
class. Thomas showed how one can write a gauge theory
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over this projective symmetry [4,5]. We discuss this gauge
theory presently.

B. Projectively equivalent paths

Consider a d-dimensional manifold M with coordinates
x* where italic latin indices a,b,c,m,n,... =
0,1,....,d—1. Let @a be a connection on M where (¢
is geodetic, i.e.,

A Ext o dxb dxt
b a __ a
A N

Now consider another connection whose coefficients are
defined as

Fubc = IAﬂabc + éabyc + 5acvbv (7)

where v, is an arbitrary one-form. The geodesic equation
for this connection is then
2 b c a
d abcdidi = f(2) dxt. (
dr dr dr

é’bvbga —

o¢]
=

and where f(7) = 2v, 4> " Since Eq. (8) can also be made
geodetic by a suitable reparametrlzatlon of 7 to u(z) both
Egs. (6) and (8) admit the same geodesic curves.
Equation (7) is called a projective transformation and
establishes the projective equivalence relation, [, ~T9,..

In [4,5], Thomas presents a “gauge” theory of projec-
tively equivalent connections that is projectively invariant
and general coordinate invariant. This begins by defining
the fundamental projective invariant 114,

1
Woe =P =gy 2 elom O
which is traceless by construction
Haba = Haab =0 (10)

and invariant under a projective transformation, Eq. (7), for
an arbitrary one form v,. Using the fundamental projective
invariant I1¢,. one can write a geodetic equation

d?x® e dx? dx*
dr? be ar dr

(11)

that is projectively invariant. However this equation is not
covariant as I1¢;,. transforms as

me,, — Je Hfdjdbje.+8—xf
c f e < oxPox'c

1 Olog|J]|

d+1 0oxd

(]dbéuc + jdcéub) (12)

under a general coordinate transformation from x — x’(x)

with J¢, = ‘5"’,, the Jacobian of the transformation. We will

_ 8x

denote the inverse Jacobian as J“ . The last sum-

mand spoils the covariance and can be related to volume, as
it involves the determinant of the Jacobian of the trans-
formation J = det(J“,). Thomas then constructs a line
bundle over M which is a d + 1-dimensional manifold N
referred to as the Thomas cone [34,36]. The coordinates on
the Thomas cone are (x%,x!,...,x%7' 1), where 1 is
denoted the volume coordinate. Since the volume coor-
dinate, A, takes values 0 < 1 < oo, N is called a cone. The
coordinates transform as
X = (xX0(xd), X1 (x9), ..., XN (xd), X = AlJ[7E). (13)
From here on, we refer to transformations in Eq. (13) as
TCN -transformations. Here, Greek indices are over N
coordinates and take values «, f, 1, ... =0,1,2,...,d and
italic latin indices are over coordinates on M and take
values a,b,m,n,...=0,1,2,...d—1. We reserve the
index A and the upright letter d to refer to the volume
coordinate x! = x* = 1. For every coordinate transforma-
tion on M there is a unique coordinate transformation

on NV.

C. Thomas projective connections
Thomas was able to find a connection on N that
transforms as a connection by extending the fundamental
projective invariant to a d + 1-dimensional projective
connection I1%,,. It is defined as follows [4,6,37]:

. . 1

ne,, =1¢%,, = ————§%, 14
by =g 0 (14a)

ne,. =1, =14, (14b)

. N d+1

Hﬁab = H'lba = _dLRalﬂ (14c)

where R, is constructed from the equi-projective curva-
ture “tensor” R" .,

R™ qpn = Hma[n,b] + Hpa[nnmb][w (15)
with an associated equi-projective Ricci “tensor”
Rap = R" amp- (16)

With this, l:[“,w transforms as a connection under a TCN -
transformation as

Pxl Ox'®

Ox'* Ox® OxP
- Tovg o (17

ﬁ/a A
272 Ox? Ox™ Ox'” off
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so that one may construct a projective curvature tensor
Da _ @ 212§ (4
R up = g0y TP pT1% (18)

whose nonvanishing components are

- d+1

Rﬂabn = ﬁ (Ra[b,n] + Hma[bRn]m)’ (19)
Dm m 1 m
R abn — R abn — mé[n Rb]a- (20)

The projective Ricci tensor is defined as the trace of the
projective curvature tensor and vanishes identically

Raﬂ = ﬁ”aﬂﬂ =0. (21)

This construction is only a specific example of a projective
connection but it laid the ground work for the more general
setting we now present.

III. THOMAS-WHITEHEAD
PROJECTIVE GEOMETRY

A. The general projective connection

The original Thomas projective connection, l:I"W, can be
generalized to a connection f“ﬁy [6,35,37], where explicitly

f%/la = f‘ﬂaﬂ =0
fa,u =0
faﬂy = fazb = f“bz = ;6% (22)
1:‘abc = Hahc
f‘/lab = TﬂDah
and where
. =T + éu(cah)v (23)
I (24)
aa - d + 1 am»
T* = (0,0,...,0,4), (25)
Ay = (aa’ﬂ’_l>' (26)

Here the connection I'%;,. is any representative member of
the equivalence class [I'%;.] of projectively equivalent
connections, related via Eq. (7), and a, is that chosen
member’s trace component. However, keep in mind that
I1%,,. exists in its own right in that it is traceless and
transforms like a traceless part of an affine connection.
Notice also that only the 1 component for @, appears in the

projective connection f”aﬂ. On M, the transformation
laws are

[ _OX' OxP OxT 0*xb ox' 27)
T Oxb oxm oxn T P gx'mn Pxb
_Ox™ dlog |J |71
% = a O T (28)

In the above, D,;, generalizes the work of Thomas and
transforms in such a way that l:"ﬂy transforms as an affine
connection on A, This is the origin of the diffeomorphism
field D,;,. In this construction, Y is the fundamental vector
on the Thomas cone and satisfies the compatibility relation

V,XP =50, (29)

so Y7 satisfies the fundamental geodesic equation with unit
proportionality

TPV, T = 12, (30)
For functions on N
YNy f = A0,f (31)

showing that T generates scaling in the A direction. One-
forms B, on N are uniquely defined by 8, on M when
P, L% = 1 and the Lie derivative with respect to T vanishes
ie., Lyf, =0, so that it is scale invariant. Under a TCN/-
transformation, Eq. (13), T* and the covariant derivative
transform as

, 8x/(l

T @ —= WT/”, (32)
. oxf

Va - W ﬂ (33)

Demanding that I'*,, transforms as an affine connection

82 x/} ox'®

Ox'® Ox® OxP -
/)
T P

f/(t
272 Ox? Ox' OxV of

(34)

and using the transformation laws of Y% and I"*;,, one finds
that D, transforms under a coordinate transformation on
M as

ox™ Ox" . .. e
;b - WW(D’WL = Opjn = Jmin +JcI1 mn)’ (35)

where we define j, = 9, log |J |‘d'?. One can show that the
coordinate transformation law of D, as stated by Eq. (35)
is an action of the general linear group on the components
of D. This property holds despite the presence of the
coordinate-dependent object I1¢;,. in the transformation law
[38]. This transformation law will become important later
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in the correspondence with coadjoint elements of the
Virasoro algebra in one dimension.

A general tensor on M with m-contravariant and
n-covariant indices we express as

Ta(m)b(n) =Ty by (36)

In what follows we refer to (m, n)-tensors on M as objects
that transform as

ox'a Ox'am Oxh oxtn
= 0 T o A TP 0y (37)

T/a(m)b(n)

under coordinate transformations. Similarly, we refer to
objects as (m, n)-TC tensors on A that transform as

_ox'm
ﬂ(n) - 8x/ll o

Ox'% Ox¥1 Ox™r
: axﬂm axlﬁl o axlﬁn

T/ (m) Tll(m)y(n) (38)

under a TCAN -transformation. This will allow us to
build actions that are invariant with respect to TCN -
transformations.

B. Geodetics revisited

Before discussing projective curvature relations, we now
revisit geodesics and geodetics to illuminate the projective
connection. Consider a geodetic on N associated with the
vector field {* = %. The parameter u is an affine param-

eter for V such that
£V, &P = 0. (39)

Separating the M coordinates from A, we have the
expressions

d?x? dx? dx¢ 1 /dA\ dx*®
EX e, S (VAT g
a? T du A <du) du (40)
d* dx® dx©
Ty (41)

di T du du

Together, these equations are covariant and projectively
invariant. Let us consider a reparametrization that can
render Eq. (40) geodetic. In other words, does there exist
a parameter 7 that is affine with respect to the projective
invariant I1%,.? Let u — 7(u) so that

d*c 1dA\ dt
4T _H(Lldiydr 42
du? (ﬂ du) du (42)

This will eliminate the right-hand side of Eq. (40) and we
can use this to eliminate 4 in Eq. (41) with

3(45)? - 2(45)
i (43)
(&

NN

With this, one finds that the reparametrization is viable if

S(ziu),  (44)

where S(z:u) is the Schwarzian derivative of z with respect
to u. For example, if the kinetic term D,,,. ‘fi—’f% vanishes,
then requisite reparametrizations that render 7 affine are
the Mobius transformations 7 = Z::IZ’ where a, b, ¢, and
d are real numbers. Another familiar example is when

dx? dx¢ __ m*—1
DbC du du — 2u*

exponential MGbius transformations 7 = (%52). This
corresponds to the coadjoint orbits of the Virasoro algebra
denoted by Diff(S')/SL(2, m), where the isotropy group is
generated by L,,, Ly, L_,,. A Mobius transformation is a
one-dimensional projective transformation, so we see
that the preferred class of parameters for I1¢;,. is preserved
by projective transformations rather than affine transfor-
mations. This motivates the description of I1¢,. as a
projective connection. The inclusion of I1%,. in the TW
connection, which incorporates the field D,,., allows us to
apply techniques that are typically available for affine
connections.

and the requisite transformations are the

C. Projective geometry

One constructs the projective curvature tensor in the
usual way

[@m 6/3] Vi = ICy/)a/} Vﬂv (45)

Vo VIV, = =K,V . (46)

from connections that transform as in Eq. (34). In terms of
the connections, the curvature can be written explicitly as

K p = fuﬂViv] +D pﬂ[ﬁfay]ﬂ‘ (47)

This transforms as a (1,3) TC tensor on A. Using Eq. (22)
to expand lN“"‘,w we find the only nonvanishing components
of the projective curvature tensor to be

Kebea = Rbea + 0“1 Daps
’C/leah = la[an]c + /u_[dc[bDa]d- (48)

We will also find it useful later on to have a A-independent
version of K*,,,. We define this symbol as

044060-5
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K:Acab = z’cﬂcab = a[qu]c + Hdc[hDa]d' (49)

By contracting the first and third indices of the projective
curvature tensor, we can write the projective Ricci tensor
whose only nonvanishing components are

Kps = Rpg + (d = 1)Dpy. (50)

Rpa 1s the equi-projective Ricci tensor from Eq. (16). The
expressions in Eq. (48) are precisely of the form seen in
conformal geometry

Rbeqa = Wea + 6% Paps
Ceap = 8[an]c + ch[bPa]ah (51)

where W, is the Weyl tensor, P, is the Schouten tensor,
and C,,, is the Cotton-York tensor. In the above, W%, is
analogous to K%, in Eq. (48). If we consider the
contraction of the projective curvature tensor with a volume
one-form g,, that transforms as Eq. (28) and is also
invariant under projective transformations, we can form
the projective Cotton-York tensor, K(g),,5 = K yap-
Then we can write

’C(g)nab - gﬂlcﬂnab
= P[b\n|;a] - Anp[ab] + A[apb]n +R" pap Ao (52)

where A, = g, — a, is a one-form on M. K(g),,4 is now
explicitly seen as a (0,3)-TC tensor on A and K, is a
(0,3)-tensor on M. When we introduce a metric tensor g,,,
on M in the next section, we will find that g, = (gu,%),

where g, = —dLHau log\/m is a suitable volume one-
form, Eq. (60). This also introduces the projective Schouten
tensor [26] P, which is a (0,2)-tensor on M. The form of
f“”m, in Eq. (22) allows for D, to become dynamical as
IC“W[, # 0, relaxing the Ricci flat condition in [4,5,35].
This allows us to extend the Einstein-Hilbert action to
projective geometry as in [20,29].

If we choose a member of the equivalence class [I',;],
then we may express I1,;, in terms of a specific connection
and its associated trace a,. With this, one may write P, in
terms of D, as

Pbc = Dbc - abac + 1—‘ebca‘e + o, (53)

The above is a generalization of [20,29], where constant
volume coordinates were used and I, was regarded as
Levi-Civita so a, = 0. Then, in that case, D, = P,;, and is
a tensor in the volume preserving coordinates. As stated
above, P, transforms as a tensor on M

, ox™ Ox"

ab — ax/a ax/n mn>»

(54)

which we may call the projective Schouten tensor in
analogy with conformal geometry.

IV. COVARIANT METRIC TENSOR ON N/

In projective geometry, a vector field y on M may be
lifted to a vector field 7 on A by writing

)?aaa = _(ﬂ)(uKa)a/l +Zaaw (55)

where k, is some object that transforms as j, in Eq. (35),
ie.,

ox™ 1

= o

OdlogJ
d+1 ox

Ka

(56)
under a general coordinate transformation on M. We write
the components of 7 as

7= (k). (57)

Similarly, a one-form » on M can be related to a projective
one-form ¥ via

N 1
U/} = (’Uh + sz) . (58)

It is clear that 7*7, = y“v,. A generic vector on A/, which
has components 77 | that are unrelated to vectors on M, may
be written as

i’ = (n]. A1 = Kanf))- (59)

The fundamental vector field Y in Eq. (26) has no
component parallel to M, for example.

We are interested in building an invariant action using
the projective curvature. This will require a soldering
metric which transforms as a tensor on A and which is
projectively invariant. Taking a metric g,, on M, one may
view this soldering metric as the local tensor product of two
one-forms and write

A 2
i Yab — /Iozgagh - %ga

2?

G 2
Ao
9 y

v

(60)

Here we have replaced «, with g, = — Fllﬁa log /9| as it
is naturally built from the metric degrees of freedom and
does not introduce a connection. The constant 4 has units
of length (like 1), and ensures that G, remains dimension-

less when g,;, is dimensionless. Since G, depends only on
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the spacetime metric g,,, it is indeed projectively invariant.
One can check that G, satisfies the transformation law

Ox® OxP

G = ooy

G('x)(z/} (61)
when (x4, x*) = (y%,y*) = (y%, x*J|7#). Furthermore,
under this coordinate change the volume form on A
remains invariant, i.e.,

G,y = /|GG, ) |dydy.  (62)

Here G(x%, x*) and G(y“, y*) are the metric determinants in
the different coordinates. This follows since from Eq. (60),
we see that

%

|G| = g ‘?,

(63)
where ¢ is the determinant of g,, on M. Since y* =
A J 1 1 1 . .
x*|J|7# and 7 — 7|J[&7, these terms exactly conspire in
Eq. (62) to maintain the invariant volume on /. Again, this

motivates why 4 is called the volume coordinate. Lastly, the
inverse of G, is given by

gab _ lgamgm

G" = bm 2 mny 2
=49 G 37 (=1 + ™" 20" Gngn)

. (64)

where g is the inverse of the spacetime metric g,,. This
metric generalizes the work in [20,29], allowing TW
gravity to be used in any coordinates. We can succinctly
write the metric and its inverse as

Ga/} = 5aa5bﬂgab - /%gag/iv (65)
GV = g™ (5% = g X)) — gy XF) = 252 L*YP. (66)

where we have defined g, = (ga,%). In TW gravity, the
metric g,,, the projective invariant I1¢,., and the diffeo-
morphism field D,;, will be treated as independent degrees
of freedom in the spirit of the Palatini formalism [32].

V. 7# ON N

Now we seek the 7* matrices associated with the
projective metric G, given by Eq. (60). The gamma
matrices, ", on a d-dimensional spacetime are defined by

) =29"1y, (67)

where {-,-} is the anticommutator, gu is the spacetime
metric, N = 2192/ and I is the N x N identity matrix.

Let 7 be the gamma matrices for the metric G,,, on N.
These matrices satisfy

{77} =26"1y (68)

as in Eq. (67). We will stay in even space-time dimensions.
In this case, the gamma matrices 7 for G,, will have the
same dimension as the gamma matrices y™ for g,

Using the inverse of G,,, Eq. (64), we immediately must
have 7# = y# if u is a spacetime coordinate index, say m,
and where y” are the gamma matrices for the spacetime
metric g,,,. The remaining gamma matrix is #*. This matrix
must satisfy

{74, 7"} = =24¢™ g, Iy, m=0,...,d=1, (69)
. . 2
271 = {717} = 25 (=14 9" 20> gmgn)In.  (70)
0

Recall the chiral matrix > in four-dimensional spacetime.
We will refer to it as y4*! in the general even dimensional
case. It satisfies

{r**ymy=o, (71)
()7 = Ly (72)

Comparing Eqgs. (69) and (70) to Egs. (71) and (72), we see
that we should have

. A,
7= —/1—0(17‘”‘ + A0Gmy™) (73)

as the final gamma matrix for G,,. Explicitly, the chiral

gamma matrix y%*! has the following construction in terms
of the other gamma matrices in d dimensions

=2

d+1 _ ie a ag (74)
v = dl aj..al VS

where a; =0, ...,d — 1 and ¢ is the totally antisymmetric
Levi-Civita tensor on M. Specifically, for d =4, the
gamma matrices for G,, are

Sm

/4

g, .
7= —%(175 + A0Gmy™). (75)

=y™ whenm=0,1,2,3,

The fifth gamma matrix y° is crucial in discussions about
chirality, which we will see when we apply the TW
connection to spinor fields. Equation (75) shows that the
volume bundle metric G, explicitly builds in y°. Thus, we
will expect our dynamical theory for D,,, to be chiral in
nature when interacting with fermions.
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Equations (73), (74), (75) also serve to further establish
the relationship between the projective gauge field D,,, and
the notion of volume on M. Any Lagrangian for D,,, will
involve the metric G,, on N, which in turn can be
constructed from gamma matrices. Equation (73) says that
one of these gamma matrices includes a rescaling of y4+!
by 4, where y9*! is itself related to volume due to the
presence of the epsilon tensor ¢, _,,. The epsilon tensor is
alternating in its indices and transforms as a tensor density
that is used to construct volume forms on M. Therefore, we
can again view A as a parameter which determines a
rescaling of the volume element on M.

VI. THE VIRASORO ALGEBRA
AND PROJECTIVE GEOMETRY

Here we will review three ways in which there is a
correspondence between the projective connection’s reduc-
tion to one dimension and the coadjoint elements of the
Virasoro algebra. The Virasoro algebra [14,39,40] may be
regarded as the centrally extended algebra of vector fields
in one dimension. Let (£,a) and (5, b) denote centrally
extended vector fields in one dimension where a and b are
elements in the center. Then the Lie algebra of these
centrally extended vector fields is given through the
commutator

[(¢.a). (n.b)] = (Eon. ((§.1))o). (76)
where £ o7 is defined via
Eon=_E0.m" —n"0.8". (77)

Here we explicitly expose the valence of the one-
dimensional vectors. The symbol ((&,7)), is called the
Gelfand-Fuchs two-cocycle [41] and is defined explicitly as

(€no = [ (erae (78)

C
_E/éava(gbcvbvcnm)gmnden’ (79)

where g,;, is a one-dimensional metric. Equations (78) and
(79) demonstrate an invariant pairing between & and #”.
The Gelfand-Fuchs two-cocycle is an example of an
invariant pairing between a vector and a quadratic differ-

ential B

((& a)|(B,c)) = /(gB)de +ac
= /(fiBij)dﬁj +ac. (80)

In the Gelfand-Fuchs two-cocycle, the pairing is between a
vector £ and a one-cocycle of 77, where this one-cocycle is a

projective transformation [14,15] that has mapped the
vector field # into a quadratic differential. Explicitly,

n0g = 1" d0* =V (¢"V,V ™) Gnd0°do".  (81)

The invariant pairing in Eq. (80) follows if the action of
another centrally extended algebra element, say (1, d),
leaves the pairing invariant, i.e.,

(n,d) * ((§, a@)|(B,c)) = 0. (82)

This defines the coadjoint representation of the Virasoro
algebra [15,40].

ad’

) (Bo€) = (nB'+20'B=cy”.0).  (83)

Then, a more general invariant two-cocycle relative to the
centrally extended coadjoint element B = (B,¢) can be
written as

1
(Empe) = i / (&n" = &"n)dx + o / (&n' — &'n)Bdkx.
(84)

One sees that the Gelfand-Fuchs case lives in the pure
gauge sector, i.e., B=(0,c), of the space of coadjoint
elements. It was also observed [15] that this action is the
same as the action of the space of Sturm-Liouville operators
on vector fields. Thus there is a correspondence

(B,c) & —26%4-3()6), (85)

where on the left side (B, ¢) is identified with a centrally
extended coadjoint element of the Virasoro algebra and on
the right side is a Sturm-Liouville operator with weight ¢
and B(x) as the Sturm-Liouville potential.

A. Correspondence through the transformation laws

Here, we show how the relation between a coadjoint
element of the Virasoro algebra and the Sturm-Liouville
operator is reconciled by Thomas-Whitehead projective
connections. We will evaluate the connection in one
dimension where one can construct a Laplacian even
though curvature is unavailable.

Consider the transformation of the diffeomorphism field
D,;, in one dimension. One can show that in one dimension,
Eq. (35), i.e.,

, _ Ox™Ox" 1 OlogJdlogJ
o Oxy, M (A1) Ox' Ox'®
1 & logJ 1 OlogJ
- e, 86
T+ 10wt T a1 owe L (86
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reduces to [38]
1
SD=28D+DéE- E(;e/// (87)

under an infinitesimal coordinate transformation. We may
let D = gD where ¢ is an arbitrary constant. Then

8(gD) = 5D
— 26D+ DE— %5“’
= 28D + gD/E~ "
—q (25'D - ié) (88)
or equivalently

w:%®+U¢§4w (89)
q

Choosing g = 217 we see a correspondence between the
one-dimensional Thomas projective connection and the
coadjoint element in Eq. (83). This improves the argument
made in [20].

B. Correspondence through two-cocycles

The covariant metric allows us to improve upon another
correspondence between the projective connection and
coadjoint elements discussed in [20]. We consider a
projective two-cocycle on A for a path C as

<§’ ’7>(Zj) = q/C(C) ga(vaGﬂpvpvunﬁGﬁy)Cﬂda
- (<), (90)

where ¢ parametrizes the path. The vector {# = % defines
the path C. Here, the coordinates on A are x* = (x, ).
We choose the vector fields as & = (&8, —A&%,) and
n’ = (n®,—in®g,). Consider a path given by a fixed value
A = Jg along the vector ) = (4x,0). The metric used to
construct the projective Laplacian is the one-dimensional
version of Eq. (64). Setting the metric to a constant g;; and
the components of the vector fields to &; and #,;, respec-
tively and keeping in mind that IT¢,. = 0 in one dimension,
one finds that

1
&, = Q/fl <2D11 —911/1—2>’7/1dx

0

+q/§1f1’{’dx—(§<—>n)- (91)

Comparing this to Eq. (84), we make the observation that
the projective connection and the coadjoint element (B, q)
are in correspondence through

q
24Dy, —

4~ B, (92)
7

which recovers Eq. (84) for ¢ = 5

C. Correspondence through gauge invariant action

Using the action in [20], we write the invariant projective
Einstein-Hilbert terms as

SPEH:/dZXd/l\/|G|K:aﬂGaﬂ:/dzxd/lw/|G|IC
1
— | [ ] [ @x IR+ 2P~ P
—ﬂ(sEH+ [ |g|g“b<273ba—mb>), (93)

where we have used the projective Schouten tensor to write
this in terms of the Riemann scalar curvature for familiarity.
In two dimensions, the Einstein-Hilbert term is the Gauss-
Bonnet topological invariant. The Polyakov metric has
constant volume and D, and P, are equivalent.
Evaluating this on the Polyakov metric in two dimensions
gives the coupling to the coadjoint element

SPOlyakov Coupling — /J29P++h__.

Again, the importance of this is to show dimensional
universality of the interaction term in the Polyakov action

as \/|_(—}—|IC has meaning in any dimension. Thus, D, is to
the Virasoro algebra of one-dimensional centrally extended
vector fields as the Yang-Mills gauge field A, is to affine
Lie algebras in one dimension. Furthermore, the projective
curvature K%, ; can be used to build dynamical theories for
D, just as the gauge curvature F,;, can provide dynamics
for the gauge fields related to external gauge symmetries.

VIL. SPINOR FIELDS ON N

To this point, we have discussed the representation
theory for the Thomas-Whitehead connection as related
to tensors. Now we examine the relation among projective
connections, spinors, and their associated Dirac equation.
We will focus on spin % spinors throughout.

A. The spin covariant derivative

To construct the spin connection for the generalized
metric G,z we will need the frame fields that make contact
with the Minkowski space metric on the Thomas cone.
There are several types of indices involved. First, there is a
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distinction between spacetime indices and the extra A
coordinate on N . Second, there is a distinction between
curved indices and flat indices. To make calculations clear,
we will adopt the following conventions for indices:

(i) Greek indices p, v: curved coordinates on N,

(ii) Latin indices m, n: curved coordinates on M,

(iii) underlined indices a, a: flat coordinates on M, N,

(iv) A: volume bundle coordinate,

(v) 5: flattened volume bundle coordinate.

We use the number 5 to represent the extra coordinate
in flat space, due to the case of four-dimensional
spacetime, where the gamma matrices are commonly labeled
5.3,2,1,0 for historical reasons. For the metric g,,, on M,
e™, (with inverse e%,) are the associated frame fields

satisfying
Gmn = egmeénn@’
Nap = emgenggmn- (94)

Similarly, the frame fields denoted &, will be associated
with the metric G, on N, and the indices range over all
dimensions, including A for the curved coordinates on N

Ga} = éﬁ(lék/iﬁgg’
ﬁﬂé == éﬂgéyéle. (95)

We may also use the frame fields to write the components of
the Dirac matrices in curved spacetime coordinates

= éﬂg}”}g. (96)

For the metric G,,, given by Eq. (60), the frame fields are
listed as follows:

e, =e",,

éﬂ’l§ — ,

Y

e’y = —Ae" ;Gm,
A

A

The inverse frame field components are then given by:

éﬂm — eﬂm’
éém = Aogma
éﬂﬂ = O’
A
o5, =20 98
€= 1 ( )

Let I #,» be the components of the TW connection, and call

V,, the corresponding covariant derivative operator that acts
only on the curved indices as opposed to flat indices. Define

Wy =V, =08, + T2, (99)

We use the geometric object @ of Eq. (99) to define a new
spin covariant derivative

D, Ve =9,V + i, VP,

DV, =08,Vy— @y Vy, (100)
which recognizes tensorial objects, such as the vector V<,
written in flat coordinates. We can take the full covariant
derivative of a geometric object with curved and flat
spacetime indices by using the ordinary connection coef-
ficients f”yp for curved indices and the spin connection
coefficients @*,, for flat indices. From now on, we will
denote this full covariant derivative operator by @ﬂ. By

construction, the frame fields are covariantly constant,
satisfying

V,et,=0= Vyégﬂ. (101)
Then for any vector V¥, we have
V, Ve =ea v, VK, (102)

so that the frame fields can be used to change indices without
having to introduce an extra derivative term.

With the frame fields on hand, we can calculate the
coefficients of the TW spin connection using Eq. (99).
Recall the TW connection coefficients originally presented
in Eq. (22):

1:‘abc = Habm
f‘lbc = ’n)bc’

~ 1
P =T, = 15“17- (103)

We simply need to plug these coefficients and the frame
fields into Eq. (99) to get the TW spin coefficients that we
desire. For example, if a,b # 5 and u # A (which aligns
with our chosen index conventions), we have

~ _ Sn T 5p \3C
Dabm = (ame +I pmepg)e_n”@

b
+ (8,”?'12 + ~lpmépé)é£ﬂ’]£
+ (améné + I~_‘”/)mél_)éérz’]aS
+ (amélg + ~lrmérb)é§ﬂr]a55 (104)

and since Nas = 0 and é¢; = 0, this reduces to
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@@m = ((9 e b+F pmep ) “nllac

- (ame b + Fnrme b + 5nramerg - 5"”1A,e’é)e£,lnﬂ

= Wapm + XMab + ergegmngAr? (105)

where @,,, (Without a tilde) is the coefficient of the spin
connection for the underlying spacetime connection I ,,,

Thus, we see how the TW spin connection coefficients
@4y, are offset from the spacetime spin connection

coefficients @y, for a,b # 5. Below, we present the full
list of independent TW spin connection coefficients:

~ — ro,C
Dabm = Dabm + Apllgp — € Qe_mn@Aw
. 1
Wabj = 75 Nab>
ab. ae

~ — c
a)a_Sm - na_be_m /1_ ’

0
d)ébm - _A'Oepb(ppm amgp + anmgn + UG — Amgp)’
W5y = Dspy = Dssm = 0,
) 1
550= "7 (106)

In Egs. (105) and (106), we have explicitly written out IT},
in terms of a member of the equivalence class, I'%;,. and its
trace a,. This allows us to see the relationship to the spin
connection on M. Itis clear that @, , is not antisymmetric
in a and b.

B. The spinor connection

Let ¥(x) and P(x) be a spinor field and its Pauli adjoint,
respectively representing a fermion and its antipartner on
the manifold V. Then the covariant derivative acting on the
spinor is

V,=09,+Q, (107)
where
&, =y, 7. (108)
and
VY¥=0¥+Q¥=0"Y+ %@g 7Y (109)

Similarly,
V= 0,% 90, = 0,9~ 15, B (110)

The spin connection in Egs. (108) and (109) have in general
both symmetric and antisymmetric components in their flat

indices a, b. This is because the connection I'*,, on N is

not a metric compatible connection, since V cannot be
made metric compatible. The enveloping algebra of the
gamma matrices is thus

gt = —ic® 4 52y, (111)

where the Sigma matrices generate the local SO(4,1)
Lorentz algebra on the Thomas cone, i.e.,

(072, 65] = —2i(nol? 4 pflott — purolh -

nhosr).

(112)

The @, ), therefore correspond to gauge fields for the local
Lorentz transformation, while the d)(g pu generate a trans-

lation on the fermions to their tensor densities. Let us write
Q, = Q3 + Q% such that the symmetric component is

Q5 = @ap,i*l = (d+ 1ad, (113)
and the expected SO(4,1) connection is
Q) = —id),p,6° (114)

In Eq. (113), the space-time component of this Abelian
connection is I'“,. =T'.. In differential geometry, such a
term appears in the presence of weighted spinors [42] that
transform relative to an unweighted spinor ¢ as

(1'l4+w75)

in four dimensions. The spinor y,,, is said to have weight
(vl4 +wy>). For these weighted spinors, the spin con-
nection is augmented to be [42]

Q,, = Q, + (vly +wy)T,,. (116)

We use this to define spinor representations (3 integer spin)
on the Thomas cone. First, we remark that on the Thomas
cone y> is an invariant tensor since

/10]/5 = T €g,-~g57/g2 ceeySs,

where T% = &%, T#. Since 1 — A|J|FT, we can expect
weighted spinor representations on the Thomas cone to be
) (d+l)(1)14+w;/ )

P(x) (117)

P(xe,)) = < i

and
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) —M(l;l +wr?)
) NPT

Note that

for a matrix M and
M M
2O AN (A"
9, \o Ao

C. The gauge invariant TW Dirac action

(119)

Equation (109) is the general expression for the covariant
derivative of a spinor field. For the TW connection, we will
use the spin connection coefficients given by Eq. (106) and
decompose the connection into its chiral and nonchiral
parts. This will illuminate the nature of the TW spinor
connection on M. With this, ¥ becomes

V¥ =77V, ¥ = 7"9,¥ + 70,¥

+ 1 (7" &g 7472 + 7' @q p 177"
+ P s T + Privss, 77 ) V. (120)
And for P,
V¥ = (V)7 =0, 97" + 0,97
Lo, n mgebe
— 1 V(@ nP4TEP™ 4 @ p 7A7ET
+ @spu P T 4 @55, 77 7). (121)

Evaluating these with the coefficients from Eq. (106)
yields

W = VW~ i (0, %) - dg"(0.9)
0

1
+ Z [d(am - gm) + dam - gm]quj
1
- Z i |:’10(,Drm - amgr + 1—wr;'rl.grl + Andr — Amgr)gmr
1 5
+ L@ ] (122)
0

while

V- v+ i% (0,9)75 + 4g,(0,9)y"
0
1 —_

- Z [d(am - gm) + dam - gm]qj}'m

1, r
+ Zl |:/10(Drm - amgr + l—‘nrmgrz + gy — Amgr>gm

(123)

1 _
+—(d+ 1)]‘?;/5.
Ao

Here, V,, (without a tilde) is the spinor covariant derivative
operator associated with the space-time connection I ,,.
Using this decomposition, we write Eq. (122) as

~ . y
WlP = WlP - 1%75 (aﬂ\P) - Agmym (8}}1’)

1
+ B, y"¥ — iZEys‘I—’, (124)
where we have defined B,, and E as
1
Bm EZ(d(am _gm) +dam _gm)’ (125)
E= lO(Drm - amgr + l—wrmgn + Andr — Amgr)gmr
1
+—(d+1). (126)
Ao

The TW Dirac Lagrangian density that yields the Dirac
equation

iV¥ — (M +iM,y°)¥ =0, (127)

for a mass M and a chiral mass M,, may be written
explicitly in covariant and self-conjugate form as

D e o
['TWD = 5 |G|le(lP7ﬂ (au + Qy)qj - (avqj - \PQV)}/”‘P)
—V|G|(MPY + iM, Py P)

- S99(V[GT. (128)

The last term arises because the metric and covariant
derivative operator are not compatible since
vﬂ?” = 8/47” —+ Fﬂyaj;a + [Qav 70{] (129)
does not vanish. The commutator term is precisely where
the field D,,,, resides. We can rewrite this so that the field

equations on ¥ (or W) are explicit if we integrate by parts
the derivative term on ¥. Then
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i . i -
~2VIGIG"(9,%)7,% = 0, <§ |G|Gﬂvlpy,;p>

_ i ~
+ 99, (5 V/ |GGﬂvy,;11)

(130)

= -0, <% V1G] GM@?A\P>
total 4 derivative
D, (% VG| G“”‘i’fxﬂ’)
total space-time derivative

+ 90, (% |G|;7”‘I’>. (131)

The total space-time derivative may be eliminated on the
boundary. However the total A derivative will in general be
finite and could contribute to the field equations. Let us
examine this term more carefully. One sees that

0, <%\/|G|GM@7¢P> =0, (%M|G|\W\P) (132)
A A
— -0, (5% VIl + ) (139

i __ )
=5V |90, (PP Y + 209, Py™¥). (134)

From the spinor projective representations in Eqs. (117)
and (118), this will vanish when w = 0, eliminating any
chiral density terms. We also observe that the term g, ¥y"¥
would vanish if the coordinates were gauge fixed so that
g, = 0 (constant volume). Had we used a constant volume
metric, this condition would have gone unnoticed. This also
guarantees that the action is a scalar. The remaining term in
Eq. (131) leads to the last summand in the covariant
Lagrangian density, Eq. (128). With this, we write the
Lagrangian which realizes the Dirac equation on ¥ as

A AL A g . ., m
Lrwp = 70 varl (’qu’ + %‘Pi’saﬂl — iAg, ¥y 8ﬂ'>
l9|(iB,, Py"¥ + EPyP)

g|(MPY + iM,Py°P). (135)

Had we wished to add a Yang-Mills potential to the
action, we would have a term

LYM =V |G‘@7MA”T
1 - _
|G| (—il‘l’ys‘l’ + ‘I’y“A,}P) . (136)
0
where a chiral mass term M 4 = - is induced. This follows

since the corresponding prO_]eCtIVC one-form for the matrix
valued potential is

- 1

A” = <Aa + ga17;1> N
where 1 is in the center of the algebra. Then, using Eq. (73),
we have the result

(137)

~ 1
A, = —i—p1+y%A,.
Ao

(138)

In the Lagrangian density, Eq. (135), we have left terms
with explicit A dependence of W. Following Egs. (117) and
(118), along with the requirement that the action be a scalar,
we have

wied) = (1) g
¥(x,2) = (j—o) ey (139)

where v is the density weight which determines precisely
how ¥ will transform under 4 — 4. In the TW Dirac
Lagrangian Ltwp of Eq. (135), this representation of ¥ will
only affect the terms

A .
%‘I‘ys(aﬂ‘) — iAg,, Py™ (0,¥)
d+1). i
_ 4D gosy 0 (d+1)g, Py™¥  (140)
2o 2

so that the TW Dirac Lagrangian can be reduced to a
Lagrangian on y with v a weight parameter

Lrwo =20V ¢ - M)
91V~ M)
/10 \/lg ( [d(a = gm) + daw = g
= 2g,0(d+ V)idr"¢

1
+ Z |:10(Drm - amgr + Fnrmgn + a9,

1
- Amgr)gmr + - (d + 1)
Ao

(210 )

. (141)
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A special choice of the weight v = —% eliminates the
induced chiral mass term (in the absence of gauge fields)
and also eliminates the metric density contribution in the
coupling to igy™¢.

The only A dependence is in the overall coefficient
'z—" lg|- As we will discuss in Sec. VIII, we may write
=21/ to be a dimensionless scale. By writing

VIGI =319

) 1
/dijo =4 / dt— = dylog(£¢/¢)).

, we have

where #; and £ are original and final length scales. With
this, we can make a field redefinition of the fermions ¢ and
define y = ¢ /4o log(£/¢;) so that the fermions y have
the dimensions of four-dimensional fermions. The four-
dimensional TW Dirac action becomes

STWD:/ddx |91 (i ¥y — Mijry)

1
[ @t /Tl (=) + =g

—2g,,v(d+1)]igy"y

1
+Z |:lO(Drm - amgr +Fnrmgn +amgr - Amgr)gmr
1 d+1
L@y 2280 5s,) a)
Ao Ao

We see that 4 still sets the chiral scale due to its presence in
the last two summands of the action.

In the discussion following Eq. (75), we noted that we
should expect a dynamical theory of D,,, to be sensitive to
chirality of fermions. This expectation is realized by the
TW Dirac Lagrangian, Eq. (135), due to the presence of y°.
The theory is therefore chiral in this sense. We remark that
one can still eliminate d degrees of freedom by using a
coordinate gauge choice. For example, we could set g, = 0
(constant volume gauge for the metric), a, = 0 (constant
volume for the connection) or even g, = a, (compatibility
of condition) in Eq. (142). However, no gauge choice will
eliminate the D, fermion interaction.

VIII. GAUGE INVARIANT TW ACTION

The TW action was introduced in [20] in order to give
dynamics to the diffeomorphism field. There, the corre-
spondence with the coadjoint orbits of the Virasoro algebra
was determined in the background of the gauged fixed 2D
metric of Polyakov [31] that had constant volume.
Similarly in [29], the interest was to study the diffeo-
morphism field as a primeval source for dark energy in a
Friedman-Lemaitre-Robertson-Walker background in con-
stant volume coordinates. As we have just seen in the Dirac

action, writing the TW action in a gauge invariant form
reveals physically interesting structure. From [20] the TW
dynamical action is

S = Spen + Spca (143)

where the projective Einstein-Hilbert action is

1
Spey = —

[ G sl (140
and the projective Gauss-Bonnet action is

joC

Spge = T dAd%x |G|(IC"/),W)IC&/3}’/) —4/Ca/;lC“/’ 1K),
0

(145)

We remark that both terms are generalized Gauss-Bonnet
terms and one could presumably continue adding gener-
alized Gauss-Bonnet terms for higher interaction without
compromising causality in the metric field equations [33].
Recall that the components of the TW curvature tensor
K%, are given by
Kpea = Rpea + 8“cDap = 84Dy

=R+ 6 Pap — 4Py, — 4 Pleas
K pea = MO Dy + 1%y Dja)
= MO Pap + T Pela + @ aPegp
+ @ Pea) = R peaa)

9 1
Kﬂcab = EKﬁcab’ (146)
where again
1 e
a; = _mr eas

Habc = Fabc + 5abac =+ 5acah7
Rabcd = acI_Iadb - adl_[acb + HaceHedb - Hadenecbv
Rabcd = 8cl—‘adb - 8dl—‘acb =+ Faceredb - 1—‘adel—‘ecbv

Pbc = Dbc - 8bac + rebcae + apa. (147)

for any affine connection I'“;,.. The nonzero components of
the TW Ricci tensor KCyy are
Ki = Rpa + (d=1)Dpg = Rpg + dPap = Ppa-  (148)

Then the projective Gauss-Bonnet action Spgg may be
decomposed as

Spge = Spge1 + Spae2 + SpcB3»
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where

.706'
SpGB1 = —% ddXd/l\/ |G|,Cahcdlcef!]h
X (Ba" 9 — 02 g09.9" g0 9™),

Spgr2 = jocllo / ddXdﬂ\/ |G|,€bcd]ucfgh(gbfgcggdh),

Sears = 2JocAg / d*xd\/|GIK eaK ron(9a9” g9 9™),
(149)

and we have defined the Gauss-Bonnet operator as

G PP = G ,GPP G GPP — 487 87 ,GPPGPP

+ &, & ,GPPGPP (150)

and for convenience, in terms of the metric on M,
|

Baabbggr? — gaagbbggggr? _ 45ga5§ﬁgbbgﬁ

+69,87,9" g7 (151)
Finally, we can write the full dynamical action as
S = Spen + Spce1 + Spe2 + Spaas- (152)

This form of the action is convenient for computing field

equations. The curvature components X¢;,.; and IquCd carry
all of the Il%,. and D,. (equivalently I'“,. and P,.)
dependence, while the metric tensor g,;, appears elsewhere
in each part of the action, including in the Gauss-Bonnet
operator 5.

To illustrate explicit general coordinate invariance, it is
also possible to decompose the action as

1 1 ~
S = </Zdl> {—T/ddx\/ |g|]C—J0C/ddX |g|(KabchCade _4]CabKab +]C2)
Ko

+ Jocdo? / d*x\/191(9.K%pea + Kipea) (9K pgn + kfgh) g gag™|.

(153)

tensor

Equations (146) and (148) demonstrate that X%;.4, /Cpp,
and K are tensors on the spacetime manifold M.
Furthermore, we introduce K.; = Kp.4(g) as the follow-
ing rank-three tensor on M

Kpea = 9K ca + becd
= (90 = @)R%eq + (9c = @) Pap, = (9a — a) Py
— (96 = %) Piea) + VePap = VP, (154)

where V, is the covariant derivative operator associated
with the spacetime connection I'“,... Since g, and a, have
the same coordinate transformation law, we see that K., is
indeed a tensor on M. This demonstrates that the action is a
scalar as well as projectively invariant.

Owing to Eq. (154), all the A dependence appears as
overall coefficients. We will use the interpretation of the
coupling constants as in [29] to write them in terms of scale
dependent quantities. Let £ =41/1, be a dimensionless
scale. Since only [ dﬂ% appears in the overall coupling, we
again write \/@ = £+/g]. Then by integrating over ¢, we
can rewrite the action in terms of coupling constants that
have familiar interpretations

‘—= —_— Ko =—F5—",»
log(ff/fi)

1 [

7?0 ‘. 4 Ko

i

(155)

tensor

~ 3 1 ~ ~
Jo/ [dfgz‘]()log(ff/fl) iJOEJ()lOg(ff/fl)
Z

i

(156)

Thus a natural scaling of the gravitational coupling constant
ko and angular momentum parameter J, occurs as we move
from one length scale to another. In this way, projective
geometry has a potential renormalization group interpre-
tation. This link is under further investigation. The char-
acteristic projective length scale (inverse mass scale) is set
by Ay. With this, we can rewrite the TW action as

1
S:_g/ddxv |9|/C+Cfo’102/ddxv 9| K peaKP?
0

el / e/ Tg (Ko, P — 41, K+ K2)  (157)

where K”¢¢ and K,*? have had the altitudes of their indices
flipped via the metric and inverse metric on M

Kbcd — gbfgngdhngh,

]Cade = gamgbfgcggdhlcmfgh' (158)
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IX. THE COVARIANT FIELD EQUATIONS

In the spirit of Palatini [32], we will treat the metric
tensor ¢g,, and f“ﬂy as independent degrees of freedom.
This fits the framework of TW gravity, since the TW
connection is to be thought of as a connection over the
space of equivalence classes of connections and is not
naturally tied to a particular metric. The metric G, serves
only to maintain general coordinate invariance on N, just
as D, exists in order to make the connection ?ﬂ covariant.
The covariant derivative is a projective invariant that is
constructed only from projectively invariant quantities such
as I1?,,. and A. However, as one sees in Eq. (22), the only
degrees of freedom that are allowed to fluctuate are D,,;, and
I14;,.. Therefore we will only need the field equations for
“,., D,,, and g,;,. We note that A does not fluctuate and
only sets the volume scale.

We consider a total action of the form

Stotal = + Smatters (159)
where here S is the TW action from Eq. (143) and S,,r are
contributions from other sources. For example the Dirac
action for each species of fermions will be in the form of

With this, we compute the field equations for I1¢,. as

S = / K peaF
= 55 - / (5Kabcd)]:

= / (R g + 8Dy — 64Dy F

Eq. (142) and could be accompanied by an appropriate
gauge field action for Yang-Mills fields. Other matter
contributions may also be considered. In what follows,
however, we will derive the field equations from S only
with the understanding that the matter actions will also
contribute nontrivially to these equations. For the field
equations of the metric, Sec. IX C, we will reinstate the
matter contribution through the energy-momentum tensor,
07:"". In Sec. IX D we will demonstrate how one may use
a Palatini field, C?%,., to utilize a metric compatible
connection and recover the usual Einstein field equations
with a divergence free energy-momentum tensor. All the
field equations in this section will be summarized in the
Appendix B.

A. Equations of motion for IT%;,

In order to simplify the computation of the field
equations, we will use F to denote an object with the
correct valence to form a scalar with another given object.
For example, we might write an expression such as
K4,.qF, where we would understand that F is an object
with components F,%“? such that F forms a scalar upon
tensor multiplication with %, ,.

= /5(acnadb = Ol 4119 TT y, — 119 T1€ ) F

= /(—5az5md5"bac7: + 670" 8" 04 F + (840" 8" 1€ gy + 68" 40" 11, — 64107 40" TTC

- 5315m6511bnade)~7:)5r[lmn

and

S = / KoanF

= 58 = / (6K o) F

(160)

= /6(a[aph]L +Hdc[hDa]d)f

:/((5d16m06anud_5d15m06nuphd)‘7:)5nlmn'

(161)

These two variations lead to the full equations of motion for I1¢,. that are associated with the appropriate object 7. We have
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1
St = =5 [ dxi=0(Ialy™) + 20 TIT)
gl + g™

— 11", g™ = 11" 4y ") 611, (162)
where the striked-out terms vanish because I1¢;,. as well as its variation oI1%;,. are traceless. The remaining contribution to
the field equations would vanish if I1¢,,. were the traceless Levi-Civita connection of the metric g,;,, consistent with the
original Palatini equations [32]. The next contributions are

5SPGBI = —2JOC/dd

+ \% |g|Kabcd(nnef(Blafbmced -
+ Heﬂ(Beanbfcmd _

8Spama = 4Jocky? / d*x[y |9|’vcfgthlgmfgcgg”h]‘SHlmn’

Blaf'becmd+/102glgagfbgecgmd _
Beanbmcfd+A'Odegagnbgmcgfd _

X0, (V91K pea(Bia"™ee = By "™ 4202 01909 9 9™ = A0*91909" 9" 9°))

8Spers = 4Jocly? / ddx[ad( V |9|’€fg11919"f9m99dh)+\/ |g|’VCfgh(glgbfgmggthndb + gag"fgcggmhnacz)

+ \% |g|}Cabcdgagbmgcggdnpyl]anlmn .

By defining

o 1
/C bgr __ ’Cahgrgaahh[g\y\r]’ and 9p = <gh,i>, (166)

where the sums are restricted to M coordinates, the
variation can be written succinctly as

8§=0= [ a& Em"——5<mE mb | ST,
/ X |g||: a d+1 b mn
(167)
1
E mn — E nm — v ]C Vﬂl’l C
p = T Va(v1glg™) = Ve(/ld]
+288Ve(v/]919.K"°)
—222/|g|lK"eD,,. (168)
Here, va is the derivative operator with respect to the

fundamental projective invariant IT’,,, with action as
follows:

VaVlgl = 0419l =11/ Il = 041/gl.

(169)

20°91949"" 9" 9°)
lozgegagnbgfcgmd))]5H1mn’ (163)
(164)
(165)

Va(V/1gIk,™)
= @aVI9DK"" + V/19IVaK,
= (0419 + V/191(04K,"" =T 10 K7")
g (TT" ()K" 4+ T07 1 KT € + TI 10 KC, ™).
(170)

Thus, the field equations for I1¢,, are

Eamn _ 1 5a(mEbn)b =0.

171
d+1 (171)

We note that if the connection were chosen to be
compatible with the metric g,,, then in the language of
tractor calculus [28], Eq. (171) would imply that the
projective curvature is Yang-Mills [26].

B. Equations of motion for D,

To find the field equations for D,,., we proceed in the
same manner as we did for I1%,.. The contributions are of
the form
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S = /K“bcd]:
S 68 = / (6Kp.)F
= / 8(R%eq + 6 Day — 84Deyy) F
- / [(89.0P 469}, — 8467 .69, ) F16D,,  (172)

and

= /5<8[ch]b + 114Dy ) F

:/[—5”d5qh8c.7:+5”05"h8df

+(IM9,,467 . — 114,67 ;) F|6D (173)

prq:

Again, by assigning the appropriate object F to each term
we have

1
it = =5 [ /Il A= Dg7IoD,,. (174

0SpGR1 = —2J00/ddxv ‘gvcefyh[lgceqfcgph - BcequgCh

+220%9:9.9% gP19"|6D . (175)
0SpgR2 = 4100/102 / ddx[ac(v |g"ucfghgqupggdl)
+ \% |g|’ucfghnqbcgbfgpggCh]élem (176)
8Spers = 4JoAo’ / ddx[v |g|kf'glzga9qf9aggph
+ 0,(V 191K beagad™ 9" g*)
+ \% |g|,Cabcdgagbfnggdqufg}(sIqu‘ (177)
Then the variation with respect to 6D, yields
1 " .
- VIgld = 1)g77 + /]g|K (P9
2KOJOC
+223V,(V/1glKP99) = 233/ ]glg K17 = 0. (178)

Note the derivative of K(P99, which makes the field
equations second-order differential equations in Dy,,.

C. Equations of motion for g,

Finally, we will find the field equations for the spacetime
metric tensor g,.. For the sake of familiarity, we will write
the TW action S, Eq. (157), as

1
S==3c [ @nVlg RO, + [ dx gl (179
0

so as to separate the Einstein-Hilbert-Palatini action from
the rest of the action. The Lg is the remaining part of the
Lagrangian density on M, viz.,

1
Ls=—=—(d=1)P+ cJoA’Kp.aK"?
2K()

- CJO(/C“bcd/Cuh"d - 4]Cahl<:ab + ’CZ) (180)
We have explicitly written the Ricci tensor as R(I'),;, to
emphasize the independence of the connection from the
metric. In what follows we write R = R(I"),,¢°* and
R, = R(T'),,;,- The total action that contains the TW action
and any matter fields is written as

1
Stotal = —2—K0/ddx 919" Ry +/ddx\/ |91 Ls
+/ddx\/ |g|£matter'

(181)

We can define energy-momentum tensors G)f;q and @75
from the variation of the action with respect to the inverse
metric gP4, via

15 v 19| L omater)

L o(VlglLs)

_ / d
éstotal_/ |g|d x<\/|—g—| 5gpq

\/ET SgPd

1 O6R R &+/]g|
. ogP1=0. 182
2K0 <5gpq + /‘gl 5917(1 g ( )
Then from the Einstein-Palatini equations,
! R ! R = k(O3 @Mmatter 183
5 Mre) T 5 Mg = Ko (@py + ©55""). (183)

gives the energy-momentum tensors defined as

o5 _ 2 00/IgILy)
VIS

@matter — 2 5( \% |g|‘cmatter) (184)

rq ’
Vgl 69"

with xy = Sf—f Because the connection is not compatible
with the metric, the left- and right-hand sides of Eq. (183)
are not separately divergence free. We will address this in
the next subsection.
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More precisely, the energy-momentum tensor, @,SJq,

arises from S, by first exposing the Einstein-Palatini tensor
from the action which resides in the Spgy summand of S. It
has the variation

1
5SPEH:_2_K0/ddeCabcd5”a5( lglg™)
| ) 1 N
:_Z_/ddx V |g|’Cahcd56a<5bl‘6dj__gi./‘gbd) (5‘911)
Ko 2
_ l/dd il ! K ) (54"
= 21('0 X g i 291} g

1 1
= [ 49 R..——q.:R
2;<0/ x Igl(( i~ ij >

—(d-1) (Pij—%Pgi,»)>(6gff) (185)

1

0Spgp1 = —JoC/ddx |9 [_EgijBaebegdhKa

where the Einstein-Palatini tensor is easily recognized.
Continuing to the Spgp; term, we first find

1
S5 = [Tl = B
c b sd fh | sc d bd

+ 6 aégeé i5 jgf +6 a(sgeéfié jg

— 45005985hi5fjgdh - 450a6‘(185di6hjghf

= 9ai96j9” 979" + 9acd” i 909"

+ 9ae 16758 g™ + 940" i8" 19" g”“’} F(8g7).  (186)
We can get part of the variation of Spgg; by putting a
constant in front of Eq. (186) and plugging in the

appropriate F = K“;.4K¢¢,,. The other part of the varia-
tion of Spgp; can be found separately. Altogether, we have

e
bcdlC fah

+ 2K ;K = 8K Kjag" = Kiapal /" + K€ 1apKC o + K1 Kea? + KK ega

1 .
+ /102 {m gijaa (gegbfgcggdh,cabcd,cefgh)

1 iy
— 9a9.9° 9™ (5 P Gii K beaKC pon A K 10akC? o + K caiKE gnj + Icadiclcehjg> }] (69").

Similarly, variation of Spgg, is given by

8Spera = Jolo® / d'x5(+/|glg?” gcggdh)k:bcdk:fgh

(187)

1 ‘ . )
= Jodo? / d'x\/lg] [5 9ii9" g 9g™" + 569, g™ Pl + 596" g9 gP + P67 jgcgg‘”l] KpeaK son(8g7)

1 o 9 . U .. .
= Joho? / d'x+/|glg“9g™" (2 g 9iiKpealpgn + Keaillgnj + KaicKpjg + ’Cicd’ngh> (89").

Finally, the variation of Spgps 1S given by

5SPGB3:2JO/102 / ddX5( |g|ga9bf gcggdh)lcabcdkfgh

(188)

o . o 1 o .
= 2J0/102 / dx |9| [Qagcggdh (Kaicdlcjgh + ,Cacdilcghj + ICadicKhjg) - 79;'/8‘: (gbfgcggdhlcabcdlcfgh)} (59”)-

2(d+1)
(189)
Putting this all together defines the TW energy-momentum tensor ®;°’j as
®s :—EP + Gun |20 92 _Lv + A |Ke, Kbed _
mn 2K0 (mn) mn 0¢40 d+1 '@ a bed S
+ 2003 (K peaK 4 4 2K e KP€ ) + 2J0c (8K, KP, — 2KKC,11)
+ 2JOC(,CmbchCand - ,CamcdlcanCd - 2’Cabcmlcabcn) (190)
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where Kj.y = §,K%ed + Kpeq and A, = g, — a, are ten-
sors. This demonstrates that the energy-momentum tensor
is indeed manifestly tensorial on M. Since we have used
the Gauss-Bonnet action to describe dynamics for D,
the field equations are second-order differential equations

m g,p-

D. Palatini field and metric compatible connection

It may be convenient to solve the field equations with a
connection that is the Levi-Civita connection of a metric.
Here we demonstrate how we may exchange the field
degrees of I1¢,. for a tensor, C*,. which we will call the
Palatini field, and a Levi-Civita connection associated with
the metric g,,. Given any two connections, say I'“,. and
[“,., their difference is always a tensor. Define [, as
the Levi-Civita connection associated with g,, so that

A

V.95 =0. Then, a Palatini field C%,., can be defined
relative to this Levi-Civita connection for any connection
I, as
e = 1ﬁ‘abc + C%. (191)
Here C“,. = C“_;, as there is no torsion. Similarly for the
projective invariant, [1¢;,., we may write
I, = ﬁabc + Cubc’ (192)
where I1¢ »e 18 the projective invariant for the equivalence
class in which “,. is a member and C¢,. = C9.—
ﬁ (6*.Cp, + 6,C..), is trace-free and symmetric in its last
two indices. Here C, = C%,,.
Using the Palatini field and the Levi-Civita connection,
the Riemann curvature tensor for ['“;,. may be written as

Rmnab = kmnab + vacmnh - vbcmna

+C 0 C" = €T C™y, (193)
=R"ap + Q" pap- (194)

Similarly,
Rap = Rap + Qup- (195)

where Q,, = Q" . and Q = ¢°?Q,;,. Then the LHS of
Eq. (183) may be written as

1 1 A 1. 1 1
ER(ab) _zRgab =Ry _ERgab +§Q(ab) _Eanb- (196)

In leu of the field variables {g,, 1,4, Dyy}, the
field equations may now be solved using the fields
{9ap> C"wa» Dap } and Eq. (183) becomes

N 1. 1
Ryq—5Rgpg = K0(®§7q +05") + B QGpq =

1
> B Q(Pq)'

2
(197)

In this way, both sides of Eq. (197) are separately
divergence-free with respect to the Levi-Civita connection.
One sees that both C”,;, and D,,, act as geometric sources
for the metric compatible Riemannian geometry in general
relativity. When P, =0 and C",;, = 0 this becomes the
usual theory of general relativity. Note in this case, Eq. (53)
becomes

Dy, = 81)90 - 1—‘ebcge — 9bYc> (198)
which can be eliminated by a choice of coordinates
(volume preserving). The analogy of D,, with vector
potentials A, in Yang-Mills theories [16,19,43,44] dem-
onstrates that general relativity is in the “pure gauge” sector
of TW gravity. This strategy facilitates finding out whether
there are projective geometric contributions to, for exam-
ple, primordial perfect fluids, the origin of an inflaton and
dark matter sources that may not have arisen from the
matter Lagrangian. For solutions associated with definite
symmetries, one can choose an ansatz for C%,. and D,
whose Lie derivative with respect to the Killing vectors of
the metric vanish. Recent work [25,29] has already shown
that projective geometry serves as a source for the cosmo-
logical constant. Other issues related to the principle of
equivalence, cosmology, holonomy and projectively equiv-
alent manifolds have been studied as well [7,9,10].

X. GEODESIC DEVIATION

To complete this study of the gauge covariant field
equations and gauge invariant action we examine the
geodesic deviation equations on the Thomas cone and
their image on the manifold M. Not only does geodesic
deviation have importance in tidal forces, it can also
provide a mechanism to study radiative degrees of freedom
in D,;,. Here, we will examine the modification to geodesic
deviation that results from the presence of the projective
gauge field D,,.. A review of geodesic deviation and its
derivation in general relativity can be found in textbooks
such as [45].

A. The geodesic deviation equation

Let M be the spacetime manifold equipped with a metric
gap- Recall the geodesic equation for any connection I'%,.
on M

d?xe
dr?

dx? dx¢ ) dx*
s A T8 ’
be dr dr dr

a

(199)

where 7 is some parameter. Here f(7) = 0 if and only if
7 is an affine parameter for I'“,.. In the presence of a
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gravitational field where the connection I'%;,. is compatible
with the metric, freely moving objects will travel along
geodesics specified by Eq. (199).

Consider the space of geodesics x“(s, 7), where for each
fixed value s = s, we have that x“(s, 7) is a geodesic with
affine parameter 7. This gives us a one-parameter family of
geodesics which allows us to examine geodesics that are
close to each other. The geodesic tangent vector 79(s, 1)
and geodesic deviation vector X“(s,7) are given by

ox4(s,t
T(s,7) = %,
X4(s,7) = w (200)

Equation (200) leads to an immediate relation between
derivatives of 7% and X“

oxe o
or  0Os

(201)

For a vector field V¢ on M, the intrinsic derivative of V¢
along a curve x“(z) is given by
Dv¢
dr

=Vpa VO =TV, Ve (202)
Ox!

Using Eq. (202), we can find an acceleration by taking the
second intrinsic derivative of a vector field. If we do this
with the geodesic deviation vector X“(s,7) with respect
to 7, we find
D>X¢
97 = TV .(T"V,X%)
0T
~ Osor

+ (0.1, ) TeTP X4

b d
+ I bd(aaXd+Tba;i>

oT?
4+, <a_ + rd,,eTbxe> Tc.  (203)

Equation (203) can be simplified since x“(s,7) is a
geodesic curve for all fixed s. Due to this fact, we know that

TV, T4 =0
= XV .(T"V,T¢) = 0. (204)
Expanding Eq. (204) and rearranging terms yields
O’Te or’ or?
04l ) TETPX? =Ty = T? +——T"
asac ~ "l b(a s )
Td
-, <aa— + F",,J”T“)X”. (205)
T

Using Eq. (205), we eliminate gi% from Eq. (203)
and find

D*X¢
or?

= (0T =0T + T4 T gy =T, T ) TETP X

= R, ,TPTX. (206)
This is the geodesic deviation equation. Note we did not use
metric compatibility to arrive at this expression. The full
Riemann curvature tensor R“,., appears in the geodesic
deviation equation, including the Weyl term which does not
usually appear in Einstein field equations. Gravitational
radiation can influence geodesic deviation directly making
it a useful observational tool. We will now explore the
projective modifications of the geodesic deviation equation
and insights on how the diffeomorphism field may be
observed.

B. Projective geodesic deviation

We turn our attention to the diffeomorphism field which
we also may consider as the projective gauge field D,,.. To
compute the resulting geodesic deviation on the spacetime
manifold M for a general connection, we first must find the
geodesic deviation of the TW connection on NV, and project
this deviation down onto M.

From Egq. (206), the geodesic deviation X*(z) of the TW
connection on N is given by

D>X“ dx” dx°
j— a

dr® K ey dr dt (207)
where the Greek indices range over all coordinates on A
Now, as in Eq. (59) let

X = (X%, -1X, + X°)

define the projective geodesic deviation vector. We have
included a perpendicular component as physical vectors
such as X* = Wy*¥ might arise. However, for simplicity
we will ignore the X°> component in this discussion. We
have used g, defined via a metric on V' so as not to spoil the
projective covariance of the equation. Let us first consider
the geodesic deviation X“ where a is a spacetime manifold
coordinate specifically (not 4). Since the only nonvanishing
components of %, are the components K peq and K%,eu,
then Eq. (207) reduces for a = a to

D2X“ . dxPdx*
dr? bed"gr dr
dxh dx®
R4 64D
dx? dx¢
= (R%eq + 6Py — bp[cd]> ——Xd (208)

044060-21



SAMUEL BRENSINGER et al.

PHYS. REV. D 103, 044060 (2021)

Here R“,.; is the Riemann curvature tensor for a con-
nection I'?;,. which is not necessarily compatible with the
metric defining g,. Now the parameter 7 is an affine
parameter for the TW connection on N, not for the I'%y,
connection on M. If we make a change of parametrization
7 — u so that u is an affine parameter for the spacetime
manifold connection, we get using Eq. (42)

= D;i(ﬂ — (R%eq + 8Py = 8“4 Pleq)) Lj;jtj;: x4
2 dir\ DX“
- (m) du” (209)
If we consider the 4 component, we find
D*x* . dxPdxt
a7 " de de
W = (0pDejq + 1 Dyj) %CZ x4
= (VicPap + @aPepp + apPeja — R pead®)
X dd—);b Cf;: X4 (210)

If we take g, = 0 as a gauge choice, the left-hand side of
the above expression vanishes, leaving

dx? dx¢
(ViePap + @qPap + apPeja — R pega®) ——

X4 =0.
dr dr

(211)

This illustrates the complexity of D,,. (or equivalently, Pp,.)
as a dynamical field, since it has its own field equations
and energy-momentum tensor. D,,. will interact with the
spacetime geometry and have an effect on R“.,. Thus
geodesic deviation is a valuable resource for observation,
and the projective gauge field could explain defects in these
observations via Eq. (209).

TABLE L.

XI. CONCLUSION

String theory may be thought of as originating from
regulating Feynman diagrams in gravitational theories,
by adding a tiny dimension to the point particle as initial
data. This regulator quickly takes on a life of its own
through the Virasoro algebra, which maintains the repar-
ametrization invariance. It has been shown [20] that a
projective structure and subsequent projective geometry are
the ubiquitous concepts that give meaning to this repar-
ametrization in any dimension. In projective geometry, a
manifold is geometrically classified in terms of its family
of geodesics. In many ways, geodesics are the most
experimentally available geometric structures that give
physicists access to the underlying geometry of a manifold.
Affine geodesic lines, whether spacelike, timelike, or
even null, enjoy reparametrization invariance irrespective
of the underlying metric. Furthermore, the correspondence
between the Virasoro algebra and projective geometry is
analogous to the correspondence of an affine Lie algebra (a
class of Kac-Moody algebras) for one-dimensional gauge
transformations to Yang-Mills vector potentials in higher
dimensional field theories; see Table 1.

The projective geometry of Thomas and later Whitehead
[4-6] allows us to form a gauge theory for unparametrized
paths which induces a dynamical field called the diffeo-
morphism field. These projective connections get their
dynamics from the Thomas-Whitehead gravitational action
defined in [20]. However, those and subsequent results [29]
used specific coordinates such as constant volume coor-
dinates and background metrics. In this paper, we present
the full gauge invariant Thomas-Whitehead action. There
are many advantages of having a gauge invariant theory,
including the understanding of spontaneously broken
symmetry and the constraints that arise in classical and
quantum field theories. The results here show precisely
how any Dirac fermion will interact with the diffeomor-
phism field and how chiral masses become manifest due to
a volume scale. These gravitationally induced chiral masses
are affected by the dimension of the manifold, the number
of gauge fields and the spinor’s tensor density.

The use of geodesics extends far beyond gravitational
theories and these results may be of value in fluid
dynamics, optimization, other gauge theories and even
quantum computing. Several projects applying the general

Correspondence of symmetries in string theories to connections in field theories coadjoint elements of the Virasoro algebra,

(B, q), consists of a quadratic differential B and a central element g. They are in correspondence with the projective connection

components D, that appear in the projective covariant derivative V,. Analogously, the coadjoint elements of the affine Lie algebra
(Kac-Moody algebra), (A, ), consisting of a one form A and a central element a, are in correspondence with the Yang-Mills connection,

A, that appears in the gauge covariant derivative D,,.

Symmetry

String theory

Field theory

Reparametrization Invariance
Gauge invariance

Algebra: Virasoro
Algebra: affine Lie

Coadjoint elements: (B, q)
Coadjoint elements: (A, @)

va (/Dbcs Hahc)
Da (Ab)

Connection: projective
Connection: Yang-Mills
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TW theory presented in this paper are currently underway
including the quantization of the fully covariant TW theory,
sourcing of cosmological inflation, constraints imposed by
affects on gravitational radiation, and applications to the
understanding of dark matter.
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APPENDIX A: UNITS, CONVENTIONS,
AND HELPFUL CALCULATIONS

The units of the various constants used throughout this
paper for d =4 are

ML?
[Jo] = 5 [Dup) = [Rap) = L7,
T2
[¢] = dimensionless, [k0] = —
ML
[dix] = TL . (A1)

We may at times set ¢ = 1 but expose factors of ¢ when
calculating numerical values. Latin indices take values
a,b,...=0,1,2,...,d -1 and Greek indices take values
u,v,...=0,1,2,...,d, with the exception of the Greek
letter A, which refers to the projective coordinate
x4 = 1 = }yZ. A coordinate transformation and correspond-
ing Jacobian matrix over the d-dimensional space is given as

ax/m

ox"

XM= x"(x"), Jn, = (A2)

A useful property of the determinant of the Jacobian matrix
is its derivative in terms of the coordinates:

dlog|J|  Ox" O ox™
ox®  Ox™Ox¢ Ox"

(A3)

Our conventions for the Riemann curvature tensor R%y,.;
are the same as for the projective curvature K*,,5. The
Riemann curvature tensor is written in terms of [, where
as the projective curvature is written in terms of I

Kﬂv(l[i = Fﬂyw,a] + Fpuwrﬂ(z]p' (A4)
Here and throughout, brackets mean antisymmetrization
and parentheses mean symmetrization

K Pl — K g = K iy IC(/“') = K + Ky (A5)
Equation (A4) means the following must be true:

[va, vﬂ] V}’ - /Cypa/;Vp (A6)

Wm v/;]Vy — —IC/’W/;V/). (A7)

The d-dimensional metric g, is promoted to the Thomas
cone metric G,4 by adding the appropriate projective
contributions to the components. An easy way to see this
is by writing

2
Gab = 20°Ga G —%ga]

Gop = { 2 22 (AB)
L -

g* ~AG"" G

G = |: bm 2 mny 2 :|’ (A9)
=497 gm 32 (=14 9" 20" G n)

Ga} = 5a(15b/3gub - A’%gagﬁ» (AIO)
GV = g™ (5% = g TN &), = 95 TF) = 25> T*YP (Al1)
where the d-dimensional metric g, has signature

(+,-,—,—,---,—) and the dimensionless parameter
¢ = 1/29. The function g, = dfl@a log \/m is chosen as
it transforms like the trace of a connection and depends
only on the metrics determinant. The d-dimensional
Riemann curvature tensor R4, satisfies the same relation
as the (d + 1)-dimensional tensor X%, Eq. (IIL C), but in
terms of the d-dimensional covariant derivative V,. The
commutator of covariant derivatives on an arbitrary rank m-
covariant, rank n-contravariant tensor is equivalent to the
following action of R%j.,:

Vs VT, e,
= —R¢, T

F R Ty e, A+ Ry Ty,
(A12)

didy...d, _ ... _ Re did>...d,

ecy...Cp cab Tc, cy...e

We list all nonvanishing connections and curvatures below:

e = %, [, = ADy, (A13)
[, =19, =116, (Al4)

e, =T, + 5?00%)’ (A15)

Ppe = Dpe — Opa. + I pea, + apa,, (Al16)
Kea = R%pea + 6Py — 6"y Preq, (A7)
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Kea = Rpea + 6“1 Daps (A18)
Kﬁcab = ia[a’Db]c + Andc[b’Da]zh (Alg)

K pea = MO Pap +TaPaa + aaPepp
+ a4 Prea) = R peata) (A20)

o 1 "

Kpea = z’c beds (A21)

K pua = Kpa = Rpg + (d = 1)Dyy
= Rpg +dPay — Ppa, (A22)
K=G?Kypy=R+(d-1)D=R+(d—1)P, (A23)
R = gabRab’ P = gabpab7 (A24)

Kped = 9K pea + Kiea
= (ga - aa)Rahcd + (gc - ac)Pdh - (gd - ad)Pc'b

APPENDIX B: FIELD EQUATIONS IN THE
ABSENCE OF MATTER LAGRANGIANS

The field equations for 1%, read as

1
E/™ — ——6,"E,Wb = Bl
a d 1 a b 0’ ( )

mn __ nm
ES" =E,

| B . N
- v ) =V (/Tgl K, e
2ol gc «(V1919™) (V19lK, )

+ 2/1%?0( |lglga e — 222/ |g| K™D,
(B2)

The field equations for D,;, read as

1 .
VIglid = D)gr? + /]glK. ¢

B 2]('0.]06‘

= (96 = %) Piea) + VePap = VPesp, (A25) + 2/1%%7( g|K(P9)9) =222 /]glg KPP =0.  (B3)
kabgr - K&Eﬁfgaﬁbz[gmr]?’ (A26) The field equations for g,;, read as
GoPrive = G GPPGITGPP — 487 87 ,GPPGPP { |
- — S
+ & 8 s GPPGPP . (A27) ER(P‘I) 2R9pq = K0®pq (B4)
|
o, =-1p ZYOT] (LR NG VR .
= = e D) 9 2ocko\ =Gy Va o B )Rk = Ls

+ 2‘]OC/l(Z)(I(rncalI(nCd + 2Kbchbcn) + 2JOC<81CmbICbn - 2,C,Cmn)
+ 2JOC(,Cmbcd]Cand - ICamchCanCd - 2Icabcmlcabcn>

1
Ls=-5—(d=1)P+ cJoAo* KpeaKP? = o (K pealCoed = 4IC,, K% + K2). (B5)
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