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Thomas-Whitehead (TW) gravity is a projectively invariant model of gravity over a d-dimensional
manifold that is intimately related to string theory through reparametrization invariance. Unparametrized
geodesics are the ubiquitous structure that ties together string theory and higher dimensional gravitation.
This is realized through the projective geometry of Tracy Thomas. The projective connection, due to
Thomas and later Whitehead, admits a component that in one dimension is in one-to-one correspondence
with the coadjoint elements of the Virasoro algebra. This component is called the diffeomorphism fieldDab

in the literature. It also has been shown that in four dimensions, the TW action collapses to the Einstein-
Hilbert action with cosmological constant when Dab is proportional to the Einstein metric. These previous
results have been restricted to either particular metrics, such as the Polyakov 2Dmetric, or were restricted to
coordinates that were volume preserving. In this paper, we review TW gravity and derive the gauge
invariant TW action that is explicitly projectively invariant and general coordinate invariant. We derive the
covariant field equations for the TW action and show how fermionic fields couple to the gauge invariant
theory. The independent fields are the metric tensor gab, the fundamental projective invariant Πa

bc, and the
diffeomorphism field Dab.

DOI: 10.1103/PhysRevD.103.044060

I. INTRODUCTION

The geometric classification of manifolds via their geo-
desics as opposed to distances between points (metrical) is
an old notion. Indeed in his inaugural professorial lecture at
Cambridge University in 1863, Cayley remarked that
“descriptive geometry includes metrical geometry” and
“descriptive geometry is in fact all geometry” [1]. In this
reference, descriptive geometry corresponds to projective
geometry. The question of whether the family of geodesics
could uniquely determine the metric for general relativity
was investigated by Cartan in [2,3] and further developed

by Thomas [4,5] and Whitehead [6]. The answer is that
connections can only be determined up to equivalences
classes. A resurgence of investigations into the physical
ramifications of metrical versus descriptive (projective)
geometry can be found in the literature [7–11]. On the
other hand, the Virasoro algebra [12] is considered to be at
the heart of string theory. It is usually viewed through its
relationship with conformal symmetry, where two copies of
the Virasoro algebra define the conformal algebra.
However, the relationship between string theory and the
Virasoro algebra also has an even more primitive origin
through its identity as a one-dimensional vector space [13]
and projective structure [2,14,15]. Since the coadjoint
orbits admit a natural symplectic structure, their geometric
actions provide an avenue to the two-dimensional field
theories that can be associated with quantum gravity
[16–18]. Furthermore, when married with an affine Lie
algebra (a Kac-Moody algebra), one finds that the coadjoint
elements appear as background sources for the two-
dimensional gravitation (Virasoro sector) and gauge
(Kac-Moody sector) theories. The background fields in
the Kac-Moody sector correspond to the vector potentials
which serve as the gauge connections, Aa, for Yang-Mills
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theories. It was suggested in [19] that the coadjoint
elements of the Virasoro sector also could be put on an
equivalent footing with the Kac-Moody sector if the
coadjoint elements of the Virasoro algebra could also have
an associated “gauge” field in higher dimensions. The
posited field was dubbed the diffeomorphism field, Dab.
This realization was recently established in [20], when
Kirillov’s observation [14,15] that the coadjoint elements of
the Virasoro algebra are in one-to-one correspondence with
Sturm-Liouville [21,22] operators was reexamined. The
authors were able to use the one-dimensional projective
structure to provide a bridge between the Virasoro algebra
and projective geometry in higher dimensions. Thus the
analogous “gauge” symmetry due to reparametrization
invariance in the Virasoro sector is projective invariance
and the diffeomorphism field corresponds to projective
connections. With this, the diffeomorphism field that
appears in two dimensions through the geometric action
as a background field has a different interpretation than that
of expectation values of external energy-momentum ten-
sors, as in conformal field theories. Furthermore the
diffeomorphism field can acquire dynamics as a funda-
mental field through the projective curvature squared terms.
Some of the entangled relationship between conformal
geometry and projective geometry has been studied in
[11,23–27]. For a good review see [28].
So far, discussions of dynamical projective connections

[20,29] have been restricted to particular metrics that are
focused on the 2D Polyakov metric [30,31] or Einstein
geometries in four dimensions where compatibility has
been enforced. In this paper we generalize those consid-
erations for any space-time dimensions and exhibit a
Lagrangian that is explicitly projectively invariant and
general coordinate invariant, i.e., gauge invariant. We will
briefly review the salient features of the study of geodesics
through the Thomas-Whitehead connection, the Thomas
cone and tensor and fermion representations on the Thomas
cone. Then, by using the Palatini [32] formalism, we
explicitly construct the gauge invariant Thomas-
Whitehead gravitational action (TW) [20], the gauge
invariant Dirac action and covariant field equations, its
coupling to arbitrary Yang-Mills theories, and the energy-
momentum tensor. This work can be extended to include
higher-order interactions, using the projective version of
Lovelock gravity [33] to classically maintain an initial
value formulation. We will conclude with remarks on
geodesic deviations as it is there that contributions through
gravitational radiation may become manifest.

II. FROM GEODESICS TO
PROJECTIVE CURVATURE

In its most pragmatic form, string theory can be thought
of as regulating the Feynman diagrams in gravitational
theories by adding a small spacelike curve to the point
particle. This activity already endows the string with a

projective structure. The curves are parametrized by vector
fields, say ζa ¼ dxa

dσ , which allows one to take the intrinsic or
absolute derivative of any vector field along these curves. In
one dimension the Virasoro algebra is the algebra of
centrally extended vector fields on a line or circle and a
projective structure emerges [2,3,15].

A. Geodetics

In any dimension, the intrinsic (or absolute) derivative of
a vector field va along a curve C parametrized by σ is given
by

Dva

dσ
≡ dva

dσ
þ Γa

bcvbζc; ð1Þ

where Γa
bc are connection coefficients associated with a

connection ∇a and ζa is the tangent vector dxa
dσ along the

curve C. The connection is assumed to be torsion-free and
therefore satisfies the symmetry relation Γa

bc ¼ Γa
cb. An

affine geodesic generalizes the notion of a straight line and
ζa is said to be geodesic if the change of ζa along the curve
C parametrized by σ is to be proportional to itself, i.e.,

Dζa

dσ
¼ fðσÞζa; ð2Þ

where fðσÞ is the proportionality function. This yields the
affine geodesic equation,

d2xa

dσ2
þ Γa

bc
dxb

dσ
dxc

dσ
¼ fðσÞ dx

a

dσ
: ð3Þ

One may change the parametrization from σ to uðσÞ by
writing

d
du

¼ dσ
du

d
dσ

ð4Þ

and for a suitable choice uðσÞ we can eliminate the right-
hand side of Eq. (3) to write the geodetic equation

d2xa

du2
þ Γa

bc
dxb

du
dxc

du
¼ 0: ð5Þ

Here the parameter u is said to be an affine parameter with
respect to the connection ∇a as

dxb

du
∇bu ¼ 1:

Although the parametrization may have changed, the
curves remain the same. Furthermore different connections,
say ∇̂a and ∇a can sometimes admit the same geodesics. If
so, then ∇̂ and ∇ belong to the same projective equivalence
class. Thomas showed how one can write a gauge theory
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over this projective symmetry [4,5]. We discuss this gauge
theory presently.

B. Projectively equivalent paths

Consider a d-dimensional manifold M with coordinates
xa where italic latin indices a; b; c;m; n;… ¼
0; 1;…; d − 1. Let ∇̂a be a connection on M where ζa

is geodetic, i.e.,

ζb∇̂bζ
a ¼ d2xa

dτ2
þ Γ̂a

bc
dxb

dτ
dxc

dτ
¼ 0: ð6Þ

Now consider another connection whose coefficients are
defined as

Γa
bc ¼ Γ̂a

bc þ δabvc þ δacvb; ð7Þ

where vb is an arbitrary one-form. The geodesic equation
for this connection is then

ζb∇bζ
a ¼ d2xa

dτ2
þ Γa

bc
dxb

dτ
dxc

dτ
¼ fðτÞ dx

a

dτ
; ð8Þ

and where fðτÞ ¼ 2vb
dxb
dτ . Since Eq. (8) can also be made

geodetic by a suitable reparametrization of τ to uðτÞ both
Eqs. (6) and (8) admit the same geodesic curves.
Equation (7) is called a projective transformation and
establishes the projective equivalence relation, Γ̂a

bc ∼ Γa
bc.

In [4,5], Thomas presents a “gauge” theory of projec-
tively equivalent connections that is projectively invariant
and general coordinate invariant. This begins by defining
the fundamental projective invariant Πa

bc

Πa
bc ≡ Γa

bc −
1

ðdþ 1Þ δ
ðbðbΓm

cÞm; ð9Þ

which is traceless by construction

Πa
ba ¼ Πa

ab ¼ 0 ð10Þ

and invariant under a projective transformation, Eq. (7), for
an arbitrary one form va. Using the fundamental projective
invariant Πa

bc one can write a geodetic equation

d2xa

dτ2
þ Πa

bc
dxb

dτ
dxc

dτ
¼ 0 ð11Þ

that is projectively invariant. However this equation is not
covariant as Πa

bc transforms as

Π0a
bc ¼ Jaf

�
Πf

deJ̄dbJ̄ec þ
∂2xf

∂x0b∂x0c
�

þ 1

dþ 1

∂ log jJj
∂xd ðJ̄dbδac þ J̄dcδabÞ ð12Þ

under a general coordinate transformation from x → x0ðxÞ
with Jab ¼ ∂x0a

∂xb , the Jacobian of the transformation. We will

denote the inverse Jacobian as J̄ab ¼ ∂xa
∂x0b. The last sum-

mand spoils the covariance and can be related to volume, as
it involves the determinant of the Jacobian of the trans-
formation J ¼ detðJabÞ. Thomas then constructs a line
bundle over M which is a dþ 1-dimensional manifold N
referred to as the Thomas cone [34,36]. The coordinates on
the Thomas cone are ðx0; x1;…; xd−1; λÞ, where λ is
denoted the volume coordinate. Since the volume coor-
dinate, λ, takes values 0 < λ < ∞, N is called a cone. The
coordinates transform as

x0α ¼ ðx00ðxdÞ; x01ðxdÞ;…; x0d−1ðxdÞ; λ0 ¼ λjJj− 1
dþ1Þ: ð13Þ

From here on, we refer to transformations in Eq. (13) as
TCN -transformations. Here, Greek indices are over N
coordinates and take values α; β; μ;… ¼ 0; 1; 2;…; d and
italic latin indices are over coordinates on M and take
values a; b;m; n;… ¼ 0; 1; 2;…d − 1. We reserve the
index λ and the upright letter d to refer to the volume
coordinate xd ¼ xλ ¼ λ. For every coordinate transforma-
tion on M there is a unique coordinate transformation
on N .

C. Thomas projective connections

Thomas was able to find a connection on N that
transforms as a connection by extending the fundamental
projective invariant to a dþ 1-dimensional projective
connection Π̃α

μν. It is defined as follows [4,6,37]:

Π̃α
λβ ¼ Π̃α

βλ ¼ −
1

dþ 1
δαβ; ð14aÞ

Π̃a
bc ¼ Π̃a

cb ¼ Πa
bc; ð14bÞ

Π̃λ
ab ¼ Π̃λ

ba ¼ −
dþ 1

d − 1
Rab; ð14cÞ

where Rab is constructed from the equi-projective curva-
ture “tensor” Rm

abn

Rm
abn ¼ Πm

a½n;b� þ Πp
a½nΠm

b�p; ð15Þ

with an associated equi-projective Ricci “tensor”

Rab ¼ Rm
amb: ð16Þ

With this, Π̃α
μν transforms as a connection under a TCN -

transformation as

Π̃0α
μν ¼

∂x0α
∂xρ

∂xσ
∂x0μ

∂xβ
∂x0ν Π̃

ρ
σβ þ

∂2xβ

∂x0μ∂ 0ν
∂x0α
∂xβ ð17Þ
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so that one may construct a projective curvature tensor

R̃α
μνβ ¼ Π̃α

μ½β;ν� þ Π̃ρ
μ½βΠ̃α

ν�ρ; ð18Þ

whose nonvanishing components are

R̃λ
abn ¼

dþ 1

d − 1
ðRa½b;n� þ Πm

a½bRn�mÞ; ð19Þ

R̃m
abn ¼ Rm

abn −
1

d − 1
δ½nmRb�a: ð20Þ

The projective Ricci tensor is defined as the trace of the
projective curvature tensor and vanishes identically

R̃αβ ≡ R̃μ
αμβ ¼ 0: ð21Þ

This construction is only a specific example of a projective
connection but it laid the ground work for the more general
setting we now present.

III. THOMAS-WHITEHEAD
PROJECTIVE GEOMETRY

A. The general projective connection

The original Thomas projective connection, Π̃α
μν, can be

generalized to a connection Γ̃α
βγ [6,35,37], where explicitly

Γ̃α
βγ ¼

8>>>>>><
>>>>>>:

Γ̃λ
λa ¼ Γ̃λ

aλ ¼ 0

Γ̃α
λλ ¼ 0

Γ̃a
λb ¼ Γ̃a

bλ ¼ αλδ
a
b

Γ̃a
bc ¼ Πa

bc

Γ̃λ
ab ¼ ϒλDab

ð22Þ

and where

Πa
bc ¼ Γa

bc þ δaðcαbÞ; ð23Þ

αa ¼ −
1

dþ 1
Γm

am; ð24Þ

ϒα ¼ ð0; 0;…; 0; λÞ; ð25Þ

αα ¼ ðαa; λ−1Þ: ð26Þ

Here the connection Γa
bc is any representative member of

the equivalence class ½Γa
bc� of projectively equivalent

connections, related via Eq. (7), and αa is that chosen
member’s trace component. However, keep in mind that
Πa

bc exists in its own right in that it is traceless and
transforms like a traceless part of an affine connection.
Notice also that only the λ component for αμ appears in the
projective connection Γ̃μ

αβ. On M, the transformation
laws are

Γ0a
mn ¼

∂x0a
∂xb

∂xp
∂x0m

∂xq
∂x0n Γ

b
pq þ

∂2xb

∂x0m∂ 0n
∂x0a
∂xb ; ð27Þ

α0a ¼
∂xm
∂x0a αm þ ∂ log jJj 1

dþ1

∂x0a : ð28Þ

In the above, Dab generalizes the work of Thomas and
transforms in such a way that Γ̃α

βγ transforms as an affine
connection on N . This is the origin of the diffeomorphism
field Dab. In this construction, ϒ is the fundamental vector
on the Thomas cone and satisfies the compatibility relation

∇̃αϒβ ¼ δα
β; ð29Þ

soϒβ satisfies the fundamental geodesic equation with unit
proportionality

ϒβ∇̃βϒα ¼ ϒα: ð30Þ

For functions on N

ϒβ∇̃βf ¼ λ∂λf; ð31Þ

showing that ϒ generates scaling in the λ direction. One-
forms βα on N are uniquely defined by βa on M when
βαϒα ¼ 1 and the Lie derivative with respect to ϒ vanishes
i.e., Lϒβρ ¼ 0, so that it is scale invariant. Under a TCN -
transformation, Eq. (13), ϒα and the covariant derivative
transform as

ϒ0α ¼ ∂x0α
∂xβ ϒ

β; ð32Þ

∇0
α ¼

∂xβ
∂x0α ∇β: ð33Þ

Demanding that Γ̃α
μν transforms as an affine connection

Γ̃0α
μν ¼

∂x0α
∂xρ

∂xσ
∂x0μ

∂xβ
∂x0ν Γ̃

ρ
σβ þ

∂2xβ

∂x0μ∂ 0ν
∂x0α
∂xβ ; ð34Þ

and using the transformation laws ofϒα and Γ̃λ
ab, one finds

that Dab transforms under a coordinate transformation on
M as

D0
ab ¼

∂xm
∂x0a

∂xn
∂x0b ðDmn − ∂mjn − jmjn þ jcΠc

mnÞ; ð35Þ

where we define ja ¼ ∂a log jJj− 1
dþ1. One can show that the

coordinate transformation law of Dab as stated by Eq. (35)
is an action of the general linear group on the components
of D. This property holds despite the presence of the
coordinate-dependent objectΠa

bc in the transformation law
[38]. This transformation law will become important later
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in the correspondence with coadjoint elements of the
Virasoro algebra in one dimension.
A general tensor on M with m-contravariant and

n-covariant indices we express as

TaðmÞ
bðnÞ ¼ Ta1a2…am

b1b2…bn : ð36Þ

In what follows we refer to ðm; nÞ-tensors onM as objects
that transform as

T 0aðmÞ
bðnÞ ¼

∂x0a1
∂xp1

…
∂x0am
∂xpm

∂xq1
∂x0b1 …

∂xqn
∂x0bn T

pðmÞ
qðnÞ ð37Þ

under coordinate transformations. Similarly, we refer to
objects as ðm; nÞ-TC tensors on N that transform as

T 0αðmÞ
βðnÞ ¼

∂x0α1
∂xμ1 …

∂x0αm
∂xμm

∂xν1
∂x0β1 …

∂xνn
∂x0βn T

μðmÞ
νðnÞ ð38Þ

under a TCN -transformation. This will allow us to
build actions that are invariant with respect to TCN -
transformations.

B. Geodetics revisited

Before discussing projective curvature relations, we now
revisit geodesics and geodetics to illuminate the projective
connection. Consider a geodetic on N associated with the
vector field ζα ¼ dxα

du . The parameter u is an affine param-

eter for ∇̃ such that

ζα∇̃αζ
β ¼ 0: ð39Þ

Separating the M coordinates from λ, we have the
expressions

d2xa

du2
þ Πa

bc
dxb

du
dxc

du
¼ −2

1

λ

�
dλ
du

�
dxa

du
; ð40Þ

d2λ
du2

þ λDbc
dxb

du
dxc

du
¼ 0: ð41Þ

Together, these equations are covariant and projectively
invariant. Let us consider a reparametrization that can
render Eq. (40) geodetic. In other words, does there exist
a parameter τ that is affine with respect to the projective
invariant Πa

bc? Let u → τðuÞ so that

d2τ
du2

¼ −2
�
1

λ

dλ
du

�
dτ
du

: ð42Þ

This will eliminate the right-hand side of Eq. (40) and we
can use this to eliminate λ in Eq. (41) with

d2λ
du2

¼ λ

4
·
3ðd2τdu2Þ2 − 2ðd3τdu3Þ dτ

du

ðdτduÞ2
: ð43Þ

With this, one finds that the reparametrization is viable if

Dbc
dxb

du
dxc

du
¼ 1

2
·
dτ
du ðd

3τ
du3Þ − 3

2
ðd2τdu2Þ2

ðdτduÞ2
≡ 1

2
Sðτ∶uÞ; ð44Þ

where Sðτ∶uÞ is the Schwarzian derivative of τ with respect
to u. For example, if the kinetic term Dbc

dxb
du

dxc
du vanishes,

then requisite reparametrizations that render τ affine are
the Möbius transformations τ ¼ auþb

cuþd, where a, b, c, and
d are real numbers. Another familiar example is when
Dbc

dxb
du

dxc
du ¼ m2−1

2u2 and the requisite transformations are the
exponential Möbius transformations τ ¼ ðaumþb

cumþdÞ. This
corresponds to the coadjoint orbits of the Virasoro algebra
denoted by DiffðS1Þ=SLð2; mÞ, where the isotropy group is
generated by Lm; L0; L−m. A Möbius transformation is a
one-dimensional projective transformation, so we see
that the preferred class of parameters for Πa

bc is preserved
by projective transformations rather than affine transfor-
mations. This motivates the description of Πa

bc as a
projective connection. The inclusion of Πa

bc in the TW
connection, which incorporates the field Dbc, allows us to
apply techniques that are typically available for affine
connections.

C. Projective geometry

One constructs the projective curvature tensor in the
usual way

½∇̃α; ∇̃β�Vγ ¼ Kγ
ραβVρ; ð45Þ

½∇̃α; ∇̃β�Vγ ¼ −Kρ
γαβVρ; ð46Þ

from connections that transform as in Eq. (34). In terms of
the connections, the curvature can be written explicitly as

Kα
μνβ ¼ Γ̃α

μ½β;ν� þ Γ̃ρ
μ½βΓ̃α

ν�ρ: ð47Þ

This transforms as a (1,3) TC tensor on N . Using Eq. (22)
to expand Γ̃α

μν we find the only nonvanishing components
of the projective curvature tensor to be

Ka
bcd ¼ Ra

bcd þ δa½cDd�b;

Kλ
cab ¼ λ∂ ½aDb�c þ λΠd

c½bDa�d: ð48Þ

We will also find it useful later on to have a λ-independent
version of Kλ

cab. We define this symbol as
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K̆λ
cab ≡ 1

λ
Kλ

cab ¼ ∂ ½aDb�c þ Πd
c½bDa�d: ð49Þ

By contracting the first and third indices of the projective
curvature tensor, we can write the projective Ricci tensor
whose only nonvanishing components are

Kbd ¼ Rbd þ ðd − 1ÞDbd: ð50Þ

Rbd is the equi-projective Ricci tensor from Eq. (16). The
expressions in Eq. (48) are precisely of the form seen in
conformal geometry

Ra
bcd ¼ Wa

bcd þ δa½cPd�b;

Ccab ¼ ∂ ½aPb�c þ Γd
c½bPa�d; ð51Þ

whereWa
bcd is the Weyl tensor, Pdb is the Schouten tensor,

and Ccab is the Cotton-York tensor. In the above, Wa
bcd is

analogous to Ka
bcd in Eq. (48). If we consider the

contraction of the projective curvature tensor with a volume
one-form gμ, that transforms as Eq. (28) and is also
invariant under projective transformations, we can form
the projective Cotton-York tensor, KðgÞναβ ≡ gμKμ

ναβ.
Then we can write

KðgÞnab ¼ gμKμ
nab

¼P½bjnj;a�−ΔnP½ab� þΔ½aPb�nþRm
nabΔm; ð52Þ

where Δa ≡ ga − αa is a one-form on M. KðgÞναβ is now
explicitly seen as a (0,3)-TC tensor on N and Knab is a
(0,3)-tensor onM. When we introduce a metric tensor gam
on M in the next section, we will find that gμ ¼ ðga; 1λÞ,
where ga ≡ − 1

dþ1
∂a log

ffiffiffiffiffijgjp
is a suitable volume one-

form, Eq. (60). This also introduces the projective Schouten
tensor [26] Pab, which is a (0,2)-tensor onM. The form of
Γ̃α

μν in Eq. (22) allows for Dab to become dynamical as
Kα

μαβ ≠ 0, relaxing the Ricci flat condition in [4,5,35].
This allows us to extend the Einstein-Hilbert action to
projective geometry as in [20,29].
If we choose a member of the equivalence class ½Γc

ab�,
then we may express Πc

ab in terms of a specific connection
and its associated trace αμ. With this, one may write Pab in
terms of Dab as

Pbc ¼ Dbc − ∂bαc þ Γe
bcαe þ αbαc: ð53Þ

The above is a generalization of [20,29], where constant
volume coordinates were used and Γe

bc was regarded as
Levi-Civita so αa ¼ 0. Then, in that case,Dab ¼ Pab and is
a tensor in the volume preserving coordinates. As stated
above, Pab transforms as a tensor on M

P0
ab ¼

∂xm
∂x0a

∂xn
∂x0n Pmn; ð54Þ

which we may call the projective Schouten tensor in
analogy with conformal geometry.

IV. COVARIANT METRIC TENSOR ON N

In projective geometry, a vector field χ on M may be
lifted to a vector field χ̃ on N by writing

χ̃α∂α ¼ −ðλχaκaÞ∂λ þ χa∂a; ð55Þ

where κa is some object that transforms as ja in Eq. (35),
i.e.,

κ0a ¼
∂xm
∂x0a κm −

1

dþ 1

∂ log J
∂x0a ð56Þ

under a general coordinate transformation on M. We write
the components of χ̃ as

χ̃α ¼ ðχa;−λxbκbÞ: ð57Þ

Similarly, a one-form v onM can be related to a projective
one-form ṽ via

ṽβ ¼
�
vb þ κb;

1

λ

�
: ð58Þ

It is clear that χ̃αṽα ¼ χava. A generic vector on N , which
has components η⊥ that are unrelated to vectors onM, may
be written as

η̃β ¼ ðηbk; λðη⊥ − κaη
a
kÞÞ: ð59Þ

The fundamental vector field ϒ in Eq. (26) has no
component parallel to M, for example.
We are interested in building an invariant action using

the projective curvature. This will require a soldering
metric which transforms as a tensor on N and which is
projectively invariant. Taking a metric gab on M, one may
view this soldering metric as the local tensor product of two
one-forms and write

Gμν ¼
� gab − λ0

2gagb −
λ0

2

λ ga

− λ0
2

λ gb −
λ0

2

λ2

�
: ð60Þ

Here we have replaced κa with ga ≡ − 1
dþ1

∂a log
ffiffiffiffiffijgjp

as it
is naturally built from the metric degrees of freedom and
does not introduce a connection. The constant λ0 has units
of length (like λ), and ensures that Gμν remains dimension-
less when gab is dimensionless. Since Gμν depends only on
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the spacetime metric gab, it is indeed projectively invariant.
One can check that Gμν satisfies the transformation law

G0ðyÞμν ¼
∂xα
∂yμ

∂xβ
∂yν GðxÞαβ ð61Þ

when ðxa; xλÞ → ðya; yλÞ ¼ ðya; xλjJj− 1
dþ1Þ. Furthermore,

under this coordinate change the volume form on N
remains invariant, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jGðxa; xλÞj

q
dxλddx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jGðya; yλÞj

q
dyλddy: ð62Þ

Here Gðxa; xλÞ and Gðya; yλÞ are the metric determinants in
the different coordinates. This follows since from Eq. (60),
we see that

jGj ¼ jgj · λ
2
0

λ2
; ð63Þ

where g is the determinant of gab on M. Since yλ ¼
xλjJj− 1

dþ1 and 1
λ →

1
λ jJj

1
dþ1, these terms exactly conspire in

Eq. (62) to maintain the invariant volume onN . Again, this
motivates why λ is called the volume coordinate. Lastly, the
inverse of Gμν is given by

Gμν ¼
� gab − λgamgm

−λgbmgm λ2

λ0
2 ð−1þ gmnλ0

2gmgnÞ
�
; ð64Þ

where gab is the inverse of the spacetime metric gab. This
metric generalizes the work in [20,29], allowing TW
gravity to be used in any coordinates. We can succinctly
write the metric and its inverse as

Gαβ ¼ δaαδ
b
βgab − λ20gαgβ; ð65Þ

Gαβ ¼ gabðδαa − gaϒαÞðδβb − gbϒβÞ − λ−20 ϒαϒβ; ð66Þ

where we have defined gα ≡ ðga; 1λÞ. In TW gravity, the
metric gab, the projective invariant Πa

bc, and the diffeo-
morphism field Dab will be treated as independent degrees
of freedom in the spirit of the Palatini formalism [32].

V. γ̃μ ON N

Now we seek the γ̃α matrices associated with the
projective metric Gμν given by Eq. (60). The gamma
matrices, γm, on a d-dimensional spacetime are defined by

fγm; γng ¼ 2gmnIN; ð67Þ

where f·; ·g is the anticommutator, gμν is the spacetime
metric, N ¼ 2bd=2c, and IN is the N × N identity matrix.

Let γ̃μ be the gamma matrices for the metric Gμν on N .
These matrices satisfy

fγ̃μ; γ̃νg ¼ 2GμνIN ð68Þ

as in Eq. (67). We will stay in even space-time dimensions.
In this case, the gamma matrices γ̃μ for Gμν will have the
same dimension as the gamma matrices γm for gmn.
Using the inverse of Gμν, Eq. (64), we immediately must

have γ̃μ ¼ γμ if μ is a spacetime coordinate index, say m,
and where γm are the gamma matrices for the spacetime
metric gmn. The remaining gamma matrix is γ̃λ. This matrix
must satisfy

fγ̃λ; γ̃mg ¼ −2λgmngnIN; m ¼ 0;…; d − 1; ð69Þ

2ðγ̃λÞ2 ¼ fγ̃λ; γ̃λg ¼ 2
λ2

λ0
2
ð−1þ gmnλ0

2gmgnÞIN: ð70Þ

Recall the chiral matrix γ5 in four-dimensional spacetime.
We will refer to it as γdþ1 in the general even dimensional
case. It satisfies

fγdþ1; γmg ¼ 0; ð71Þ

ðγdþ1Þ2 ¼ IN: ð72Þ

Comparing Eqs. (69) and (70) to Eqs. (71) and (72), we see
that we should have

γ̃λ ¼ −
λ

λ0
ðiγdþ1 þ λ0gmγmÞ ð73Þ

as the final gamma matrix for Gμν. Explicitly, the chiral
gamma matrix γdþ1 has the following construction in terms
of the other gamma matrices in d dimensions

γdþ1 ¼ i
d−2
2

d!
ϵa1…adγ

a1…γad ; ð74Þ

where ai ¼ 0;…; d − 1 and ϵ is the totally antisymmetric
Levi-Civita tensor on M. Specifically, for d ¼ 4, the
gamma matrices for Gμν are

γ̃m ¼ γm when m ¼ 0; 1; 2; 3;

γ̃λ ¼ −
λ

λ0
ðiγ5 þ λ0gmγmÞ: ð75Þ

The fifth gamma matrix γ5 is crucial in discussions about
chirality, which we will see when we apply the TW
connection to spinor fields. Equation (75) shows that the
volume bundle metric Gμν explicitly builds in γ5. Thus, we
will expect our dynamical theory for Dmn to be chiral in
nature when interacting with fermions.
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Equations (73), (74), (75) also serve to further establish
the relationship between the projective gauge fieldDmn and
the notion of volume on M. Any Lagrangian for Dmn will
involve the metric Gμν on N , which in turn can be
constructed from gamma matrices. Equation (73) says that
one of these gamma matrices includes a rescaling of γdþ1

by λ, where γdþ1 is itself related to volume due to the
presence of the epsilon tensor ϵa1…ad. The epsilon tensor is
alternating in its indices and transforms as a tensor density
that is used to construct volume forms onM. Therefore, we
can again view λ as a parameter which determines a
rescaling of the volume element on M.

VI. THE VIRASORO ALGEBRA
AND PROJECTIVE GEOMETRY

Here we will review three ways in which there is a
correspondence between the projective connection’s reduc-
tion to one dimension and the coadjoint elements of the
Virasoro algebra. The Virasoro algebra [14,39,40] may be
regarded as the centrally extended algebra of vector fields
in one dimension. Let ðξ; aÞ and ðη; bÞ denote centrally
extended vector fields in one dimension where a and b are
elements in the center. Then the Lie algebra of these
centrally extended vector fields is given through the
commutator

½ðξ; aÞ; ðη; bÞ� ¼ ðξ ∘ η; ððξ; ηÞÞ0Þ; ð76Þ

where ξ ∘ η is defined via

ξ ∘ η≡ ξa∂aη
b − ηa∂aξ

b: ð77Þ

Here we explicitly expose the valence of the one-
dimensional vectors. The symbol ððξ; ηÞÞ0 is called the
Gelfand-Fuchs two-cocycle [41] and is defined explicitly as

ððξ; ηÞÞ0 ≡ c
2π

Z
ðξη000Þdθ ð78Þ

¼ c
2π

Z
ξa∇aðgbc∇b∇cη

mÞgmndθn; ð79Þ

where gab is a one-dimensional metric. Equations (78) and
(79) demonstrate an invariant pairing between ξ and η000.
The Gelfand-Fuchs two-cocycle is an example of an
invariant pairing between a vector and a quadratic differ-
ential B

hðξ; aÞjðB; cÞi≡
Z

ðξBÞdθ þ ac

¼
Z

ðξiBijÞdθj þ ac: ð80Þ

In the Gelfand-Fuchs two-cocycle, the pairing is between a
vector ξ and a one-cocycle of η, where this one-cocycle is a

projective transformation [14,15] that has mapped the
vector field η into a quadratic differential. Explicitly,

η∂θ → η000dθ2 ¼ ∇aðgbc∇b∇cη
mÞgmndθadθn: ð81Þ

The invariant pairing in Eq. (80) follows if the action of
another centrally extended algebra element, say ðη; dÞ,
leaves the pairing invariant, i.e.,

ðη; dÞ � hðξ; aÞjðB; cÞi ¼ 0: ð82Þ

This defines the coadjoint representation of the Virasoro
algebra [15,40].

ad�ðη;dÞðB; cÞ ¼ ðηB0 þ 2η0B − cη000; 0Þ: ð83Þ

Then, a more general invariant two-cocycle relative to the
centrally extended coadjoint element B ¼ ðB; cÞ can be
written as

ðξ; ηÞðB;cÞ ¼
c
2π

Z
ðξη000 − ξ000ηÞdxþ 1

2π

Z
ðξη0 − ξ0ηÞBdx:

ð84Þ

One sees that the Gelfand-Fuchs case lives in the pure
gauge sector, i.e., B ¼ ð0; cÞ, of the space of coadjoint
elements. It was also observed [15] that this action is the
same as the action of the space of Sturm-Liouville operators
on vector fields. Thus there is a correspondence

ðB; cÞ ⇔ −2c
d2

dx2
þ BðxÞ; ð85Þ

where on the left side ðB; cÞ is identified with a centrally
extended coadjoint element of the Virasoro algebra and on
the right side is a Sturm-Liouville operator with weight c
and BðxÞ as the Sturm-Liouville potential.

A. Correspondence through the transformation laws

Here, we show how the relation between a coadjoint
element of the Virasoro algebra and the Sturm-Liouville
operator is reconciled by Thomas-Whitehead projective
connections. We will evaluate the connection in one
dimension where one can construct a Laplacian even
though curvature is unavailable.
Consider the transformation of the diffeomorphism field

Dab in one dimension. One can show that in one dimension,
Eq. (35), i.e.,

D0
ab ¼

∂xm
∂x0a

∂xn
∂x0b Dmn −

1

ðdþ 1Þ2
∂ log J
∂x0a

∂ log J
∂x0b

−
1

dþ 1

∂2 log J
∂x0a∂x0b þ

1

dþ 1

∂ log J
∂x0c Π0c

ab; ð86Þ
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reduces to [38]

δD ¼ 2ξ0DþD0ξ −
1

2
ξ000 ð87Þ

under an infinitesimal coordinate transformation. We may
let D ¼ qD where q is an arbitrary constant. Then

δðqDÞ ¼ δD

¼ 2ξ0DþD0ξ −
1

2
ξ000

¼ 2ξ0qDþ qD0ξ −
1

2
ξ000

¼ q

�
2ξ0DþD0ξ −

1

2q
ξ000

�
ð88Þ

or equivalently

δD ¼ 2ξ0DþD0ξ −
1

2q
ξ000: ð89Þ

Choosing q ¼ 1
2c, we see a correspondence between the

one-dimensional Thomas projective connection and the
coadjoint element in Eq. (83). This improves the argument
made in [20].

B. Correspondence through two-cocycles

The covariant metric allows us to improve upon another
correspondence between the projective connection and
coadjoint elements discussed in [20]. We consider a
projective two-cocycle on N for a path C as

hξ; ηiðζÞ ¼ q
Z
CðζÞ

ξαð∇̃αGρν∇̃ρ∇̃νη
βGβμÞζμdσ

− ðξ ↔ ηÞ; ð90Þ

where σ parametrizes the path. The vector ζμ ≡ dxμ
dσ defines

the path C. Here, the coordinates on N are xα ¼ ðx; λÞ.
We choose the vector fields as ξβ ¼ ðξb;−λξagaÞ and
ηβ ¼ ðηb;−ληagaÞ. Consider a path given by a fixed value
λ ¼ λ0 along the vector ζμλ0 ¼ ðdxdσ ; 0Þ. The metric used to
construct the projective Laplacian is the one-dimensional
version of Eq. (64). Setting the metric to a constant g11 and
the components of the vector fields to ξ1 and η1, respec-
tively and keeping in mind that Πa

bc ¼ 0 in one dimension,
one finds that

hξ; ηiðζλ0 Þ ¼ q
Z

ξ1

�
2D11 − g11

1

λ20

�
η01dx

þ q
Z

ξ1η
000
1 dx − ðξ ↔ ηÞ: ð91Þ

Comparing this to Eq. (84), we make the observation that
the projective connection and the coadjoint element ðB; qÞ
are in correspondence through

2qD11 −
q
λ20

¼ B; ð92Þ

which recovers Eq. (84) for q ¼ c
2π.

C. Correspondence through gauge invariant action

Using the action in [20], we write the invariant projective
Einstein-Hilbert terms as

SPEH ¼
Z

d2xdλ
ffiffiffiffiffiffiffi
jGj

p
KαβGαβ ¼

Z
d2xdλ

ffiffiffiffiffiffiffi
jGj

p
K

¼ λ0

�Z
dλ

1

λ

� Z
d2x

ffiffiffiffiffi
jgj

p
ðRþ gabð2Pba − PabÞÞ

¼ β

�
SEH þ

Z
d2x

ffiffiffiffiffi
jgj

p
gabð2Pba − PabÞ

�
; ð93Þ

where we have used the projective Schouten tensor to write
this in terms of the Riemann scalar curvature for familiarity.
In two dimensions, the Einstein-Hilbert term is the Gauss-
Bonnet topological invariant. The Polyakov metric has
constant volume and Dab and Pab are equivalent.
Evaluating this on the Polyakov metric in two dimensions
gives the coupling to the coadjoint element

SPolyakov Coupling ¼
Z

d2θPþþh−−:

Again, the importance of this is to show dimensional
universality of the interaction term in the Polyakov action
as

ffiffiffiffiffiffiffijGjp
K has meaning in any dimension. Thus, Dab is to

the Virasoro algebra of one-dimensional centrally extended
vector fields as the Yang-Mills gauge field Aa is to affine
Lie algebras in one dimension. Furthermore, the projective
curvatureKα

μνβ can be used to build dynamical theories for
Dab just as the gauge curvature Fab can provide dynamics
for the gauge fields related to external gauge symmetries.

VII. SPINOR FIELDS ON N

To this point, we have discussed the representation
theory for the Thomas-Whitehead connection as related
to tensors. Now we examine the relation among projective
connections, spinors, and their associated Dirac equation.
We will focus on spin 1

2
spinors throughout.

A. The spin covariant derivative

To construct the spin connection for the generalized
metric Gαβ we will need the frame fields that make contact
with the Minkowski space metric on the Thomas cone.
There are several types of indices involved. First, there is a
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distinction between spacetime indices and the extra λ
coordinate on N . Second, there is a distinction between
curved indices and flat indices. To make calculations clear,
we will adopt the following conventions for indices:

(i) Greek indices μ, ν: curved coordinates on N ,
(ii) Latin indices m, n: curved coordinates on M,
(iii) underlined indices a, α: flat coordinates on M, N ,
(iv) λ: volume bundle coordinate,
(v) 5: flattened volume bundle coordinate.
We use the number 5 to represent the extra coordinate

in flat space, due to the case of four-dimensional
spacetime, where the gammamatrices are commonly labeled

0,1,2,3,5 for historical reasons. For the metric gmn onM,
ema (with inverse eam) are the associated frame fields
satisfying

gmn ¼ eamebnηab;

ηab ¼ emaenbgmn: ð94Þ
Similarly, the frame fields denoted ẽμα will be associated
with the metric Gμν on N , and the indices range over all
dimensions, including λ for the curved coordinates on N

Gαβ ¼ ẽμαẽνβη̃μ ν;

η̃α β ¼ ẽμαẽνβGμν: ð95Þ

We may also use the frame fields to write the components of
the Dirac matrices in curved spacetime coordinates

γ̃μ ¼ ẽμαγ̃α: ð96Þ

For the metric Gμν given by Eq. (60), the frame fields are
listed as follows:

ẽma ¼ ema;

ẽm5 ¼ 0;

ẽλa ¼ −λemagm;

ẽλ5 ¼
λ

λ0
: ð97Þ

The inverse frame field components are then given by:

ẽam ¼ eam;

ẽ5m ¼ λ0gm;

ẽaλ ¼ 0;

ẽ5λ ¼
λ0
λ
: ð98Þ

Let Γ̃μ
νρ be the components of the TW connection, and call

∇∘ μ the corresponding covariant derivative operator that acts
only on the curved indices as opposed to flat indices. Define

ω̃μ
αν ¼ ∇∘ νẽμα ¼ ∂νẽμα þ Γ̃μ

ρνẽρα: ð99Þ

We use the geometric object ω̃ of Eq. (99) to define a new
spin covariant derivative

D̃μVα ¼ ∂μVα þ ω̃α
βμV

β;

D̃μVα ¼ ∂μVα − ω̃β
αμVβ; ð100Þ

which recognizes tensorial objects, such as the vector Vα,
written in flat coordinates. We can take the full covariant
derivative of a geometric object with curved and flat
spacetime indices by using the ordinary connection coef-
ficients Γ̃μ

νρ for curved indices and the spin connection
coefficients ω̃μ

αν for flat indices. From now on, we will

denote this full covariant derivative operator by ∇̃μ. By
construction, the frame fields are covariantly constant,
satisfying

∇̃νẽμα ¼ 0 ¼ ∇̃νẽαμ: ð101Þ

Then for any vector Vμ, we have

∇̃νVα ¼ ẽαμ∇̃νVμ; ð102Þ

so that the frame fields can be used to change indices without
having to introduce an extra derivative term.
With the frame fields on hand, we can calculate the

coefficients of the TW spin connection using Eq. (99).
Recall the TW connection coefficients originally presented
in Eq. (22):

Γ̃a
bc ¼ Πa

bc;

Γ̃λ
bc ¼ λDbc;

Γ̃a
λb ¼ Γ̃a

bλ ¼
1

λ
δab: ð103Þ

We simply need to plug these coefficients and the frame
fields into Eq. (99) to get the TW spin coefficients that we
desire. For example, if a; b ≠ 5 and μ ≠ λ (which aligns
with our chosen index conventions), we have

ω̃abm ¼ ð∂mẽnb þ Γ̃n
ρmẽρbÞẽcnηac

þ ð∂mẽλb þ Γ̃λ
ρmẽρbÞẽcληac

þ ð∂mẽnb þ Γ̃n
ρmẽρbÞẽ5nηa5

þ ð∂mẽλb þ Γ̃λ
rmẽrbÞẽ5ληa5; ð104Þ

and since ηa 5 ¼ 0 and ẽcλ ¼ 0, this reduces to
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ω̃abm ¼ ð∂mẽnb þ Γ̃n
ρmẽρbÞẽcnηac

¼ ð∂menb þ Γn
rmerb þ δnrαmerb − δnmΔrerbÞecnηac

¼ ωabm þ αmηab þ erbecmηacΔr; ð105Þ

where ωa bm (without a tilde) is the coefficient of the spin
connection for the underlying spacetime connection Γn

pm.
Thus, we see how the TW spin connection coefficients
ω̃a bm are offset from the spacetime spin connection
coefficients ωabm for a; b ≠ 5. Below, we present the full
list of independent TW spin connection coefficients:

ω̃abm ¼ ωabm þ αmηab − erbecmηacΔr;

ω̃abλ ¼
1

λ
ηab;

ω̃a5m ¼ ηabecm
1

λ0
;

ω̃5 bm ¼ −λ0epbðDpm − ∂mgp þ Γn
pmgn þ αmgm − ΔmgpÞ;

ω̃a5λ ¼ ω̃5 b λ ¼ ω̃5 5m ¼ 0;

ω̃5 5 λ ¼ −
1

λ
: ð106Þ

In Eqs. (105) and (106), we have explicitly written out Πν
ρμ

in terms of a member of the equivalence class, Γa
bc and its

trace αa. This allows us to see the relationship to the spin
connection onM. It is clear that ω̃a b ρ is not antisymmetric
in a and b.

B. The spinor connection

Let ΨðxÞ and Ψ̄ðxÞ be a spinor field and its Pauli adjoint,
respectively representing a fermion and its antipartner on
the manifoldN . Then the covariant derivative acting on the
spinor is

∇̃μ ¼ ∂μ þ Ω̃μ; ð107Þ

where

Ω̃μ ¼
1

4
ω̃α β μγ̃

αγ̃β; ð108Þ

and

∇̃μΨ ¼ ∂μΨþ Ω̃μΨ ¼ ∂μΨþ 1

4
ω̃α β μγ̃

αγ̃βΨ: ð109Þ

Similarly,

∇μΨ̄ ¼ ∂μΨ̄ − Ψ̄Ω̃μ ¼ ∂μΨ̄ −
1

4
ω̃α β μΨ̄γ̃αγ̃

β: ð110Þ

The spin connection in Eqs. (108) and (109) have in general
both symmetric and antisymmetric components in their flat

indices a, b. This is because the connection Γ̃μ
νρ on N is

not a metric compatible connection, since ∇̃ cannot be
made metric compatible. The enveloping algebra of the
gamma matrices is thus

γ̃αγ̃β ¼ −iσα β þ η̃α βI4; ð111Þ

where the Sigma matrices generate the local SOð4; 1Þ
Lorentz algebra on the Thomas cone, i.e.,

½σα β; σμ ν� ¼ −2iðηαμσβ ν þ ηβ νσα μ − ηα νσβ μ − ηβ μσα νÞ:
ð112Þ

The ω̃½α β�μ therefore correspond to gauge fields for the local
Lorentz transformation, while the ω̃ðα βÞμ generate a trans-

lation on the fermions to their tensor densities. Let us write
Ωμ ¼ ΩS

μ þΩA
μ , such that the symmetric component is

Ω̃S
ρ ¼ ω̃ðα βÞρη̃

α β ¼ ðdþ 1Þω̃ρ ð113Þ

and the expected SO(4,1) connection is

Ω̃A
ρ ¼ −iω̃½α β�ρσ̃

α β: ð114Þ

In Eq. (113), the space-time component of this Abelian
connection is Γa

ac ≡ Γc. In differential geometry, such a
term appears in the presence of weighted spinors [42] that
transform relative to an unweighted spinor ϕ as

ϕvw ¼ detðgÞðvI4þwγ5Þ
2 ϕ ð115Þ

in four dimensions. The spinor ψvw is said to have weight
ðvI4 þ wγ5Þ. For these weighted spinors, the spin con-
nection is augmented to be [42]

Ωm → Ωm þ ðvI4 þ wγ5ÞΓm: ð116Þ

We use this to define spinor representations (1
2
integer spin)

on the Thomas cone. First, we remark that on the Thomas
cone γ5 is an invariant tensor since

λ0γ
5 ¼ ϒα1ϵα1���α5γ

α2 � � � γα5 ;

where ϒν ¼ ẽνμϒμ. Since λ → λjJj −1dþ1, we can expect
weighted spinor representations on the Thomas cone to be

Ψðxa; λÞ ¼
�
λ

λ0

�ðdþ1Þ
2

ðvI4þwγ5Þ
ϕðxaÞ ð117Þ

and
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Ψ̄ðxa; λÞ ¼ ϕ̄ðxaÞ
�
λ

λ0

�
−ðdþ1Þ

2
ðvI4þwγ5Þ

: ð118Þ

Note that

�
λ

λ0

�
M
¼ eðlogð

λ
λ0
ÞÞM

for a matrix M and

λ
∂
∂λ

�
λ

λ0

�
M
¼ M

�
λ

λ0

�
M
: ð119Þ

C. The gauge invariant TW Dirac action

Equation (109) is the general expression for the covariant
derivative of a spinor field. For the TW connection, we will
use the spin connection coefficients given by Eq. (106) and
decompose the connection into its chiral and nonchiral
parts. This will illuminate the nature of the TW spinor
connection on M. With this, =∇ becomes

=̃∇Ψ ¼ γ̃α∇̃αΨ ¼ γ̃m∂mΨþ γ̃λ∂λΨ

þ 1

4
ðγ̃mω̃a bmγ̃

aγ̃b þ γ̃λω̃ab λγ̃
aγ̃b

þ γ̃mω̃5bmγ̃
5γ̃b þ γ̃λω̃55λγ̃

5γ̃5ÞΨ: ð120Þ

And for Ψ̄,

=̃∇ Ψ̄ ¼ ð∇̃αΨ̄Þγ̃α ¼ ∂mΨ̄γ̃m þ ∂λΨ̄γ̃λ

−
1

4
Ψ̄ðω̃a bmγ̃

aγ̃bγ̃m þ ω̃a b λγ̃
aγ̃bγ̃λ

þ ω̃5bmγ̃
5γ̃bγ̃m þ ω̃55λγ̃

5γ̃5γ̃λÞ: ð121Þ

Evaluating these with the coefficients from Eq. (106)
yields

=̃∇Ψ ¼ =∇Ψ − i
λ

λ0
γ5ð∂λΨÞ − λgmγmð∂λΨÞ

þ 1

4
½dðαm − gmÞ þ dαm − gm�γmΨ

−
1

4
i

�
λ0ðDrm − ∂mgr þ Γn

rmgn þ αmgr − ΔmgrÞgmr

þ 1

λ0
ðdþ 1Þ

�
γ5Ψ; ð122Þ

while

=̃∇ Ψ̄ ¼ =∇Ψ̄þ i
λ

λ0
ð∂λΨ̄Þγ5 þ λgmð∂λΨ̄Þγm

−
1

4
½dðαm − gmÞ þ dαm − gm�Ψ̄γm

þ 1

4
i

�
λ0ðDrm − ∂mgr þ Γn

rmgn þ αmgr − ΔmgrÞgmr

þ 1

λ0
ðdþ 1Þ

�
Ψ̄γ5: ð123Þ

Here, ∇m (without a tilde) is the spinor covariant derivative
operator associated with the space-time connection Γm

nr.
Using this decomposition, we write Eq. (122) as

=̃∇Ψ ¼ =∇Ψ − i
λ

λ0
γ5ð∂λΨÞ − λgmγmð∂λΨÞ

þ Bmγ
mΨ − i

1

4
Ξγ5Ψ; ð124Þ

where we have defined Bm and Ξ as

Bm ≡ 1

4
ðdðαm − gmÞ þ dαm − gmÞ; ð125Þ

Ξ≡ λ0ðDrm − ∂mgr þ Γn
rmgn þ αmgr − ΔmgrÞgmr

þ 1

λ0
ðdþ 1Þ: ð126Þ

The TW Dirac Lagrangian density that yields the Dirac
equation

i=̃∇Ψ − ðM þ iMχγ
5ÞΨ ¼ 0; ð127Þ

for a mass M and a chiral mass Mχ , may be written
explicitly in covariant and self-conjugate form as

LTWD ¼ i
2

ffiffiffiffiffiffiffi
jGj

p
GμνðΨ̄γ̃μð∂ν þ Ω̃νÞΨ − ð∂νΨ̄ − Ψ̄Ω̃νÞγ̃μΨÞ

−
ffiffiffiffiffiffiffi
jGj

p
ðMΨ̄Ψþ iMχΨ̄γ5ΨÞ

−
i
2
Ψ̄∇̃μð

ffiffiffiffiffiffiffi
jGj

p
γ̃μÞΨ: ð128Þ

The last term arises because the metric and covariant
derivative operator are not compatible since

∇̃μγ̃
μ ¼ ∂μγ̃

μ þ Γ̃μ
μαγ̃

α þ ½Ω̃α; γ̃α� ð129Þ

does not vanish. The commutator term is precisely where
the field Dmn resides. We can rewrite this so that the field
equations on Ψ (or Ψ̄) are explicit if we integrate by parts
the derivative term on Ψ̄. Then
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−
i
2

ffiffiffiffiffiffiffi
jGj

p
Gμνð∂νΨ̄Þγ̃μΨ ¼ −∂ν

�
i
2

ffiffiffiffiffiffiffi
jGj

p
GμνΨ̄γ̃μΨ

�

þ Ψ̄∂ν

�
i
2

ffiffiffiffiffiffiffi
jGj

p
Gμνγ̃μΨ

�

ð130Þ

¼ −∂λ

�
i
2

ffiffiffiffiffiffiffi
jGj

p
GλλΨ̄γ̃λΨ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

total λ derivative

− ∂a

�
i
2

ffiffiffiffiffiffiffi
jGj

p
GabΨ̄γ̃bΨ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

total space-time derivative

þ Ψ̄∂ν

�
i
2

ffiffiffiffiffiffiffi
jGj

p
γ̃νΨ

�
: ð131Þ

The total space-time derivative may be eliminated on the
boundary. However the total λ derivative will in general be
finite and could contribute to the field equations. Let us
examine this term more carefully. One sees that

∂λ

�
i
2

ffiffiffiffiffiffiffi
jGj

p
GλλΨ̄γ̃λΨ

�
¼ ∂λ

�
i
2

ffiffiffiffiffiffiffi
jGj

p
Ψ̄γ̃λΨ

�
ð132Þ

¼ −∂λ

�
i
2

λ0
λ

ffiffiffiffiffi
jgj

p
Ψ̄

λ

λ0
ðiγ5 þ λ0gmγmÞΨ

�
ð133Þ

¼ i
2

ffiffiffiffiffi
jgj

p ∂λðiΨ̄γ5Ψþ λ0gmΨ̄γmΨÞ: ð134Þ

From the spinor projective representations in Eqs. (117)
and (118), this will vanish when w ¼ 0, eliminating any
chiral density terms. We also observe that the term gmΨ̄γmΨ
would vanish if the coordinates were gauge fixed so that
gm ¼ 0 (constant volume). Had we used a constant volume
metric, this condition would have gone unnoticed. This also
guarantees that the action is a scalar. The remaining term in
Eq. (131) leads to the last summand in the covariant
Lagrangian density, Eq. (128). With this, we write the
Lagrangian which realizes the Dirac equation on Ψ as

LTWD ¼ λ0
λ

ffiffiffiffiffi
jgj

p �
iΨ̄=∇Ψþ λ

λ0
Ψ̄γ5∂λΨ − iλgmΨ̄γm∂λΨ

�

þ λ0
λ

ffiffiffiffiffi
jgj

p
ðiBmΨ̄γmΨþ ΞΨ̄γ5ΨÞ

−
λ0
λ

ffiffiffiffiffi
jgj

p
ðMΨ̄Ψþ iMχΨ̄γ5ΨÞ: ð135Þ

Had we wished to add a Yang-Mills potential to the
action, we would have a term

LYM ¼
ffiffiffiffiffiffiffi
jGj

p
Ψ̄γ̃μÃμΨ

¼
ffiffiffiffiffiffiffi
jGj

p �
−i

1

λ0
Ψ̄γ5Ψþ Ψ̄γaAaΨ

�
; ð136Þ

where a chiral mass term MA ¼ 1
λ0
is induced. This follows

since the corresponding projective one-form for the matrix
valued potential is

Ãμ ¼
�
Aa þ ga1;

1

λ
1

�
; ð137Þ

where 1 is in the center of the algebra. Then, using Eq. (73),
we have the result

γ̃μÃμ ¼ −i
1

λ0
γ51þ γaAa: ð138Þ

In the Lagrangian density, Eq. (135), we have left terms
with explicit λ dependence of Ψ. Following Eqs. (117) and
(118), along with the requirement that the action be a scalar,
we have

Ψðx; λÞ ¼
�
λ

λ0

�v
2
ðdþ1Þ

ϕðxaÞ;

Ψ̄ðx; λÞ ¼
�
λ

λ0

�
−v
2
ðdþ1Þ

ϕ̄ðxÞ; ð139Þ

where v is the density weight which determines precisely
how Ψ will transform under λ → λ0. In the TW Dirac
LagrangianLTWD of Eq. (135), this representation ofΨwill
only affect the terms

λ

λ0
Ψ̄γ5ð∂λΨÞ − iλgmΨ̄γmð∂λΨÞ

¼ vðdþ 1Þ
2λ0

Ψ̄γ5Ψ − i
v
2
ðdþ 1ÞgmΨ̄γmΨ ð140Þ

so that the TW Dirac Lagrangian can be reduced to a
Lagrangian on ψ with v a weight parameter

LTWD ¼ λ0
λ

ffiffiffiffiffi
jgj

p
ðiϕ̄ =̃∇ϕ −Mϕ̄ϕÞ

¼ λ0
λ

ffiffiffiffiffi
jgj

p
ðiϕ̄ =∇ϕ −Mϕ̄ϕÞ

þ λ0
λ

ffiffiffiffiffi
jgj

p �
1

4
½dðαm − gmÞ þ dαm − gm

− 2gmvðdþ 1Þ�iϕ̄γmϕ

þ 1

4

�
λ0ðDrm − ∂mgr þ Γn

rmgn þ αmgr

− ΔmgrÞgmr þ 1

λ0
ðdþ 1Þ

þ 2
vðdþ 1Þ

λ0

�
ϕ̄γ5ϕ

�
: ð141Þ
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A special choice of the weight v ¼ − 1
2
eliminates the

induced chiral mass term (in the absence of gauge fields)
and also eliminates the metric density contribution in the
coupling to iϕ̄γmϕ.
The only λ dependence is in the overall coefficient

λ0
λ

ffiffiffiffiffijgjp
. As we will discuss in Sec. VIII, we may write

l≡ λ=λ0 to be a dimensionless scale. By writingffiffiffiffiffiffiffijGjp ¼ 1
l

ffiffiffiffiffijgjp
, we have

Z
dλ

λ0
λ
¼ λ0

Z
dl

1

l
¼ λ0 logðlf=liÞ;

where li and lf are original and final length scales. With
this, we can make a field redefinition of the fermions ϕ and
define ψ ¼ ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ0 logðlf=liÞ

p
so that the fermions ψ have

the dimensions of four-dimensional fermions. The four-
dimensional TW Dirac action becomes

STWD¼
Z

ddx
ffiffiffiffiffi
jgj

p
ðiψ̄ =∇ψ −Mψ̄ψÞ

þ
Z

ddx
ffiffiffiffiffi
jgj

p �
1

4
½dðαm−gmÞþdαm−gm

−2gmvðdþ1Þ�iψ̄γmψ

þ1

4

�
λ0ðDrm−∂mgrþΓn

rmgnþαmgr−ΔmgrÞgmr

þ 1

λ0
ðdþ1Þþ2

vðdþ1Þ
λ0

�
ψ̄γ5ψ

�
: ð142Þ

We see that λ0 still sets the chiral scale due to its presence in
the last two summands of the action.
In the discussion following Eq. (75), we noted that we

should expect a dynamical theory of Dmn to be sensitive to
chirality of fermions. This expectation is realized by the
TW Dirac Lagrangian, Eq. (135), due to the presence of γ5.
The theory is therefore chiral in this sense. We remark that
one can still eliminate d degrees of freedom by using a
coordinate gauge choice. For example, we could set ga ¼ 0
(constant volume gauge for the metric), αa ¼ 0 (constant
volume for the connection) or even ga ¼ αa (compatibility
of condition) in Eq. (142). However, no gauge choice will
eliminate the Dab fermion interaction.

VIII. GAUGE INVARIANT TW ACTION

The TW action was introduced in [20] in order to give
dynamics to the diffeomorphism field. There, the corre-
spondence with the coadjoint orbits of the Virasoro algebra
was determined in the background of the gauged fixed 2D
metric of Polyakov [31] that had constant volume.
Similarly in [29], the interest was to study the diffeo-
morphism field as a primeval source for dark energy in a
Friedman-Lemaitre-Robertson-Walker background in con-
stant volume coordinates. As we have just seen in the Dirac

action, writing the TW action in a gauge invariant form
reveals physically interesting structure. From [20] the TW
dynamical action is

S ¼ SPEH þ SPGB ð143Þ

where the projective Einstein-Hilbert action is

SPEH ¼ −
1

2κ̃0λ0

Z
dλddx

ffiffiffiffiffiffiffi
jGj

p
Ka

bcdðδcagbdÞ ð144Þ

and the projective Gauss-Bonnet action is

SPGB¼−
J̃0c
λ0

Z
dλddx

ffiffiffiffiffiffiffi
jGj

p
ðKα

βγρKα
βγρ−4KαβKαβþK2Þ:

ð145Þ

We remark that both terms are generalized Gauss-Bonnet
terms and one could presumably continue adding gener-
alized Gauss-Bonnet terms for higher interaction without
compromising causality in the metric field equations [33].
Recall that the components of the TW curvature tensor
Kα

βγρ are given by

Ka
bcd ¼ Ra

bcd þ δacDdb − δadDcb

¼ Ra
bcd þ δacPdb − δadPcb − δabP½cd�;

Kλ
bcd ¼ λð∂ ½cDd�b þ Πa

b½dDc�aÞ
¼ λð∂ ½cPd�b þ Γa

b½dPc�a þ α½dPc�b
þ αbP½cd� − Ra

bcdαaÞ;

K̆λ
cab ≡ 1

λ
Kλ

cab; ð146Þ

where again

αa ¼ −
1

dþ 1
Γe

ea;

Πa
bc ¼ Γa

bc þ δabαc þ δacαb;

Ra
bcd ¼ ∂cΠa

db − ∂dΠa
cb þ Πa

ceΠe
db − Πa

deΠe
cb;

Ra
bcd ¼ ∂cΓa

db − ∂dΓa
cb þ Γa

ceΓe
db − Γa

deΓe
cb;

Pbc ¼ Dbc − ∂bαc þ Γe
bcαe þ αbαc ð147Þ

for any affine connection Γa
bc. The nonzero components of

the TW Ricci tensor Kαβ are

Kbd ¼ Rbd þ ðd − 1ÞDbd ¼ Rbd þ dPdb − Pbd: ð148Þ

Then the projective Gauss-Bonnet action SPGB may be
decomposed as

SPGB ¼ SPGB1 þ SPGB2 þ SPGB3;
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where

SPGB1 ¼ −
J̃0c
λ0

Z
ddxdλ

ffiffiffiffiffiffiffi
jGj

p
Ka

bcdKe
fgh

× ðBae
bfcgdh − λ0

2gagegbfgcggdhÞ;

SPGB2 ¼ J̃0cλ0

Z
ddxdλ

ffiffiffiffiffiffiffi
jGj

p
K̆bcdK̆fghðgbfgcggdhÞ;

SPGB3 ¼ 2J̃0cλ0

Z
ddxdλ

ffiffiffiffiffiffiffi
jGj

p
Ka

bcdK̆fghðgagbfgcggdhÞ;

ð149Þ

and we have defined the Gauss-Bonnet operator as

Gαᾱ
ββ̄γγ̄ρρ̄ ¼ GαᾱGββ̄Gγγ̄Gρρ̄ − 4δγαδ

γ̄
ᾱGββ̄Gρρ̄

þ δγαδ
γ̄
ᾱGβρGβ̄ ρ̄ ð150Þ

and for convenience, in terms of the metric on M,

Baā
bb̄gḡrr̄ ¼ gaāgbb̄ggḡgrr̄ − 4δgaδ

ḡ
āgbb̄grr̄

þ δgaδ
ḡ
āgbrgb̄ r̄: ð151Þ

Finally, we can write the full dynamical action as

S ¼ SPEH þ SPGB1 þ SPGB2 þ SPGB3: ð152Þ

This form of the action is convenient for computing field
equations. The curvature componentsKa

bcd and K̆bcd carry
all of the Πa

bc and Dbc (equivalently Γa
bc and Pbc)

dependence, while the metric tensor gab appears elsewhere
in each part of the action, including in the Gauss-Bonnet
operator B.
To illustrate explicit general coordinate invariance, it is

also possible to decompose the action as

S ¼
�Z

1

λ
dλ
��

−
1

2κ̃0

Z
ddx

ffiffiffiffiffi
jgj

p
K − J̃0c

Z
ddx

ffiffiffiffiffi
jgj

p
ðKa

bcdKa
bcd − 4KabKab þK2Þ

þ J̃0cλ02
Z

ddx
ffiffiffiffiffi
jgj

p
ðgaKa

bcd þ K̆bcdÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
tensor

ðgeKe
fgh þ K̆fghÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
tensor

gbfgcggdh
�
: ð153Þ

Equations (146) and (148) demonstrate that Ka
bcd, Kab,

and K are tensors on the spacetime manifold M.
Furthermore, we introduce Kbcd ≡KbcdðgÞ as the follow-
ing rank-three tensor on M

Kbcd ≡ gaKa
bcd þ K̆bcd

¼ ðga − αaÞRa
bcd þ ðgc − αcÞPdb − ðgd − αdÞPcb

− ðgb − αbÞP½cd� þ∇cPdb −∇dPcb; ð154Þ

where ∇a is the covariant derivative operator associated
with the spacetime connection Γa

bc. Since ga and αa have
the same coordinate transformation law, we see that Kbcd is
indeed a tensor onM. This demonstrates that the action is a
scalar as well as projectively invariant.
Owing to Eq. (154), all the λ dependence appears as

overall coefficients. We will use the interpretation of the
coupling constants as in [29] to write them in terms of scale
dependent quantities. Let l≡ λ=λ0 be a dimensionless
scale. Since only

R
dλ 1

λ appears in the overall coupling, we

again write
ffiffiffiffiffiffiffijGjp ¼ 1

l

ffiffiffiffiffijgjp
. Then by integrating over l, we

can rewrite the action in terms of coupling constants that
have familiar interpretations

1

κ̃0

Z
lf

li

dl
1

l
¼ logðlf=liÞ

κ̃0
⇒ κ0 ≡ κ̃0

logðlf=liÞ
; ð155Þ

J̃0

Z
lf

li

dl
1

l
¼ J̃0 logðlf=liÞ ⇒ J0 ≡ J̃0 logðlf=liÞ:

ð156Þ

Thus a natural scaling of the gravitational coupling constant
κ0 and angular momentum parameter J0 occurs as we move
from one length scale to another. In this way, projective
geometry has a potential renormalization group interpre-
tation. This link is under further investigation. The char-
acteristic projective length scale (inverse mass scale) is set
by λ0. With this, we can rewrite the TW action as

S¼−
1

2κ0

Z
ddx

ffiffiffiffiffi
jgj

p
KþcJ0λ02

Z
ddx

ffiffiffiffiffi
jgj

p
KbcdKbcd

−cJ0

Z
ddx

ffiffiffiffiffi
jgj

p
ðKa

bcdKa
bcd−4KabKabþK2Þ ð157Þ

whereKbcd andKa
bcd have had the altitudes of their indices

flipped via the metric and inverse metric on M

Kbcd ¼ gbfgcggdhKfgh;

Ka
bcd ¼ gamgbfgcggdhKm

fgh: ð158Þ
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IX. THE COVARIANT FIELD EQUATIONS

In the spirit of Palatini [32], we will treat the metric
tensor gab and Γ̃α

βγ as independent degrees of freedom.
This fits the framework of TW gravity, since the TW
connection is to be thought of as a connection over the
space of equivalence classes of connections and is not
naturally tied to a particular metric. The metric Gμν serves
only to maintain general coordinate invariance on N , just
asDab exists in order to make the connection ∇̃μ covariant.
The covariant derivative is a projective invariant that is
constructed only from projectively invariant quantities such
as Πa

bc and λ. However, as one sees in Eq. (22), the only
degrees of freedom that are allowed to fluctuate areDab and
Πa

bc. Therefore we will only need the field equations for
Πa

bc, Dab, and gab. We note that λ does not fluctuate and
only sets the volume scale.
We consider a total action of the form

Stotal ¼ Sþ Smatter; ð159Þ

where here S is the TWaction from Eq. (143) and Smatter are
contributions from other sources. For example the Dirac
action for each species of fermions will be in the form of

Eq. (142) and could be accompanied by an appropriate
gauge field action for Yang-Mills fields. Other matter
contributions may also be considered. In what follows,
however, we will derive the field equations from S only
with the understanding that the matter actions will also
contribute nontrivially to these equations. For the field
equations of the metric, Sec. IX C, we will reinstate the
matter contribution through the energy-momentum tensor,
Θmatter

pq . In Sec. IX D we will demonstrate how one may use
a Palatini field, Ca

bc, to utilize a metric compatible
connection and recover the usual Einstein field equations
with a divergence free energy-momentum tensor. All the
field equations in this section will be summarized in the
Appendix B.

A. Equations of motion for Πa
bc

In order to simplify the computation of the field
equations, we will use F to denote an object with the
correct valence to form a scalar with another given object.
For example, we might write an expression such as
Ka

bcdF , where we would understand that F is an object
with components F a

bcd such that F forms a scalar upon
tensor multiplication with Ka

bcd.

With this, we compute the field equations for Πa
bc as

S ¼
Z

Ka
bcdF

⇒ δS ¼
Z

ðδKa
bcdÞF

¼
Z

δðRa
bcd þ δacDdb − δadDcbÞF

¼
Z

δð∂cΠa
db − ∂dΠa

cb þ Πa
ceΠe

db − Πa
deΠe

cbÞF

¼
Z

ð−δalδmdδ
n
b∂cF þ δalδ

m
cδ

n
b∂dF þ ðδalδmcδ

n
eΠe

db þ δelδ
m
dδ

n
bΠa

ce − δalδ
m
dδ

n
eΠe

cb

− δelδ
m
cδ

n
bΠa

deÞF ÞδΠl
mn ð160Þ

and

S ¼
Z

K̆cabF

⇒ δS ¼
Z

ðδK̆cabÞF

¼
Z

δð∂ ½aDb�c þ Πd
c½bDa�dÞF

¼
Z

ððδdlδmcδ
n
bDad − δdlδ

m
cδ

n
aDbdÞF ÞδΠl

mn: ð161Þ

These two variations lead to the full equations of motion forΠa
bc that are associated with the appropriate objectF . We have
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δSPEH ¼ −
1

2κ0

Z
ddx½−∂lð

ffiffiffiffiffi
jgj

p
gnmÞ þ δml∂eð

ffiffiffiffiffi
jgj

p
gneÞ

þ
ffiffiffiffiffi
jgj

p
ðδmlΠn

dbgbd þ Πa
algnm

− Πn
lbgbm − Πm

dlgndÞ�δΠl
mn; ð162Þ

where the striked-out terms vanish because Πa
bc as well as its variation δΠa

bc are traceless. The remaining contribution to
the field equations would vanish if Πa

bc were the traceless Levi-Civita connection of the metric gab, consistent with the
original Palatini equations [32]. The next contributions are

δSPGB1 ¼ −2J0c
Z

ddx½∂eð
ffiffiffiffiffi
jgj

p
Ka

bcdðBla
nbmced − Bla

nbecmdþλ0
2glgagnbgecgmd − λ0

2glgagnbgmcgedÞÞ

þ
ffiffiffiffiffi
jgj

p
Ka

bcdðΠn
efðBla

fbmced − Bla
fbecmdþλ0

2glgagfbgecgmd − λ0
2glgagfbgmcgedÞ

þ Πe
flðBea

nbfcmd − Bea
nbmcfdþλ0

2gegagnbgmcgfd − λ0
2gegagnbgfcgmdÞÞ�δΠl

mn; ð163Þ

δSPGB2 ¼ 4J0cλ02
Z

ddx½
ffiffiffiffiffi
jgj

p
K̆fghDclgmfgcggnh�δΠl

mn; ð164Þ

δSPGB3 ¼ 4J0cλ02
Z

ddx½∂dð
ffiffiffiffiffi
jgj

p
K̆fghglgnfgmggdhÞþ

ffiffiffiffiffi
jgj

p
K̆fghðglgbfgmggdhΠn

db þ gagnfgcggmhΠa
clÞ

þ
ffiffiffiffiffi
jgj

p
Ka

bcdgagbmgcggdnDgl�δΠl
mn: ð165Þ

By defining

K̂a
bgr ¼ Kā

b̄ ḡ r̄Gaā
bb̄½gjḡjr�r̄ and gβ ¼

�
gb;

1

λ

�
; ð166Þ

where the sums are restricted to M coordinates, the
variation can be written succinctly as

δS ¼ 0 ¼
Z

ddx
ffiffiffiffiffi
jgj

p �
Ea

mn −
1

dþ 1
δa

ðmEb
nÞb

�
δΠa

mn;

ð167Þ

Ea
mn ¼ Ea

nm ¼ 1

2κ0J0c
∇̆að

ffiffiffiffiffi
jgj

p
gmnÞ − ∇̆cð

ffiffiffiffiffi
jgj

p
K̂a

ðmnÞcÞ

þ 2λ20∇̆cð
ffiffiffiffiffi
jgj

p
gaK̆

ðmnÞcÞ
− 2λ20

ffiffiffiffiffi
jgj

p
KðmnÞcDca: ð168Þ

Here, ∇̆a is the derivative operator with respect to the
fundamental projective invariant Πl

mn with action as
follows:

∇̆d

ffiffiffiffiffi
jgj

p
¼ ∂d

ffiffiffiffiffi
jgj

p
− Πa

ad

ffiffiffiffiffi
jgj

p
¼ ∂d

ffiffiffiffiffi
jgj

p
; ð169Þ

∇̆dð
ffiffiffiffiffi
jgj

p
K̂a

mncÞ
¼ ð∂d

ffiffiffiffiffi
jgj

p
ÞK̂a

mnc þ
ffiffiffiffiffi
jgj

p ∇̆dK̂a
mnc

¼ ð∂d

ffiffiffiffiffi
jgj

p
ÞK̂a

mnc þ
ffiffiffiffiffi
jgj

p
ð∂dK̂a

mnc − Πf
adK̂

mnc
f Þ

þ
ffiffiffiffiffi
jgj

p
ðΠm

fdK̂a
fnc þ Πn

fdK̂
mfc
a þ Πc

fdK̂a
mnfÞ:

ð170Þ

Thus, the field equations for Πa
mn are

Ea
mn −

1

dþ 1
δa

ðmEb
nÞb ¼ 0: ð171Þ

We note that if the connection were chosen to be
compatible with the metric gab, then in the language of
tractor calculus [28], Eq. (171) would imply that the
projective curvature is Yang-Mills [26].

B. Equations of motion for Dbc

To find the field equations for Dbc, we proceed in the
same manner as we did for Πa

bc. The contributions are of
the form
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S ¼
Z

Ka
bcdF

⇒ δS ¼
Z

ðδKa
bcdÞF

¼
Z

δðRa
bcd þ δacDdb − δadDcbÞF

¼
Z

½ðδacδpdδqb − δadδ
p
cδ

q
bÞF �δDpq ð172Þ

and

S ¼
Z

K̆bcdF

⇒ δS ¼
Z

ðδK̆bcdÞF

¼
Z

δð∂ ½cDd�b þ Πe
b½dDc�eÞF

¼
Z

½−δpdδqb∂cF þ δpcδ
q
b∂dF

þðΠq
bdδ

p
c − Πq

bcδ
p
dÞF �δDpq: ð173Þ

Again, by assigning the appropriate object F to each term
we have

δSPEH ¼ −
1

2κ0

Z
ddx

ffiffiffiffiffi
jgj

p
½ðd − 1Þgqp�δDpq; ð174Þ

δSPGB1 ¼ −2J0c
Z

ddx
ffiffiffiffiffi
jgj

p
Ke

fgh½Bce
qfcgph − Bce

qfpgch

þ2λ0
2gcgegqfgpggch�δDpq; ð175Þ

δSPGB2 ¼ 4J0cλ02
Z

ddx½∂cð
ffiffiffiffiffi
jgj

p
K̆fghgqfgpggchÞ

þ
ffiffiffiffiffi
jgj

p
K̆fghΠq

bcgbfgpggch�δDpq; ð176Þ

δSPGB3 ¼ 4J0λ02
Z

ddx½
ffiffiffiffiffi
jgj

p
K̆fghgagqfgaggph

þ ∂gð
ffiffiffiffiffi
jgj

p
Ka

bcdgagbqgcpgdgÞ
þ

ffiffiffiffiffi
jgj

p
Ka

bcdgagbfgcpgdgΠq
fg�δDpq: ð177Þ

Then the variation with respect to δDpq yields

−
1

2κ0J0c

ffiffiffiffiffi
jgj

p
ðd − 1Þgpq þ

ffiffiffiffiffi
jgj

p
K̂c

ðpqÞc

þ 2λ20∇̆gð
ffiffiffiffiffi
jgj

p
KðpqÞgÞ − 2λ20

ffiffiffiffiffi
jgj

p
gcK̆

ðpqÞc ¼ 0: ð178Þ

Note the derivative of KðpqÞg, which makes the field
equations second-order differential equations in Dbc.

C. Equations of motion for gbc
Finally, we will find the field equations for the spacetime

metric tensor gbc. For the sake of familiarity, we will write
the TW action S, Eq. (157), as

S ¼ −
1

2κ0

Z
ddx

ffiffiffiffiffi
jgj

p
gabRðΓÞab þ

Z
ddx

ffiffiffiffiffi
jgj

p
LS ð179Þ

so as to separate the Einstein-Hilbert-Palatini action from
the rest of the action. The LS is the remaining part of the
Lagrangian density on M, viz.,

LS ¼ −
1

2κ0
ðd − 1ÞP þ cJ0λ02KbcdKbcd

− cJ0ðKa
bcdKa

bcd − 4KabKab þK2Þ: ð180Þ

We have explicitly written the Ricci tensor as RðΓÞab to
emphasize the independence of the connection from the
metric. In what follows we write R≡ RðΓÞabgab and
Rab ≡ RðΓÞab. The total action that contains the TW action
and any matter fields is written as

Stotal ¼ −
1

2κ0

Z
ddx

ffiffiffiffiffi
jgj

p
gabRab þ

Z
ddx

ffiffiffiffiffi
jgj

p
LS

þ
Z

ddx
ffiffiffiffiffi
jgj

p
Lmatter: ð181Þ

We can define energy-momentum tensors ΘS
pq and Θmatter

pq

from the variation of the action with respect to the inverse
metric gpq, via

δStotal¼
Z ffiffiffiffiffi

jgj
p

ddx

�
1ffiffiffiffiffijgjp δð ffiffiffiffiffijgjp

LSÞ
δgpq

þ 1ffiffiffiffiffijgjp δð ffiffiffiffiffijgjp
LmatterÞ

δgpq

−
1

2κ0

�
δR
δgpq

þ Rffiffiffiffiffijgjp δ
ffiffiffiffiffijgjp

δgpq

��
δgpq¼0: ð182Þ

Then from the Einstein-Palatini equations,

1

2
RðpqÞ −

1

2
Rgpq ¼ κ0ðΘS

pq þ Θmatter
pq Þ; ð183Þ

gives the energy-momentum tensors defined as

ΘS
pq ¼

2ffiffiffiffiffijgjp δð ffiffiffiffiffijgjp
LSÞ

δgpq
and

Θmatter
pq ¼ 2ffiffiffiffiffijgjp δð ffiffiffiffiffijgjp

LmatterÞ
δgpq

; ð184Þ

with κ0 ¼ 8πG
c4 . Because the connection is not compatible

with the metric, the left- and right-hand sides of Eq. (183)
are not separately divergence free. We will address this in
the next subsection.
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More precisely, the energy-momentum tensor, ΘS
pq,

arises from S, by first exposing the Einstein-Palatini tensor
from the action which resides in the SPEH summand of S. It
has the variation

δSPEH¼−
1

2κ0

Z
ddxKa

bcdδ
c
aδð

ffiffiffiffiffi
jgj

p
gbdÞ

¼−
1

2κ0

Z
ddx

ffiffiffiffiffi
jgj

p
Ka

bcdδ
c
a

�
δbiδ

d
j−

1

2
gijgbd

�
ðδgijÞ

¼−
1

2κ0

Z
ddx

ffiffiffiffiffi
jgj

p �
Kij−

1

2
gijK

�
ðδgijÞ

¼−
1

2κ0

Z
ddx

ffiffiffiffiffi
jgj

p ��
Rij−

1

2
gijR

�

−ðd−1Þ
�
Pij−

1

2
Pgij

��
ðδgijÞ ð185Þ

where the Einstein-Palatini tensor is easily recognized.
Continuing to the SPGB1 term, we first find

δð
ffiffiffiffiffi
jgj

p
Bae

bfcgdhÞF ¼
Z ffiffiffiffiffi

jgj
p �

−
1

2
gijBae

bfcgdh

þ δcaδ
g
eδ

b
iδ

d
jgfh þ δcaδ

g
eδ

f
iδ

d
jgbd

− 4δcaδ
g
eδ

b
iδ

f
jgdh − 4δcaδ

g
eδ

d
iδ

h
jgbf

− gaigejgbfgcggdh þ gaeδbiδfjgcggdh

þ gaeδciδgjgbfgdh þ gaeδdiδhjgbfgcg
�
F ðδgijÞ: ð186Þ

We can get part of the variation of SPGB1 by putting a
constant in front of Eq. (186) and plugging in the
appropriate F ¼ Ka

bcdKe
fgh. The other part of the varia-

tion of SPGB1 can be found separately. Altogether, we have

δSPGB1 ¼ −J0c
Z

ddx
ffiffiffiffiffi
jgj

p �
−
1

2
gijBae

bfcgdhKa
bcdKe

fgh

þ 2KijK − 8KibKjdgbd −KiabdKj
adb þKc

idbKcj
db þKca

ibKcaj
b þKcad

i Kcadj

þ λ0
2

�
1

dþ 1
gij∂aðgegbfgcggdhKa

bcdKe
fghÞ

− gagegcggdh
�
1

2
gbfgijKa

bcdKe
fgh þKa

icdKe
jgh þKa

cdiKe
ghj þKa

dicKe
hjg

�	�
ðδgijÞ: ð187Þ

Similarly, variation of SPGB2 is given by

δSPGB2 ¼ J0λ02
Z

ddxδð
ffiffiffiffiffi
jgj

p
gbfgcggdhÞK̆bcdK̆fgh

¼ J0λ02
Z

ddx
ffiffiffiffiffi
jgj

p �
1

2
gijgbfgcggdh þ δciδ

g
jgdhgbf þ δdiδ

h
jgcggbf þ δbiδ

f
jgcggdh

�
K̆bcdK̆fghðδgijÞ

¼ J0λ02
Z

ddx
ffiffiffiffiffi
jgj

p
gcggdh

�
1

2
gbfgijK̆bcdK̆fgh þ K̆cdiK̆ghj þ K̆dicK̆hjg þ K̆icdK̆jgh

�
ðδgijÞ: ð188Þ

Finally, the variation of SPGB3 is given by

δSPGB3 ¼ 2J0λ02
Z

ddxδð
ffiffiffiffiffi
jgj

p
gagbfgcggdhÞKa

bcdK̆fgh

¼ 2J0λ02
Z

ddx
ffiffiffiffiffi
jgj

p �
gagcggdhðKa

icdK̆jghþKa
cdiK̆ghjþKa

dicK̆hjgÞ−
1

2ðdþ1Þgij∂aðgbfgcggdhKa
bcdK̆fghÞ

�
ðδgijÞ:

ð189Þ

Putting this all together defines the TW energy-momentum tensor ΘS
ij as

ΘS
mn ¼ −

d − 1

2κ0
PðmnÞ þ gmn

�
2J0cλ20

�
−

1

dþ 1
∇a þ Δa

�
Ka

bcdKbcd − LS

�

þ 2J0cλ20ðKmcdKn
cd þ 2KbcmKbc

nÞ þ 2J0cð8KmbKb
n − 2KKmnÞ

þ 2J0cðKmbcdKn
bcd −Ka

mcdKan
cd − 2Kabc

mKabcnÞ ð190Þ
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where Kbcd ¼ gaKa
bcd þ K̆bcd and Δa ≡ ga − αa are ten-

sors. This demonstrates that the energy-momentum tensor
is indeed manifestly tensorial on M. Since we have used
the Gauss-Bonnet action to describe dynamics for Dab,
the field equations are second-order differential equations
in gab.

D. Palatini field and metric compatible connection

It may be convenient to solve the field equations with a
connection that is the Levi-Civita connection of a metric.
Here we demonstrate how we may exchange the field
degrees of Πa

bc for a tensor, Ca
bc which we will call the

Palatini field, and a Levi-Civita connection associated with
the metric gab. Given any two connections, say Γa

bc and
Γ̂a

bc, their difference is always a tensor. Define Γ̂a
bc as

the Levi-Civita connection associated with gab so that
∇̂agbc ¼ 0. Then, a Palatini field Ca

bc, can be defined
relative to this Levi-Civita connection for any connection
Γa

bc as

Γa
bc ¼ Γ̂a

bc þ Ca
bc: ð191Þ

Here Ca
bc ¼ Ca

cb as there is no torsion. Similarly for the
projective invariant, Πa

bc, we may write

Πa
bc ¼ Π̂a

bc þ C̃a
bc; ð192Þ

where Π̂a
bc is the projective invariant for the equivalence

class in which Γ̂a
bc is a member and C̃a

bc ≡ Ca
bc−

1
dþ1

ðδacCb þ δabCcÞ, is trace-free and symmetric in its last
two indices. Here Cb ≡ Ca

ba.
Using the Palatini field and the Levi-Civita connection,

the Riemann curvature tensor for Γa
bc may be written as

Rm
nab ¼ R̂m

nab þ ∇̂aCm
nb − ∇̂bCm

na

þ Cr
nbCm

ar − Cr
naCm

br ð193Þ

≡R̂m
nab þQm

nab: ð194Þ

Similarly,

Rab ¼ R̂ab þQab; ð195Þ

where Qab ≡Qm
amb and Q ¼ gabQab. Then the LHS of

Eq. (183) may be written as

1

2
RðabÞ−

1

2
Rgab¼ R̂ab−

1

2
R̂gabþ

1

2
QðabÞ−

1

2
Qgab: ð196Þ

In leu of the field variables fgab;Πr
na;Dabg, the

field equations may now be solved using the fields
fgab; Cr

na;Dabg and Eq. (183) becomes

R̂pq −
1

2
R̂gpq ¼ κ0ðΘS

pq þ Θmatter
pq Þ þ 1

2
Qgpq −

1

2
QðpqÞ:

ð197Þ

In this way, both sides of Eq. (197) are separately
divergence-free with respect to the Levi-Civita connection.
One sees that both Cr

nb and Dab act as geometric sources
for the metric compatible Riemannian geometry in general
relativity. When Pab ¼ 0 and Cr

nb ¼ 0 this becomes the
usual theory of general relativity. Note in this case, Eq. (53)
becomes

Dbc ¼ ∂bgc − Γ̂e
bcge − gbgc; ð198Þ

which can be eliminated by a choice of coordinates
(volume preserving). The analogy of Dab with vector
potentials Aa in Yang-Mills theories [16,19,43,44] dem-
onstrates that general relativity is in the “pure gauge” sector
of TW gravity. This strategy facilitates finding out whether
there are projective geometric contributions to, for exam-
ple, primordial perfect fluids, the origin of an inflaton and
dark matter sources that may not have arisen from the
matter Lagrangian. For solutions associated with definite
symmetries, one can choose an ansatz for Ca

bc and Dab
whose Lie derivative with respect to the Killing vectors of
the metric vanish. Recent work [25,29] has already shown
that projective geometry serves as a source for the cosmo-
logical constant. Other issues related to the principle of
equivalence, cosmology, holonomy and projectively equiv-
alent manifolds have been studied as well [7,9,10].

X. GEODESIC DEVIATION

To complete this study of the gauge covariant field
equations and gauge invariant action we examine the
geodesic deviation equations on the Thomas cone and
their image on the manifold M. Not only does geodesic
deviation have importance in tidal forces, it can also
provide a mechanism to study radiative degrees of freedom
in Dab. Here, we will examine the modification to geodesic
deviation that results from the presence of the projective
gauge field Dbc. A review of geodesic deviation and its
derivation in general relativity can be found in textbooks
such as [45].

A. The geodesic deviation equation

LetM be the spacetime manifold equipped with a metric
gab. Recall the geodesic equation for any connection Γa

bc
on M

d2xa

dτ2
þ Γa

bc
dxb

dτ
dxc

dτ
¼ fðτÞ dx

a

dτ
; ð199Þ

where τ is some parameter. Here fðτÞ ¼ 0 if and only if
τ is an affine parameter for Γa

bc. In the presence of a
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gravitational field where the connection Γa
bc is compatible

with the metric, freely moving objects will travel along
geodesics specified by Eq. (199).
Consider the space of geodesics xaðs; τÞ, where for each

fixed value s ¼ s0, we have that xaðs0; τÞ is a geodesic with
affine parameter τ. This gives us a one-parameter family of
geodesics which allows us to examine geodesics that are
close to each other. The geodesic tangent vector Taðs; τÞ
and geodesic deviation vector Xaðs; τÞ are given by

Taðs; τÞ ¼ ∂xaðs; τÞ
∂τ ;

Xaðs; τÞ ¼ ∂xaðs; τÞ
∂s : ð200Þ

Equation (200) leads to an immediate relation between
derivatives of Ta and Xa

∂Xa

∂τ ¼ ∂Ta

∂s : ð201Þ

For a vector field Va on M, the intrinsic derivative of Va

along a curve xaðτÞ is given by

DVa

dτ
¼ ∇Tb ∂

∂xb
Va ¼ Tb:∇bVa: ð202Þ

Using Eq. (202), we can find an acceleration by taking the
second intrinsic derivative of a vector field. If we do this
with the geodesic deviation vector Xaðs; τÞ with respect
to τ, we find

D2Xa

∂τ2 ¼ Tc∇cðTb∇bXaÞ

¼ ∂2Ta

∂s∂τ þ ð∂cΓa
bdÞTcTbXd

þ Γa
bd

�∂Tb

∂τ Xd þ Tb ∂Xd

∂τ
�

þ Γa
cd

�∂Td

∂τ þ Γd
beTbXe

�
Tc: ð203Þ

Equation (203) can be simplified since xaðs; τÞ is a
geodesic curve for all fixed s. Due to this fact, we know that

Tb∇bTa ¼ 0

⇒ Xc∇cðTb∇bTaÞ ¼ 0: ð204Þ

Expanding Eq. (204) and rearranging terms yields

∂2Ta

∂s∂τ ¼ −ð∂dΓa
cbÞTcTbXd − Γa

bd

�∂Tb

∂s Td þ ∂Td

∂s Tb

�

− Γa
cd

�∂Td

∂τ þ Γd
beTbTe

�
Xc: ð205Þ

Using Eq. (205), we eliminate ∂2Ta

∂s∂τ from Eq. (203)
and find

D2Xa

∂τ2 ¼ ð∂cΓa
db − ∂dΓa

cb þΓa
ceΓe

db − Γa
beΓe

cbÞTcTbXd

¼ Ra
bcdTbTcXd: ð206Þ

This is the geodesic deviation equation. Note we did not use
metric compatibility to arrive at this expression. The full
Riemann curvature tensor Ra

bcd appears in the geodesic
deviation equation, including the Weyl term which does not
usually appear in Einstein field equations. Gravitational
radiation can influence geodesic deviation directly making
it a useful observational tool. We will now explore the
projective modifications of the geodesic deviation equation
and insights on how the diffeomorphism field may be
observed.

B. Projective geodesic deviation

We turn our attention to the diffeomorphism field which
we also may consider as the projective gauge field Dbc. To
compute the resulting geodesic deviation on the spacetime
manifoldM for a general connection, we first must find the
geodesic deviation of the TW connection onN , and project
this deviation down onto M.
From Eq. (206), the geodesic deviation XαðτÞ of the TW

connection on N is given by

D2Xα

dτ2
¼ Kα

βσρ
dxβ

dτ
dxσ

dτ
Xρ; ð207Þ

where the Greek indices range over all coordinates on N .
Now, as in Eq. (59) let

Xα ¼ ðXa;−λXaga þ X5Þ

define the projective geodesic deviation vector. We have
included a perpendicular component as physical vectors
such as Xα ¼ Ψγ̃αΨ might arise. However, for simplicity
we will ignore the X5 component in this discussion. We
have used ga defined via a metric onN so as not to spoil the
projective covariance of the equation. Let us first consider
the geodesic deviation Xa where a is a spacetime manifold
coordinate specifically (not λ). Since the only nonvanishing
components of Kα

βσρ are the components Kλ
bcd and Ka

bcd,
then Eq. (207) reduces for α ¼ a to

D2Xa

dτ2
¼ Ka

bcd
dxb

dτ
dxc

dτ
Xd

¼ ðRa
bcd þ δa½cDd�bÞ

dxb

dτ
dxc

dτ
Xd

¼ ðRa
bcd þ δa½cPd�b − δabP½cd�Þ

dxb

dτ
dxc

dτ
Xd: ð208Þ
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Here Ra
bcd is the Riemann curvature tensor for a con-

nection Γa
bc which is not necessarily compatible with the

metric defining ga. Now the parameter τ is an affine
parameter for the TW connection on N , not for the Γa

bc
connection on M. If we make a change of parametrization
τ → u so that u is an affine parameter for the spacetime
manifold connection, we get using Eq. (42)

D2Xa

du
− ðRa

bcd þ δa½cDd�bÞ
dxb

du
dxc

du
Xd ¼

�
2

λ

dλ
du

�
DXa

du

⇒
D2Xa

du
− ðRa

bcd þ δa½cPd�b − δabP½cd�Þ
dxb

du
dxc

du
Xd

¼
�
2

λ

dλ
du

�
DXa

du
: ð209Þ

If we consider the λ component, we find

D2Xλ

dτ2
¼ Kλ

bcd
dxb

dτ
dxc

dτ
Xd

D2ð−λXagaÞ
dτ2

¼ ð∂ ½bDc�a þ Πd
a½cDb�dÞ

dxb

dτ
dxc

dτ
Xd

¼ ð∇½cPd�b þ α½dPc�b þ α½bPc�d − Ra
bcdα

aÞ

×
dxb

dτ
dxc

dτ
Xd: ð210Þ

If we take ga ¼ 0 as a gauge choice, the left-hand side of
the above expression vanishes, leaving

ð∇½cPd�b þ α½dPc�b þ α½bPc�d − Ra
bcdα

aÞ dx
b

dτ
dxc

dτ
Xd ¼ 0:

ð211Þ

This illustrates the complexity ofDbc (or equivalently, Pbc)
as a dynamical field, since it has its own field equations
and energy-momentum tensor. Dbc will interact with the
spacetime geometry and have an effect on Ra

bcd. Thus
geodesic deviation is a valuable resource for observation,
and the projective gauge field could explain defects in these
observations via Eq. (209).

XI. CONCLUSION

String theory may be thought of as originating from
regulating Feynman diagrams in gravitational theories,
by adding a tiny dimension to the point particle as initial
data. This regulator quickly takes on a life of its own
through the Virasoro algebra, which maintains the repar-
ametrization invariance. It has been shown [20] that a
projective structure and subsequent projective geometry are
the ubiquitous concepts that give meaning to this repar-
ametrization in any dimension. In projective geometry, a
manifold is geometrically classified in terms of its family
of geodesics. In many ways, geodesics are the most
experimentally available geometric structures that give
physicists access to the underlying geometry of a manifold.
Affine geodesic lines, whether spacelike, timelike, or
even null, enjoy reparametrization invariance irrespective
of the underlying metric. Furthermore, the correspondence
between the Virasoro algebra and projective geometry is
analogous to the correspondence of an affine Lie algebra (a
class of Kac-Moody algebras) for one-dimensional gauge
transformations to Yang-Mills vector potentials in higher
dimensional field theories; see Table I.
The projective geometry of Thomas and later Whitehead

[4–6] allows us to form a gauge theory for unparametrized
paths which induces a dynamical field called the diffeo-
morphism field. These projective connections get their
dynamics from the Thomas-Whitehead gravitational action
defined in [20]. However, those and subsequent results [29]
used specific coordinates such as constant volume coor-
dinates and background metrics. In this paper, we present
the full gauge invariant Thomas-Whitehead action. There
are many advantages of having a gauge invariant theory,
including the understanding of spontaneously broken
symmetry and the constraints that arise in classical and
quantum field theories. The results here show precisely
how any Dirac fermion will interact with the diffeomor-
phism field and how chiral masses become manifest due to
a volume scale. These gravitationally induced chiral masses
are affected by the dimension of the manifold, the number
of gauge fields and the spinor’s tensor density.
The use of geodesics extends far beyond gravitational

theories and these results may be of value in fluid
dynamics, optimization, other gauge theories and even
quantum computing. Several projects applying the general

TABLE I. Correspondence of symmetries in string theories to connections in field theories coadjoint elements of the Virasoro algebra,
ðB; qÞ, consists of a quadratic differential B and a central element q. They are in correspondence with the projective connection
components Dab that appear in the projective covariant derivative ∇̃α. Analogously, the coadjoint elements of the affine Lie algebra
(Kac-Moody algebra), ðA; αÞ, consisting of a one form A and a central element α, are in correspondence with the Yang-Mills connection,
Aa that appears in the gauge covariant derivative Da.

Symmetry String theory Field theory

Reparametrization Invariance Algebra: Virasoro Coadjoint elements: ðB; qÞ Connection: projective ∇̃αðDbc;Πa
bcÞ

Gauge invariance Algebra: affine Lie Coadjoint elements: (A, α) Connection: Yang-Mills DaðAbÞ
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TW theory presented in this paper are currently underway
including the quantization of the fully covariant TW theory,
sourcing of cosmological inflation, constraints imposed by
affects on gravitational radiation, and applications to the
understanding of dark matter.
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APPENDIX A: UNITS, CONVENTIONS,
AND HELPFUL CALCULATIONS

The units of the various constants used throughout this
paper for d ¼ 4 are

½J0� ¼
ML2

T
; ½Dab� ¼ ½Rab� ¼ L−2;

½l� ¼ dimensionless; ½κ0� ¼
T2

ML
½ddx� ¼ TLd−1: ðA1Þ

We may at times set c ¼ 1 but expose factors of c when
calculating numerical values. Latin indices take values
a; b;… ¼ 0; 1; 2;…; d − 1 and Greek indices take values
μ; ν;… ¼ 0; 1; 2;…; d, with the exception of the Greek
letter λ, which refers to the projective coordinate
xd ¼ λ ¼ λ0l. A coordinate transformation and correspond-
ing Jacobianmatrix over the d-dimensional space is given as

x0m ¼ x0mðxnÞ; Jmn ¼
∂x0m
∂xn : ðA2Þ

A useful property of the determinant of the Jacobian matrix
is its derivative in terms of the coordinates:

∂ log jJj
∂xa ¼ ∂xn

∂x0m
∂
∂xa

∂x0m
∂xn : ðA3Þ

Our conventions for the Riemann curvature tensor Ra
bcd

are the same as for the projective curvature Kμ
ναβ. The

Riemann curvature tensor is written in terms of Γm
ab where

as the projective curvature is written in terms of Γ̃μ
αβ:

Kμ
ναβ ≡ Γ̃μ

ν½β;α� þ Γ̃ρ
ν½βΓ̃μ

α�ρ: ðA4Þ

Here and throughout, brackets mean antisymmetrization
and parentheses mean symmetrization

Kα
β½μν� ¼ Kα

βμν −Kα
βνμ; KðμνÞ ¼ Kμν þKνμ: ðA5Þ

Equation (A4) means the following must be true:

½∇̃α; ∇̃β�Vγ ¼ Kγ
ραβVρ ðA6Þ

½∇̃α; ∇̃β�Vγ ¼ −Kρ
γαβVρ: ðA7Þ

The d-dimensional metric gab is promoted to the Thomas
cone metric Gαβ by adding the appropriate projective
contributions to the components. An easy way to see this
is by writing

Gαβ ¼
� gab − λ0

2gagb − λ0
2

λ ga

− λ0
2

λ gb − λ0
2

λ2

�
; ðA8Þ

Gαβ ¼
� gab −λgamgm
−λgbmgm λ2

λ0
2 ð−1þ gmnλ0

2gmgnÞ
�
; ðA9Þ

Gαβ ¼ δaαδ
b
βgab − λ20gαgβ; ðA10Þ

Gαβ ¼ gabðδαa − gaϒαÞðδβb − gbϒβÞ − λ−20 ϒαϒβ ðA11Þ

where the d-dimensional metric gab has signature
ðþ;−;−;−; � � � ;−Þ and the dimensionless parameter
l ¼ λ=λ0. The function ga ≡ 1

dþ1
∂a log

ffiffiffiffiffijgjp
is chosen as

it transforms like the trace of a connection and depends
only on the metrics determinant. The d-dimensional
Riemann curvature tensor Ra

bcd satisfies the same relation
as the ðdþ 1Þ-dimensional tensor Kα

βμν, Eq. (III C), but in
terms of the d-dimensional covariant derivative ∇a. The
commutator of covariant derivatives on an arbitrary rankm-
covariant, rank n-contravariant tensor is equivalent to the
following action of Ra

bcd:

½∇a;∇b�Tc1…cm
d1…dn

¼ −Re
c1abTec2…cm

d1d2…dn − � � � − Re
cmabTc1c2…e

d1d2…dn

þ Rd1
eabTc1…cm

e…dn þ � � � þ Rdm
eabTc1…cm

d1…e:

ðA12Þ

We list all nonvanishing connections and curvatures below:

Γ̃a
bc ¼ Πa

bc; Γ̃λ
ab ¼ λDab; ðA13Þ

Γ̃a
λb ¼ Γ̃a

bλ ¼ λ−1δab; ðA14Þ

Πa
bc ¼ Γa

bc þ δaðcαbÞ; ðA15Þ

Pbc ¼ Dbc − ∂bαc þ Γe
bcαe þ αbαc; ðA16Þ

Ka
bcd ¼ Ra

bcd þ δa½cPd�b − δabP½cd�; ðA17Þ
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Ka
bcd ¼ Ra

bcd þ δa½cDd�b; ðA18Þ

Kλ
cab ¼ λ∂ ½aDb�c þ λΠd

c½bDa�d; ðA19Þ

Kλ
bcd ¼ λð∂ ½cPd�b þ Γa

b½dPc�a þ α½dPc�b

þ αbP½cd� − Ra
bcdαaÞ; ðA20Þ

K̆bcd ≡ 1

λ
Kλ

bcd; ðA21Þ

Kμ
bμd ¼ Kbd ¼ Rbd þ ðd − 1ÞDbd

¼ Rbd þ dPdb − Pbd; ðA22Þ

K≡ GαβKαβ ¼ Rþ ðd − 1ÞD ¼ Rþ ðd − 1ÞP; ðA23Þ

R ¼ gabRab; P ¼ gabPab; ðA24Þ

Kbcd ≡ gaKa
bcd þ K̆bcd

¼ ðga − αaÞRa
bcd þ ðgc − αcÞPdb − ðgd − αdÞPcb

− ðgb − αbÞP½cd� þ∇cPdb −∇dPcb; ðA25Þ

K̂a
bgr ¼ Kā

b̄ ḡ r̄Gaā
bb̄½gjḡjr�r̄; ðA26Þ

Gαᾱ
ββ̄γγ̄ρρ̄ ¼ GαᾱGββ̄Gγγ̄Gρρ̄ − 4δγαδ

γ̄
ᾱGββ̄Gρρ̄

þ δγαδ
γ̄
ᾱGβρGβ̄ ρ̄: ðA27Þ

APPENDIX B: FIELD EQUATIONS IN THE
ABSENCE OF MATTER LAGRANGIANS

The field equations for Πa
bc read as

Ea
mn −

1

dþ 1
δa

ðmEb
nÞb ¼ 0; ðB1Þ

Ea
mn ¼ Ea

nm

¼ 1

2κ0J0c
∇̆að

ffiffiffiffiffi
jgj

p
gmnÞ − ∇̆cð

ffiffiffiffiffi
jgj

p
K̂a

ðmnÞcÞ

þ 2λ20∇̆cð
ffiffiffiffiffi
jgj

p
gaK̆

ðmnÞcÞ − 2λ20
ffiffiffiffiffi
jgj

p
KðmnÞcDca:

ðB2Þ

The field equations for Dab read as

−
1

2κ0J0c

ffiffiffiffiffi
jgj

p
ðd − 1Þgpq þ

ffiffiffiffiffi
jgj

p
K̂c

ðpqÞc

þ 2λ20∇̆gð
ffiffiffiffiffi
jgj

p
KðpqÞgÞ − 2λ20

ffiffiffiffiffi
jgj

p
gcK̆

ðpqÞc ¼ 0: ðB3Þ

The field equations for gab read as

1

2
RðpqÞ −

1

2
Rgpq ¼ κ0ΘS

pq ðB4Þ

ΘS
mn ¼ −

d − 1

2κ0
PðmnÞ þ gmn

�
2J0cλ20

�
−

1

dþ 1
∇a þ Δa

�
Ka

bcdKbcd − LS

�

þ 2J0cλ20ðKmcdKn
cd þ 2KbcmKbc

nÞ þ 2J0cð8KmbKb
n − 2KKmnÞ

þ 2J0cðKmbcdKn
bcd −Ka

mcdKan
cd − 2Kabc

mKabcnÞ

LS ¼ −
1

2κ0
ðd − 1ÞP þ cJ0λ02KbcdKbcd − cJ0ðKa

bcdKa
bcd − 4KabKab þK2Þ: ðB5Þ
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