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Axially symmetric spacetimes play an important role in the relativistic description of rotating
astrophysical objects like black holes, stars, etc. In gravitational theories that venture beyond the usual
Riemannian geometry by allowing independent connection components, the notion of symmetry concerns,
not just the metric, but also the connection. As discovered recently, in teleparallel geometries, axial
symmetry can be realized in two branches, while only one of these has a continuous spherically symmetric
limit. In the current paper, we consider a very generic fðT; B;ϕ; XÞ family of teleparallel gravities, whose
action depends on the torsion scalar T and the boundary term B, as well as a scalar field ϕ with its kinetic
term X. As the field equations can be decomposed into symmetric and antisymmetric (spin connection)
parts, we thoroughly analyze the antisymmetric equations and look for solutions of axial spacetimes which
could be used as ansätze to tackle the symmetric part of the field equations. In particular, we find solutions
corresponding to a generalization of the Taub-NUT metric, and the slowly rotating Kerr spacetime.
Since this work also concerns a wider issue of how to determine the spin connection in teleparallel gravity,
we also show that the method of “turning off gravity” proposed in the literature, does not always produce a
solution to the antisymmetric equations.

DOI: 10.1103/PhysRevD.103.044058

I. INTRODUCTION

It took hardly a month since the publication of Einstein’s
theory of general relativity (GR) for Karl Schwarzschild to
produce a solution of the field equations in the spherically
symmetric case. However, many interesting astrophysical
objects from stars and planets to black holes exhibit some
rotation, i.e., possess just stationary axial symmetry and can
not be described by a spherical spacetime precisely. In
general relativity, it took almost six decades until Ezra T.
Newman andRoyKerrworked out rotating solutions [1], and
then a bit more than a dozen years to map out the full
Plebański-Demiański family of axially symmetric space-

times [2,3]. In fðR∘ Þ and other extensions of general relativity
the known exact axial solutions are few and far between (e.g.,
[4–11]), mostly recovered in the slow rotation limit [12–18],
or approached by the continued fraction expansion [19,20].
However, conceptually the procedure for finding the solu-
tions is clear. The symmetry is encoded in the Killing vectors
which leads to an ansatz for the metric, and free functions in
the ansatz can then be fixed by the field equations.

Teleparallel gravity uses a geometric identity whereby
the Levi-Civita Ricci scalar R

∘
of the Einstein-Hilbert action

can be rewritten in terms of the torsion scalar T and a total
divergence of the torsion tensor. The latter constitutes a
boundary term B, which does not affect the equations of
motion. The action given by the torsion scalar is called
teleparallel equivalent of general relativity (TEGR), as
adopting the so-called Weitzenböck connection of vanish-
ing curvature (and vanishing nonmetricity) grants distant
parallel transport of vectors [21,22]. TEGR can be extended
to fðTÞ [23–26] and further fðT; B;ϕ; XÞ modifications,
where ϕ is a scalar field and X its kinetic term [27–33].
Interestingly, this includes a very broad class of theories,

among others the fðR∘ ;ϕ; XÞ extensions of standard general
relativity. In this picture, the properties of gravity can be
attributed to torsion instead of curvature. The price to pay is
the introduction of additional connection components,
extra to the usual Levi-Civita ones which follow from
the metric.
Thus, in contrast to general relativity, teleparallel

gravities face the problem of how to determine the extra
connection. By definition, the connection must (i) be flat
(giving vanishing curvature), and obviously also (ii) solve
the field equations arising from the variation of the action
with respect to the flat connection. Incidentally, the con-
nection equations coincide with the equations for the
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antisymmetric tetrad components [26,30,34], but are iden-
tically satisfied in TEGR [21]. Arguably, the connection
should also better (iii) obey the same symmetry as the
metric [35,36]. Here one should realize that it is conceiv-
able to consider a configuration where the connection or
equivalently the torsion tensor possesses less or different
symmetry than the metric, although the physical relevance
of such situations is not clear. Further on, it makes also
sense to prefer such a connection which enables to
(iv) define meaningful conserved charges in the asymp-
totics (like mass or angular momentum) [37–40]. Another
idea to fix the connection is that it should (v) renormalize
the action in the IR [39,41], while related proposals to
determine the connection are to require it to vanish in the
limit when “gravity is turned off” [39,42].
The flatness condition is easy to solve by employing the

tetrad formalism, whereby one can assume the so-called
Weitzenböck gauge, where vanishing spin connection
immediately implies vanishing curvature. Yet, in that case,
one has still to figure out which Lorentz frame belongs to
the vanishing spin connection, or, the other way around,
which one is the correct tetrad to which one associates the
vanishing spin connection. Entertaining the terminology of
Ref. [43] we may call a tetrad “good” if it solves the
antisymmetric field equations with vanishing spin con-
nection. Indeed, looking for a good tetrad is quite often a
useful approach in trying to solve the equations. If a good
tetrad is found, then applying local Lorentz transformations
will not just transform the tetrad but typically also introduce
nonvanishing spin connection in a covariant manner
[42,44]. One should keep in mind that any tetrad and spin
connection pair related to the good tetrad by a local Lorentz
transformation will solve the antisymmetric field equations.
For the spherical symmetry in fðT; B;ϕ; XÞ gravity the

good tetrad is known [45]. It satisfies all the points above,
i.e., by definition, it is associated to a vanishing flat spin
connection and solves the antisymmetric equations [43],
but also obeys the symmetry [35], defines the correct mass
in the asymptotics [40], and renormalizes the IR action
[39]. However, as far as rotating solutions and axial
symmetry are concerned, the literature remains lacking a
satisfactory result. The early tetrad expressions of the Kerr
metric [37,39] aimed to give correct mass and to renorm-
alize the action at IR, do not solve the connection field
equations and hence can at best pertain to TEGR only. The
other tetrad for Kerr spacetime found by Bejarano et al. in
the null tetrad formalism [46] does solve the field equations
trivially since it has vanishing T and B. However, as we
argue in this paper, it has a subtle issue with symmetry.
Namely, owing to group theory considerations, teleparallel
connections with axial symmetry come in two branches
[35]. Only the first, regular branch can be continuously
related to the spherically symmetric case mentioned above
[43,45], while the connections in the other branch (includ-
ing the solution in [46]) fail to exhibit spherical symmetry

in the limit where the corresponding metric becomes
spherical. There is also a solution found by some of the
present authors earlier [47], which satisfies the antisym-
metric field equations and belongs to the regular branch of
axial symmetry, but is rather limited in the sense that it does
not incorporate the possibility of the Kerr metric. In the
literature, one may come across a few other proposals for
rotating solutions in teleparallel gravities, however, these
fall short of fulfilling the other conditions except flatness.
In the present work, we give an account of an effort to

describe rotating geometries in teleparallel gravities. The
broader aim is twofold. The first task would be to determine
the teleparallel connection components that can go together
with the Kerr metric and obey the conditions (i)–(v) above.
The second aim is to get hold of an ansatz for a rotating
“good” tetrad, i.e., a tetrad inWeitzenböck gauge that obeys
the symmetry and solves the antisymmetric equations
independently of the function f. This ansatz could then
be substituted into the symmetric equations to find solutions
in different theories belonging to the fðT; B;ϕ; XÞ family.
Both aims remain yet to be reached in full glory, but
nevertheless, the current paper is able to report on several
interesting results and provide the groundwork for further
investigations. After recalling a few key formulae of tele-
parallel gravity in Sec. II, we explain how axial symmetry
can be realized by Weitzenböck tetrads (i.e., tetrads asso-
ciated with vanishing spin connection) belonging to two
branches in Sec. III. Then in Sec. IV we consider vacuum
Plebański-Demiański geometry and propose a generic form
for a good tetrad which pertains to the regular branch and
automatically satisfies all antisymmetric field equations
except one. There are different ways how to tackle the
remaining equation, and by treating it case by case we are
able to derive different solutions such as, e.g., a generali-
zation of the solution of Ref. [47]; a solution that accom-
modates Taub-NUT spacetime; a solution that corresponds
to the Kerr metric in the slow rotation expansion. Afterward,
in Sec. VA we propose a generic form for a good tetrad
which pertains to the other branch but will not consider it
further since it falls short of the spherical symmetry limit. In
this section, we also comment on the time-dependent Kerr
tetrad found in Ref. [46]. Lastly, in Sec. VI we show how the
method outlined in Ref. [40] to obtain a teleparallel con-
nection from a metric produces a good tetrad in the Taub-
NUT case, but not in the Kerr or C-metric case. Section VII
offers a final discussion. The Appendixes A and B list some
long but necessary expressions for the axially symmetric
torsion scalar and boundary term.
As a remark for readerswhoare familiarwithmetric-affine

gravity, it may be mentioned that teleparallel framework has
some similarities, but also differences. In both contexts the
notion of symmetry encompasses both the metric and
independent connection [48–51]. However, the rotating
solutions found in metric-affine gravities, e.g., [52–54], will
not likely reduce to meaningful teleparallel configurations,
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since the curvature tensor generally plays a dynamical role,
while in the teleparallel case the connection is necessarily
flat. Hence when setting curvature to zero for an arbitrary
metric-affine solution its key features will be lost.
Throughout the paper, we denote hAμ and hAμ for the

tetrad and its inverse, respectively, where capital Latin
indices refer to tangent space indices and Greek to
spacetime indices. Both indices run from 0,..,3. In addition,
over-circles ∘ on top denotes quantities computed with the
Levi-Civita connection. Quantities without any symbol on
top denote that they are computed with the Weitzenböck
connection (teleparallel).
Our signature convention is ðþ;−;−;−Þ, η denotes

the Minkowski metric with components ηAB ¼
diagðþ;−;−;−Þ and we work in units where G ¼ c ¼ 1.

II. TELEPARALLEL THEORIES OF GRAVITY

General relativity is constructed from the unique torsion-
less connection satisfying themetric compatibility condition,
which is known as the Levi-Civita connection defined by the
Christoffel symbols Γ

∘ α
μν ¼ 1

2
gαρð∂μgρν þ ∂νgρμ − ∂ρgμνÞ.

On the other hand, torsional teleparallel gravity assumes a
specific connection known as the Weitzenböck connection
Γα

μν which is torsionful (Tα
μν ≠ 0), metric compatible

(∇αgμν ¼ 0) and curvatureless (Rα
μνβ ¼ 0) [21,22]. In this

framework, the fundamental dynamical objects are tuples
ðhAμ;ωA

BμÞ consisting of a tetrad hAμ, acting as soldering
agents from the spacetime manifold (Greek indices) and the
tangent space (capital Latin indices), and a spin connection
ωA

Bμ which can be seen as a pure gauge quantity. The metric
and its inverse can be reconstructed from the tetrad fields
using the following relationships,

gμν ¼ hAμhBνηAB; ηAB ¼ hAμhBνgμν; ð1Þ

where ηAB is the Minkowski metric and hAμ is the inverse of
the tetrad satisfying hAμhAν ¼ δμν . The torsion tensor is then
defined as the antisymmetric part of the Weitzenböck
connection:

TA
μν ¼ 2ΓA½νμ�

¼ ∂μhAν − ∂νhAμ þ ωA
BμhBν − ωA

BνhBμ; ð2Þ

which is covariant under localLorentz transformationand the
spin connection is given by [34,44]

ωA
Bμ ¼ ΛA

C∂μðΛ−1ÞCB; ð3Þ

where ΛA
B is the Lorentz matrix. It means that the above

quantity is a pure gauge object. This can be seen after taking
local Lorentz transformations for both the tetrads and the spin
connection which yields in

h0Aμ ¼ Λ0A
BhBμ;

ω0A
Bμ ¼ Λ0A

Cω
C
DμðΛ0−1ÞDB þ Λ0A

C∂μðΛ0−1ÞCB
¼ Λ̃A

C∂μðΛ̃−1ÞCB; ð4Þ

with Λ̃A
C ¼ Λ0A

BΛB
C. Thus, in all frames, the spin con-

nection remains flat and fully determined by a Lorentz
matrix.Hence, any teleparallel theory has the tetrads and spin
connection as their basic variables ðhAμ;ωA

BμÞ, but the latter
one can be alwaysgauged awaybychoosing a specific frame,
taking Λ0 ¼ Λ−1 in (4), where the spin connection coef-
ficients ωA

Bμ vanish. The tetrad belonging to the tuple
ðhAμ; 0Þ, i.e., the tetrad with vanishing spin connection, is
called a Weitzenböck tetrad. In this so-called Weitzenböck
gauge the torsion tensor just becomes

TA
μν ¼ 2∂ ½μhAν�: ð5Þ

One of the most interesting aspects of teleparallel gravity
is that it is possible to construct a theory which is equivalent
to GR, by considering the following action

STEGR ¼
Z

d4xh

�
1

2κ2
T þ Lm

�
; ð6Þ

where Lm is the matter Lagrangian, h ¼ detðhAμÞ ¼ ffiffiffiffiffiffi−gp
,

κ2 ¼ 8πG and T is known as the torsion scalar which is a
specific combination of contractions of the torsion tensor,
namely

T ¼ 1

2
SαμνTαμν ¼

1

4
TμνρTμνρ þ

1

2
TμνρTρνμ − TρTρ; ð7Þ

where Tμ
μρ ¼ Tρ and we have also defined the super-

potential as

Sρμν ¼ Kμν
ρ − δμρTσ

σν þ δνρTσ
σμ ¼ −Sρνμ; ð8Þ

and the contortion tensor as

Kρ
μν ¼ Γρ

μν − Γ
∘ ρ

μν ¼
1

2
ðTμ

ρ
ν þ Tν

ρ
μ − Tρ

μνÞ: ð9Þ

After imposing that the curvature tensor is zero
Rα

βμν ¼ 0, one can show that the torsion scalar T and

the Ricci scalar R
∘
differ from each other by a boundary

term B:

R ¼ R
∘ þ T −

2

h
∂μðhTσ

σ
μÞ ¼ 0 ⇒ R

∘

¼ −T þ 2

h
∂μðhTσ

σ
μÞ ≔ −T þ B: ð10Þ

This means that after taking variations with respect to the
tetrads, the corresponding symmetric field equations
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coming from the action (6) are identical to the Einstein field
equations while the antisymmetric equations are identically
satisfied. For this reason, this theory is known as “tele-
parallel equivalent of general relativity” (TEGR).
Since the action (6) gives us the same dynamics as GR,

one can then modify it in different ways to construct
modified teleparallel theories of gravity. The most straight-
forward modification is fðTÞ gravity where one replaces T
in the action to an arbitrary function which depends on the
torsion scalar [23,42,55]. From (10) one directly notices

that fðTÞ is not equivalent to fðR∘ Þ gravity which is the

generalization of the Einstein-Hilbert action from R
∘
to an

arbitrary function fðR∘ Þ. Moreover, fðTÞ gravity is a second
order theory whereas fðR∘ Þ is a fourth other theory. One can
then extend fðTÞ gravity by also adding the boundary term
B in the action, which leads to fðT; BÞ gravity [28]. This

theory contains both fðTÞ and fðR∘ Þ by taking the limits
fðT; BÞ ¼ fðTÞ and fðT; BÞ ¼ fð−T þ BÞ, respectively.
The field equations of this theory are fourth order as in

fðR∘ Þ gravity.
In order to encapsulate different modified teleparallel

theories of gravity, we will then consider a generalization of
the theories described before by adding a scalar field ϕ,
namely,

SfðT;B;ϕ;XÞ ¼
Z

d4xh

�
1

2κ2
fðT; B;ϕ; XÞ þ Lm

�
; ð11Þ

where now the function f also depends on a scalar field ϕ

and its kinetic term X≡−ðϵ=2Þgμν∂μϕ∂νϕ¼−ðϵ=2Þð∇∘ ϕÞ2,
so that, if ϵ ¼ 1 (ϵ ¼ −1) we have a canonical(phantom)
scalar field. This action represents a very rich range of
modified theories of gravity. Indeed, some of these theories
are dynamically equivalent to nonteleparallel theories. For
example, if we choose fðT; B;ϕ; XÞ ¼ fð−T þ B;ϕ; XÞ ¼
fðR∘ ;ϕ; XÞ, we recover the action studied in [56] in a
cosmological framework which is a generalization of
curvature-based models with a scalar field (see [57] for
a review about them). Furthermore, several other tele-
parallel scalar-tensor type theories are part of this action
such as teleparallel dark energy [27,58], theories with
couplings between the boundary term and the scalar field
[29,59,60], tachyonic models [61] or more general scalar-
tensor type theories such as some of the ones described in
[30–32,62,63].
In general, the field equations to the action (11) are

obtained by variation with respect to the tetrad components
as well as by variation with respect to the flat spin
connection components. It then turns out that, for general
teleparallel theories of gravity, the antisymmetric part of the
tetrad field equation is equivalent to the spin connection
field equation [26,30,34]. This shows one more time that

the spin connection is a pure gauge quantity and it suffices
to derive the tetrad field equations. For (11) the tetrad field
equations in Weitzenböck gauge are [28]

2δλν□
∘
fB − 2∇∘ λ∇∘ νfB þ BfBδλν þ 4½ð∂μfBÞ þ ð∂μfTÞ�Sνμλ

þ 4h−1hAν∂μðhSAμλÞfT − 4fTTσ
μνSσλμ − fδλν

þ ϵfX∂λϕ∂νϕ ¼ 2κ2T λ
ν; ð12Þ

where T λ
ν is the standard energy momentum tensor that it

was defined from the Lagrangian matter as

T μν ≔
−2ffiffiffiffiffiffi−gp δðhLmÞ

δgμν
¼ hAμ

�
1

h
δðhLmÞ
δhAα

�
gνα ≔ hAμT A

αgνα;

ð13Þ

while variations with respect to the scalar field ϕ yields,

ϵ∂μðhfXgμν∂νϕÞ þ hfϕ ¼ 0: ð14Þ

Here, fX ¼ ∂f=∂X, fϕ ¼ ∂f=∂ϕ, fT ¼ ∂f=∂T and
fB ¼ ∂f=∂B. The antisymmetric part of the field
equation (12) becomes

E½μν� ≔ 4½ð∂ρfBÞ þ ð∂ρfTÞ�S½μρν�
¼ 3

2
Tρ½μν∂ρ�ðfT þ fBÞ: ð15Þ

Let us emphasize again here that the above equation
coincides with the variations with respect to the spin
connection. One can also perform a local Lorentz trans-
formation to consider the equations, not in Weitzenböck
gauge but with the spin connection. This would affect the
field equations in the following way: the appearing torsion
tensor needs to be expanded including the spin connection
generated by the Lorentz transformation and the term
h−1hAν∂μðhSAμνÞwould generate a spin connection counter
term which can be combined with the partial derivative into
a covariant Fock-Ivanenko derivative, i.e., hAνDμðSAμνÞ
(see [21] for a definition of the Fock-Ivanenko derivative).
Having a solution ðhAμ;ωA

Bμ ¼ 0Þ, we can obtain solutions
in other frames by making a local Lorentz transformation
ΛA

B [see Eq. (4)] and obtain another tuple ðh0Aμ;ω0A
BμÞ.

Note first that if one finds a tetrad for which T, B, and ϕ
are constant, independently of f, then the field equations
reduce to the TEGR (GR) field equations plus a cosmo-
logical constant. Second, if the function f satisfies
fT ¼ −fB, then the theory is dynamically equivalent to

fðR∘ ;ϕ; XÞ gravity.
The main aim is to solve the above antisymmetric

equation E½μν� ¼ 0 without choosing the trivial cases where

one recovers fðR∘ ;ϕ; XÞ or TEGR. To match the terminol-
ogy sometimes used in teleparallel gravity, we will label as
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“good tetrads” [43] to those tetrads which solve the
antisymmetric field equations (15) in the Weitzenböck
gauge.

III. AXIAL SYMMETRY IN
TELEPARALLEL GRAVITY

In this section let us briefly recall the results on axially
symmetric teleparallel geometries from the literature. In
particular, we highlight that there exist two branches of
axially symmetric Weitzenböck tetrads, of which only the
first branch is compatible with a limit to a spherically
symmetric teleparallel geometry.

A. The notion of symmetry

The class of spacetime symmetries provided by the
action of a Lie group on a differentiable manifold in the
framework of teleparallelism is based on the invariance of
the underlying Cartan geometry modeled by principal
bundle automorphisms [64]. In particular, infinitesimal
symmetries can be described by the invariance of the
geometric structure of the manifold under the flow of a
set of ζ ¼ 1;…; m vector fields Zζ, which involves the
vanishing of the Lie derivative in the direction of Zζ not
only on the metric tensor g but also on the affine teleparallel
connection coefficients Γ:

LZζ
gμν ¼ 0; LZζ

Γλ
μν ¼ 0: ð16Þ

Expanding the teleparallel affine connection coefficients Γ
into Levi-Civita and contortion part, the first condition
implies that the Levi-Civita part, represented by the

Christoffel symbols Γ
∘
of the metric, is straightforwardly

preserved by a group of isometries, in virtue of the
vanishing of its Lie derivative [65]:

LZζ
Γ
∘ λ

μν ¼
1

2
gλρð∇∘ μLZζ

gρνþ∇∘ νLZζ
gρμ−∇∘ ρLZζ

gμνÞ: ð17Þ

This means that the introduction of postmetric degrees of
freedom into the affine connection requires its subsequent
independent symmetry condition.
For a teleparallel connection, that posses no curvature

and is metric compatible, equivalently, the existence of a
Lie algebra homomorphism λ, associated with a global Lie
group homomorphism Λ, which maps the symmetry group
into the Lorentz group, allows the mentioned symmetry
conditions to be expressed in terms of the tetrad field and
the spin connection as follows [35]:

LZζ
hAμ ¼ −λAζ Bh

B
μ;

LZζ
ωA

Bμ ¼ ∂μλ
A
ζ B

þ ωA
Cμλ

C
ζ B

− ωC
Bμλ

A
ζ C

: ð18Þ

Solving these equations in Weitzenböck gauge, i.e., with
vanishing spin connection, implies that the Lie algebra

homomorphism λ cannot depend on spacetime points,
∂μλ

A
ζ B

¼ 0. Hence, the only remaining equation which
needs to be solved is the symmetry condition for the tetrad
for a fixed choice of λ.
Both versions of the symmetry condition, (16) or (18),

imply for the torsion tensor, expressed through the tele-
parallel affine connection corresponding to the spin con-
nection, that

LZζ
Tσ

μν ¼ LZζ
Γσ ½μν� ¼ 0: ð19Þ

Hence, for a teleparallel geometry, the symmetry of tetrad
and spin connection implies the symmetry of the torsion
tensor.
Depending on which symmetry group is considered,

there may exist more than one homomorphism λ. Different
choices of this mapping then lead to different branches of
symmetric teleparallel geometries.
In addition, since we are studying a theory with a scalar

field, we must also impose that the symmetry conditions are
respected by the scalar field ϕ, which means it must satisfy

LZζ
ϕ ¼ ZζðϕÞ ¼ 0: ð20Þ

A consequence of this condition is that the kinetic term X is
axially symmetric as well.

B. Two branches of Weitzenböck tetrads

For the specific case of axial symmetry, the Killing
vector ∂φ defines a regular two-dimensional timelike sur-
face of fixed points where it vanishes and the Cartan
geometry is invariant under the action of the underlying
rotation group SOð2Þ [3].
For the scalar field the symmetry condition is easily

solved by ϕ ¼ ϕðr; ϑÞ and thus X ¼ Xðr; ϑÞ.
For the tetrad, we recall that there exist two different

group homomorphisms Λ, and hence two different Lie
algebra homomorphisms λ, which map the symmetry group
into the Lorentz group, leading to two branches of axially
symmetric tetrads with vanishing spin connection, all
details can be found in Ref. [35].

1. Regular branch

The nontrivial group homomorphism leads to a non-
trivial Lie algebra homomorphism λ

λð∂φÞ ¼

0
BBB@

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

1
CCCA ð21Þ

and solving (18), yields the following Weitzenböck gauge
tetrad [35]
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hAμ ¼

0
BBB@

H00 H01 −H02 H03

H10 cosφ −H20 sinφ H11 cosφ −H21 sinφ H22 sinφþH12 cosφ H13 cosφ −H23 sinφ

H10 sinφþH20 cosφ H11 sinφþH21 cosφ H12 sinφ −H22 cosφ H13 sinφþH23 cosφ

H30 H31 −H32 H33

1
CCCA; ð22Þ

where ðt; r;ϑ;φÞ denote spherical coordinates and
fHijg3i;j¼0 are sixteen arbitrary functions depending on t,
r and ϑ. Assuming stationarity, that we will do to analyze
this branch (see Sec. IV), the functions will depend only on
r and ϑ.
It is straightforward to note that the above tetrad

maintains the same structure in Boyer-Lindquist coordi-
nates ðt̃; r̃; ϑ̃; φ̃Þ:

t ¼ t̃; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2 þ a2sin2ϑ̃

p
;

cos ϑ ¼ r̃
r
cos ϑ̃; φ ¼ φ̃; ð23Þ

where a is a constant parameter. Then, the aforementioned
arbitrary functions can be trivially re-defined from being
dependent on ðr; ϑÞ to ðr̃; ϑ̃Þ. Since the Boyer-Lindquist
coordinates reduce to the spherical coordinates in the limit
a ¼ 0, we omit the tilde in the following, as the presence or
absence of the parameter a is sufficient to distinguish which
set of coordinates is used.
The metric tensor, which corresponds to the tetrad (22)

contains all the possible cross terms ðdtdr; dtdφ; dtdϑ;
drdφ; drdϑ; dϑdφÞ. In particular it includes the tetrads for
metrics which have only the dtdφ, component as off
diagonal component, which are obtained by enforcing
the relations

H00H01 −H10H11 −H20H21 −H30H31 ¼ 0; ð24Þ

−H00H02 −H10H12 þH20H22 þH30H32 ¼ 0; ð25Þ

−H01H02 −H11H12 þH21H22 þH31H32 ¼ 0; ð26Þ

H01H03 −H11H13 −H21H23 −H31H33 ¼ 0; ð27Þ

−H02H03 −H12H13 þH22H23 þH32H33 ¼ 0; ð28Þ

between the tetrad components, leaving 11 of the 16 free
functions in the tetrad to be determined.
Inspired by the spherically symmetric tetrad which

solves the antisymmetric fðT; B;ϕ; XÞ field equations,
see [43–45,66,67], and the need to obtain one, and exactly
one, off diagonal term, the dtdφ term, in the metric to
include the tetrads of the Kerr metric in Boyer-Lindquist
coordinates, we introduce the reduced axially symmetric
tetrad by setting

H01 ¼ H02 ¼ H20 ¼ H33 ¼ H30 ¼ H10 ¼ H21

¼ H22 ¼ H13 ¼ 0; H31 ¼
H11H12

H32

; ð29Þ

which results in

hAμ ¼

0
BBB@

H00 0 0 H03

0 H11 cosφ H12 cosφ −H23 sinφ

0 H11 sinφ H12 sinφ H23 cosφ

0 H11H12=H32 −H32 0

1
CCCA:

ð30Þ

It is clear that this choice is valid only ifH32 ≠ 0. Although
this choice may inadvertently leave out some solutions,
quite likely these tetrads will play an important role in the
search for solutions to the antisymmetric field equations of
fðT; B;ϕ; XÞ gravity in axial symmetry, since for them
only one of the six antisymmetric field equations is non-
vanishing, as we will see in Sec. IV B. Moreover, they
accommodate the axially symmetric solution found in [47],
which however does not include Kerr or Taub-NUT
geometry as special cases, see Sec. IV C 1.
The reduced tetrads contain the well known spherically

symmetric solutions [43,44,66,67]. In spherical coordi-
nates, the latter is obtained by setting

H00¼
ffiffiffiffiffiffiffiffiffiffi
AðrÞ

p
; H11¼

ffiffiffiffiffiffiffiffiffi
BðrÞ

p
sinϑ; H12¼

ffiffiffiffiffiffiffiffiffi
CðrÞ

p
cosϑ;

H23¼H32¼
ffiffiffiffiffiffiffiffiffi
CðrÞ

p
sinϑ; H03¼0; ð31Þ

where the functionsAðrÞ and BðrÞ are to be determined by
solving the symmetric field equations, and CðrÞ can be set
to CðrÞ ¼ r2, giving g22 ¼ r2 and g33 ¼ r2 sin ϑ, without
losing generality.
The metric generated by the six independent free

functions of the reduced axially symmetric tetrads becomes

ds2 ¼ H2
00dt

2 −H2
11

�
H2

12

H2
32

þ 1

�
dr2 − ðH2

12 þH2
32Þdϑ2

− ðH2
23 −H2

03Þdφ2 þ 2H00H03dtdφ: ð32Þ

Metrics of this form are of particular interest since they
contain the Plebański–Demiański class of spacetimes,
which we will discuss in Sec. IVA. We will use them
in this article to find new solutions of the antisymmetric
field equations of fðT; B;ϕ; XÞ gravity which include
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teleparallel generalizations of the Taub-NUT metric and of
the weakly rotating Kerr metric. Indeed, the absence of
Birkhoff’s theorem in modified teleparallel gravity allows
the existence of nontrivial spherically symmetric vacuum
solutions beyond the Schwarzschild geometry [66].
Accordingly, it is expected that the family of axially
symmetric spacetimes is characterized by a much richer
structure than the one present in TEGR.
As a side result, it is interesting to mention that it is

possible to obtain a different branch from the reduced
axially symmetric tetrad (30) which trivially solves the
fðTÞ antisymmetric equations by having a tetrad giving a
vanishing torsion scalar (T ¼ 0) if one chooses

H00 ¼
ffiffiffiffiffiffiffiffiffiffi
AðrÞ

p
; H11 ¼ sinϑ; H12 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−AðrÞsin2ϑ

q
;

H23 ¼ rsinϑ; H32 ¼ r
ffiffiffiffiffiffiffiffiffiffi
AðrÞ

p
sinϑ; H03 ¼ 0: ð33Þ

This tetrad generates a spherically symmetric metric but
turns out to be a particular case of (31) since the metric
components are constraint by the expression g11 ¼ −1=g00.
It is worthwhile to stress that the tetrad reproduced by the
above functions provides a spherically symmetric metric
but the teleparallel connection does not respect spherical
symmetry (LζΓ ≠ 0), in virtue of the existence of the
component Tφ

ϑφ and the inequality Tφ
rφ ≠ Tϑ

rϑ, unless
we assume the trivial case g11 ¼ 1. For the tetrad (33), the
dynamics of any fðTÞ theory reduces to TEGR (or GR)
plus an effective cosmological constant Λeff for any choice
of f, and thus fixing AðrÞ ¼ 1–2M=rþ Λeffr2, the tetrad
(33) solves all of the fðTÞ field equations.
Moving on to fðT; BÞ gravity, the tetrad (33) does not

solve all the antisymmetric equations since the boundary
term B is given by

BðrÞ ¼ r2A00ðrÞ þ 4rA0ðrÞ þ 2AðrÞ − 2

r2
; ð34Þ

thus in general is nonvanishing. The antisymmetric field
equations for fðT; BÞ gravity can be solved by demanding
that the boundary term vanishes too. This leads to AðrÞ ¼
1–2M=rþQ2=r2 þ Λeffr2 that is the Reissner-Nordström
metric with a cosmological constant.

2. Solely axially symmetric branch

The second branch of axially symmetric Weitzenböck
tetrads is obtained by choosing the trivial Lie group
homomorphism leading to the Lie algebra homomorphism
λð∂φÞ ¼ 0, which implies that the tetrad components are
simply independent of φ,

hAμ ¼ hAμðt; r; ϑÞ ¼

0
BBB@

H00 H01 H02 H03

H10 H11 H12 H13

H20 H21 H22 H23

H30 H31 H32 H33

1
CCCA: ð35Þ

Generically in this branch, the tetrad has 16 components
which only depend on t, r, and ϑ. When we analyze this
branch in Sec. V, we will discuss time-dependent and time-
independent tetrads.
Since this tetrad is independent of φ, this branch does not

include any of the spherically symmetric tetrads which
solve the antisymmetric field equations of fðT; B;ϕ; XÞ
gravity [43,44,66,67]. Hence it is a complete independent
branch which leads to solutions of modified teleparallel
theories of gravity which do not reduce to spherically
symmetric teleparallel geometries in any case. Following
the same idea as in the previous section, there is still some
gauge freedom left. In order to eliminate all the cross terms
in the metric except dtdφ, we choose the same combination
of Hij as in (29) but without setting H20 ¼ 0, to obtain the
following tetrad

hAμ ¼

0
BBB@

H00 0 0 H03

0 H11 H12 0

H20 0 0 H23

0 − H11H12

H32
H32 0

1
CCCA; ð36Þ

and the metric

ds2 ¼ ðH2
00 − 2H2

20Þdt2 −H2
11

�
1þH2

12

H2
32

�
dr2

− ðH2
12 þH2

32Þdϑ2 − ðH2
23 −H2

03Þdφ2

þ 2ðH00H03 −H20H23Þdtdφ: ð37Þ

As for the first branch this choice is very convenient
regarding the antisymmetric field equations since there one
finds that there is only left which is E½23�.
Due to the impossibility to connect these axially sym-

metric tetrads in a certain limit to spherically symmetric
tetrads solving the antisymmetric field equations, we focus
in what follows on finding solutions on the basis of the first
branch. Before we discuss some further details on the
second branch and examples from the literature belonging
to the second branch in Sec. VA, we now discuss how the
two branches are related and need to be understood in the
context of the gauge freedom (i.e., local Lorentz trans-
formations) in teleparallel gravity.

3. Relationship between the branches

In teleparallel gravity, the fundamental variables are the
components of a tetrad hAμ and a flat spin connection ωA

Bμ,
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or a tetrad hAμ and the spin connection generating local
Lorentz transformation, ΛA

B.
From the symmetry arguments, in axial symmetry we

find that the pairs ðhAμ;ωA
BμÞ ¼ ðhA1 μ; 0Þ, where hA1 μ is

given by (22), and ðhAμ;ωA
BμÞ ¼ ðhA2 μ; 0Þ, where hA2 μ is

given by (35), define inequivalent axially symmetric tele-
parallel geometries.
Although, both tetrads hA1 μ and hA2 μ are related by the

local Lorentz transformation

ΛA
B ¼

0
BBB@

1 0 0 0

0 cosφ sinφ 0

0 − sinφ cosφ 0

0 0 0 1

1
CCCA; ð38Þ

via the relation hA2 μ ¼ ΛA
BhB1 μ, in the covariant approach to

teleparallel gravity this Lorentz transformation of the
tetrads induces a spin connection, see (4), which has
nonvanishing components

ω01
2φ ¼ −ω02

1φ ¼ −1: ð39Þ

Thus, the tuple ðhA1 μ; 0Þ is equivalent to the tuple
ðhA2 μ;ω0A

BμÞ but not to the tuple ðhA2 μ; 0Þ. In this sense
the axially symmetric tetrads of the two branches here can
either be considered as inequivalent Weitzenböck tetrads,
or as tetrads with nonvanishing spin connection.

IV. FINDING SOLUTIONS TO THE
ANTISYMMETRIC FIELD EQUATIONS:

THE REGULAR BRANCH

As previously mentioned, the relevance of the first
branch of axially symmetric Weitzenböck tetrads is
highlighted in virtue of its compatibility with the spheri-
cally symmetric limit, which is why we study it here in
detail.
We consider the well-known stationary axially symmet-

ric Plebański–Demiański class of metrics that are vacuum
solutions of the Einstein equations and determine their
reduced axially symmetric tetrad (30). As we will see,
by doing so we fix five of their six free components.
The remaining component must be determined from
the antisymmetric field equations of the fðT; B;ϕ; XÞ
theories.
We then search for solutions of the antisymmetric field

equations of fðT; B;ϕ; XÞ-gravity and find that using the
reduced axially symmetric tetrad as ansatz, all but one
antisymmetric field equation is solved. The remaining
antisymmetric equation fixes one of the six tetrad compo-
nents, while the remaining ones need to be determined by
the symmetric field equations.

We solve this last equation for generalizations of the
tetrad of special subclasses of the Plebański–Demiański
metrics, such as the Taub-NUT and the Kerr metric for a
slowly rotating black hole.

A. Plebański–Demiański metric and its tetrads

The class of stationary axially symmetric algebraic type
D vacuum solutions of GR (or TEGR) can be described by
the Plebański–Demiański metric with vanishing electro-
magnetic charges and cosmological constant. Their line
element acquires the following form in Boyer-Lindquist
type coordinates [2,68]:

ds2¼ 1

Ω2

�
Q
ϱ2

½dtþðasin2ϑþ2bðχ− cosϑÞÞdφ�2

−
ϱ2

Q
dr2−

ϱ2

P
dϑ2

−
P
ϱ2

sin2ϑ½adtþðr2þa2þb2þ2χabÞdφ�2
�
; ð40Þ

with:

Ω ¼ 1 −
α

γ
ða cosϑþ bÞr; ð41Þ

ϱ2 ¼ ða cosϑþ bÞ2 þ r2; ð42Þ

Q ¼ kγ2 − 2Mrþ ϵr2 − 2α
n
γ
r3 − kα2r4; ð43Þ

P ¼ 1þ
�
4kabα2 − 2αM

a
γ

�
cos ϑþ kα2a2 cos2 ϑ; ð44Þ

where the constants k, ϵ, and n are defined as follows

k ¼ 1þ 2bαM=γ
3b2α2 þ γ2=ða2 − b2Þ ; ð45Þ

ϵ ¼ kγ2

a2 − b2
þ 4αM

b
γ
− kα2ða2 þ 3b2Þ; ð46Þ

n ¼ bkγ2

a2 − b2
− αM

a2 − b2

γ
þ bkα2ða2 − b2Þ: ð47Þ

It includes four parameters M, a, b, and α representing the
mass, angular momentum (per unit mass), NUT charge, and
acceleration, respectively. In addition, the parameter χ sets
the distribution of axial singularities,1 whereas γ represents
a remaining scaling freedom for nonvanishing values of
a and b, which provides the twist of the underlying

1Note that despite the presence of a coordinate singularity on
the polar axis, the axially symmetric Taub-NUT spacetime is
geodesically complete and for the case jχj ≤ 1 it does not lead to
observable violations of causality in free-falling frames [69].
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congruence of trajectories defined by the two different
principal null directions of the solution [70,71]. Thereby,
this family of solutions constitutes the natural generaliza-
tion of the special cases of Kerr, Taub-NUT, and C-metric
spacetimes and describes the gravitational field generated

by a uniformly accelerating and rotating black hole
endowed with a NUT charge.
In terms of the metric (32), we can reproduce the

Plebański–Demiański spacetime (40) by setting the Hij
functions in (30) as follows:

H00 ¼
1

ϱΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q − a2Psin2ϑ

p
; H11 ¼

ffiffiffiffi
P
Q

r
H32; H12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ2

PΩ2
−H2

32

s
; ð48Þ

H23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðr2 þ a2 þ b2 þ 2χabÞ2sin2ϑ −Qðasin2ϑþ 2bðχ − cosϑÞÞ2

ϱ2Ω2
þH2

03

s
; ð49Þ

H03 ¼
1

ϱΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q − a2P sin2 ϑ

p ½Qða sin2 ϑþ 2bðχ − cosϑÞÞ − aP sin2 ϑðr2 þ a2 þ b2 þ 2χabÞ�: ð50Þ

Then, the well-known special cases included in the
Plebański–Demiański solution can be straightforwardly
recovered in the following way, see also Fig. 1:

(i) Kerr metric:

H00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Mr
Σ

r
; H11 ¼

H32ffiffiffiffi
Δ

p ;

H12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ −H2

32

q
; ð51Þ

H23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ϑ

�
2a2Mrsin2ϑ

Σ
þ a2 þ r2

�
þH2

03

s
;

H03 ¼ −
2aMrsin2ϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣðΣ − 2MrÞp ; ð52Þ

where

Ω ¼ P ¼ 1; Σ≡ ϱ2 ¼ r2 þ a2cos2ϑ;

Δ≡Q ¼ ϵr2 − 2Mrþ kγ2; ð53Þ

b¼ α¼ 0; kγ2 ¼ a2; ϵ¼ 1; n¼ 0: ð54Þ

(ii) Taub-NUT metric:

H00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ðMrþ b2Þ
ϱ2

s
; H11 ¼

H32ffiffiffiffi
Q

p ;

H12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ2 −H2

32

q
; ð55Þ

H23 ¼ ϱ sin ϑ;

H03 ¼ 2bðχ − cos ϑÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ðMrþ b2Þ
ϱ2

s
; ð56Þ

where

Ω ¼ P ¼ 1; ϱ2 ¼ r2 þ b2;

Q ¼ ϵr2 − 2Mrþ kγ2; ð57Þ

a¼ α¼ 0; kγ2¼−b2; ϵ¼ 1; n¼ b: ð58Þ

(iii) C-metric:

H00 ¼
1

rΩ

ffiffiffiffi
Q

p
; H11 ¼ H32

ffiffiffiffi
P
Q

r
;

H12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Ω2P
−H2

32

s
; ð59Þ

H23 ¼
r sinϑ

ffiffiffiffi
P

p

Ω
; H03 ¼ 0; ð60Þ

where
FIG. 1. Relationship between the vacuumPlebański–Demiański
metric and other spacetimes.
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Ω¼1−αrcosϑ; P¼1−2αMcosϑ;

ϱ2¼ r2; Q¼−2Mrþϵr2−2α
n
γ
r3−kα2r4; ð61Þ

a¼ b¼ 0; k¼ 1; ϵ¼ 1; n¼−αγM; ð62Þ

and setting the remaining scaling factor γ ¼ a.
(iv) Schwarzschild metric:

H00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
; H11 ¼

H32ffiffiffiffi
Q

p ;

H12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −H2

32

q
; ð63Þ

H23 ¼ r sinϑ; H03 ¼ 0; ð64Þ

where

Ω¼P¼1; ϱ2¼r2; Q¼ϵr2−2Mrþkγ2; ð65Þ

a¼ b¼ α¼ 0; kγ2¼ 0; ϵ¼ 1; n¼ 0: ð66Þ

As can be seen, in all the cases we still have one extra
functionH32 that does not influence the metric and must be
obtained by solving the antisymmetric components of the
field equations (12). Then, the tetrad is what is called in the
literature a good tetrad.

B. The antisymmetric field equations

If we substitute the reduced axially symmetric tetrad (30)
into the fðT; B;ϕ; XÞ field equations (12), we find that the
only nonvanishing ones are the diagonal entries E11, E22,
E33, E44, and the off-diagonal entries E14, E32, E23.
Splitting the equations into symmetric and antisymetric
part one realizes that only one equation E½23� is nonzero.
Thus, since the tetrad (30) contains one additional free
function compared to the nonvanishing metric components
(they fix 5 of 6 free functions in the tetrad), there is
consistently one extra antisymmetric field equation to fix
this tetrad component.
If one is able to solve this equation, then, we would be

able to find a good tetrad for the most general axially
symmetric case. From (15), E½23� then turns out to be

1

2

�
ðfT;ϑ þ fB;ϑÞ

�
H00;r

H00

−
H11

H23

þH23;r

H23

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qϑ

þ ðfT;r þ fB;rÞ
�
H12 −H23;ϑ

H23

−
H00;ϑ

H00

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qr

�
¼ 0; ð67Þ

where Qϑ, Qr were introduced as a shorthand notation and
commas denote differentiation, i.e.,

fT;ϑ ¼ ∂fT=∂ϑ
¼ fTTT;ϑ þ fTBB;ϑ þ fTϕϕ;ϑ þ fTXX;ϑ; ð68Þ

fT;r ¼ ∂fT=∂r
¼ fTTT;r þ fTBB;r þ fTϕϕ;r þ fTXX;r; ð69Þ

fB;ϑ ¼ ∂fB=∂ϑ
¼ fBTT;ϑ þ fBBB;ϑ þ fBϕϕ;ϑ þ fBXX;ϑ; ð70Þ

fB;r ¼ ∂fB=∂r
¼ fBTT;r þ fBBB;r þ fBϕϕ;r þ fBXX;r: ð71Þ

Equation (67) is difficult to solve in general for one of the
functions Hij since all of them can depend on r and ϑ. One
can easily notice that in the case where fT ¼ −fB which

gives f ¼ fð−T þ B;ϕ; XÞ ¼ fðR∘ ;ϕ; XÞ, the antisymmet-
ric equations are satisfied identically. This was expected

since this case is an extension of the well-known fðR∘ Þ
gravity. In addition, for fðT; BÞ gravity, if one has the
special case where both the scalar torsion and boundary
term are constants (T;r ¼ B;r ¼ T;ϑ ¼ B;ϑ ¼ 0), the above
antisymmetric equation will be trivially satisfied and the
dynamics of this theory will be just TEGR (or GR) plus a
cosmological constant.
By replacing the derivatives explicitly, one obtains that

the remaining antisymmetric equation (67) becomes

0 ¼ ððfTT þ fTBÞT;ϑ þ ðfBT þ fBBÞB;ϑ þ ðfTϕ þ fBϕÞϕ;ϑ

þ ðfTX þ fBXÞX;ϑÞQϑ

þ ððfTT þ fTBÞT;r þ ðfBT þ fBBÞB;r

þ ðfTϕ þ fBϕÞϕ;r þ ðfTX þ fBXÞX;rÞQr: ð72Þ

This equation is still implicit since one would need to
replace T and B [see Eq. (A1)–(A2)] to find it in its
complete form. One can then have different options to solve
this equation. Some important cases are
(1) Qϑ ¼ 0 and Qr ¼ 0: This case leads to universal

solutions for any choice of f and any form of T, B
and ϕ (see Sec. IV C 1).

(2) fT;ϑ þ fB;ϑ ¼ 0 and Qr ¼ 0 (see Sec. IV C 2).
(3) fT;r þ fB;r ¼ 0 and Qϑ ¼ 0 (see Sec. IV C 3).
(4) ðfT;r þ fB;rÞQr ≠ 0, ðfT;ϑ þ fB;ϑÞQϑ ≠ 0: This case

is the most general one. To solve the antisymmetric
equation one would need to replace the value of the
scalars and then solve the equation for any of the
functionsHij. This case would give the most general
good axially symmetric tetrad, but the equation is
very involved and difficult to treat. The Kerr metric
is part of this case (see Sec. IV C 4).
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C. Solving the antisymmetric equation

In the following, we will study the antisymmetric field
equations for the different cases directly to find the
solutions. Indeed, considering the highly nonlinear char-
acter of these equations, the complexity for axially sym-
metric configurations turns out to be much more involved
compared to their spherical symmetric counterparts and
requires a deeper examination. Accordingly, we now
discuss the four cases framed in teleparallel theories

beyond TEGR which are inequivalent to fðR∘ ;ϕ; XÞ
theories.

1. Case 1: Qϑ =Qr = 0

In this case, it is easy to solve the antisymmetric
equations since Qϑ ¼ Qr ¼ 0 [see (82)]. We find the
following solutions

H11¼
H00;rH23

H00

þH23;r; H12¼
H00;ϑH23

H00

þH23;ϑ: ð73Þ

By choosing these two functions, one finds a tetrad which
explicitly reads as

hAμ ¼

0
BBBBBB@

H00 0 0 H03

0 ðH00;rH23

H00
þH23;rÞ cosφ ðH00;ϑH23

H00
þH23;ϑÞ cosφ −H23 sinφ

0 ðH00;rH23

H00
þH23;rÞ sinφ ðH00;ϑH23

H00
þH23;ϑÞ sinφ H23 cosφ

0 H−1
32 ðH00;ϑH23

H00
þH23;ϑÞðH00;rH23

H00
þH23;rÞ −H32 0

1
CCCCCCA: ð74Þ

This tetrad solves the antisymmetric field equation univer-
sally for all fðT; B;ϕ; XÞ. In the above tetrad, all the
functions can depend on both r and ϑ and while the form
of the torsion scalar T and the boundary term B are very
cumbersome [see (A1)–(A2)]. This case constrains themetric
and does not contain either Kerr, Taub-NUT, or the C-metric.
However, this case generalizes the good tetrad found in [47].
This can be seen by performing a Lorentz transformation
h0Aμ ¼ ΛA

BhBμ with the Lorentz matrix being

ΛA
B ¼

0
BBB@

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1
CCCA: ð75Þ

Note that the Lorentz transformation (75) just cyclically
relabels the local axes and does not introduce any spin
connection (ω0A

Bμ ¼ 0), since it is constant. The special
case of the good tetrad found in [47] (see Eq. (32) there),
can be recovered by doing this local Lorentz transformation
and then setting

H00 ¼ Aðr; ϑÞ; H03 ¼ −Aðr; ϑÞWðr;ϑÞ;

H11 ¼ −
ðr −MÞ sinϑ
Aðr; ϑÞ ffiffiffiffi

Δ
p ; H12 ¼ −

ffiffiffiffi
Δ

p
cosϑ

Aðr; ϑÞ ; ð76Þ

H23 ¼ −
ffiffiffiffi
Δ

p
sin ϑ

Aðr; ϑÞ ; H32 ¼ −
ðr −MÞ sinϑ

Aðr;ϑÞ ; ð77Þ

whereAðr; ϑÞ andWðr;ϑÞ are some functions of r, ϑ (to be
determined by the symmetric equations), and Δ was
defined in Eq. (53).

One interesting remark about the tetrad given by
(76)–(77) is that if one sets the two arbitrary functions
to be

Aðr; ϑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 arctanð r−Mffiffiffiffiffiffiffiffiffiffi

a2−M2
p Þ − 2K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

pq ;

Wðr; ϑÞ ¼ K3 þ K1 cosϑ; ð78Þ

where Ki are constants, one notices that R
∘ ¼ 0, thus, the

corresponding metric is an exact solution of GR (or TEGR).
Then, for the above form of the functions, the boundary
term B and the scalar torsion T are equal. Moreover, the
scalar torsion and the boundary term are different to zero,
unless K1 ¼ 0.

2. Case 2: Qr = 0 and f T;ϑ + fB;ϑ = 0—Taub-NUT-like
metric

In this section, we are going to study the special case
where we have a metric with a Taub-NUT-like form. To do
so we choose

H23 ¼ sin ϑ
ffiffiffiffiffiffiffiffiffi
CðrÞ

p
; H03 ¼

ffiffiffiffiffiffiffiffiffiffi
AðrÞ

p
Dðr; ϑÞ;

H00 ¼
ffiffiffiffiffiffiffiffiffiffi
AðrÞ

p
; ð79Þ

H11 ¼ H32ðr; ϑÞ
ffiffiffiffiffiffiffiffiffi
BðrÞ
CðrÞ

s
;

H12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðrÞ −H32ðr; ϑÞ2

q
: ð80Þ
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The Taub-NUT metric, which is a specific case (56), of the
Plebański–Demiańskimetrics (40), is recovered by choosing

AðrÞ ¼ 1=BðrÞ ¼ ðr− rþÞðr− r−Þ
r2þb2

; CðrÞ ¼ r2þb2;

Dðr;ϑÞ ¼ 2bcosϑ; r� ¼M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þb2

p
; ð81Þ

where b is the Taub-NUT parameter and M the mass. The
Taub-NUT parameter plays the role of a gravitomagnetic
monopole moment, in virtue of its physical effect on the
trajectories of test particles minimally coupled to the con-
nection [72,73]. It is not asymptotically flat, at large distances
it provides a nonvanishing component g03 ¼ 2bðχ − cosϑÞ
which acts as a gravitomagnetic potential [74].
The antisymmetric equation (72) for this case

becomes

0¼1

4
ðfT;ϑþfB;ϑÞ

�
A0ðrÞ
AðrÞ þ

C0ðrÞ
CðrÞ −2

ffiffiffiffiffiffiffiffiffi
BðrÞ
CðrÞ

s
H32ðr;ϑÞcscϑ

�

þ1

2
ðfT;rþfB;rÞ

�
cscϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

H32ðr;ϑÞ2
CðrÞ

s
−cotϑ

�
: ð82Þ

Even though this equation is still implicit, the second
parenthesis vanishes for

H32ðr; ϑÞ ¼
ffiffiffiffiffiffiffiffiffi
CðrÞ

p
sinϑ ¼ H23ðr; ϑÞ: ð83Þ

With this choice, (82) is not fully satisfied since we still
have the term multiplied by fT;ϑ þ fB;ϑ remaining. The
torsion scalar and the boundary term, see (A1)–(A2), for
this case are

Tðr;ϑÞ ¼AðrÞcsc2ϑ
�

D2
;r

2BðrÞCðrÞ þ
D2

;ϑ

2CðrÞ2
�
þ C0ðrÞ

�
A0ðrÞ

AðrÞBðrÞCðrÞ−
1ffiffiffiffiffiffiffiffiffi

BðrÞp
CðrÞ3=2

�

−
A0ðrÞ

AðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞCðrÞp þ CðrÞ02

2BðrÞCðrÞ2 þ
2

CðrÞ ; ð84Þ

BðrÞ ¼ −
1

2AðrÞ2BðrÞ2 ½BðrÞA
0ðrÞ2 þAðrÞ

�
A0ðrÞB0ðrÞ þ 4BðrÞ3=2A0ðrÞffiffiffiffiffiffiffiffiffi

CðrÞp þ BðrÞ
�
−2A00ðrÞ − 4A0ðrÞC0ðrÞ

CðrÞ
��

þAðrÞ2
�
2B0ðrÞC0ðrÞ

CðrÞ −
4BðrÞC00ðrÞ

CðrÞ þ 4BðrÞ3=2C0ðrÞ
CðrÞ3=2

��
: ð85Þ

One first notices that the boundary term only depends on
the radial coordinate. If one then considers theories of the

type fðT; B;ϕ; XÞ ¼ T þ f̃1ðB;ϕ; XÞ þ f̃2ðR
∘
;ϕ; XÞ with

ϕ ¼ ϕðrÞ, the antisymmetric field equations are immedi-
ately satisfied. Second, keeping f general we can set

Dðr; ϑÞ ¼ C1 cosϑþ C2; ð86Þ
which implies that also the torsion scalar only depends on r.
Thus, now T ¼ TðrÞ and B ¼ BðrÞ and the remaining part
of the antisymmetric equation (82) becomes

0 ¼ ½AðrÞð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞCðrÞ

p
− C0ðrÞÞ − CðrÞA0ðrÞ�

× ½BðrÞϕ;ϑðCðrÞðfBϕ þ fTϕÞ þ ϵϕ;ϑϑðfBX þ fTXÞÞ
þ ϵCðrÞϕ;rϕ;rϑðfBX þ fTXÞ�: ð87Þ

This equation has different subclasses of solutions, which
can be summarized as follows:
(1) ϕ ¼ ϕðrÞ: this subclass assumes that the scalar field

only depends on the radial coordinate.
(2) fBϕþfTϕ¼fBXþfTX¼0 implying fðT;B;ϕ;XÞ¼

f1ðT;BÞþf2ð−TþB;ϕ;XÞ¼f1ðT;BÞþf2ðR
∘
;ϕ;XÞ:

this subclass is only fðT; BÞ plus a scalar-tensor
theory based on the Ricci scalar.

(3) BðrÞ ¼ ðCðrÞA0ðrÞþAðrÞC0ðrÞÞ2
4AðrÞ2CðrÞÞ (Qϑ ¼ 0): this subclass

constraint the metric to a special one that does
not have the Taub-NUTmetric as a special case. This
case is identical to the case whereQr ¼ Qϑ ¼ 0with
some extra conditions in the metric.

Let us now focus on the solutions within subclasses 1 and 2.
For these cases, the following tetrad

hAμ ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffi
AðrÞp

0 0
ffiffiffiffiffiffiffiffiffiffi
AðrÞp ðC2 þ C1 cosϑÞ

0
ffiffiffiffiffiffiffiffiffi
BðrÞp

sin ϑ cosφ
ffiffiffiffiffiffiffiffiffi
CðrÞp

cosϑ cosφ −
ffiffiffiffiffiffiffiffiffi
CðrÞp

sin ϑ sinφ

0
ffiffiffiffiffiffiffiffiffi
BðrÞp

sinϑ sinφ
ffiffiffiffiffiffiffiffiffi
CðrÞp

cos ϑ sinφ
ffiffiffiffiffiffiffiffiffi
CðrÞp

sin ϑ cosφ

0
ffiffiffiffiffiffiffiffiffi
BðrÞp

cosϑ −
ffiffiffiffiffiffiffiffiffi
CðrÞp

sinϑ 0

1
CCCCCA ð88Þ
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is a good tetrad that solves the antisymmetric field
equations. This tetrad behaves very similarly to the spheri-
cally symmetric good tetrad [see Eq. (31)], however,
contains an extra term related to axial symmetry. As a
special case, it is a tetrad of the Taub-NUT metric. The
general metric associated with the above tetrad is

ds2 ¼ AðrÞdt2 − BðrÞdr2 − CðrÞdϑ2
− ½CðrÞ sin2 ϑ −AðrÞðC1 cosϑþ C2Þ2�dφ2

þ 2AðrÞðC1 cosϑþ C2Þdtdφ: ð89Þ

The torsion tensor given by the good axially symmetric
tetrad (88) can be decomposed as the standard spherically
symmetric torsion piece plus an additional piece coming
from axial symmetry, namely

Tαμν ¼ TðspherÞ
αμν þ TðaxiÞ

αμν ; ð90Þ

where the nonzero components of the axial part are

TðaxiÞ
trφ ¼ −TðaxiÞ

φtr ¼ ðC2 þ C1 cosϑÞ−1TðaxiÞ
φrφ

¼ 1

2
A0ðrÞðC2 þ C1 cosϑÞ; ð91Þ

TðaxiÞ
tϑφ ¼ðC2 þ C1 cosϑÞ−1TðaxiÞ

φϑφ ¼ −C1AðrÞ sin ϑ: ð92Þ

We can also perform a Lorentz transformation for both
the tetrad and the spin connection, with ΛA

B being,

ΛA
B ¼

0
BBB@

1 0 0 0

0 sin ϑ cosφ sinϑ sinφ cosϑ

0 cosϑ cosφ cos ϑ sinφ − sinϑ

0 − sinφ cosφ 0

1
CCCA; ð93Þ

which gives us that the transformed tetrad is

h0Aμ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffi
AðrÞp

0 0
ffiffiffiffiffiffiffiffiffiffi
AðrÞp ðC2þC1cosϑÞ

0
ffiffiffiffiffiffiffiffiffi
BðrÞp

0 0

0 0
ffiffiffiffiffiffiffiffiffi
CðrÞp

0

0 0 0
ffiffiffiffiffiffiffiffiffi
CðrÞp

sinϑ

1
CCCCCA;

ð94Þ

and then with a nonzero spin connection yielding

ω0r
ϑϑ ¼ −ω0ϑ

rϑ ¼ −1; ω0r
φφ ¼ −ω0φ

rφ ¼ − sin ϑ;

ω0ϑ
φφ ¼ −ω0φ

ϑφ ¼ − cosϑ: ð95Þ

It is then equivalent to use the tetrad (88) with a vanishing
spin connection than to use the tetrad-spin connection pair
given by (94) and (95). It is worth noticing that the above
spin connection is exactly the same as the one reported in
spherical symmetry in other papers [35].

3. Case 3: Qϑ = 0 and fT;r + fB;r = 0

There is another case where it is possible to find a good
tetrad, namely, when Qϑ ¼ 0; fT;r þ fB;r ¼ 0. In order to
find a solution for this case, let us assume that the functions
Hij are

H12ðr;ϑÞ ¼ 0; H00ðr;ϑÞ ¼AðϑÞ; H03ðr;ϑÞ ¼BðϑÞ;
H32ðr;ϑÞ ¼ CðϑÞ; H23ðr;ϑÞ ¼D1ðϑÞD2ðrÞ; ð96Þ

and then since Qϑ ¼ 0 we have H11ðr; ϑÞ ¼ D1ðϑÞD0
2ðrÞ.

After assuming this, the torsion scalar becomes

Tðr; ϑÞ ¼ −2AðϑÞBðϑÞA0ðϑÞB0ðϑÞ þ BðϑÞ2A0ðϑÞ2 þAðϑÞ2B0ðϑÞ2
2AðϑÞ2D1ðϑÞ2D2ðrÞ2CðϑÞ2

þ 8AðϑÞD1ðϑÞA0ðϑÞD0
1ðϑÞ þ 4AðϑÞ2D0

1ðϑÞ2
2AðϑÞ2D1ðϑÞ2CðϑÞ2

; ð97Þ

and then if one further assumes

AðϑÞ ¼ BðϑÞ ð98Þ

the scalar torsion will depend only on ϑ (i.e., T;r ¼ 0). Moreover, the same happens for the boundary term (B;r ¼ 0).
Explicitly these quantities read as follows

TðϑÞ ¼ 2D0
1ðϑÞð2D1ðϑÞB0ðϑÞ þ BðϑÞD1ðϑÞÞ

BðϑÞD1ðϑÞ2CðϑÞ2
; ð99Þ

BðϑÞ ¼ 1

BðϑÞD1ðϑÞ2CðϑÞ3
½4D1ðϑÞðCðϑÞð2B0ðϑÞD0

1ðϑÞ þ BðϑÞD00
1ðϑÞÞ − BðϑÞD0

1ðϑÞC0ðϑÞÞ

þD1ðϑÞ2ð2CðϑÞB00ðϑÞ − 2B0ðϑÞC0ðϑÞÞ þ 4BðϑÞCðϑÞD0
1ðϑÞ2�: ð100Þ
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After all these assumptions, the antisymmetric equation (72) becomes

0 ¼ Qr½ϵðfBX þ fTXÞðD1ðϑÞ2D0
2ðrÞÞ3ϕ;ϑϕ;rϑ þ CðϑÞ2ϕ;rðD0

2ðrÞÞϕ;rr −D00
2ðrÞϕ;rÞÞ

þD1ðϑÞ2CðϑÞ2D0
2ðrÞÞ3fBϕϕ;r þD1ðϑÞ2CðϑÞ2D0

2ðrÞÞ3fTϕϕ;r�: ð101Þ

Similarly as the case studied before, we can have three different solutions. For Qr ≠ 0 and f ≠ f1ðT; BÞ þ f2ðR
∘
;ϕ; XÞ, we

require ϕ ¼ ϕðϑÞ to solve the above equation. Thus, when ϕ ¼ ϕðϑÞ, the following tetrad

hAμ ¼

0
BBB@

BðϑÞ 0 0 BðϑÞ
0 D1ðϑÞD0

2ðrÞ cosφ 0 −D1ðϑÞD2ðrÞ sinφ
0 D1ðϑÞD0

2ðrÞ sinφ 0 D1ðϑÞD2ðrÞ cosφ
0 0 −CðϑÞ 0

1
CCCA ð102Þ

solves the antisymmetric field equations, and then it is a good tetrad for fðT; B;ϕ; XÞ gravity. The metric corresponding to
the above tetrad is

ds2 ¼ BðϑÞ2dt2 −D1ðϑÞ2D0
2ðrÞ2dr2 − CðϑÞ2dϑ2 þ ðBðϑÞ2 −D1ðϑÞ2D2ðrÞ2Þdφ2 þ 2BðϑÞ2dtdφ: ð103Þ

If BðϑÞ ≠ const:, this metric is never spherically symmetric
since g00 ¼ g03 ¼ BðϑÞ2.

4. Case 4: ðf T;r + f B;rÞQr ≠ 0 and ðf T;ϑ + fB;ϑÞQϑ ≠ 0—
Kerr metric and its perturbation

This case is very involved since one must replace the
form of the scalar torsion T and B [see (A1) and (A2)] in the
antisymmetric equation (67) and then solve the partial
differential equation for one of the functions Hij. If one is
able to solve this antisymmetric equation directly, one
could have fixed one function of the Hij, and then, one
would be able to obtain a good axially symmetric tetrad
having five arbitrary functionsHij. Then, one could use this
tetrad to find solutions to the remaining field equations
(symmetric part). One notices that the Kerr and the
C-metric are part of this case.
Since the general case is very involved, we can first try to

analyze the specific case and use the tetrad (51)–(52) for the
Kerr metric. If we do this, we will only have one free
function (for example H32) that needs to be determined
from the antisymmetric equation. Even though this is
just a particular case and it would not give us the result
needed to find a general good axially symmetric tetrad, it
will be useful as a first step. Moreover, it can be noticed
from the previous sections that the form of the good tetrad
associated with Schwarzschild and the Taub-NUT metrics
have a trivial generalization to a general spherically
symmetric and a Taub-NUT-like metric cases, respectively.
Thus, if we are able to find a good tetrad for the Kerr case,
this could give us a hint to tackle the general axially
symmetric case.
Another motivation to find this tetrad is related to the

search of teleparallel perturbations of Kerr geometry,
similar to the fðT; BÞ perturbations of Schwarzschild

geometry studied in [66,67,75,76]. In perturbation theory
around a TEGR solution, the antisymmetric field equations
only contain the TEGR background tetrad and thus, a good
tetrad for Kerr geometry could be used as a starting point
for a perturbative analysis beyond TEGR as it has been
done in curvature-based extensions of GR [12–18].
Plugging the tetrad for the Kerr metric (51)–(52) in the

remaining antisymmetric field equation (72) and trying to
solve it for the undetermined tetrad component H32ðr; ϑÞ
turns out to be a difficult task. The main obstacle is, that in
this case, all terms ðfT;rþfB;rÞQr ≠ 0, ðfT;ϑþfB;ϑÞQϑ ≠ 0

are nonvanishing, i.e., one has to deal with derivatives of
the torsion scalar and the boundary term (see (A1) and
(A2). Below we present a solution of the antisymmetric
field equations for an expansion of the Kerr spacetime for
small rotation parameter a, i.e., for slowly rotating black
holes. This is the first step in the ongoing research project to
solve the antisymmetric field equation analytically for Kerr
geometry in fðT; B;ϕ; XÞ gravity.
First one notices that if

H32ðr; ϑÞ ¼ r sin ϑ; ð104Þ

the antisymmetric equation (72) is satisfied for either a ¼ 0
or M ¼ 0, but not when both are different from zero. For
the a ¼ 0 case, one also needs to assume that ϕ ¼ ϕðrÞ as
an extra condition which is consistent with the fact this case
is just Schwarzschild which is spherically symmetric.
Moreover, for this case, when a ¼ 0 one recovers the
standard spherically symmetric good tetrad with
Schwarzschild metric components (which has T ≠ 0),
see for example [67]. Then, one can conclude that the
general case when a ≠ 0 and M ≠ 0 must contain terms
like anMp in the above function. Let us now assume that
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a ≪ 1 and make an expansion around a ¼ 0. For this case,
we can consider the following form of the function

H32ðr; ϑÞ ¼ r sin ϑþ a2Aðr; ϑÞ þ a3Bðr;ϑÞ þOða4Þ;
ð105Þ

and expand a up to third order. For simplicity, we will only

consider fðT; B;ϕ; XÞ ¼ f̃ðT; BÞ þ f2ðR
∘
;ϕ; XÞ since the

case with the scalar field is even more involved.
Inserting the above function in (72) and expanding up to

second order we find the following differential equation
for A

0 ¼ a2ðf̃TT þ 2f̃TB þ f̃BBÞ½2 sinð2ϑÞð
ffiffiffi
r

p
− μÞf4r3=2ðcosð2ϑÞ − 3Þð ffiffiffi

r
p

− μÞμ2A;ϑ

− 4 sinð2ϑÞðr3=2ð ffiffiffi
r

p
− μÞμ2A;ϑϑ þ 2 sin ϑcos2ϑð5r3=2μþ r2 þ 11rμ2 − 4μ4 − 5

ffiffiffi
r

p
μ3ÞÞg

þ 8r3=2μ2Að6 cosð2ϑÞð ffiffiffi
r

p
− μÞ2 þ cosð4ϑÞð5μ2 þ 2

ffiffiffi
r

p
μþ rÞ − 7μ2 þ 2

ffiffiffi
r

p
μ − 3rÞ�; ð106Þ

where μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p
. The obvious way how to solve this equation is to look for theories that satisfy f̃TT þ 2f̃TB þ f̃BB ¼ 0.

However, having a closer look at this equation one finds that these theories are nothing but TEGR plus a cosmological

constant since for Kerr we have R
∘ ¼ 0 and then T ¼ B. The nontrivial solution to this differential equation for A is

Aðr; ϑÞ ¼ sinϑcos2ϑð4μ5 þ 6μ2r3=2 þ r5=2 þ 4μr2 þ μ4
ffiffiffi
r

p
− 16μ3rÞ

2μ2r3=2ð−μ2 − 4μ
ffiffiffi
r

p þ rÞ þ CðrÞF1ðr; ϑÞ þDðrÞF2ðr; ϑÞ; ð107Þ

where CðrÞ andDðrÞ are arbitrary functions (related to the integration of the differential equation) and F1ðr; ϑÞ and F2ðr; ϑÞ
are specific functions which are related to the Legendre function of the first and second kind [see (B1)–(B2)]. Furthermore,
by expanding the antisymmetric equation up to third order in a, one finds that Bðr; ϑÞ ¼ 0.
Thus fixing the tetrad component H32 to be

H32ðr; ϑÞ ¼ r sin ϑþ a2Aðr;ϑÞ ð108Þ

and A as in (107) we derived the good tetrad for a slowly rotating black hole spacetime in modified teleparallel gravity.
To display the torsion scalar and the boundary term, we

choose the function CðrÞ ¼ DðrÞ ¼ 0. Up to third order in
a they become

T¼B¼−
2ð ffiffiffi

r
p

−μÞ2
μr5=2

−
a2ð2μ3þ r3=2þ5μ2

ffiffiffi
r

p þ2μrÞð ffiffiffi
r

p
−μÞ2ð3μ2þ cosð2ϑÞð5μ2þ2μ

ffiffiffi
r

p þ rÞþ6μ
ffiffiffi
r

p
− rÞ

2μ3r5ð−μ2−4μ
ffiffiffi
r

p þ rÞ : ð109Þ

Since −T þ B ¼ 0, we then have R
∘ ¼ 0 as expected for the

Kerr metric. One might also note, that since the torsion
scalar (109) vanishes in the limit r → ∞, the TEGR action
integral constructed out of it could be considered as IR
renormalized, like in Ref. [39].

V. SOLELY AXIALLY SYMMETRIC BRANCH:
A FIRST DISCUSSION

The physically most relevant axially symmetric tetrads so
far are the ones we discussed in the previous section. Here
we point to further classes of axially symmetric tetrads
whose physical relevance still needs to be understood.

A. Stationary tetrads

The discovery of the second branch of axially symmetric
teleparallel Weitzenböck tetrads is very recent and their

physical relevance is not yet understood. Here we present a
first discussion. A thorough investigation is left for ongoing
and future research projects.
For this branch and taking the tetrad (36) we also find

that there is only one remaining antisymmetric equation
E½23�, and it reads as follows

0 ¼ −
1

2Q̃ðr; ϑÞ
�
ðfT;ϑ þ fB;ϑÞ

∂Q̃ðr; ϑÞ
∂r

− ðfT;r þ fB;rÞ
∂Q̃ðr;ϑÞ

∂ϑ
�
; ð110Þ

where

Q̃ðr;ϑÞ¼H23ðr;ϑÞH00ðr;ϑÞ−H20ðr;ϑÞH03ðr;ϑÞ: ð111Þ
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This equation is similar to the antisymmetric equation
found for the regular branch [see (67)], just that Qr and Qϑ

are generated by derivatives of the function Q̃ðr; ϑÞ.
Now we consider two cases. First, the easiest way to

solve this equation is by imposing that Q̃ðr;ϑÞ¼const:≔K
yielding

H23ðr;ϑÞ ¼
H03ðr; ϑÞH20ðr; ϑÞ

H00ðr; ϑÞ
þ K
H00ðr; ϑÞ

: ð112Þ

The above form ofH23ðr;ϑÞ gives us the following form of
the tetrad

hAμ ¼

0
BBBBBB@

H00ðr;ϑÞ 0 0 H03ðr;ϑÞ
0 H11ðr; ϑÞ H12ðr; ϑÞ 0

H20ðr;ϑÞ 0 0
H03ðr;ϑÞH20ðr;ϑÞþK

H00ðr;ϑÞ

0 − H11ðr;ϑÞH12ðr;ϑÞ
H32ðr;ϑÞ H32ðr; ϑÞ 0

1
CCCCCCA; ð113Þ

which solves the antisymmetric field equations for fðT; B;ϕ; XÞ without imposing any restriction in the form of f nor the
scalar field ϕ. This tetrad gives us the following form of the metric

ds2 ¼ dt2ðH00ðr; ϑÞ2 −H20ðr;ϑÞ2Þ −H2
11

�
1þH12ðr;ϑÞ2

H32ðr;ϑÞ2
�
dr2 − ðH12ðr; ϑÞ2 þH32ðr; ϑÞ2Þdϑ2

−
�ðH03ðr; ϑÞH20ðr; ϑÞ þ KÞ2

H00ðr; ϑÞ2
−H03ðr;ϑÞ2

�
dφ2

þ 2

�
H00ðr; ϑÞH03ðr; ϑÞ −

H20ðr; ϑÞðH03ðr; ϑÞH20ðr; ϑÞ þ KÞ
H00ðr;ϑÞ

�
dtdφ; ð114Þ

which does not contain any of the famous particular cases
of the Plebański–Demiański metric (40) (not even the
Schwarzschild metric). Moreover, when one tries to remove
the cross term drdφ one finds that g00 ¼ −K2=g33, which
gives a metric that strongly deviates from the standard
Schwarzschild-like form.
The second case for which Q̃ ≠ K can contain the Kerr

metric as a special case, and similarly as it happens in the
regular branch (previous section), one would need to
replace the form of the scalar torsion and the boundary
term in (110) and then solve this equation for one of the
functions Hij. This procedure is again very involved in
general and even for the Kerr metric, it is not easy to find a
good tetrad. One finds that for the Schwarzschild case with
their corresponding Hij [which are different to the Hij in
(63)–(64)], the form of H32 cannot be r sinϑ to solve the
antisymmetric equation (as in the principal branch).

Nevertheless, for the Kerr case with M ¼ 0 and also for
the Minkowski case, if H32 ¼ r sinϑ, T ¼ B ¼ 0 and then
this choice solves the antisymmetric equation (110). Since
this branch cannot have spherical symmetry, we will not
study it further.
However, in the next section, we will show an explicit

example of this situation with a good tetrad found pre-
viously in [46].

B. A time-dependent Kerr tetrad

Reference [46] gives a null tetrad that reproduces the
Kerr metric and solves the antisymmetric equations with
vanishing spin connection by having T ¼ 0. It can be
translated into a regular tetrad in the Boyer-Lindquist
coordinates as

hAμ ¼

0
BBBBBB@

eλðΣ−2MrÞþe−λΣ
2Σ

eλðΣ−2MrÞ−e−λΣ
2Δ 0

a sin2 ϑðeλðΣþ2MrÞ−e−λΣÞ
2Σ

eλðΣ−2MrÞ−e−λΣ
2Σ

eλðΣ−2MrÞþe−λΣ
2Δ 0

a sin2 ϑðeλðΣþ2MrÞþe−λΣÞ
2Σ

0 a2 sinϑ cos ϑ
Δ r −a sin ϑ cos ϑ

0 − ra sinϑ
Δ a cos ϑ r sinϑ

1
CCCCCCA; ð115Þ
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where a is the angular momentum parameter and Σ, Δ were
defined in Eq. (53). One can check that it indeed reproduces
the Kerr metric. It gives T ¼ 0 for vanishing spin con-
nection when one introduces the time dependent function

λðt; r;ϑÞ ¼ tðr4− 3a4 cos4ϑ− 2r2a2 cos2ϑ−4a2Mrcos2ϑÞ
2rðr4þa4 cos4ϑþ 2r2a2 cos2ϑÞ

þ λ̃ðr;ϑÞ; ð116Þ

where λ̃ðr;ϑÞ is some arbitrary function. This then implies
that antisymmetric equations are also solved.
However, the caveat with this tetrad is that it does not

satisfy the axial symmetry condition, since (115) does not
have the required cosφ, sinφ dependence to belong to the
first (regular) branch (22), nor does it depend only on r and
ϑ to belong to the second branch, solely axial (35), see
also Ref. [35].
One easy way to understand the loss of spherical

symmetry (in the teleparallel point of view) can be seen
by considering the Schwarzschild case (a ¼ 0) in the tetrad
(115) with (116). In this case, T ¼ 0 and then the
fðT; B;ϕ; XÞ antisymmetric equations are trivially satisfied
[if ϕ ¼ ϕðrÞ]. One might think that since T ¼ 0, the
teleparallel quantities constructed from the torsion tensor
do respect spherical symmetry. However, this is not the case
since the torsion tensor presents nonzero components such
as Tφ

ϑφ ¼ cotϑ which violate the symmetry condition
LXζ

Γσ
μν ¼ 0, see (19). Moreover, one can also compute

other scalars using the irreducible pieces of the torsion
tensor such as the Tvec, Tax or T ten [77], and notice that
they depend on r, ϑ, and t for the Schwarzschild case,
which is indeed telling us that these scalars do not respect
spherical symmetry (also they are not stationary).
Moreover, if we consider the theory fðTvec; Tax; T tenÞ
[78], then one finds that the tetrad (115) does not solve
its antisymmetric field equations and for the Schwarzschild
case, they do depend on ϑ and t.

VI. DETERMINING INERTIAL SPIN
CONNECTIONS AND WEITZENBÖCK

TETRADS BY “SWITCHING OFF GRAVITY”

Advancing from earlier ideas [39,42] the authors of
Ref. [40] propose an algorithm how to find the inertial spin
connection to a given tetrad, without involving any field
equations. This is an outstanding issue in TEGR where the
antisymmetric field equations are identically satisfied. For
modified teleparallel theories of gravity, this method gives
tetrad-spin connection pairs (or Weitzenböck tetrads) which
solve the antisymmetric field equations for the spherical as
well as spatially homogeneous and isotropic cases.
We investigate the outcome of the algorithm in axial

symmetry. We find that in a less symmetric situation the
outcome of the algorithm is nonunique and does not
necessarily produce a Weitzenböck tetrad which solves

the antisymmetric field equations of modified teleparallel
theories of gravity.
The suggested method to associate a spin connection to a

tetrad is the following:
(1) Consider a spacetime equipped with a metric g

and choose an arbitrary tetrad hAμ. Calculate the

Levi-Civita spin connection ω
∘ C

Dμ ¼ hCσhDνΓ
∘ σ

μν −
hDν∂μhCν and its corresponding Riemannian curva-

ture tensor R
∘ C

Dμν ¼ hCσhDρR
∘ σ

ρμν in the frame basis,

as displayed, where Γ
∘ α

μν are the Christoffel symbols

of the metric and R
∘ σ

ρμν are the components of the
Riemann curvature tensor derived with respect to the
Levi-Civita connection in coordinate basis.

(2) Find a constraint either on the metric components or
the coefficients appearing in the metric components,
such that the Riemann curvature tensor vanishes,

i.e., R
∘ α

βμν ¼ 0. This can be thought of as a limit
where gravity is “turned off.”

(3) Then, in general nonvanishing Levi-Civita connec-
tion of the metric evaluated on the flatness constraint

ω
∘ C

Dμjðflatness conditionÞ, represents a purely inertial
flat spin connection, which is now identified with
the teleparallel spin connection associated to the
tetrad hAμ.

(4) To obtain a Weitzenböck gauge tetrad hAWμ one
searches the local Lorentz transformationΛC

DðxÞ such
that ΛC

B∂μðΛ−1ÞBD ¼ ω
∘ C

Dμjðflatness conditionÞ.
For Schwarzschild geometry, defined by the metric

ds2 ¼
�
1 −

rs
r

�
dt2 −

�
1 −

rs
r

�
dr2 − r2ðdϑ2 þ sin2 ϑdφ2Þ

ð117Þ

the Riemann curvature tensor depends on the Schwarzschild
radius rs ¼ 2M and vanishes for rs ¼ 0. Using this con-
dition, the above algorithm yields the off diagonal spheri-
cally symmetric Weitzenböck tetrad [see Eq. (30) with
(63)–(64)], that solves the antisymmetric field equations
in modified teleparallel fðT; B;ϕ; XÞ theories of gravity.
For homogeneous and isotropic FLRW geometry,

defined by the metric

ds2¼ dt2−aðtÞ2
�

dr2

1−kr2
þ r2ðdϑ2þ sin2ϑdφ2Þ

�
; ð118Þ

the curvature tensor depends on the scale factor aðtÞ and the
spatial curvature parameter k. The condition _aðtÞ þ k ¼ 0
make the curvature tensor vanish and the above procedure
yields the tetrad that has been found in the literature which
solves antisymmetric field equations in general modified
teleparallel theories of gravity [35].
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We now apply this algorithm, which was successful
in highly symmetric situations, to Kerr, Taub-NUT, and
C-metric geometries.
(1) We choose a simple frame

hAμ ¼

0
BBBBBB@

ffiffiffiffiffiffi
g00

p
0 0 g03ffiffiffiffiffi

g00
p

0
ffiffiffiffiffiffi
g11

p
0 0

0 0
ffiffiffiffiffiffi
g22

p
0

0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
03

g00
þg33

q

1
CCCCCCA; ð119Þ

of the line element ds2 ¼ g00dt2 þ g03dtdφþ
g11dr2 þ g22dϑ2 þ g33dφ2, where all metric func-
tions only depend on r and ϑ, gμν ¼ gμνðr; ϑÞ. This
metric includes the whole Plebański-Demiański
class we introduced in (40) and thus in particular
the famous special cases:
(i) The Kerr metric for the choice

g00 ¼ 1 −
2Mr
Σ

; g03 ¼
4Mrasin2ϑ

Σ
;

g11 ¼ −
Σ
Δ
; g22 ¼ −Σ;

g33 ¼ −
�
r2 þ a2 þ 2Mra2sin2ϑ

Σ

�
sin2ϑ;

where Σ and Δ are defined below (53).
(ii) The Taub-NUT metric for

g00 ¼ 1 −
2ðb2 þMrÞ
b2 þ r2

;

g03 ¼ 2bðχ − cos ϑÞ
�
1 −

2ðb2 þMrÞ
b2 þ r2

�
;

g11 ¼ −
b2 þ r2

r2 − 2Mr − b2

g22 ¼ −ðb2 þ r2Þ;

g33 ¼ 4b2ðχ − cosϑÞ
�
1 −

2ðb2 þMrÞ
b2 þ r2

�
− ðb2 þ r2Þsin2ϑ.

(iii) The C-metric for

g00 ¼
Q

r2Ω2
; g11 ¼ −

r2

Ω2Q
;

g22 ¼ −
r2

Ω2P
; g33 ¼ −

P
Ω2

r2sin2ϑ;

where Q, Ω and P are defined in (61).
Calculating the frame components of the Riemann
curvature tensor in the frame (119) results in
curvature components depending on the parameters
of the metric. All metrics share the parameterM and
in addition: the rotation a for the Kerr metric, the
NUT parameter b for the Taub-NUT metric, and α
for the C-metric.

(2) To switch gravity off, a condition on the parameters is

searched such that the curvature tensor R
∘ λ

μνρ van-
ishes. It could be a relation of the type M ¼ MðYÞ,
where Y is one of the parameters of the metric in
consideration, or finding a value which Y and M
assumed. The conditions for the different cases are
(i) Kerr:M ¼ 0 suffices to make all components of

the curvature tensor vanish. It is optional to also
set a to a fixed value, for example a ¼ 0;

(ii) Taub-NUT: M ¼ 0 and b ¼ 0 is necessary to
make all components of the curvature tensor
vanish;

(iii) C-metric: M ¼ 0 and α ¼ 0 is necessary to
make all components of the curvature tensor
vanish;

(3) For the different geometries listed before, ω
∘ C

DμjM¼0,

ω
∘ C

DμjðM¼0;b¼0Þ and ω
∘ C

DμjðM¼0;α¼0Þ, respectively,
represent flat spin connections. It turns out that
these flat spin connections coincide for all three
geometries under the conditions M ¼ a ¼ 0 for
Kerr, M ¼ b ¼ 0 for Taub-NUT and M ¼ α ¼ 0
for the C-metric.
Starting with the Kerr geometry case, identifying

the just determined flat spin connection with the
teleparallel connection generated by local Lorentz

transformations ω
∘ C

DμjM¼0 ¼ ΛC
B∂μðΛ−1ÞBD, yields

an equation to determine ΛC
D ¼ ΛC

Dðr;ϑ;φÞ. Solv-
ing the equivalent equation ðΛ−1ÞCBω

∘ B
DμjM¼0 ¼

∂μðΛ−1ÞCD for Kerr geometry yields

ðΛ−1ÞCD ¼

0
BBBBBBBB@

1 0 0 0

0 r cosφ sinϑffiffiffi
Σ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða2þr2Þ
a2þr2þΣ

q
cosφ cos ϑ − sinφ

0 r sinφ sin ϑffiffiffi
Σ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða2þr2Þ
a2þr2þΣ

q
sinφ cosϑ cosφ

0

ffiffiffiffiffiffiffiffiffi
a2þr2
Σ

q
cosϑ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

a2þr2þΣ

q
r sinϑ 0

1
CCCCCCCCA
: ð120Þ

BAHAMONDE, VALCARCEL, JÄRV, and PFEIFER PHYS. REV. D 103, 044058 (2021)

044058-18



Since the spin connections of the different geometries
coincide when all parameters in the metrics vanish,
we can simply seta → 0 to obtain the desired Lorentz
transformation for the other two cases. This also
means that for the Kerr case the algorithm yields two
possible Lorentz transformations Λ and Λja¼0.

(4) The Weitzenböck tetrad then is obtained by applying
the Lorentz transformation to the tetrad (119)
hCWμ ¼ hDμðΛ−1ÞCD. Most interestingly one obtains
the reduced axially symmetric tetrads (30) for all
geometries with a fixed H32 component.
(i) Kerr geometry: Using ðΛ−1ÞAB to generate the

Weitzenböck tetrad yields the tetrad compo-
nents (51)–(52) with H32 ¼ r sinϑ. Using in-
stead ðΛ−1ÞCDja¼0 yields the tetrad components
(51)–(52) with H32 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 cos2 ϑ

p
sin ϑ.

Comparing these tetrad components with the
ones we found from solving the antisymmetric
field equations in Sec. IV C 4, we conclude that
neither of the derived tetrads is a solution.

(ii) Taub-NUT geometry: In this case only one
Lorentz transformation, ðΛ−1ÞABja¼0, is avail-
able to generate the Weitzenböck tetrad. It
precisely becomes the reduced axially symmet-
ric tetrad with components (56) and H32 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2

p
sin ϑ. Comparing this result with the

solutions found in Sec. IV C 2 we see that this
tetrad indeed is a solution of the antisymmetric
field equations.

(iii) The C-metric: As for the Taub-NUT case only
one Lorentz transformation is available to gen-
erate the Weitzenböck tetrad. This time we
obtain the reduced axially symmetric tetrad
with components (60) and H32 ¼ r sinϑ

PΩ . As in
the Kerr case, this tetrad does not solve the
antisymmetric field equations.

Thus the algorithm suggested in [40] associates spin
connections to tetrads, respectively determines Weitzenböck
tetrads. The procedure is however nonunique, and, sadly,
has no clear direct connection to finding solutions to the
antisymmetric field equations of modified teleparallel
theories of gravity. The algorithm may have relevance
for TEGR, where the antisymmetric equations are identi-
cally satisfied. Whether there is any way a distinguished
physical interpretation of the tetrads we found using the
algorithm needs to be investigated.

VII. CONCLUSIONS

In the present work, we address the study of axially
symmetric teleparallel geometries in the framework of
fðT; B;ϕ; XÞ gravity. For this task, we emphasize the
existence of two different branches of axially symmetric
tetrad fields and Lorentz flat spin connections, i.e., they
preserve the underlying symmetry conditionsunder the action

of the rotation group SOð2Þ, as was shown in [35] (see
Sec. III B). The important difference between the branches is
the fact that the first, the regular branch (see Sec. III B 1) is
consistent with a spherically symmetric teleparallel geometry
in a certain limit, in the sense of teleparallel geometry, see
(18), while the second, the solely axially symmetric branch
(see Sec. III B 2) cannot have such a limit.
In teleparallel theories of gravity, the field equations can

be decomposed into symmetric and, in general nontrivial,
antisymmetric parts. The first step toward a solution is
always to solve the antisymmetric field equations, which is
mostly done in the Weitenzböck gauge where all degrees of
freedom are encoded in the tetrad and the spin connection is
set to zero. The tetrads found this way are often called good
tetrads, which serve as an ansatz that is fed into the
symmetric field equations.
We focused on finding solutions to the antisymmetric

field equations of the fðT; B;ϕ; XÞ class of gravity theories,
which contains many modified teleparallel theories of
gravity discussed in the literature, in axial symmetry,
starting from the regular branch, before we discussed
alternative tetrad choices. In particular, we started the
search for teleparallel generalizations of axially symmetric
spacetimes beyond the Plebański-Demiański class of sol-
utions of general relativity.
We introduce the first categorization for teleparallel

axially symmetric spacetimes and demonstrate the exist-
ence of a good tetrad containing the Taub-NUT subclass of
the Plebański-Demiański metric in the regular branch (i.e.,
allowing a continuous reduction to the spherically sym-
metric case). The physical viability of this geometry has
recently revisited in virtue of the absence of pathologies for
free-falling observers and thermodynamics [69,79,80]. In
addition, considering the highly nonlinear character of the
field equations of fðT; B;ϕ; XÞ, we are also able to obtain
an analytical expression for the good tetrad in Kerr
geometry under the slow rotation approximation, which
constitutes a first preliminary and promising result for the
achievement of a complete solution describing rotating
black holes in modified teleparallel gravity.
The corresponding good tetrads related to the aforemen-

tioned configurations and other particular cases can be
summarized as follows:
(1) For the regular branch:

(a) Anaxially symmetric universal good tetrad (74) for
any fðT; B;ϕ; XÞwhich turns out not to reproduce
any of the special cases of the vacuum Plebański-
Demiańskimetric (except theSchwarzschild case).
This tetrad generalizes the one found in [47].

(b) An axially symmetric good tetrad (88) which is
a generalization of the standard spherically
symmetric tetrad (31) and reproduces a metric
behaving like a family of Taub-NUT-like metrics
(89). This tetrad is valid for any fðT; B;ϕ; XÞ
provided by a scalar field of the form ϕ ¼ ϕðrÞ.
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(c) An axially symmetric good tetrad (102) which
shows a high dependence on the angular coor-
dinate ϑ, and provides the nontrivial relation
g00 ¼ −g03=2 for the metric tensor. This tetrad is
valid for any fðT; B;ϕ; XÞ with a scalar field
being ϕ ¼ ϕðϑÞ. As is shown, this result
strongly constrains the form of the metric tensor,
so a further study of the symmetric equations
would be necessary in order to clarify whether
this tetrad is physically viable or not.

(d) A good tetrad for a slowly rotating (a ≪ 1) Kerr
metric given by (51)–(52) with (108). This result
is only valid for fðT; BÞ gravity. Even though
this good tetrad solves the antisymmetric field
equations, all the metric (and tetrad) functions
are determined. It can be used to find perturba-
tive teleparallel modifications of slowly rotating
axially symmetric solutions around Kerr (see
[12–18] for similar works in curvature-based
theories of gravity) or other analyses where the
Kerr metric is assumed.

(e) A new spherically symmetric good tetrad (33)
for fðTÞ gravity having T ¼ 0 whose metric is
constraint to have a g00 ¼ −1=g11 form. This
tetrad only obeys spherical symmetry in the
trivial case when g00 ¼ 1, otherwise the tele-
parallel connection does not satisfy the sym-
metry condition, i.e., LζΓ ≠ 0.

(2) For the solely axially symmetric branch:
(a) An axially symmetric good tetrad (113) which

does not have any Plebański-Demiański metric
as particular cases. Even the Schwarzschild
metric cannot be recovered with this tetrad.
Furthermore, the t − t component is related to
the φ − φ component as g00 ¼ −K2=g33, which
gives us a metric behaving very differently to
any standard known vacuum solution in GR.

In the study of extended gravitational theories beyond
GR, the search and analysis of solutions to the underlying
field equations are fundamental to figure out their dynami-
cal properties and to test their validity in different astro-
physical and cosmological situations. In this regard, the

consideration of rotating black holes which may carry
additional charges as is the case in axial symmetry turns out
to be essential for a phenomenological assessment of such
theories in terms of a realistic configuration. Black hole
angular momentum measurements include observations on
the dynamics of accretion disks and stellar objects in their
vicinity, the study of shadow images, or the detection of
gravitational waves [1,81–83]. The possible effects of a
gravitomagnetic monopole on the black hole shadow and
on the twist of light in microlensing events have been
considered for the design of future tests of axially sym-
metric configurations with a NUT charge [73,84–86]. In
this sense, it is also expected to obtain new phenomeno-
logical constraints for the viability of generalized axially
symmetric teleparallel geometries as the ones presented in
this work. In addition, further extensions of slowly and
rigidly rotating, stationary and axially symmetric bodies,
e.g., see [87,88], may be considered by setting as a
background spacetime the slowly rotating configuration
found in this work, in order to include higher-order
multipole moments in the gravitational scheme and analyse
the effect of rotation on stellar structures in the realm of
modified teleparallel gravity. Further research following
these lines will be addressed in future works.
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APPENDIX A: TORSION SCALAR
AND BOUNDARY TERM IN AXIAL
SYMMETRY—PRINCIPAL BRANCH

The torsion scalar and the boundary term for the general
tetrad (30) in axial symmetry become

T ¼ 1

2H2
00H

2
11H

2
23H32ðH2

12 þH2
32Þ2

½ððH2
12H

2
03;r þ 4H12H23H12;rH23;r þH32ðH32H2

03;r þ 4H23H23;rH32;rÞÞH3
32

− 4H11H23ðH11;ϑH3
12 þ ðH32H32;r −H11;ϑH23;ϑÞH2

12 þH32ðH32H11;ϑ þH32;ϑH23;r −H23;ϑH32;rÞH12

þH2
32ð−H11;ϑH23;ϑ þH12;rH23;ϑ −H12;ϑH23;r þH32H32;rÞÞH32 þH2

11ð4H23H32;ϑH3
12

þ ðH32ðH2
03;ϑ − 4H23H12;ϑÞ − 4H23H23;ϑH32;ϑÞH2

12 þ 4H23H32ðH12;ϑH23;ϑ þH32H32;ϑÞH12

þH3
32ðH2

03;ϑ − 4H23H12;ϑÞÞÞH2
00 − 2ðH00;rðH03ðH2

12 þH2
32ÞH03;r − 2H23ðH23;rH2

12 þH23H12;rH12

þH2
32H23;r þH23H32H32;rÞÞH3

32 − 2H11H23ðH23ðH12;ϑH00;r þH00;ϑðH11;ϑ −H12;rÞÞH2
32
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þH12H23ðH00;ϑH32;r −H32;ϑH00;rÞH32 −H4
32H00;r þH2

12ðH23H00;ϑH11;ϑ −H2
32H00;rÞÞH32

þH2
11H00;ϑð2H23H32H3

12 þ ð2H32;ϑH2
23 − 2H32H23;ϑH23 þH03H32H03;ϑÞH2

12

þ 2H23H32ðH2
32 −H23H12;ϑÞH12 þH3

32ðH03H03;ϑ − 2H23H23;ϑÞÞÞH00

þH2
03H32ðH2

12 þH2
32ÞðH2

11H
2
00;ϑ þH2

32H
2
00;rÞ�; ðA1Þ

B ¼ 1

H00H3
11H23H2

32ðH2
12 þH2

32Þ3
½2f−ðH2

12 þH2
32ÞH11;rððH23H00;r þH00H23;rÞH2

12 þH00H23H12;rH12

þH32ðH00H32H23;r þH23ðH32H00;r þH00H32;rÞÞÞH4
32 þH11ðððH23H00;r þH00H23;rÞH32;r

þH32ð2H00;rH23;r þH23H00;rr þH00H23;rrÞÞH4
12 þ ðH00H32H12;rH23;r þH23ðH00H12;rH32;r

þH32ðH00;rH12;r þH00H12;rrÞÞÞH3
12 þH32ðH32ð3H23H00;rH32;r þ 2H32ð2H00;rH23;r þH23H00;rrÞÞ

þH00ðH32ð3H23;rH32;r þ 2H32H23;rrÞ þH23ð−H2
12;r þ 2H2

32;r þH32H32;rrÞÞÞH2
12

þH2
32ðH00H32H12;rH23;r þH23ðH32ðH00;rH12;r þH00H12;rrÞ − 3H00H12;rH32;rÞÞH12

þH3
32ðH32ð2H23H00;rH32;r þH32ð2H00;rH23;r þH23H00;rrÞÞ þH00ðH32ð2H23;rH32;r þH32H23;rrÞ

þH23ðH2
12;r þH32H32;rrÞÞÞÞH3

32 −H2
11ðH2

12 þH2
32ÞðH32ðH00;rH4

32 þH23ðH00;ϑðH12;r − 2H11;ϑÞ
−H12;ϑH00;rÞH2

32 þH12H23ðH32;ϑH00;r −H00;ϑH32;rÞH32 þH2
12ðH2

32H00;r − 2H23H00;ϑH11;ϑÞÞ
þH00ðH32H11;ϑH3

12 þ ðH32;rH2
32 − ð2H11;ϑH23;ϑ þH23H11;ϑϑÞH32 þ 2H23H11;ϑH32;ϑÞH2

12

þH32ðH11;ϑH2
32 þ ðH32;ϑH23;r −H23;ϑH32;rÞH32 −H23H11;ϑH12;ϑÞH12

þH2
32ðH32;rH2

32 − ð2H11;ϑH23;ϑ −H12;rH23;ϑ þH23H11;ϑϑ þH12;ϑH23;rÞH32 þH23H11;ϑH32;ϑÞÞÞH32

þH3
11½H32ðH00H32;ϑ −H32H00;ϑÞH5

12 þ ðH32ðH32ð2H00;ϑH23;ϑ þH23H00;ϑϑÞ − 2H23H00;ϑH32;ϑÞ
−H00ððH12;ϑ −H23;ϑϑÞH2

32 þ ð2H23;ϑH32;ϑ þH23H32;ϑϑÞH32 − 2H23H2
32;ϑÞÞH4

12

þH32ð−2H00;ϑH3
32 þ 2H00H32;ϑH2

32 þ ðH00H12;ϑH23;ϑ þH23ðH00;ϑH12;ϑ þH00H12;ϑϑÞÞH32

−H00H23H12;ϑH32;ϑÞH3
12 −H2

32ðH32ð3H23H00;ϑH32;ϑ − 2H32ð2H00;ϑH23;ϑ þH23H00;ϑϑÞÞ
þH00ð2ðH12;ϑ −H23;ϑϑÞH2

32 þ ð3H23;ϑH32;ϑ þH23H32;ϑϑÞH32 þH23ðH2
12;ϑ − 4H2

32;ϑÞÞÞH2
12

þH3
32ðH00H32;ϑH2

32 þ ðH00H12;ϑH23;ϑ þH23ðH00;ϑH12;ϑ þH00H12;ϑϑÞÞH32 −H3
32H00;ϑ

− 5H00H23H12;ϑH32;ϑÞH12 þH4
32ðH32ðH32ð2H00;ϑH23;ϑ þH23H00;ϑϑÞ −H23H00;ϑH32;ϑÞ

þH00ððH23;ϑϑ −H12;ϑÞH2
32 −H23;ϑH32;ϑH32 þH23H2

12;ϑÞÞ�g�: ðA2Þ

APPENDIX B: KERR PERTURBATIONS

The form of the functions appearing in (107) are

F2ðr; ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
exp

�Z
ðξ − ξ3Þ−1dξ

�
Pðf2ðrÞ; 1; ξÞ; ðB1Þ

F4ðr; ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
exp

�Z
ðξ − ξ3Þ−1dξ

�
Qðf2ðrÞ; 1; ξÞ; ðB2Þ

f2ðrÞ ¼
1

2M

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð32r3=2 − 48M

ffiffiffi
r

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p
þ 41M2 − 80Mrþ 32r2

q
−M

i
; ðB3Þ

where ξ ¼ cosϑ and Pðx; y; zÞ and Qðx; y; zÞ are the Legendre functions of the first and second kind respectively [89].
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[9] M. Guerrero, G. Mora-Pérez, G. J. Olmo, E. Orazi, and D.
Rubiera-Garcia, Rotating black holes in Eddington-inspired
Born-Infeld gravity: An exact solution, J. Cosmol. Astro-
part. Phys. 07 (2020) 058.

[10] J. B. Achour, H. Liu, H. Motohashi, S. Mukohyama, and
K. Noui, On rotating black holes in DHOST theories,
J. Cosmol. Astropart. Phys. 11 (2020) 001.

[11] T. Anson, E. Babichev, C. Charmousis, and M. Hassaine,
Disforming the Kerr metric, J. High Energy Phys. 01 (2021)
018.

[12] K. Konno, T. Matsuyama, and S. Tanda, Rotating black hole
in extended Chern-Simons modified gravity, Prog. Theor.
Phys. 122, 561 (2009).

[13] N. Yunes and F. Pretorius, Dynamical Chern-Simons
modified gravity. I. Spinning black holes in the slow-
rotation approximation, Phys. Rev. D 79, 084043 (2009).

[14] P. Pani and V. Cardoso, Are black holes in alternative
theories serious astrophysical candidates? The case for
Einstein-Dilaton-Gauss-Bonnet black holes, Phys. Rev. D
79, 084031 (2009).

[15] P. Pani, C. F. Macedo, L. C. Crispino, and V. Cardoso,
Slowly rotating black holes in alternative theories of gravity,
Phys. Rev. D 84, 087501 (2011).

[16] D. Ayzenberg and N. Yunes, Slowly-rotating black holes in
Einstein-dilaton-Gauss-Bonnet gravity: Quadratic order in
spin solutions, Phys. Rev. D 90, 044066 (2014).

[17] A. Maselli, P. Pani, L. Gualtieri, and V. Ferrari, Rotating
black holes in Einstein-dilaton-Gauss-Bonnet gravity with
finite coupling, Phys. Rev. D 92, 083014 (2015).
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