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Axially symmetric spacetimes play an important role in the relativistic description of rotating
astrophysical objects like black holes, stars, etc. In gravitational theories that venture beyond the usual
Riemannian geometry by allowing independent connection components, the notion of symmetry concerns,
not just the metric, but also the connection. As discovered recently, in teleparallel geometries, axial
symmetry can be realized in two branches, while only one of these has a continuous spherically symmetric
limit. In the current paper, we consider a very generic f(T, B, ¢, X) family of teleparallel gravities, whose
action depends on the torsion scalar 7 and the boundary term B, as well as a scalar field ¢ with its kinetic
term X. As the field equations can be decomposed into symmetric and antisymmetric (spin connection)
parts, we thoroughly analyze the antisymmetric equations and look for solutions of axial spacetimes which
could be used as ansitze to tackle the symmetric part of the field equations. In particular, we find solutions
corresponding to a generalization of the Taub-NUT metric, and the slowly rotating Kerr spacetime.
Since this work also concerns a wider issue of how to determine the spin connection in teleparallel gravity,
we also show that the method of “turning off gravity” proposed in the literature, does not always produce a

solution to the antisymmetric equations.
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I. INTRODUCTION

It took hardly a month since the publication of Einstein’s
theory of general relativity (GR) for Karl Schwarzschild to
produce a solution of the field equations in the spherically
symmetric case. However, many interesting astrophysical
objects from stars and planets to black holes exhibit some
rotation, i.e., possess just stationary axial symmetry and can
not be described by a spherical spacetime precisely. In
general relativity, it took almost six decades until Ezra T.
Newman and Roy Kerr worked out rotating solutions [1], and
then a bit more than a dozen years to map out the full
Plebaniski-Demianski family of axially symmetric space-

times [2,3]. In f(R) and other extensions of general relativity
the known exact axial solutions are few and far between (e.g.,
[4—11]), mostly recovered in the slow rotation limit [12—18],
or approached by the continued fraction expansion [19,20].
However, conceptually the procedure for finding the solu-
tions is clear. The symmetry is encoded in the Killing vectors
which leads to an ansatz for the metric, and free functions in
the ansatz can then be fixed by the field equations.
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Teleparallel gravity uses a geometric identity whereby
the Levi-Civita Ricci scalar R of the Einstein-Hilbert action
can be rewritten in terms of the torsion scalar 7" and a total
divergence of the torsion tensor. The latter constitutes a
boundary term B, which does not affect the equations of
motion. The action given by the torsion scalar is called
teleparallel equivalent of general relativity (TEGR), as
adopting the so-called Weitzenbock connection of vanish-
ing curvature (and vanishing nonmetricity) grants distant
parallel transport of vectors [21,22]. TEGR can be extended
to f(T) [23-26] and further f(7, B, ¢, X) modifications,
where ¢ is a scalar field and X its kinetic term [27-33].
Interestingly, this includes a very broad class of theories,

among others the f(R, ¢, X) extensions of standard general
relativity. In this picture, the properties of gravity can be
attributed to torsion instead of curvature. The price to pay is
the introduction of additional connection components,
extra to the usual Levi-Civita ones which follow from
the metric.

Thus, in contrast to general relativity, teleparallel
gravities face the problem of how to determine the extra
connection. By definition, the connection must (i) be flat
(giving vanishing curvature), and obviously also (ii) solve
the field equations arising from the variation of the action
with respect to the flat connection. Incidentally, the con-
nection equations coincide with the equations for the
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antisymmetric tetrad components [26,30,34], but are iden-
tically satisfied in TEGR [21]. Arguably, the connection
should also better (iii) obey the same symmetry as the
metric [35,36]. Here one should realize that it is conceiv-
able to consider a configuration where the connection or
equivalently the torsion tensor possesses less or different
symmetry than the metric, although the physical relevance
of such situations is not clear. Further on, it makes also
sense to prefer such a connection which enables to
(iv) define meaningful conserved charges in the asymp-
totics (like mass or angular momentum) [37-40]. Another
idea to fix the connection is that it should (v) renormalize
the action in the IR [39,41], while related proposals to
determine the connection are to require it to vanish in the
limit when ““gravity is turned off” [39,42].

The flatness condition is easy to solve by employing the
tetrad formalism, whereby one can assume the so-called
Weitzenbock gauge, where vanishing spin connection
immediately implies vanishing curvature. Yet, in that case,
one has still to figure out which Lorentz frame belongs to
the vanishing spin connection, or, the other way around,
which one is the correct tetrad to which one associates the
vanishing spin connection. Entertaining the terminology of
Ref. [43] we may call a tetrad “good” if it solves the
antisymmetric field equations with vanishing spin con-
nection. Indeed, looking for a good tetrad is quite often a
useful approach in trying to solve the equations. If a good
tetrad is found, then applying local Lorentz transformations
will not just transform the tetrad but typically also introduce
nonvanishing spin connection in a covariant manner
[42,44]. One should keep in mind that any tetrad and spin
connection pair related to the good tetrad by a local Lorentz
transformation will solve the antisymmetric field equations.

For the spherical symmetry in f(7, B, ¢, X) gravity the
good tetrad is known [45]. It satisfies all the points above,
i.e., by definition, it is associated to a vanishing flat spin
connection and solves the antisymmetric equations [43],
but also obeys the symmetry [35], defines the correct mass
in the asymptotics [40], and renormalizes the IR action
[39]. However, as far as rotating solutions and axial
symmetry are concerned, the literature remains lacking a
satisfactory result. The early tetrad expressions of the Kerr
metric [37,39] aimed to give correct mass and to renorm-
alize the action at IR, do not solve the connection field
equations and hence can at best pertain to TEGR only. The
other tetrad for Kerr spacetime found by Bejarano et al. in
the null tetrad formalism [46] does solve the field equations
trivially since it has vanishing 7 and B. However, as we
argue in this paper, it has a subtle issue with symmetry.
Namely, owing to group theory considerations, teleparallel
connections with axial symmetry come in two branches
[35]. Only the first, regular branch can be continuously
related to the spherically symmetric case mentioned above
[43,45], while the connections in the other branch (includ-
ing the solution in [46]) fail to exhibit spherical symmetry

in the limit where the corresponding metric becomes
spherical. There is also a solution found by some of the
present authors earlier [47], which satisfies the antisym-
metric field equations and belongs to the regular branch of
axial symmetry, but is rather limited in the sense that it does
not incorporate the possibility of the Kerr metric. In the
literature, one may come across a few other proposals for
rotating solutions in teleparallel gravities, however, these
fall short of fulfilling the other conditions except flatness.

In the present work, we give an account of an effort to
describe rotating geometries in teleparallel gravities. The
broader aim is twofold. The first task would be to determine
the teleparallel connection components that can go together
with the Kerr metric and obey the conditions (i)—(v) above.
The second aim is to get hold of an ansatz for a rotating
“good” tetrad, i.e., a tetrad in Weitzenbock gauge that obeys
the symmetry and solves the antisymmetric equations
independently of the function f. This ansatz could then
be substituted into the symmetric equations to find solutions
in different theories belonging to the f (7, B, ¢, X) family.
Both aims remain yet to be reached in full glory, but
nevertheless, the current paper is able to report on several
interesting results and provide the groundwork for further
investigations. After recalling a few key formulae of tele-
parallel gravity in Sec. II, we explain how axial symmetry
can be realized by Weitzenbock tetrads (i.e., tetrads asso-
ciated with vanishing spin connection) belonging to two
branches in Sec. III. Then in Sec. IV we consider vacuum
Plebanski-Demiafski geometry and propose a generic form
for a good tetrad which pertains to the regular branch and
automatically satisfies all antisymmetric field equations
except one. There are different ways how to tackle the
remaining equation, and by treating it case by case we are
able to derive different solutions such as, e.g., a generali-
zation of the solution of Ref. [47]; a solution that accom-
modates Taub-NUT spacetime; a solution that corresponds
to the Kerr metric in the slow rotation expansion. Afterward,
in Sec. VA we propose a generic form for a good tetrad
which pertains to the other branch but will not consider it
further since it falls short of the spherical symmetry limit. In
this section, we also comment on the time-dependent Kerr
tetrad found in Ref. [46]. Lastly, in Sec. VI we show how the
method outlined in Ref. [40] to obtain a teleparallel con-
nection from a metric produces a good tetrad in the Taub-
NUT case, but not in the Kerr or C-metric case. Section VII
offers a final discussion. The Appendixes A and B list some
long but necessary expressions for the axially symmetric
torsion scalar and boundary term.

As aremark for readers who are familiar with metric-affine
gravity, it may be mentioned that teleparallel framework has
some similarities, but also differences. In both contexts the
notion of symmetry encompasses both the metric and
independent connection [48-51]. However, the rotating
solutions found in metric-affine gravities, e.g., [52-54], will
not likely reduce to meaningful teleparallel configurations,

044058-2



EXPLORING AXIAL SYMMETRY IN MODIFIED TELEPARALLEL ...

PHYS. REV. D 103, 044058 (2021)

since the curvature tensor generally plays a dynamical role,
while in the teleparallel case the connection is necessarily
flat. Hence when setting curvature to zero for an arbitrary
metric-affine solution its key features will be lost.

Throughout the paper, we denote hAM and hy* for the
tetrad and its inverse, respectively, where capital Latin
indices refer to tangent space indices and Greek to
spacetime indices. Both indices run from 0,..,3. In addition,
over-circles o on top denotes quantities computed with the
Levi-Civita connection. Quantities without any symbol on
top denote that they are computed with the Weitzenbdck
connection (teleparallel).

Our signature convention is (+,—,—,—), 1 denotes
the Minkowski metric with components 7,45 =
diag(+, —, —, —) and we work in units where G = ¢ = 1.

II. TELEPARALLEL THEORIES OF GRAVITY

General relativity is constructed from the unique torsion-
less connection satisfying the metric compatibility condition,
which is known as the Levi-Civita connection defined by the
Christoffel symbols T ,, =19 (0,9,, + 0,9, — 0,9,u)-
On the other hand, torsional teleparallel gravity assumes a
specific connection known as the Weitzenbock connection
I*,, which is torsionful (7%, # 0), metric compatible
(Vag,w = 0) and curvatureless (R%,,; = 0) [21,22]. In this
framework, the fundamental dynamical objects are tuples
(h*,, @*p,) consisting of a tetrad h*,, acting as soldering
agents from the spacetime manifold (Greek indices) and the
tangent space (capital Latin indices), and a spin connection
w" g, which can be seen as a pure gauge quantity. The metric
and its inverse can be reconstructed from the tetrad fields
using the following relationships,

G = hA;thMAB, Nag = ha'hg" g, (1)
where 77, 1s the Minkowski metric and /4# is the inverse of
the tetrad satisfying h,#h*, = &,. The torsion tensor is then
defined as the antisymmetric part of the Weitzenbock
connection:

T, = 2",
= 8”hAD - 8DhAM -+ C()ABﬂhBy - OJABDhB”, (2)

which is covariant under local Lorentz transformation and the
spin connection is given by [34,44]

g, = A0, (A1) , 3)

where A%y is the Lorentz matrix. It means that the above
quantity is a pure gauge object. This can be seen after taking
local Lorentz transformations for both the tetrads and the spin
connection which yields in

WA= N4 ghPu,
w/AB” = A/ACwCD”(A/_l)DB + A/Acaﬂ(A/_l)CB
= A0, (A, (4)

with A% = Az AB . Thus, in all frames, the spin con-
nection remains flat and fully determined by a Lorentz
matrix. Hence, any teleparallel theory has the tetrads and spin
connection as their basic variables (h*,, " g, ), but the latter
one can be always gauged away by choosing a specific frame,
taking A’ = A~ in (4), where the spin connection coef-
ficients ” pu vanish. The tetrad belonging to the tuple
(h*,.0), i.e., the tetrad with vanishing spin connection, is
called a Weitzenbock tetrad. In this so-called Weitzenbock
gauge the torsion tensor just becomes

TA,, = 20, h*,). (5)

One of the most interesting aspects of teleparallel gravity
is that it is possible to construct a theory which is equivalent
to GR, by considering the following action

1
STEGR = / d*xh [Z_KZ T+ Lm:| , (6)

where L,, is the matter Lagrangian, i = det(h*,) = /=g,
k?> = 872G and T is known as the torsion scalar which is a
specific combination of contractions of the torsion tensor,
namely

1 1
T = S%T,, =TT

1
2 g wp t 5 TWPTPW - TpTP’ (7)

where T#,, =T, and we have also defined the super-
potential as

S, = K", — 8T, + §T,* = =S,*,  (8)

and the contortion tensor as

op 1
K, =17, -1, =

uv uv Hv 5 (Tﬂpy + Tl/pﬂ - Tp;w)' (9)

After imposing that the curvature tensor is zero

R%,, =0, one can show that the torsion scalar 7" and

the Ricci scalar IOQ differ from each other by a boundary
term B:

o

2 o
R=R+T=20,(hT°) =0 = R
2
= T +20,(hT"*) = =T + B. (10)

This means that after taking variations with respect to the
tetrads, the corresponding symmetric field equations
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coming from the action (6) are identical to the Einstein field
equations while the antisymmetric equations are identically
satisfied. For this reason, this theory is known as “tele-
parallel equivalent of general relativity” (TEGR).

Since the action (6) gives us the same dynamics as GR,
one can then modify it in different ways to construct
modified teleparallel theories of gravity. The most straight-
forward modification is f(T) gravity where one replaces T
in the action to an arbitrary function which depends on the
torsion scalar [23,42,55]. From (10) one directly notices

that f(7) is not equivalent to f(R) gravity which is the
generalization of the Einstein-Hilbert action from R to an
arbitrary function f(R). Moreover, f(T) gravity is a second

order theory whereas f (IOQ) is a fourth other theory. One can
then extend f(7') gravity by also adding the boundary term
B in the action, which leads to f (T, B) gravity [28]. This

theory contains both f(7) and f(R) by taking the limits
f(T,B) = f(T) and f(T,B) = f(-T + B), respectively.
The field equations of this theory are fourth order as in

f(R) gravity.

In order to encapsulate different modified teleparallel
theories of gravity, we will then consider a generalization of
the theories described before by adding a scalar field ¢,
namely,

1
Sf(T,B,qb,X) = /d4Xh [ﬁf(T’B’¢ﬂX) +Lm ’ (11)

where now the function f also depends on a scalar field ¢

and its kinetic term X =—(¢/2)¢"0,$0,¢=—(e/2)(V)?,
so that, if e =1 (¢ = —1) we have a canonical(phantom)
scalar field. This action represents a very rich range of
modified theories of gravity. Indeed, some of these theories
are dynamically equivalent to nonteleparallel theories. For
example, if we choose f(T,B,¢,X) = f(-T + B, ¢, X) =

f(R,¢,X), we recover the action studied in [56] in a
cosmological framework which is a generalization of
curvature-based models with a scalar field (see [57] for
a review about them). Furthermore, several other tele-
parallel scalar-tensor type theories are part of this action
such as teleparallel dark energy [27,58], theories with
couplings between the boundary term and the scalar field
[29,59,60], tachyonic models [61] or more general scalar-
tensor type theories such as some of the ones described in
[30-32,62,63].

In general, the field equations to the action (11) are
obtained by variation with respect to the tetrad components
as well as by variation with respect to the flat spin
connection components. It then turns out that, for general
teleparallel theories of gravity, the antisymmetric part of the
tetrad field equation is equivalent to the spin connection
field equation [26,30,34]. This shows one more time that

the spin connection is a pure gauge quantity and it suffices
to derive the tetrad field equations. For (11) the tetrad field
equations in Weitzenbock gauge are [28]

o o /1 o

25:0fp =2V V,fp + Bf 5, + 4((0,f ) + (0,.f7)]S,
+ 4h_1hAL/8ﬂ(hSA”l)fT - 4fTT6ﬂDS(rlﬂ - f51/}
T ef 00,0 = 22T, (12)

where 77 is the standard energy momentum tensor that it
was defined from the Lagrangian matter as

-2 8(hL,) ., (15(hL,)
T;w == w\ 7 A
V') 59;”/ h oh a

>gm = h" T 4" Gua
(13)
while variations with respect to the scalar field ¢ yields,
€0, (hfx g0, b) + hf 4 = . (14)

Here, fx =0f/0X, f,=0f/0¢, fr=0f/O0T and
S =0f/0B. The antisymmetric part of the field
equation (12) becomes

Epy = 4[(8pf3) + (8pr)}SU/’y]
:%T”[,wap](fr +f8)- (15)

Let us emphasize again here that the above equation
coincides with the variations with respect to the spin
connection. One can also perform a local Lorentz trans-
formation to consider the equations, not in Weitzenbock
gauge but with the spin connection. This would affect the
field equations in the following way: the appearing torsion
tensor needs to be expanded including the spin connection
generated by the Lorentz transformation and the term
h‘lhAyﬁﬂ (hS4*) would generate a spin connection counter
term which can be combined with the partial derivative into
a covariant Fock-Ivanenko derivative, i.e., hA,,DM(SA"”)
(see [21] for a definition of the Fock-Ivanenko derivative).
Having a solution (h*,, @* 5, = 0), we can obtain solutions
in other frames by making a local Lorentz transformation
A*p [see Eq. (4)] and obtain another tuple (h'4,, 0"p,).

Note first that if one finds a tetrad for which 7', B, and ¢
are constant, independently of f, then the field equations
reduce to the TEGR (GR) field equations plus a cosmo-
logical constant. Second, if the function f satisfies
fr = —fp, then the theory is dynamically equivalent to

f(R, @, X) gravity.
The main aim is to solve the above antisymmetric
equation E},,) = 0 without choosing the trivial cases where

one recovers f(R, ¢, X) or TEGR. To match the terminol-
ogy sometimes used in teleparallel gravity, we will label as

044058-4



EXPLORING AXIAL SYMMETRY IN MODIFIED TELEPARALLEL ...

PHYS. REV. D 103, 044058 (2021)

“good tetrads” [43] to those tetrads which solve the
antisymmetric field equations (15) in the Weitzenbock
gauge.

III. AXTAL SYMMETRY IN
TELEPARALLEL GRAVITY

In this section let us briefly recall the results on axially
symmetric teleparallel geometries from the literature. In
particular, we highlight that there exist two branches of
axially symmetric Weitzenbock tetrads, of which only the
first branch is compatible with a limit to a spherically
symmetric teleparallel geometry.

A. The notion of symmetry

The class of spacetime symmetries provided by the
action of a Lie group on a differentiable manifold in the
framework of teleparallelism is based on the invariance of
the underlying Cartan geometry modeled by principal
bundle automorphisms [64]. In particular, infinitesimal
symmetries can be described by the invariance of the
geometric structure of the manifold under the flow of a
set of = 1,...,m vector fields Z;, which involves the
vanishing of the Lie derivative in the direction of Z, not
only on the metric tensor g but also on the affine teleparallel
connection coefficients I':

Ly 9 =0, EZZF‘W =0. (16)
Expanding the teleparallel affine connection coefficients I
into Levi-Civita and contortion part, the first condition
implies that the Levi-Civita part, represented by the

Christoffel symbols li of the metric, is straightforwardly
preserved by a group of isometries, in virtue of the
vanishing of its Lie derivative [65]:

Y 1 o o o
ﬁZ;F w — Eglp(vyﬁzggpp + vbﬁzggpy - v/)['Zgg,uu)' (17)

This means that the introduction of postmetric degrees of
freedom into the affine connection requires its subsequent
independent symmetry condition.

For a teleparallel connection, that posses no curvature
and is metric compatible, equivalently, the existence of a
Lie algebra homomorphism 4, associated with a global Lie
group homomorphism A, which maps the symmetry group
into the Lorentz group, allows the mentioned symmetry
conditions to be expressed in terms of the tetrad field and
the spin connection as follows [35]:

EZ:hAM = _ﬁ?BhB#’
ngwABﬂ = 5‘”/1?3 + a)AC”/lgB - C()CB}J.?C. (18)

Solving these equations in Weitzenbock gauge, i.e., with
vanishing spin connection, implies that the Lie algebra

homomorphism A cannot depend on spacetime points,
0,42, = 0. Hence, the only remaining equation which
needs to be solved is the symmetry condition for the tetrad
for a fixed choice of 4.

Both versions of the symmetry condition, (16) or (18),
imply for the torsion tensor, expressed through the tele-
parallel affine connection corresponding to the spin con-
nection, that

L:Z;To./,w - EZ;FO.[/AD] - 0 (19)

Hence, for a teleparallel geometry, the symmetry of tetrad
and spin connection implies the symmetry of the torsion
tensor.

Depending on which symmetry group is considered,
there may exist more than one homomorphism A. Different
choices of this mapping then lead to different branches of
symmetric teleparallel geometries.

In addition, since we are studying a theory with a scalar
field, we must also impose that the symmetry conditions are
respected by the scalar field ¢, which means it must satisfy

Lz7.¢=2Z:(¢) =0. (20)

A consequence of this condition is that the kinetic term X is
axially symmetric as well.

B. Two branches of Weitzenbock tetrads

For the specific case of axial symmetry, the Killing
vector J,, defines a regular two-dimensional timelike sur-
face of fixed points where it vanishes and the Cartan
geometry is invariant under the action of the underlying
rotation group SO(2) [3].

For the scalar field the symmetry condition is easily
solved by ¢ = ¢(r,9) and thus X = X(r, 9).

For the tetrad, we recall that there exist two different
group homomorphisms A, and hence two different Lie
algebra homomorphisms 4, which map the symmetry group
into the Lorentz group, leading to two branches of axially
symmetric tetrads with vanishing spin connection, all
details can be found in Ref. [35].

1. Regular branch

The nontrivial group homomorphism leads to a non-
trivial Lie algebra homomorphism 4

00 0 0
00 -1 0

M) =101 0 o 1)
00 0 0

and solving (18), yields the following Weitzenbock gauge
tetrad [35]
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Hy H,
A Higcosp — Hyysingp Hyjcosp — Hysing
me Hgsing + Hyycosep Hy sing + H, cosg
Hj Hj,
where (#,r,9,¢) denote spherical coordinates and

{H,; j}?,j:O are sixteen arbitrary functions depending on ¢,
r and J. Assuming stationarity, that we will do to analyze
this branch (see Sec. IV), the functions will depend only on
r and 9.

It is straightforward to note that the above tetrad
maintains the same structure in Boyer-Lindquist coordi-
nates (7, 7,3,(0):

r =\ 4 a’sin®9,

=, (23)

=~

=

cosd = —cosd,

N W

where a is a constant parameter. Then, the aforementioned
arbitrary functions can be trivially re-defined from being
dependent on (r,8) to (7, 9). Since the Boyer-Lindquist
coordinates reduce to the spherical coordinates in the limit
a = 0, we omit the tilde in the following, as the presence or
absence of the parameter a is sufficient to distinguish which
set of coordinates is used.

The metric tensor, which corresponds to the tetrad (22)
contains all the possible cross terms (dtdr, dtdy, dtd9,
drdg, drd9, d9dg). In particular it includes the tetrads for
metrics which have only the drdgp, component as off
diagonal component, which are obtained by enforcing
the relations

HoHoy — HyoHyy — HyHy — HyHz =0, (24)
—HoHo — HigH 1y + HyHy + HyHz, =0, (25)
—HoHy, — H\Hyy + Hy Hy + Hy Hy =0, (26)

HoHys — Hy Hyz — Hy Hyy — Hy Hy3 = 0, (27)
—HpHy — HipHy3 + HypHys + HpHyy =0, (28)

between the tetrad components, leaving 11 of the 16 free
functions in the tetrad to be determined.

Inspired by the spherically symmetric tetrad which
solves the antisymmetric f(7, B, ¢,X) field equations,
see [43-45,66,67], and the need to obtain one, and exactly
one, off diagonal term, the dtde term, in the metric to
include the tetrads of the Kerr metric in Boyer-Lindquist
coordinates, we introduce the reduced axially symmetric
tetrad by setting

—Hy, Ho;
Hy,sing + H,cosgp Hyzcose — Hysing (22)
Hi,sing — Hycosgp Hyzsing + Hyzcos g

—Hs, Hs;

|
Hy = Hy = Hy = Hy; = Hyg = Hyg = Hy
H H
=Hy=H;=0, Hj, :%, (29)
32
which results in
A 0 Hyjcosp Hipycosp —Hysing
m 0 Hsing Hy,singp Hycosg

0 HIIHIZ/H32 _H32 0

(30)

It is clear that this choice is valid only if H3, # 0. Although
this choice may inadvertently leave out some solutions,
quite likely these tetrads will play an important role in the
search for solutions to the antisymmetric field equations of
f(T,B,¢,X) gravity in axial symmetry, since for them
only one of the six antisymmetric field equations is non-
vanishing, as we will see in Sec. IV B. Moreover, they
accommodate the axially symmetric solution found in [47],
which however does not include Kerr or Taub-NUT
geometry as special cases, see Sec. [VC 1.

The reduced tetrads contain the well known spherically
symmetric solutions [43,44,66,67]. In spherical coordi-
nates, the latter is obtained by setting

Hop=+/A(r), H; =+/B(r)sind, Hj,=+/C(r)cosd,
H23:H32:\/C(r)sin19, H(BIO, (31)

where the functions .A(r) and 53(r) are to be determined by
solving the symmetric field equations, and C(r) can be set
to C(r) = r?, giving g5, = r* and g33 = r?sin 9, without
losing generality.

The metric generated by the six independent free
functions of the reduced axially symmetric tetrads becomes

H2
ds? = Haydi? — H?, (H—f T 1) dr? = (H2, + H2,)do?
32

— (H3; — H3)dg* + 2HoHzdtdg. (32)

Metrics of this form are of particular interest since they
contain the Plebanski—-Demianiski class of spacetimes,
which we will discuss in Sec. IVA. We will use them
in this article to find new solutions of the antisymmetric
field equations of f(T,B,¢,X) gravity which include
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teleparallel generalizations of the Taub-NUT metric and of
the weakly rotating Kerr metric. Indeed, the absence of
Birkhoff’s theorem in modified teleparallel gravity allows
the existence of nontrivial spherically symmetric vacuum
solutions beyond the Schwarzschild geometry [66].
Accordingly, it is expected that the family of axially
symmetric spacetimes is characterized by a much richer
structure than the one present in TEGR.

As a side result, it is interesting to mention that it is
possible to obtain a different branch from the reduced
axially symmetric tetrad (30) which trivially solves the
f(T) antisymmetric equations by having a tetrad giving a
vanishing torsion scalar (7 = 0) if one chooses

Hyy =/ A(r),

H23 = rSin19,

H11:Sin19, H12=r

H32 =TIy .A(r) Sin&,

1 — A(r)sin?9,
H03 :O (33)

This tetrad generates a spherically symmetric metric but
turns out to be a particular case of (31) since the metric
components are constraint by the expression g;; = —1/gqg.
It is worthwhile to stress that the tetrad reproduced by the
above functions provides a spherically symmetric metric
but the teleparallel connection does not respect spherical
symmetry (L:I"# 0), in virtue of the existence of the
component 7%y, and the inequality 77, # T?,, unless
we assume the trivial case g;; = 1. For the tetrad (33), the
dynamics of any f(7) theory reduces to TEGR (or GR)
plus an effective cosmological constant Ay for any choice
of f, and thus fixing A(r) = 1-2M/r + Ar?, the tetrad
(33) solves all of the f(T) field equations.

Moving on to f(T, B) gravity, the tetrad (33) does not
solve all the antisymmetric equations since the boundary
term B is given by

B(r)

_ rP A" (r) + 4rA'(r) + 2A(r) — 2’ (34)

r

thus in general is nonvanishing. The antisymmetric field
equations for f(7, B) gravity can be solved by demanding
that the boundary term vanishes too. This leads to A(r) =
12M/r + Q*/r* + Ar? that is the Reissner-Nordstrom
metric with a cosmological constant.

2. Solely axially symmetric branch

The second branch of axially symmetric Weitzenbock
tetrads is obtained by choosing the trivial Lie group
homomorphism leading to the Lie algebra homomorphism
A(0,) = 0, which implies that the tetrad components are
simply independent of ¢,

Hy Hoy Hp Hpg
HlU Hll H]2 Hl3
H20 HZ] H22 H23
Hyy H3 Hip Hi;

hA, =ht,(t,r,9) = (35)

Generically in this branch, the tetrad has 16 components
which only depend on ¢, r, and 9. When we analyze this
branch in Sec. V, we will discuss time-dependent and time-
independent tetrads.

Since this tetrad is independent of ¢, this branch does not
include any of the spherically symmetric tetrads which
solve the antisymmetric field equations of f(7,B, ¢, X)
gravity [43,44,66,67]. Hence it is a complete independent
branch which leads to solutions of modified teleparallel
theories of gravity which do not reduce to spherically
symmetric teleparallel geometries in any case. Following
the same idea as in the previous section, there is still some
gauge freedom left. In order to eliminate all the cross terms
in the metric except dtdg, we choose the same combination
of H;; as in (29) but without setting H,, = 0, to obtain the
following tetrad

A
h w Hzo O 0 H23 ’ (36)
0 M Hy o0

and the metric

H2
ds? = (H3, — 2H%)di: — H3, <1 + H_éz) dr?

- (H%z + H%z)d,92 - (H%3 - H(2)3)d€02
+2(HooH oz — HyHy3)dtdg. (37)

As for the first branch this choice is very convenient
regarding the antisymmetric field equations since there one
finds that there is only left which is Eppg).

Due to the impossibility to connect these axially sym-
metric tetrads in a certain limit to spherically symmetric
tetrads solving the antisymmetric field equations, we focus
in what follows on finding solutions on the basis of the first
branch. Before we discuss some further details on the
second branch and examples from the literature belonging
to the second branch in Sec. VA, we now discuss how the
two branches are related and need to be understood in the
context of the gauge freedom (i.e., local Lorentz trans-
formations) in teleparallel gravity.

3. Relationship between the branches

In teleparallel gravity, the fundamental variables are the
components of a tetrad 7* , and a flat spin connection o’ Bus
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or a tetrad hAﬂ and the spin connection generating local
Lorentz transformation, A“ .

From the symmetry arguments, in axial symmetry we
find that the pairs (h*,,w"g,) = (h{,,0), where hf, is

1
given by (22), and (h*,,@"p,) = (h},,0), where 13, is

2
given by (35), define inequivalent axially symmetric tele-
parallel geometries.

Although, both tetrads /7, and h3, are related by the

local Lorentz transformation

0 0

cos@ sing
Ap = : (38)

—sing cosg

0 0

[l
- o O O

via the relation /15 , = A*gh? , in the covariant approach to
teleparallel gravity this Lorentz transformation of the
tetrads induces a spin connection, see (4), which has
nonvanishing components

0)/12(/, = —C()/21(/, =-1. (39)

Thus, the tuple (hfl‘ﬂ,O) is equivalent to the tuple

(h3,, @"p,) but not to the tuple (h,,0). In this sense
the axially symmetric tetrads of the two branches here can
either be considered as inequivalent Weitzenbock tetrads,

or as tetrads with nonvanishing spin connection.

IV. FINDING SOLUTIONS TO THE
ANTISYMMETRIC FIELD EQUATIONS:
THE REGULAR BRANCH

As previously mentioned, the relevance of the first
branch of axially symmetric Weitzenbock tetrads is
highlighted in virtue of its compatibility with the spheri-
cally symmetric limit, which is why we study it here in
detail.

We consider the well-known stationary axially symmet-
ric Plebanski—Demianski class of metrics that are vacuum
solutions of the Einstein equations and determine their
reduced axially symmetric tetrad (30). As we will see,
by doing so we fix five of their six free components.
The remaining component must be determined from
the antisymmetric field equations of the f(7T,B,¢,X)
theories.

We then search for solutions of the antisymmetric field
equations of f(T, B, ¢, X)-gravity and find that using the
reduced axially symmetric tetrad as ansatz, all but one
antisymmetric field equation is solved. The remaining
antisymmetric equation fixes one of the six tetrad compo-
nents, while the remaining ones need to be determined by
the symmetric field equations.

We solve this last equation for generalizations of the
tetrad of special subclasses of the Plebanski—Demiafski
metrics, such as the Taub-NUT and the Kerr metric for a
slowly rotating black hole.

A. Plebanski-Demianski metric and its tetrads

The class of stationary axially symmetric algebraic type
D vacuum solutions of GR (or TEGR) can be described by
the Plebanski-Demianski metric with vanishing electro-
magnetic charges and cosmological constant. Their line
element acquires the following form in Boyer-Lindquist
type coordinates [2,68]:

1
ds? — {% [dt + (asin®8 +2b(y —cos 9) )dg)?
Q

QZ
2 2
Q , @ 5
_Car-Lay
o TP

—Q—stin@[adt + (r* + a* + b* 4+ 2yab)dy)* } (40)

with:
a
Q=1-——(acosd+b)r, (41)
4
0* = (acosd + b)* + r?, (42)

Q = ky? —2Mr + e —2a= 1 — kaPr*,  (43)
y

P=1+ <4kaboz2 - ZaME> cos 9 + ka*a*cos® 9, (44)
14

where the constants k, ¢, and n are defined as follows

1 +2baM [y
= , 45
3b%a? +y?/(a® — b?) (43)
ky? b
€ = az — b2 + 4QM; - ka2(a2 + 3[72), (46)
bky? 2_p2
n= s —aM "t bka? (@~ b). (47)
a — 4

It includes four parameters M, a, b, and a representing the
mass, angular momentum (per unit mass), NUT charge, and
acceleration, respectively. In addition, the parameter y sets
the distribution of axial singularities,1 whereas y represents
a remaining scaling freedom for nonvanishing values of
a and b, which provides the twist of the underlying

'Note that despite the presence of a coordinate singularity on
the polar axis, the axially symmetric Taub-NUT spacetime is
geodesically complete and for the case || < 1 it does not lead to
observable violations of causality in free-falling frames [69].
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congruence of trajectories defined by the two different
principal null directions of the solution [70,71]. Thereby,
this family of solutions constitutes the natural generaliza-
tion of the special cases of Kerr, Taub-NUT, and C-metric
spacetimes and describes the gravitational field generated

|

1
HOO = —V Q - azpsinz&

by a uniformly accelerating and rotating black hole
endowed with a NUT charge.

In terms of the metric (32), we can reproduce the
Plebafiski-Demianski spacetime (40) by setting the H;;
functions in (30) as follows:

P | o?
§H32’ Hy, = W—ng» (48)

e Hy =
P(r* + a* + b* + 2yab)?sin*9 — Q(asin’9 + 2b(y — cos 9))?
HB_\/ ( Psin’d - O (=P o )
0~ Q
1
Hy; = [Q(asin? 9 + 2b(y — cos 9)) — aPsin® 9(r* + a*> + b* + 2yab)]. (50)
0Q\/ Q — a*>Psin* &
l
Then, the well-known special cases included in the b—a=0. kP=d’. e=1. n=0 (54)

Plebanski—Demianski solution can be straightforwardly
recovered in the following way, see also Fig. 1:
(i) Kerr metric:

Hy, = \/Z-H3,, (51)

5o (2a*Mrsin®9
Hyy; = ([sin?9( ———— +

a? + r2> + H3;,

>
2aMrsin%9
3= ——_—, (52)
Z(Z —-2M r)
where
Q=P=1, Y =0? = r? + a’*cos’9,
A=Q=cer’—2Mr+ ky?, (53)
[Vacuum Plebanski—Demianski metric]
Q
8
o
[Taub-NUT metric] [Kerr metric] [ C-metric ]
NS a= 0 =

[Schwarzschild metric]

FIG. 1. Relationship between the vacuum Plebanski—Demianski
metric and other spacetimes.

(i1) Taub-NUT metric:

2(M b? H
Hy = 1—7( r;— ) Hy ==,
0 Vo

H12: \/QZ_H%5 (55)

Hy; = ¢sind,

Hos = 2b(y — cos 9) |1 — 2(M;72+b2>, (56)
where

Q=P=1, =r+p,

Q = er’ —2Mr + ky?, (57)
a=a=0, kP =-b* e=1, n=h. (58)

(ii1)) C-metric:

where
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Q=1-—arcosd, P=1-2aMcos?,

A=r2 Q=-2Mrter—2ar—ka’r*, (61)
%

e=1, n=-ayM, (62)

and setting the remaining scaling factor y = a.
(iv) Schwarzschild metric:

o 1 2M Ho = Hs,
00 o 11 \/@
Hy = \/ rz_ngv (63)
H23 = rsin 19, H03 = O, (64)
where

Q=P=1, ¢*=r’, Q=er’-2Mr+ky*>, (65)

a=b=a=0, ky’=0, e=1, n=0. (66)

As can be seen, in all the cases we still have one extra
function H3, that does not influence the metric and must be
obtained by solving the antisymmetric components of the
field equations (12). Then, the tetrad is what is called in the

literature a good tetrad.

B. The antisymmetric field equations

If we substitute the reduced axially symmetric tetrad (30)
into the (7, B, ¢, X) field equations (12), we find that the
only nonvanishing ones are the diagonal entries E|;, E,,,
Ess, E4y, and the off-diagonal entries Ey4, E3, Ess.
Splitting the equations into symmetric and antisymetric
part one realizes that only one equation E)y3 is nonzero.
Thus, since the tetrad (30) contains one additional free
function compared to the nonvanishing metric components
(they fix 5 of 6 free functions in the tetrad), there is
consistently one extra antisymmetric field equation to fix
this tetrad component.

If one is able to solve this equation, then, we would be
able to find a good tetrad for the most general axially
symmetric case. From (15), Epp3) then turns out to be

1 Hy, H;  H,
3 {(fm + f9) < Hy Hy | Hy
[on
Hyy—Hyy Hpy
2 _Zwa)l_o, (67
ot fo) (P2 e B (67)
0,

where Qy, O, were introduced as a shorthand notation and
commas denote differentiation, i.e.,

fr.o=0fr/09
=frrTo+ freBo+ frodo + frxX e (68)

fr,=0fr/0r
= frrT+ freB, + frod ., + frxX .. (69)

fro=0fp/08
= forT o+ fepBo+ fepdo + fexX 9. (70)

fBr= Ofg/Or
= foerT, + fpB, + oo, + [pxX . (71)

Equation (67) is difficult to solve in general for one of the
functions H; since all of them can depend on r and 8. One
can easily notice that in the case where f; = —fp which

gives f = f(-T+ B, $,X) = f(Ioi,qb,X), the antisymmet-
ric equations are satisfied identically. This was expected

since this case is an extension of the well-known f(R)
gravity. In addition, for f(7,B) gravity, if one has the
special case where both the scalar torsion and boundary
term are constants (T, = B, =T g = B y = 0), the above
antisymmetric equation will be trivially satisfied and the
dynamics of this theory will be just TEGR (or GR) plus a
cosmological constant.

By replacing the derivatives explicitly, one obtains that
the remaining antisymmetric equation (67) becomes

0= ((frr+fre)T o+ (fer + fee)Bo+ (fry + [8s)P0
+ (frx + fex)X9) Qs
+ ((frr + )T, + (for + f8)B.,
+ (frg + f8p)0r + (frx + Fox)X 1) O, (72)

This equation is still implicit since one would need to
replace T and B [see Eq. (A1)-(A2)] to find it in its
complete form. One can then have different options to solve
this equation. Some important cases are

(1) Q9 =0 and Q, = 0: This case leads to universal
solutions for any choice of f and any form of T, B
and ¢ (see Sec. IVC1).

(2) fro+ fpo=0and Q, =0 (see Sec. IVC2).

3) frr+ fp,=0and Qg =0 (see Sec. IV C3).

@ (frr+ )0 #0,(fr+ f59)Qg # 0: This case
is the most general one. To solve the antisymmetric
equation one would need to replace the value of the
scalars and then solve the equation for any of the
functions H ;. This case would give the most general
good axially symmetric tetrad, but the equation is
very involved and difficult to treat. The Kerr metric
is part of this case (see Sec. IV C4).
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C. Solving the antisymmetric equation

In the following, we will study the antisymmetric field
equations for the different cases directly to find the
solutions. Indeed, considering the highly nonlinear char-
acter of these equations, the complexity for axially sym-
metric configurations turns out to be much more involved
compared to their spherical symmetric counterparts and
requires a deeper examination. Accordingly, we now
discuss the four cases framed in teleparallel theories

beyond TEGR which are inequivalent to f (13,¢,X)
theories.
|

| 0 (HOI(;;?Z? + Hys,,) cos ¢
ht =
! 0 (Ho};::ﬂ + Hy,) sing

0 H32 (HooaHﬂ + H2’%19)<H00r B H% r)

Hy Hyo

This tetrad solves the antisymmetric field equation univer-
sally for all f(T,B,¢,X). In the above tetrad, all the
functions can depend on both r and § and while the form
of the torsion scalar 7' and the boundary term B are very
cumbersome [see (A1)—(A2)]. This case constrains the metric
and does not contain either Kerr, Taub-NUT, or the C-metric.
However, this case generalizes the good tetrad found in [47].
This can be seen by performing a Lorentz transformation
n4, = A*gh®, with the Lorentz matrix being

0 0

Ny = (75)

oS o O =
o = O O

0 1
0 0
1 0

Note that the Lorentz transformation (75) just cyclically
relabels the local axes and does not introduce any spin
connection (™ gy = 0), since it is constant. The special
case of the good tetrad found in [47] (see Eq. (32) there),
can be recovered by doing this local Lorentz transformation
and then setting

HOO - .A(r, 19), H03 - —A(r, &)W(T, 19)9
(r—M)sind VA cosd
Hy=—-——""""" Hy=—"—", 76
11 A(I", 19)\/Z 12 A(}", 19) ( )

_ VAsind _ (r=M)sind
H23——m, HBZ__W’ (77)

where A(r, 9) and W(r, 9) are some functions of r, 9 (to be
determined by the symmetric equations), and A was
defined in Eq. (53).

1. Case 1: Q3=0,=0

In this case, it is easy to solve the antisymmetric
equations since Qg = Q, =0 [see (82)]. We find the
following solutions

H” :HOO,rH23 —|—H23 . [{12 :H00,19H23

3, +Hosg.
Hy Hy '

(73)

By choosing these two functions, one finds a tetrad which
explicitly reads as

0 Ho;
(H()?{;f% + Hy 9)cosgp —Hyzsing
(HO?JZ:N + Hyg)sing  Hozcosg (74)
—H3 0

One interesting remark about the tetrad given by
(76)—(77) is that if one sets the two arbitrary functions
to be

4M? — a?

\/Kl arctan(\/—M) 2K, VM? — a?

= K3+ K cos 9,

A(r,9) =

’

W(r,9) (78)
where K; are constants, one notices that R = 0, thus, the
corresponding metric is an exact solution of GR (or TEGR).
Then, for the above form of the functions, the boundary
term B and the scalar torsion 7T are equal. Moreover, the
scalar torsion and the boundary term are different to zero,
unless K| = 0.

2. Case 2: 0,=0 and f1 g +fpy=0—Taub-NUT-like

metric

In this section, we are going to study the special case
where we have a metric with a Taub-NUT-like form. To do
so we choose

Hy; =sin9+/C(r), Hy; =/ A(r)D(r,9),

Hy =/ A(r), (79)
_ B(r)
HlI_H32(r’19) C(V),

Hiy = \JC(r) = Hyp(r. )2 (80)
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The Taub-NUT metric, which is a specific case (56), of the
Plebanski—-Demiariski metrics (40), is recovered by choosing

(r=r)(r=r.)
A =1/B(n) =>—305— Cl)=r+b,
D(r,9) =2bcosd, ry=M+/M>+b (81)

where b is the Taub-NUT parameter and M the mass. The
Taub-NUT parameter plays the role of a gravitomagnetic
monopole moment, in virtue of its physical effect on the
trajectories of test particles minimally coupled to the con-
nection [72,73]. Itis not asymptotically flat, at large distances
it provides a nonvanishing component gy; = 2b(y — cos 9)
which acts as a gravitomagnetic potential [74].

1 A'(r) C(r)_, |B(r)
O—Z(fT,s +/55) (A(r) +C(r) -2 a )ng(r 8)csc8)
+%(fT,r +fB.r) (CSC19 1 —%ﬁ—cot&) . (82)

Even though this equation is still implicit, the second
parenthesis vanishes for

VC(r)sind = Hys(r,9).

With this choice, (82) is not fully satisfied since we still
have the term multiplied by f7¢ + fp¢ remaining. The

Hy(r,8) = (83)

The antisymmetric equation (72) for this case  torsion scalar and the boundary term, see (Al)—(A2), for
becomes this case are
|
_ D’ D’ ' A'(r) !
T(r, 9) = A(V)CSC219 (28(r)C(r) +2C(;‘9)2) +C (r) <A(r)B(r)C(r) - /B r C(r)3/2>
A'(r) C(r)’2 2 (84)
\/T 2B(r C(r)
1 , AB(rYPAG) | AAIC()
B0 ==k PO A e (a0 -
2B'(r)C'(r) 4B(r)C” 4B(r)32C'(r)
R e T )] -

One first notices that the boundary term only depends on
the radial coordinate. If one then considers theories of the

type f(T.B.$.X) =T+ Ji(B..X) + [>(R.$.X) with
¢ = ¢(r), the antisymmetric field equations are immedi-
ately satisfied. Second, keeping f general we can set

D(r,9) = Cycos I + C,, (86)

which implies that also the torsion scalar only depends on .
Thus, now 7 = T(r) and B = B(r) and the remaining part
of the antisymmetric equation (82) becomes

A(r)(2«/B(r)C(r) = C'(r C(r)A'(r)]

[
This equation has different subclasses of solutions, which
can be summarized as follows:
(1) ¢ = ¢(r): this subclass assumes that the scalar field
only depends on the radial coordinate.

() fop+Sro=rpx+frx=0 implying f(7T.B,¢.,X)=

J1(T.B)+f2(=T+B.¢.X)=f(T.B)+ f»(R.¢.X):
this subclass is only f(7,B) plus a scalar-tensor
theory based on the Ricci scalar.

B(r) = € >Ji/,51()r;égr;)cl( 4 (Qg = 0): this subclass
constraint the metric to a special one that does
not have the Taub-NUT metric as a special case. This
case is identical to the case where Q, = Q4 = 0 with

some extra conditions in the metric.

(©))

X [ (r)¢.o(C(r) (f3¢ + fT¢) +edoo(fx + frx)) Let us now focus on the solutions within subclasses 1 and 2.
+eC(r) o (Fax + Fro)l. (87) For these cases, the following tetrad
|
A(r) 0 0 \/W(Cz + C;cos9)
W 0 B(r) sind cos ¢ \/mcos8cos¢ —\/msinl‘)sin(p (8)
! 0 B(r) sind sin ¢ \/C—(T)cosﬁsin¢ C(r)sindcos @
0 B(r)cosd —4/C(r)sin9 0
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is a good tetrad that solves the antisymmetric field
equations. This tetrad behaves very similarly to the spheri-
cally symmetric good tetrad [see Eq. (31)], however,
contains an extra term related to axial symmetry. As a
special case, it is a tetrad of the Taub-NUT metric. The
general metric associated with the above tetrad is

ds* = A(r)dt* = B(r)dr* — C(r)d9?
—[C(r)sin® 9 — A(r)(C| cos 8 + C,)?]|de?
+2A(r)(C, cos 8 + C,)dtdeg. (89)
The torsion tensor given by the good axially symmetric
tetrad (88) can be decomposed as the standard spherically

symmetric torsion piece plus an additional piece coming
from axial symmetry, namely

T = ToPP) 4 260 (90)

auv

where the nonzero components of the axial part are

T — 189 — (€, + €, cos )71 T
1
ZEA’(r)(Cz—l-C, cos 9), (91)

Tl =(Cy + Cy cos 9)' T\ = —C A(r)sin 9. (92)

We can also perform a Lorentz transformation for both
the tetrad and the spin connection, with A% being,

which gives us that the transformed tetrad is

A(r) 0 0 A(r)(Cy+Ccosd)
| 0 VB o 0
! 0 0 cir) 0 ’
0 0 0 C(r)sin9
(94)

and then with a nonzero spin connection yielding

Ir /

/ _ 9 — 3
g9 = —w",9 = —1, 0] -'?,,=—sind,

w?,, = -0, =—cosd. (95)

It is then equivalent to use the tetrad (88) with a vanishing
spin connection than to use the tetrad-spin connection pair
given by (94) and (95). It is worth noticing that the above
spin connection is exactly the same as the one reported in
spherical symmetry in other papers [35].

3. Case 3: Qg=0and fr,+fp,=0

There is another case where it is possible to find a good
tetrad, namely, when Qg = 0, f7, + fp, = 0. In order to
find a solution for this case, let us assume that the functions

1 O 0 O le(r78)20’ HOO(V’S):A(s)’ H03(r’1‘9):B(19)’
A 0 sin9cosg sindsing cosd (93) Hy(r.8)=C(8).  Hy(r.8)=Di(8)Ds(r), (96)
B = . . b
0 cos 8_COS¢ cosdsing  —sind and then since Qy = 0 we have Hy(r,9) = D;(9)D,(r).
0 —smg Cos g 0 After assuming this, the torsion scalar becomes
|
T(r.9) = —2A(8)B(9) A (9)B'(9) + B(9)2A'(9)? + A(9)?°B'(9)>  8AW)D,(9)A(9)D)(8) + 4A(9)*D}(9)* (97)
o 2A(9)*D; (8)*D,(r)*C(9)? 2A(9)*D, (9)*C(9)? ’
and then if one further assumes
A(8) = B(9) (98)

the scalar torsion will depend only on 8 (i.e., T , = 0). Moreover, the same happens for the boundary term (B, = 0).

Explicitly these quantities read as follows

T(8) =

_ 2D\ (9)(2D, (9)B'(9) + B(9)Dy(9))

1
) = 55yp, (orco)

+ D (8)2(2C(9)B"(8) — 2B'(9)C'(9)) + 4B(8)C(9)D} (9)].

B(9)D,(89)*C(8) ’

(99)

5 [4D1(9)(C(9)(2B'(9) D1 (9) + B(9)D1(9)) = B9) D (9)C'(9))

(100)
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After all these assumptions, the antisymmetric equation (72) becomes

0= Q/[e(fpx + frx)(D1(8)*D5(r))’ b 9 1o + C(8)°¢ (D5(r)) b, — D5 (r)b ;)

+Di(8)*C(9)*Dy(r))’ fopép.- + Di(8)°C(9)*Da(r))* f 1y 1.

(101)

Similarly as the case studied before, we can have three different solutions. For Q, # 0 and f # f,(T, B) + fz(IOQ, ¢, X), we
require ¢ = ¢(9) to solve the above equation. Thus, when ¢ = ¢(8), the following tetrad

B(9) 0
W 0  Di(9)D,(r)cose
L0 DiI)Dy(r)sing
0 0

0 B(9)

0 =D (9)D,(r) sing

0 D1 (9)D,(r) cos @ (102)
—C(9) 0

solves the antisymmetric field equations, and then it is a good tetrad for f(T, B, ¢, X) gravity. The metric corresponding to

the above tetrad is

ds? = B(9)2de® — D,(9)2D,(r)2dr> — C(9)2d9? + (B(9)? — D, (9)2D,(r)?)dg* + 2B(9)dtdep.

If B(9) # const., this metric is never spherically symmetric
since goo = go3 = B(’9>2-

4. Case 4: (fT,r +fB,r)Qr #* 0 and (fT.él +fB.19)Q19 * 0—
Kerr metric and its perturbation

This case is very involved since one must replace the
form of the scalar torsion T and B [see (A1) and (A2)] in the
antisymmetric equation (67) and then solve the partial
differential equation for one of the functions H;;. If one is
able to solve this antisymmetric equation directly, one
could have fixed one function of the H,;, and then, one
would be able to obtain a good axially symmetric tetrad
having five arbitrary functions H;;. Then, one could use this
tetrad to find solutions to the remaining field equations
(symmetric part). One notices that the Kerr and the
C-metric are part of this case.

Since the general case is very involved, we can first try to
analyze the specific case and use the tetrad (51)—(52) for the
Kerr metric. If we do this, we will only have one free
function (for example Hs,) that needs to be determined
from the antisymmetric equation. Even though this is
just a particular case and it would not give us the result
needed to find a general good axially symmetric tetrad, it
will be useful as a first step. Moreover, it can be noticed
from the previous sections that the form of the good tetrad
associated with Schwarzschild and the Taub-NUT metrics
have a trivial generalization to a general spherically
symmetric and a Taub-NUT-like metric cases, respectively.
Thus, if we are able to find a good tetrad for the Kerr case,
this could give us a hint to tackle the general axially
symmetric case.

Another motivation to find this tetrad is related to the
search of teleparallel perturbations of Kerr geometry,
similar to the f(T,B) perturbations of Schwarzschild

(103)

|
geometry studied in [66,67,75,76]. In perturbation theory
around a TEGR solution, the antisymmetric field equations
only contain the TEGR background tetrad and thus, a good
tetrad for Kerr geometry could be used as a starting point
for a perturbative analysis beyond TEGR as it has been
done in curvature-based extensions of GR [12-18].

Plugging the tetrad for the Kerr metric (51)—(52) in the
remaining antisymmetric field equation (72) and trying to
solve it for the undetermined tetrad component Hs,(r, 9)
turns out to be a difficult task. The main obstacle is, that in
this case, all terms (fT,r +fB,r)Qr # 0, (fT,S +fB,8>QS # 0
are nonvanishing, i.e., one has to deal with derivatives of
the torsion scalar and the boundary term (see (Al) and
(A2). Below we present a solution of the antisymmetric
field equations for an expansion of the Kerr spacetime for
small rotation parameter a, i.e., for slowly rotating black
holes. This is the first step in the ongoing research project to
solve the antisymmetric field equation analytically for Kerr
geometry in f(7T, B, ¢, X) gravity.

First one notices that if

Hsy(r,9) = rsing, (104)
the antisymmetric equation (72) is satisfied for either a = 0
or M = 0, but not when both are different from zero. For
the a = 0 case, one also needs to assume that ¢ = ¢(r) as
an extra condition which is consistent with the fact this case
is just Schwarzschild which is spherically symmetric.
Moreover, for this case, when a = 0 one recovers the
standard spherically symmetric good tetrad with
Schwarzschild metric components (which has T #0),
see for example [67]. Then, one can conclude that the
general case when a # 0 and M # 0 must contain terms
like a"M? in the above function. Let us now assume that
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a < 1 and make an expansion around a = 0. For this case, and expand « up to third order. For simplicity, we will only

we can consider the following form of the function consider f(T, B, ¢, X) = F(T,B) + ff IO?, . X) since the
case with the scalar field is even more involved.

Inserting the above function in (72) and expanding up to
second order we find the following differential equation
for A

Hz(r,9) = rsind + a>A(r,9) + @*B(r,9) + O(a*),
(105)

0= az(fTT + 2}‘TB + JNCBB) 2 sin(219)(\f - y){4r3/2(cos(219) - 3)(\/_ - ﬂ)ﬂzA.s
— 45in(29) (P2 (V1 — p)p* A gy + 2sin 9cos?9(5r3 2 + r? + 11ru? — 4u* = 5/ru?))}

+ 87322 A(6 cos(28) (V/r = u)* + cos(48) (Su* + 2v/ru + 1) = Tu* + 2y/ru = 3r)], (106)

where y = /r — 2M. The obvious way how to solve this equation is to look for theories that satisfy f7 + 2frs + fes = 0.
However, having a closer look at this equation one finds that these theories are nothing but TEGR plus a cosmological

constant since for Kerr we have R = 0 and then 7 = B. The nontrivial solution to this differential equation for A is

sin 9cos?9 (4’ + 6232 4+ P2 + 4ur? + p*\/r — 164°r)
A(r,9) = 2232 (— 2 +
o (—p? = duy/r + 1)

where C(r) and D(r) are arbitrary functions (related to the integration of the differential equation) and F(r, 9) and F,(r, 9)
are specific functions which are related to the Legendre function of the first and second kind [see (B1)—-(B2)]. Furthermore,

C(r)F((r,9) + D(r)F,(r,9), (107)

by expanding the antisymmetric equation up to third order in a, one finds that B(r,d) = 0.

Thus fixing the tetrad component H3, to be

Hs,(r,9) = rsind + a*>A(r, 9)

(108)

and A as in (107) we derived the good tetrad for a slowly rotating black hole spacetime in modified teleparallel gravity.

To display the torsion scalar and the boundary term, we
choose the function C(r) = D(r) = 0. Up to third order in
a they become

T=B=—

2Vr—p)* @2+ 4 521+ 2ur) (Vr — p)* (3 +cos(28) (S + 2u/r+ 1) + 6T = 1)

(109)

Since —T + B = 0, we then have R = 0 as expected for the
Kerr metric. One might also note, that since the torsion
scalar (109) vanishes in the limit » — oo, the TEGR action
integral constructed out of it could be considered as IR
renormalized, like in Ref. [39].

V. SOLELY AXIALLY SYMMETRIC BRANCH:
A FIRST DISCUSSION

The physically most relevant axially symmetric tetrads so
far are the ones we discussed in the previous section. Here
we point to further classes of axially symmetric tetrads
whose physical relevance still needs to be understood.

A. Stationary tetrads

The discovery of the second branch of axially symmetric
teleparallel Weitzenbock tetrads is very recent and their

urst 2P (—p* —4py/r+7)

[
physical relevance is not yet understood. Here we present a
first discussion. A thorough investigation is left for ongoing
and future research projects.

For this branch and taking the tetrad (36) we also find
that there is only one remaining antisymmetric equation
Ej33), and it reads as follows

0=~z [Ura+ £ 20
-~ + 00 2200, (110)
where
O(r,9) = Hy3(r,9)Hoo(r,8) — Hyo(r,8)Hos(r,9).  (111)
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This equation is similar to the antisymmetric equation
found for the regular branch [see (67)], just that Q, and Qy
are generated by derivatives of the function Q(r,9).

Now we consider two cases. First, the easiest way to
solve this equation is by imposing that Q(r,8) =const.:= K
yielding

Ho(r,9) 0
0 Hy(r, 19)
W, =
H Hzo(r, 19) O
_ H“(r,l‘))H]z(r,&)
0 Hz(r.9)

Hoys(r, 9)Hy(r, 9)
Hy(r.9)

Hy(r,9) = (112)

+ .
Hy(r, 9)

The above form of Hy;(r, d) gives us the following form of
the tetrad

0 Hys(r,9)
Hi,(r,9) 0
0 Hoy(r.9)Hao(r9)+K |, (113)
Hoo(r.9)
H32(V, 19) 0

which solves the antisymmetric field equations for f(T, B, ¢, X) without imposing any restriction in the form of f nor the
scalar field ¢. This tetrad gives us the following form of the metric

4> = di2(Hoo(r. 9)° — Hoo(r. 9)?) — H, (1 n

_ <(H03(r, 8)Hay(r,9) + K)?
Hoy(r.9)?

Hy(r,9)?
H32(r, '9)2

)dr2 - (le(r, 19)2 + ng(r, 19)2)d192

—H03(”, '9)2)01602

Hyo(r, 9)(Hos(r, 8)Hyy(r,9) + K)

+ 2<H00(r, 9)Hos(r.9) —

which does not contain any of the famous particular cases
of the Plebanski—-Demianski metric (40) (not even the
Schwarzschild metric). Moreover, when one tries to remove
the cross term drdg one finds that gy, = —K?/gs3, which
gives a metric that strongly deviates from the standard
Schwarzschild-like form.

The second case for which Q # K can contain the Kerr
metric as a special case, and similarly as it happens in the
regular branch (previous section), one would need to
replace the form of the scalar torsion and the boundary
term in (110) and then solve this equation for one of the
functions H;;. This procedure is again very involved in
general and even for the Kerr metric, it is not easy to find a
good tetrad. One finds that for the Schwarzschild case with
their corresponding H;; [which are different to the H;; in
(63)—(64)], the form of H3, cannot be rsind to solve the
antisymmetric equation (as in the principal branch).
|

e (E-2Mr)+e L

Hoo(r»'9)

e H(Z-2Mr)—e*T

2% 2A
e H(Z-2Mr)—e L eH(E-2Mr)+e™*X
hA — 2% 2A
" 5o
0 a“sindcosd
A
__rasind
0 A

) dtdep, (114)

I
Nevertheless, for the Kerr case with M = 0 and also for
the Minkowski case, if H3, = rsind, T = B = 0 and then
this choice solves the antisymmetric equation (110). Since
this branch cannot have spherical symmetry, we will not
study it further.

However, in the next section, we will show an explicit
example of this situation with a good tetrad found pre-
viously in [46].

B. A time-dependent Kerr tetrad

Reference [46] gives a null tetrad that reproduces the
Kerr metric and solves the antisymmetric equations with
vanishing spin connection by having 7 = 0. It can be
translated into a regular tetrad in the Boyer-Lindquist
coordinates as

0 asin® 9(e*(E+2Mr)—e*X)
23
0 asin® 9(e* (Z+2Mr)+e*X)
2z , (115)
r —asindcosI
acosd rsind
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where « is the angular momentum parameter and X, A were
defined in Eq. (53). One can check that it indeed reproduces
the Kerr metric. It gives T = 0 for vanishing spin con-
nection when one introduces the time dependent function

t(r* = 3a*cos* 9 — 2r?a? cos? 9 — 4a*Mrcos* 9)
2r(r* 4 a* cos* 9 + 2r?a* cos? 9)

+A(r.9),

Alt,r,9) =
(116)

where A(r, 9) is some arbitrary function. This then implies
that antisymmetric equations are also solved.

However, the caveat with this tetrad is that it does not
satisfy the axial symmetry condition, since (115) does not
have the required cos ¢, sin ¢ dependence to belong to the
first (regular) branch (22), nor does it depend only on r and
9 to belong to the second branch, solely axial (35), see
also Ref. [35].

One easy way to understand the loss of spherical
symmetry (in the teleparallel point of view) can be seen
by considering the Schwarzschild case (a = 0) in the tetrad
(115) with (116). In this case, 7 =0 and then the
f(T,B, ¢, X) antisymmetric equations are trivially satisfied
[if ¢ = ¢(r)]. One might think that since 7 =0, the
teleparallel quantities constructed from the torsion tensor
do respect spherical symmetry. However, this is not the case
since the torsion tensor presents nonzero components such
as T?g, = cotd which violate the symmetry condition
EXgF"W =0, see (19). Moreover, one can also compute
other scalars using the irreducible pieces of the torsion
tensor such as the T, T, or Ty, [77], and notice that
they depend on r, 9, and ¢ for the Schwarzschild case,
which is indeed telling us that these scalars do not respect
spherical symmetry (also they are not stationary).
Moreover, if we consider the theory f(7yee, Tax> Tien)
[78], then one finds that the tetrad (115) does not solve
its antisymmetric field equations and for the Schwarzschild
case, they do depend on 9 and ¢.

VL. DETERMINING INERTIAL SPIN
CONNECTIONS AND WEITZENBOCK
TETRADS BY “SWITCHING OFF GRAVITY”

Advancing from earlier ideas [39,42] the authors of
Ref. [40] propose an algorithm how to find the inertial spin
connection to a given tetrad, without involving any field
equations. This is an outstanding issue in TEGR where the
antisymmetric field equations are identically satisfied. For
modified teleparallel theories of gravity, this method gives
tetrad-spin connection pairs (or Weitzenbdck tetrads) which
solve the antisymmetric field equations for the spherical as
well as spatially homogeneous and isotropic cases.

We investigate the outcome of the algorithm in axial
symmetry. We find that in a less symmetric situation the
outcome of the algorithm is nonunique and does not
necessarily produce a Weitzenbock tetrad which solves

the antisymmetric field equations of modified teleparallel
theories of gravity.
The suggested method to associate a spin connection to a
tetrad is the following:
(1) Consider a spacetime equipped with a metric g
and choose an arbitrary tetrad hAﬂ. Calculate the

. .. . . oC °o
Levi-Civita spin connection @ p, = h€ hp'T w =
h D”Gﬂhcy and its corresponding Riemannian curva-

in the frame basis,

°oC °c
ture tensor R p,,, = h,hp’R ,,

as displayed, where Io‘a w are the Christoffel symbols

of the metric and R”pﬂ,, are the components of the
Riemann curvature tensor derived with respect to the
Levi-Civita connection in coordinate basis.

(2) Find a constraint either on the metric components or
the coefficients appearing in the metric components,
such that the Riemann curvature tensor vanishes,

°a

ie., R g, =0. This can be thought of as a limit
where gravity is “turned off.”

(3) Then, in general nonvanishing Levi-Civita connec-
tion of the metric evaluated on the flatness constraint
oC . .

1) Dﬂ|(ﬂamesscondmon), represents a purely inertial
flat spin connection, which is now identified with
the teleparallel spin connection associated to the
tetrad 14,

(4) To obtain a Weitzenbock gauge tetrad h{}vﬂ one

searches the local Lorentz transformation A€, (x) such
C -\B__ °C
that A Baﬂ (A ) p—w D;t|(ﬂatnessconditi0n)'

For Schwarzschild geometry, defined by the metric

ds? — (1 _ Q) dr’ — <1 - Q) dr? — r*(d9* + sin® 9dg?)
r r
(117)

the Riemann curvature tensor depends on the Schwarzschild
radius r;, = 2M and vanishes for r; = 0. Using this con-
dition, the above algorithm yields the off diagonal spheri-
cally symmetric Weitzenbock tetrad [see Eq. (30) with
(63)—(64)], that solves the antisymmetric field equations
in modified teleparallel f(T, B, ¢, X) theories of gravity.

For homogeneous and isotropic FLRW geometry,
defined by the metric

dr?
1—kr?

dszzdtz—a(t)2< —|—r2(dz92—|—sin219dgo2)>, (118)

the curvature tensor depends on the scale factor a() and the
spatial curvature parameter k. The condition a(t) + k =0
make the curvature tensor vanish and the above procedure
yields the tetrad that has been found in the literature which
solves antisymmetric field equations in general modified
teleparallel theories of gravity [35].
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We now apply this algorithm, which was successful
in highly symmetric situations, to Kerr, Taub-NUT, and

C-metric geometries.
(1) We choose a simple frame

903
oo

s

0
0 V911 0
0 0 Vo

0 \/%4—9
oo 33

-

Q
()

(119)

of the line element ds> = gydt> + gozdtdp +
911 dr? + g2d9* + g33dg?, where all metric func-
tions only depend on r and 9, g,, = g,,(r.9). This
metric includes the whole Plebanski-Demianski
class we introduced in (40) and thus in particular

the famous special cases:
(i) The Kerr metric for the choice

. 2Mr B AMrasin?9
900 = 3 9oz = y )
>
g11 :_K’ 9 = —L,
2Mra®sin?9
933 = — <r2 P ol >sin28,

where X and A are defined below (53).
(i) The Taub-NUT metric for

(iii)) The C-metric for

2

r
Yoo 202" g = _—ng’
r? P
=——, = —— r’sin?9,
922 QQ,P 933 92

where Q, Q and P are defined in (61).
Calculating the frame components of the Riemann
curvature tensor in the frame (119) results in
curvature components depending on the parameters
of the metric. All metrics share the parameter M and
in addition: the rotation a for the Kerr metric, the
NUT parameter b for the Taub-NUT metric, and «
for the C-metric.

To switch gravity off, a condition on the parameters is
o}
searched such that the curvature tensor R van-

uvp

ishes. It could be a relation of the type M = M(Y),

where Y is one of the parameters of the metric in

consideration, or finding a value which Y and M

assumed. The conditions for the different cases are

(i) Kerr: M = 0 suffices to make all components of

the curvature tensor vanish. It is optional to also

set a to a fixed value, for example a = 0;

Taub-NUT: M =0 and b = 0 is necessary to

make all components of the curvature tensor

vanish;

(iii) C-metric: M =0 and a =0 is necessary to
make all components of the curvature tensor
vanish;

For the different geometries listed before, o© Dy |p1—0>

oC oC .
@ pul(m=op—0) and @ p,|—o.—q), TEspectively,

(i)

1 2(b* + Mr) represent flat spin connections. It turns out that
goo =" =T these flat spin connections coincide for all three
262 + Mr) geometries under the conditions M =a =0 for
gz = 2b(y — cos 9) <1 —ﬁ) Kerr, M = b =0 for Taub-NUT and M =a =0
b +r for the C-metric.
B b* +r? Starting with the Kerr geometry case, identifying
I =3 oM =2 the just determined flat spin connection with the
9o = —(B2 + 1) teleparallel connection generated by local Lorentz
20 + M) transformations cCZ)CDﬂ ly—o = A0, (A™)B ), yields
G335 = 4b%(y — cos 9) (1 - b22> an equation to determine A€, = A, (r, 9, ¢). Solv-
D s tr ing the equivalent equation (A~1)C,0" puly—o =
= (b + r7)sin”9. 9,(A™H)€), for Kerr geometry yields
1 0 0 0
: 2.2 .
0 % jz(i:gi% cos@pcosd —sing
AN, = Ginosi 120
( ) D 0 rsm\(;}gm& sgtf:zrfgsinwcoslg Y ( )
0 +/ “zg’z cosd — a2+32+2” sin & 0
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Since the spin connections of the different geometries
coincide when all parameters in the metrics vanish,
we can simply set a — 0 to obtain the desired Lorentz
transformation for the other two cases. This also
means that for the Kerr case the algorithm yields two
possible Lorentz transformations A and A|,_,,.

(4) The Weitzenbock tetrad then is obtained by applying
the Lorentz transformation to the tetrad (119)
hy, = hP,(A7")€ . Most interestingly one obtains
the reduced axially symmetric tetrads (30) for all
geometries with a fixed Hz, component.

(i) Kerr geometry: Using (A~!)4, to generate the
Weitzenbock tetrad yields the tetrad compo-
nents (51)-(52) with Hs, = rsind. Using in-
stead (A=1)€| o yields the tetrad components
(51)~(52) with Hy, = Vr?* + a® cos® sin 9.
Comparing these tetrad components with the
ones we found from solving the antisymmetric
field equations in Sec. IV C 4, we conclude that
neither of the derived tetrads is a solution.

(ii) Taub-NUT geometry: In this case only one
Lorentz transformation, (A=!)4,],_,, is avail-
able to generate the Weitzenbock tetrad. It
precisely becomes the reduced axially symmet-
ric tetrad with components (56) and Hj, =

Vb? + r*sin 9. Comparing this result with the
solutions found in Sec. IV C 2 we see that this
tetrad indeed is a solution of the antisymmetric
field equations.

(iii) The C-metric: As for the Taub-NUT case only
one Lorentz transformation is available to gen-
erate the Weitzenbock tetrad. This time we
obtain the reduced axially symmetric tetrad
with components (60) and Hz, = %5’9 As in
the Kerr case, this tetrad does not solve the
antisymmetric field equations.

Thus the algorithm suggested in [40] associates spin
connections to tetrads, respectively determines Weitzenbock
tetrads. The procedure is however nonunique, and, sadly,
has no clear direct connection to finding solutions to the
antisymmetric field equations of modified teleparallel
theories of gravity. The algorithm may have relevance
for TEGR, where the antisymmetric equations are identi-
cally satisfied. Whether there is any way a distinguished
physical interpretation of the tetrads we found using the
algorithm needs to be investigated.

VII. CONCLUSIONS

In the present work, we address the study of axially
symmetric teleparallel geometries in the framework of
f(T,B,¢,X) gravity. For this task, we emphasize the
existence of two different branches of axially symmetric
tetrad fields and Lorentz flat spin connections, i.e., they
preserve the underlying symmetry conditions under the action

of the rotation group SO(2), as was shown in [35] (see
Sec. III B). The important difference between the branches is
the fact that the first, the regular branch (see Sec. III B 1) is
consistent with a spherically symmetric teleparallel geometry
in a certain limit, in the sense of teleparallel geometry, see
(18), while the second, the solely axially symmetric branch
(see Sec. III B 2) cannot have such a limit.

In teleparallel theories of gravity, the field equations can
be decomposed into symmetric and, in general nontrivial,
antisymmetric parts. The first step toward a solution is
always to solve the antisymmetric field equations, which is
mostly done in the Weitenzbock gauge where all degrees of
freedom are encoded in the tetrad and the spin connection is
set to zero. The tetrads found this way are often called good
tetrads, which serve as an ansatz that is fed into the
symmetric field equations.

We focused on finding solutions to the antisymmetric
field equations of the f (7', B, ¢, X) class of gravity theories,
which contains many modified teleparallel theories of
gravity discussed in the literature, in axial symmetry,
starting from the regular branch, before we discussed
alternative tetrad choices. In particular, we started the
search for teleparallel generalizations of axially symmetric
spacetimes beyond the Plebanski-Demianski class of sol-
utions of general relativity.

We introduce the first categorization for teleparallel
axially symmetric spacetimes and demonstrate the exist-
ence of a good tetrad containing the Taub-NUT subclass of
the Plebanski-Demiarniski metric in the regular branch (i.e.,
allowing a continuous reduction to the spherically sym-
metric case). The physical viability of this geometry has
recently revisited in virtue of the absence of pathologies for
free-falling observers and thermodynamics [69,79,80]. In
addition, considering the highly nonlinear character of the
field equations of f(T, B, ¢, X), we are also able to obtain
an analytical expression for the good tetrad in Kerr
geometry under the slow rotation approximation, which
constitutes a first preliminary and promising result for the
achievement of a complete solution describing rotating
black holes in modified teleparallel gravity.

The corresponding good tetrads related to the aforemen-
tioned configurations and other particular cases can be
summarized as follows:

(1) For the regular branch:

(a) Anaxially symmetric universal good tetrad (74) for
any f (T, B, ¢, X) which turns out not to reproduce
any of the special cases of the vacuum Plebariski-
Demianski metric (except the Schwarzschild case).
This tetrad generalizes the one found in [47].

(b) An axially symmetric good tetrad (88) which is
a generalization of the standard spherically
symmetric tetrad (31) and reproduces a metric
behaving like a family of Taub-NUT-like metrics
(89). This tetrad is valid for any f(T, B, ¢, X)
provided by a scalar field of the form ¢ = ¢(r).
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(c) An axially symmetric good tetrad (102) which
shows a high dependence on the angular coor-
dinate 9, and provides the nontrivial relation
Joo = —go3/2 for the metric tensor. This tetrad is
valid for any f(T,B,¢,X) with a scalar field
being ¢ = p(9). As is shown, this result
strongly constrains the form of the metric tensor,
so a further study of the symmetric equations
would be necessary in order to clarify whether
this tetrad is physically viable or not.

(d) A good tetrad for a slowly rotating (a < 1) Kerr
metric given by (51)—(52) with (108). This result
is only valid for f(7,B) gravity. Even though
this good tetrad solves the antisymmetric field
equations, all the metric (and tetrad) functions
are determined. It can be used to find perturba-
tive teleparallel modifications of slowly rotating
axially symmetric solutions around Kerr (see
[12—18] for similar works in curvature-based
theories of gravity) or other analyses where the
Kerr metric is assumed.

(e) A new spherically symmetric good tetrad (33)
for f(T) gravity having T = 0 whose metric is
constraint to have a ggy = —1/¢g;; form. This
tetrad only obeys spherical symmetry in the
trivial case when ¢y, = 1, otherwise the tele-
parallel connection does not satisfy the sym-
metry condition, i.e., L I" # 0.

(2) For the solely axially symmetric branch:

(a) An axially symmetric good tetrad (113) which
does not have any Plebanski-Demianski metric
as particular cases. Even the Schwarzschild
metric cannot be recovered with this tetrad.
Furthermore, the t — ¢ component is related to
the ¢ — ¢ component as gy, = —K?/ g3, which
gives us a metric behaving very differently to
any standard known vacuum solution in GR.

In the study of extended gravitational theories beyond
GR, the search and analysis of solutions to the underlying
field equations are fundamental to figure out their dynami-
cal properties and to test their validity in different astro-
physical and cosmological situations. In this regard, the

|

1

consideration of rotating black holes which may carry
additional charges as is the case in axial symmetry turns out
to be essential for a phenomenological assessment of such
theories in terms of a realistic configuration. Black hole
angular momentum measurements include observations on
the dynamics of accretion disks and stellar objects in their
vicinity, the study of shadow images, or the detection of
gravitational waves [1,81-83]. The possible effects of a
gravitomagnetic monopole on the black hole shadow and
on the twist of light in microlensing events have been
considered for the design of future tests of axially sym-
metric configurations with a NUT charge [73,84-86]. In
this sense, it is also expected to obtain new phenomeno-
logical constraints for the viability of generalized axially
symmetric teleparallel geometries as the ones presented in
this work. In addition, further extensions of slowly and
rigidly rotating, stationary and axially symmetric bodies,
e.g., see [87,88], may be considered by setting as a
background spacetime the slowly rotating configuration
found in this work, in order to include higher-order
multipole moments in the gravitational scheme and analyse
the effect of rotation on stellar structures in the realm of
modified teleparallel gravity. Further research following
these lines will be addressed in future works.
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APPENDIX A: TORSION SCALAR
AND BOUNDARY TERM IN AXTAL
SYMMETRY—PRINCIPAL BRANCH

The torsion scalar and the boundary term for the general
tetrad (30) in axial symmetry become

T = [((H%2H33,r +4H ,Hy3H iy Hys , + H32(H32H(2)3,r + 4H23H23,rH32.r))H§2

2HHY H33Hy (HT, + H3,)?

—4H  Hy3(Hyy gHY, + (HypHsop — HyygHos ) Hiy + Hap(HpHyy g + HapgHos, — Hys gHs ) H i
+ H3,(=H 1 9Hos9 + Hio Hys g — HingHos , + HyHyy o)) Hy + Hi (4Ho3Hy g HY,

+ (H3p(Hiz g —4Hy3H p ) — 4Hy3Hoy gHyyp o) HY, + 4HosHyp (H s gHos g + HyoHy 9)Hoo

+ H3,(Hgs g — 4Hp3H ) ) Hog — 2(Hoo - (Hos (HT, + H3y)Hos r — 2Ho3(Hos JHiy + HysHyn  Hiy
+ H3,Hy, + HyHyyHyy ) ) H3, — 2H  Hos (Hos (Hiz 9Hoo,r + Hoos(Hie — Hin) ) H3,
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+ H\oHoy3(Hoo 9H3,r — Ho9Hoo, ) H3, — H3yHoo -+ Hiy(HasHoo 9H i1 — H3Hoo ) ) Hao

+ H{\Hoo.9(2Hy3H3o HY, + (2H3y 9H35 — 2H3yHos gHos + HoysHyoHos 9)HY,

+ 2Hy3H3y(H3, — HysHyn 9)H 1o + H3,(HosHos,g — 2Hy3Hos ) ) Hoo

+ HisHyy (Hi, + H3,) (HY Hg g + H3LHG L)) (A1)
1

B = 2{—(H? + H%,)H HoHpy . + HygHos VH2, + HogHoyHysy  H
HOOH?1H23H§2(H%2+H%2)3[{ ( 12 32) 11,r(< 234400,r 00 23,r) 12 0044234412 L1112

+ Hap(HooH3pHos,» + Hos(HpHoo,r + HooHo,)))Hy + Hiy (HosHoo,r + HooHos ) Hao,

+ Hxy(2Hoo -Hos r + HysHoo rr + HooHos ) ) HY, + (HooHayH i, Hos r + Hoys(HooH 1o, Hao

+ Hyy(Hoo o H o, + HooH ) Hiy + Hap(H3p(3Hy3Hoo  Hp,r + 2H3(2Hoo - Hos r + HazHoo )
H3,(3Hy3 , Hyy  + 2H3oHos ) + Hoz(—=H7, , + 2H3, , + HH b)) Hi,

HooH3Hyy  Hoz r + Hys(Hyy(Hoo - H iz + HooH12r) = 3HooH 12, Hap ) ) H
H3y(2Hy3Hoo  H3o p + H3o(2Hoo - Hos r + HyzHoo ) + Hoo(H32(2H s Hp p + HanHos )
+ Hy(Hiy, + HyHy, 1)) H3, — Hiy (Hi, + H3,) (H3y(Hoo -H, + Hos(Hoo 9 (Hia,r = 2H ) )

— HypgHoo, ) H3, + HioHos(H3p 9Hoo  — Hoo 9Hao,r ) Hap + Hiy(H3Hoo,r — 2HosHoo g H i1 )

+ Hoo(Hs, HyygHYy + (Hsp  H3y = (2H 1y 9Hos 9 + HosHyy g9)Hsy + 2Ho3Hyy gHso ) HY,

+ Hy(Hy, 19H32 + (Hyp9Ho3, — Hyz 9H3) ) H3y — HysHyy gH1p9)H o

+ H32 Hyp H3) — (2H 1 gHos,9 — Hio o Hosg + HosHyy g9 + Hip9Hos ) H3y + HysHyy gHsog)) ) Hso

(
(
(
Rl
H3(
(

(

(
H3,[H; (H00H32 9 — HyoHoo9)H3, + (H3o(H3o(2Hoo,0H 23,9 + HasHoo,99) — 2Ha3Hoo 9H3o.9)

- Hoo((le o — Has 99)H%, + (2H23 9H3p 9 + HysHsy 99)H3o — 2Ho3H3, 4) ) HY,

+ H3y(—2Hoo 9H3, + 2HooH3,9H3, + (HooH 12,9H23,9 + Ho3(Hoo 9H 2.9 + HooH12,99) ) H3o

— HoH3H iz 9Hz 9)HY, — H3y(H3y(3Ho3Hoo 9 Haog — 2H3 (2Hoo 9Hoz 9 + HozHop g9))

+ Hoo(2(H 5,9 — Hys 99)H3, + (3H23 9Hrp 9 + HysHyo 99)Hyy + Hos(H, o — 4H3, 9)))H7,

+ H3,(HooHp,9H3, + (HooH12.9Ha3. 9 + Has(Hoo,9H 12,9 + HooH 12,99) ) H32 — HyHoo

— 5SHooHy3H 1y 9Hz 9)H o + H3, (Hap(H3 (2Hoo 9Hasz 9 + HosHoo99) — HozHoo9H,9)

+ Hoo((Has.99 — Hin.9)H3, — Has gHyp 9H3 + HyzH3, )]} (A2)

APPENDIX B: KERR PERTURBATIONS

The form of the functions appearing in (107) are

Fo(r.£) = VB~ Lexp [ / <¢—§3>-1d5]P<f2<r>, 1) (B1)
Fy(r.8) = VB~ Texp [ [ ¢3>-'d5} 0(f2(). 1,2, (82)
£2(r) = ﬁ [\/(32;»3/2 — 48M/P)Vr — 2M + 41M> — 80Mr + 3217 — M} , (B3)

where & = cos 9 and P(x,y,z) and Q(x,y,z) are the Legendre functions of the first and second kind respectively [89].

044058-21



BAHAMONDE, VALCARCEL, JARYV, and PFEIFER

PHYS. REV. D 103, 044058 (2021)

[1] S. A. Teukolsky, The Kerr metric, Classical Quantum
Gravity 32, 124006 (2015).

[2] J.B. Griffiths and J. Podolsky, Exact Space-Times in
Einstein’s General Relativity, Cambridge Monographs
on Mathematical Physics (Cambridge University Press,
Cambridge, England, 2009).

[3] H. Stephani, D. Kramer, M. A. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2003).

[4] J. Cembranos, A. de la Cruz-Dombriz, and P. Jimeno
Romero, Kerr-Newman black holes in f(R) theories, Int.
J. Geom. Methods Mod. Phys. 11, 1450001 (2014).

[5] F. Filippini and G. Tasinato, An exact solution for a rotating
black hole in modified gravity, J. Cosmol. Astropart. Phys.
01 (2018) 033.

[6] B. Chauvineau, New method to generate exact scalar-tensor
solutions, Phys. Rev. D 100, 024051 (2019).

[7] C. Ding, C. Liu, R. Casana, and A. Cavalcante, Exact
Kerr-like solution and its shadow in a gravity model with
spontaneous Lorentz symmetry breaking, Eur. Phys. J. C 80,
178 (2020).

[8] K. Jusufi, M. Jamil, H. Chakrabarty, Q. Wu, C. Bambi, and
A. Wang, Rotating regular black holes in conformal massive
gravity, Phys. Rev. D 101, 044035 (2020).

[9] M. Guerrero, G. Mora-Pérez, G.J. Olmo, E. Orazi, and D.
Rubiera-Garcia, Rotating black holes in Eddington-inspired
Born-Infeld gravity: An exact solution, J. Cosmol. Astro-
part. Phys. 07 (2020) 058.

[10] J. B. Achour, H. Liu, H. Motohashi, S. Mukohyama, and
K. Noui, On rotating black holes in DHOST theories,
J. Cosmol. Astropart. Phys. 11 (2020) 001.

[11] T. Anson, E. Babichev, C. Charmousis, and M. Hassaine,
Disforming the Kerr metric, J. High Energy Phys. 01 (2021)
018.

[12] K. Konno, T. Matsuyama, and S. Tanda, Rotating black hole
in extended Chern-Simons modified gravity, Prog. Theor.
Phys. 122, 561 (2009).

[13] N. Yunes and F. Pretorius, Dynamical Chern-Simons
modified gravity. I. Spinning black holes in the slow-
rotation approximation, Phys. Rev. D 79, 084043 (2009).

[14] P. Pani and V. Cardoso, Are black holes in alternative
theories serious astrophysical candidates? The case for
Einstein-Dilaton-Gauss-Bonnet black holes, Phys. Rev. D
79, 084031 (2009).

[15] P. Pani, C.F. Macedo, L.C. Crispino, and V. Cardoso,
Slowly rotating black holes in alternative theories of gravity,
Phys. Rev. D 84, 087501 (2011).

[16] D. Ayzenberg and N. Yunes, Slowly-rotating black holes in
Einstein-dilaton-Gauss-Bonnet gravity: Quadratic order in
spin solutions, Phys. Rev. D 90, 044066 (2014).

[17] A. Maselli, P. Pani, L. Gualtieri, and V. Ferrari, Rotating
black holes in Einstein-dilaton-Gauss-Bonnet gravity with
finite coupling, Phys. Rev. D 92, 083014 (2015).

[18] P.A. Cano and A. Ruipérez, Leading higher-derivative
corrections to Kerr geometry, J. High Energy Phys. 05
(2019) 189.

[19] R. Konoplya, L. Rezzolla, and A. Zhidenko, General
parametrization of axisymmetric black holes in metric
theories of gravity, Phys. Rev. D 93, 064015 (2016).

[20] R. Konoplya, Z. Stuchlik, and A. Zhidenko, Axisymmetric
black holes allowing for separation of variables in the Klein-
Gordon and Hamilton-Jacobi equations, Phys. Rev. D 97,
084044 (2018).

[21] R. Aldrovandi and J.G. Pereira, Teleparallel Gravity
(Springer, Dordrecht, 2013), Vol. 173.

[22] R. Weitzenboock, Invariantentheorie (Noordhoff, Gronningen,
1923).

[23] R. Ferraro and F. Fiorini, Modified teleparallel gravity:
Inflation without inflaton, Phys. Rev. D 75, 084031 (2007).

[24] G.R. Bengochea and R. Ferraro, Dark torsion as the cosmic
speed-up, Phys. Rev. D 79, 124019 (2009).

[25] E. V. Linder, Einstein’s other gravity and the acceleration of
the Universe, Phys. Rev. D 81, 127301 (2010).

[26] M. Hohmann, L. Jarv, M. Krssak, and C. Pfeifer,
Teleparallel theories of gravity as analogue of nonlinear
electrodynamics, Phys. Rev. D 97, 104042 (2018).

[27] C.-Q. Geng, C.-C. Lee, E.N. Saridakis, and Y.-P. Wu,
“Teleparallel” dark energy, Phys. Lett. B 704, 384 (2011).

[28] S. Bahamonde, C.G. Bohmer, and M. Wright, Modified
teleparallel theories of gravity, Phys. Rev. D 92, 104042
(2015).

[29] S. Bahamonde and M. Wright, Teleparallel quintessence
with a nonminimal coupling to a boundary term, Phys. Rev.
D 92, 084034 (2015).

[30] M. Hohmann, L. Jarv, and U. Ualikhanova, Covariant
formulation of scalar-torsion gravity, Phys. Rev. D 97,
104011 (2018).

[31] M. Hohmann and C. Pfeifer, Scalar-torsion theories of
gravity II: L(T, X,Y,¢) theory, Phys. Rev. D 98, 064003
(2018).

[32] H. Abedi, S. Capozziello, R. D’Agostino, and O. Luongo,
Effective gravitational coupling in modified teleparallel
theories, Phys. Rev. D 97, 084008 (2018).

[33] S. Bahamonde, K. F. Dialektopoulos, and J.L. Said, Can
Horndeski theory be recast using teleparallel gravity?, Phys.
Rev. D 100, 064018 (2019).

[34] A. Golovnev, T. Koivisto, and M. Sandstad, On the
covariance of teleparallel gravity theories, Classical Quan-
tum Gravity 34, 145013 (2017).

[35] M. Hohmann, L. Jarv, M. Kr$sak, and C. Pfeifer, Modified
teleparallel theories of gravity in symmetric spacetimes,
Phys. Rev. D 100, 084002 (2019).

[36] A. Coley, R. Van Den Hoogen, and D. McNutt, Symmetry
and equivalence in teleparallel gravity, J. Math. Phys. (N.Y.)
61, 072503 (2020).

[37] T.G. Lucas, Y.N. Obukhov, and J. Pereira, Regularizing
role of teleparallelism, Phys. Rev. D 80, 064043 (2009).

[38] Y. N. Obukhov and G. F. Rubilar, Covariance properties and
regularization of conserved currents in tetrad gravity, Phys.
Rev. D 73, 124017 (2006).

[39] M. Kr$8dk and J. Pereira, Spin connection and renormal-
ization of teleparallel action, Eur. Phys. J. C 75, 519 (2015).

[40] E. Emtsova, A. Petrov, and A. Toporensky, Conserved
currents and superpotentials in teleparallel equivalent of
GR, Classical Quantum Gravity 37, 095006 (2020).

[41] M. Krssdk, Holographic renormalization in teleparallel
gravity, Eur. Phys. J. C 77, 44 (2017).

[42] M. Krssak, R. van den Hoogen, J. Pereira, C. Bohmer, and
A. Coley, Teleparallel theories of gravity: Illuminating a

044058-22


https://doi.org/10.1088/0264-9381/32/12/124006
https://doi.org/10.1088/0264-9381/32/12/124006
https://doi.org/10.1142/S0219887814500017
https://doi.org/10.1142/S0219887814500017
https://doi.org/10.1088/1475-7516/2018/01/033
https://doi.org/10.1088/1475-7516/2018/01/033
https://doi.org/10.1103/PhysRevD.100.024051
https://doi.org/10.1140/epjc/s10052-020-7743-y
https://doi.org/10.1140/epjc/s10052-020-7743-y
https://doi.org/10.1103/PhysRevD.101.044035
https://doi.org/10.1088/1475-7516/2020/07/058
https://doi.org/10.1088/1475-7516/2020/07/058
https://doi.org/10.1088/1475-7516/2020/11/001
https://doi.org/10.1007/JHEP01(2021)018
https://doi.org/10.1007/JHEP01(2021)018
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1143/PTP.122.561
https://doi.org/10.1103/PhysRevD.79.084043
https://doi.org/10.1103/PhysRevD.79.084031
https://doi.org/10.1103/PhysRevD.79.084031
https://doi.org/10.1103/PhysRevD.84.087501
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1103/PhysRevD.92.083014
https://doi.org/10.1007/JHEP05(2019)189
https://doi.org/10.1007/JHEP05(2019)189
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.97.084044
https://doi.org/10.1103/PhysRevD.97.084044
https://doi.org/10.1103/PhysRevD.75.084031
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.81.127301
https://doi.org/10.1103/PhysRevD.97.104042
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.084034
https://doi.org/10.1103/PhysRevD.92.084034
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.97.104011
https://doi.org/10.1103/PhysRevD.98.064003
https://doi.org/10.1103/PhysRevD.98.064003
https://doi.org/10.1103/PhysRevD.97.084008
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1103/PhysRevD.100.064018
https://doi.org/10.1088/1361-6382/aa7830
https://doi.org/10.1088/1361-6382/aa7830
https://doi.org/10.1103/PhysRevD.100.084002
https://doi.org/10.1063/5.0003252
https://doi.org/10.1063/5.0003252
https://doi.org/10.1103/PhysRevD.80.064043
https://doi.org/10.1103/PhysRevD.73.124017
https://doi.org/10.1103/PhysRevD.73.124017
https://doi.org/10.1140/epjc/s10052-015-3749-2
https://doi.org/10.1088/1361-6382/ab7715
https://doi.org/10.1140/epjc/s10052-017-4621-3

EXPLORING AXIAL SYMMETRY IN MODIFIED TELEPARALLEL ...

PHYS. REV. D 103, 044058 (2021)

fully invariant approach, Classical Quantum Gravity 36,
183001 (2019).

[43] N. Tamanini and C. G. Boehmer, Good and bad tetrads in
f(T) gravity, Phys. Rev. D 86, 044009 (2012).

[44] M. Kr$sdk and E. N. Saridakis, The covariant formulation of
f(T) gravity, Classical Quantum Gravity 33, 115009
(2016).

[45] R. Ferraro and F. Fiorini, Spherically symmetric static
spacetimes in vacuum f(T) gravity, Phys. Rev. D 84, 083518
(2011).

[46] C. Bejarano, R. Ferraro, and M. J. Guzman, Kerr geometry
in f(T) gravity, Eur. Phys. J. C 75, 77 (2015).

[47] L. Jarv, M. Hohmann, M. Kr$sak, and C. Pfeifer, Flat
connection for rotating spacetimes in extended teleparallel
gravity theories, Universe 5, 142 (2019).

[48] R. Rauch and H. Nieh, Birkhoff’s theorem for general
Riemann-Cartan-type R + R? theories of gravity, Phys.
Rev. D 24, 2029 (1981).

[49] M. Hohmann, Metric-affine geometries with spherical
symmetry, Symmetry 12, 453 (2020).

[50] S. Bahamonde and J.G. Valcarcel, New models with
independent dynamical torsion and nonmetricity fields,
J. Cosmol. Astropart. Phys. 09 (2020) 057.

[5171 EW. Hehl, J. McCrea, E. W. Mielke, and Y. Ne’eman,
Metric-Affine gauge theory of gravity: Field equations,
Noether identities, world spinors, and breaking of dilation
invariance, Phys. Rep. 258, 1 (1995).

[52] P. Bakler, M. Gurses, F. Hehl, and J. Mccrea, The exterior
gravitational field of a charged spinning source in the
Poincare gauge theory: A {Kerr-Newman} metric with
dynamic torsion, Phys. Lett. A 128, 245 (1988).

[53] F. W. Hehl and A. Macias, Metric-Affine gauge theory of
gravity. 2. Exact solutions, Int. J. Mod. Phys. D 08, 399
(1999).

[54] P. Baekler and F. W. Hehl, Rotating black holes in metric-
affine gravity, Int. J. Mod. Phys. D 15, 635 (2006).

[55] Y.-F. Cai, S. Capozziello, M. De Laurentis, and E.N.
Saridakis, f(T) teleparallel gravity and cosmology, Rep.
Prog. Phys. 79, 106901 (2016).

[56] S. Bahamonde, C.G. Bohmer, F.S. Lobo, and D. Séez-
Gomez, Generalized f(R,¢,X) gravity and the late-time
cosmic acceleration, Universe 1, 186 (2015).

[57] S. Nojiri, S. Odintsov, and V. Oikonomou, Modified gravity
theories on a nutshell: Inflation, bounce and late-time
evolution, Phys. Rep. 692, 1 (2017).

[58] C. Xu, E. N. Saridakis, and G. Leon, Phase-space analysis of
teleparallel dark energy, J. Cosmol. Astropart. Phys. 07
(2012) 005.

[59] M. Zubair, S. Bahamonde, and M. Jamil, Generalized
second law of thermodynamic in modified teleparallel
theory, Eur. Phys. J. C 77, 472 (2017).

[60] S. Bahamonde, U. Camci, S. Capozziello, and M. Jamil,
Scalar-tensor teleparallel wormholes by Noether sym-
metries, Phys. Rev. D 94, 084042 (2016).

[61] S. Bahamonde, M. Marciu, and J.L. Said, Generalized
tachyonic teleparallel cosmology, Eur. Phys. J. C 79, 324
(2019).

[62] M. Hohmann, Scalar-torsion theories of gravity III:
Analogue of scalar-tensor gravity and conformal invariants,
Phys. Rev. D 98, 064004 (2018).

[63] M. Hohmann, Scalar-torsion theories of gravity I: General
formalism and conformal transformations, Phys. Rev. D 98,
064002 (2018).

[64] M. Hohmann, Spacetime and observer space symmetries in
the language of Cartan geometry, J. Math. Phys. (N.Y.) 57,
082502 (2016).

[65] K. Yano, Notes on isometries, in Colloguium Mathemati-
cum (Institute of Mathematics Polish Academy of Sciences,
1972), Vol. 26, pp. 1.

[66] S. Bahamonde and U. Camci, Exact spherically symmetric
solutions in modified teleparallel gravity, Symmetry 11,
1462 (2019).

[67] S. Bahamonde, K. Flathmann, and C. Pfeifer, Photon sphere
and perihelion shift in weak f (7)) gravity, Phys. Rev. D 100,
084064 (2019).

[68] J. Plebanski and M. Demianski, Rotating, charged, and
uniformly accelerating mass in general relativity, Ann. Phys.
(N.Y.) 98, 98 (1976).

[69] G. Clément, D. Gal’tsov, and M. Guenouche, Rehabilitating
space-times with NUTs, Phys. Lett. B 750, 591 (2015).

[70] V. Manko and E. Ruiz, Physical interpretation of NUT
solution, Classical Quantum Gravity 22, 3555 (2005).

[71] J. B. Griffiths and J. Podolsky, Accelerating and rotating
black holes, Classical Quantum Gravity 22, 3467 (2005).

[72] R. Zimmerman and B. Shahir, Geodesics for the NUT
metric and gravitational monopoles, Gen. Relativ. Gravit.
21, 821 (1989).

[73] D. Lynden-Bell and M. Nouri-Zonoz, Classical monopoles:
Newton, NUT space, gravimagnetic lensing and atomic
spectra, Rev. Mod. Phys. 70, 427 (1998).

[74] J.S. Dowker, The NUT solution as a gravitational dyon,
Gen. Relativ. Gravit. 5, 603 (1974).

[75] M. L. Ruggiero and N. Radicella, Weak-field spherically
symmetric solutions in f(T) gravity, Phys. Rev. D 91,
104014 (2015).

[76] S. Bahamonde, J. L. Said, and M. Zubair, Solar system tests
in modified teleparallel gravity, J. Cosmol. Astropart. Phys.
10 (2020) 024.

[77] K. Hayashi and T. Shirafuji, New general relativity, Phys.
Rev. D 19, 3524 (1979); 24, 3312(A) (1981).

[78] S. Bahamonde, C. G. Bohmer, and M. Krs$$ak, New classes
of modified teleparallel gravity models, Phys. Lett. B 775,
37 (2017).

[79] R. A. Hennigar, D. Kubiziidk, and R. B. Mann, Thermody-
namics of Lorentzian Taub-NUT spacetimes, Phys. Rev. D
100, 064055 (2019).

[80] A.B. Bordo, F. Gray, R. A. Hennigar, and D. Kubizndk,
Misner Gravitational charges and variable string strengths,
Classical Quantum Gravity 36, 194001 (2019).

[81] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[82] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 Event Horizon Telescope results. I. The shadow
of the supermassive black hole, Astrophys. J. 875, L1
(2019).

[83] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Improved Analysis of GW150914 Using a Fully
Spin-Precessing Waveform Model, Phys. Rev. X 6, 041014
(2016).

044058-23


https://doi.org/10.1088/1361-6382/ab2e1f
https://doi.org/10.1088/1361-6382/ab2e1f
https://doi.org/10.1103/PhysRevD.86.044009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1088/0264-9381/33/11/115009
https://doi.org/10.1103/PhysRevD.84.083518
https://doi.org/10.1103/PhysRevD.84.083518
https://doi.org/10.1140/epjc/s10052-015-3288-x
https://doi.org/10.3390/universe5060142
https://doi.org/10.1103/PhysRevD.24.2029
https://doi.org/10.1103/PhysRevD.24.2029
https://doi.org/10.3390/sym12030453
https://doi.org/10.1088/1475-7516/2020/09/057
https://doi.org/10.1016/0370-1573(94)00111-F
https://doi.org/10.1016/0375-9601(88)90366-0
https://doi.org/10.1142/S0218271899000316
https://doi.org/10.1142/S0218271899000316
https://doi.org/10.1142/S0218271806008589
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.3390/universe1020186
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1088/1475-7516/2012/07/005
https://doi.org/10.1088/1475-7516/2012/07/005
https://doi.org/10.1140/epjc/s10052-017-5043-y
https://doi.org/10.1103/PhysRevD.94.084042
https://doi.org/10.1140/epjc/s10052-019-6833-1
https://doi.org/10.1140/epjc/s10052-019-6833-1
https://doi.org/10.1103/PhysRevD.98.064004
https://doi.org/10.1103/PhysRevD.98.064002
https://doi.org/10.1103/PhysRevD.98.064002
https://doi.org/10.1063/1.4961152
https://doi.org/10.1063/1.4961152
https://doi.org/10.3390/sym11121462
https://doi.org/10.3390/sym11121462
https://doi.org/10.1103/PhysRevD.100.084064
https://doi.org/10.1103/PhysRevD.100.084064
https://doi.org/10.1016/0003-4916(76)90240-2
https://doi.org/10.1016/0003-4916(76)90240-2
https://doi.org/10.1016/j.physletb.2015.09.074
https://doi.org/10.1088/0264-9381/22/17/014
https://doi.org/10.1088/0264-9381/22/17/008
https://doi.org/10.1007/BF00758986
https://doi.org/10.1007/BF00758986
https://doi.org/10.1103/RevModPhys.70.427
https://doi.org/10.1007/BF02451402
https://doi.org/10.1103/PhysRevD.91.104014
https://doi.org/10.1103/PhysRevD.91.104014
https://doi.org/10.1088/1475-7516/2020/10/024
https://doi.org/10.1088/1475-7516/2020/10/024
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.19.3524
https://doi.org/10.1103/PhysRevD.24.3312
https://doi.org/10.1016/j.physletb.2017.10.026
https://doi.org/10.1016/j.physletb.2017.10.026
https://doi.org/10.1103/PhysRevD.100.064055
https://doi.org/10.1103/PhysRevD.100.064055
https://doi.org/10.1088/1361-6382/ab3d4d
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1103/PhysRevX.6.041014
https://doi.org/10.1103/PhysRevX.6.041014

BAHAMONDE, VALCARCEL, JARYV, and PFEIFER

PHYS. REV. D 103, 044058 (2021)

[84] S. Rahvar and M. Nouri-Zonoz, Gravitational microlensing
in NUT space, Mon. Not. R. Astron. Soc. 338, 926 (2003).

[85] S. Rahvar and F. Habibi, Possibility of magnetic mass
detection by the next generation of microlensing experi-
ments, Astrophys. J. 610, 673 (2004).

[86] A.Abdujabbarov, F. Atamurotov, Y. Kucukakca, B. Ahmedov,
and U. Camci, Shadow of Kerr-Taub-NUT black hole,
Astrophys. Space Sci. 344, 429 (2013).

[87] J.B. Hartle and K.S. Thorne, Slowly rotating relativistic
stars. II. Models for neutron stars and supermassive stars,
Astrophys. J. 153, 807 (1968).

[88] J. B. Hartle, Slowly rotating relativistic stars. 1. Equations of
structure, Astrophys. J. 150, 1005 (1967).

[89] E. T. Whittaker and G.N. Watson, A Course of Modern
Analysis (Dover Publications, New York, 2020).

044058-24


https://doi.org/10.1046/j.1365-8711.2003.06137.x
https://doi.org/10.1086/421728
https://doi.org/10.1007/s10509-012-1337-6
https://doi.org/10.1086/149707
https://doi.org/10.1086/149400

