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An experimental test at the intersection of quantum physics and general relativity is proposed:
measurement of relativistic frame dragging and geodetic precession using intrinsic spin of electrons. The
behavior of intrinsic spin in spacetime dragged and warped by a massive rotating body is an experimentally
open question, hence the results of such a measurement could have important theoretical consequences.
Such a measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
Under conditions where the rotational angular momentum of a ferromagnet is sufficiently small, a
ferromagnet’s angular momentum is dominated by atomic electron spins and is predicted to exhibit
macroscopic gyroscopic behavior. If such a ferromagnetic gyroscope is sufficiently isolated from the
environment, rapid averaging of quantum uncertainty via the spin-lattice interaction enables readout of the
ferromagnetic gyroscope dynamics with sufficient sensitivity to measure both the Lense-Thirring (frame
dragging) and de Sitter (geodetic precession) effects due to the Earth.
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One of the most perplexing problems in theoretical
physics is devising a framework encompassing Einstein’s
theory of general relativity (GR) and quantum mechanics
(QM) [1–3]. Experimentally addressing this subject likely
requires probing distances at the Planck scale, far too
short to be reached in the near future [4]. Even at longer
distances, there has been a dearth of experiments probing
regimes where both GR and QM are essential to understand
observations [5,6]. While quantum systems have been used
in measurements of gravitational phenomena, for most such
experiments the measured phenomena are either not inher-
ently quantum mechanical (e.g., atomic measurements of
the gravitational redshift [7–9], where clocks are tools to
observe time dilation) or the gravitational phenomena are
not inherently relativistic (e.g., observations of the quantum
behavior of neutrons in Earth’s gravitational field [10,11],
understandable with Newtonian gravity).
We propose an experiment testing phenomena that

involve both GR and QM: measurement of gravitational

frame dragging [12] and geodetic precession [13], which
are fundamentally general-relativistic effects, with intrinsic
spin, which is a fundamentally quantum phenomenon. It is
crucial to emphasize that whether or not intrinsic spins
undergo general relativistic precession is an experimentally
open question: to date there has been no viable way to reach
the required sensitivity for direct observation of frame
dragging or geodetic precession of intrinsic spins. The
significance of such a test is evident from the fact that GR
incorporates only classical angular momentum arising from
the rotation of finite-size, massive bodies [14–16]. The key
point is that GR explicitly describes effects related to
angular momentum arising from the motion of mass-energy
through spacetime, but does not explicitly consider effects
related to spin, where the angular momentum arises from an
intrinsic quantum property of pointlike particles.
Heuristically, it can be argued based on Einstein’s

equivalence principle that intrinsic spin should behave in
the same way as the angular momentum of a classical
gyroscope [17–19]. Thus a reasonable theoretical approach
is to use standard quantum field theory for the locally flat
spacetime and treat frame dragging and geodetic precession

*pavelfadeev1@gmail.com
†derek.jacksonkimball@csueastbay.edu

PHYSICAL REVIEW D 103, 044056 (2021)

2470-0010=2021=103(4)=044056(12) 044056-1 © 2021 American Physical Society

https://orcid.org/0000-0002-4328-6614
https://orcid.org/0000-0001-9264-3510
https://orcid.org/0000-0002-6858-2751
https://orcid.org/0000-0002-7356-4814
https://orcid.org/0000-0002-1600-1601
https://orcid.org/0000-0001-8895-6338
https://orcid.org/0000-0003-2479-6034
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.044056&domain=pdf&date_stamp=2021-02-25
https://doi.org/10.1103/PhysRevD.103.044056
https://doi.org/10.1103/PhysRevD.103.044056
https://doi.org/10.1103/PhysRevD.103.044056
https://doi.org/10.1103/PhysRevD.103.044056


as small perturbations to the Lorentz metric [17–22].
However, whether or not this theoretical approach is correct
remains to be proven experimentally [23]; in this sense, the
proposed experiment can be envisioned as an equivalence
principle test in a new regime. The proposed experiment is
based on electron spins; meanwhile, frame-dragging also
causes light polarization to rotate [24], a measurement of
which would probe the analogous effect on photon
spins [25,26].
Indeed, without guidance from experimental measure-

ments, there are a number of open theoretical possibilities.
Even at an early stage it was realized that extending GR to
include effects related to intrinsic spin (as, for example, in
Cartan’s theory [27]) could change the microscopic struc-
ture of GR in fundamental ways, such as introducing
torsion [28,29]. In Einstein’s GR, mass-energy generates
and interacts with curvature of spacetime but the torsion is
zero, and so vectors curve along geodesics via parallel
transport but do not twist. In Cartan’s extension, intrinsic
spin generates and interacts with nonzero torsion, and so
frames transported along geodesics curve due to the effect
of mass-energy and twist due to the effect of intrinsic spin
(see, for example, the review by Hehl et al. [30]). Thus
warping of spacetime described by GR with torsion does
not affect intrinsic spin in the same way as classical angular
momentum, leading to order unity differences between
general-relativistic precession observed with intrinsic
spin and that observed with a classical gyroscope [31].
Furthermore, spin-gravity interactions deviating from the
predictions of GR are common features of theories attempt-
ing to go beyond standard physics [32–35]. Thus the results
of an experiment measuring general-relativistic precession
with intrinsic spins would have important consequences
regardless of the outcome, distinguishing between a num-
ber of different theoretical possibilities.
A measurement of general-relativistic precession effects

using intrinsic spin can be viewed as a “g − 1” test for

gravity, in analogy to the g − 2 experiments that test
quantum electrodynamics [36], where g is the electron
gyromagnetic ratio. In the proposed experiment, the
parameter g is the gyrogravitational ratio: the ratio between
intrinsic spin and angular momentum coefficients in the
theoretical description of relativistic precession. If gravity
affects intrinsic spin identically to orbital angular momen-
tum, then g ¼ 1, as expected based on Einstein’s equiv-
alence principle applied to intrinsic spin [19,37–40]. In
other approaches g differs from unity: for example, g ¼ 2 in
certain classes of Yang-Mills gravity theories [41,42] and
g ¼ 3 in the torsion gravity theory described in Ref. [31].
Such an experiment only recently became possible,

even in principle, based on a proposal for a ferromagnetic
gyroscope (FG) with unprecedented sensitivity [43]. An
ideal FG is a freely floating ferromagnet whose intrinsic
spin S has far greater magnitude than any rotational
angular momentum L associated with precession of the
ferromagnet,

S ≈ Nℏ ≫ L ≈ IΩ; ð1Þ

where N is the number of polarized spins in the ferro-
magnet, ℏ is Planck’s constant, I is the moment of inertia
of the ferromagnet, andΩ is the precession frequency. The
inequality (1) translates to a certain range of background
magnetic fields at the position of the FG; the upper limit
on the magnitude is denoted the threshold field B� and is
defined in Table I. Under these conditions, in the absence
of external torques, angular momentum conservation
keeps the expectation value of the total angular momen-
tum hJi ¼ hSþLi fixed with respect to the local space
coordinates. The spin-lattice interaction keeps S oriented
along the easy magnetic axis n̂ and rapidly averages
components of S transverse to n̂. This rapid averaging of
transverse spin components without inducing a random
walk of hJi significantly reduces quantum noise for

TABLE I. Proposed characteristics of the orbiting ferromagnetic gyroscope (FG) system for a measurement of
general-relativistic spin precession. The FG is assumed to be a fully magnetized cobalt sphere in vacuum with
superconducting shielding as described in the text.

Characteristic Notation Approximate value

Radius r 1 mm
Mass density ρ 8.86 g=cm3

Mass M ≈ 4πρr3=3 4 × 10−2 g
Moment of inertia I ≈ 2Mr2=5 1.6 × 10−4 g · cm2

Number of polarized spins N 4 × 1020

Ferromagnetic resonance frequency ω0 1011 s−1
Gyroscopic threshold field B� ¼ Nℏ2=ðgμBIÞ 3 × 10−10 G
Gyroscopic threshold frequency Ω� ¼ Nℏ=I 3 × 10−3 s−1
Operating magnetic field B 10−11 G
Larmor precession frequency ΩB 10−4 s−1
Temperature T 0.1 K
Background gas density n 103 cm−3
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measurement times longer than the characteristic time-
scale of the spin-lattice interaction, which is ≲10−9 s in
most cases. This enables exquisitely precise measure-
ments of spin precession, as discussed in detail in
Refs. [43,44]. A number of groups are actively working
on developing the requisite experimental tools to construct
an FG [45–49], opening the possibility of observing
relativistic frame dragging of S as we describe below.
Specifically, we investigate measurement of both the

Lense-Thirring effect [12,50] (frame dragging) and the de
Sitter (geodetic precession) effect [13,51,52]. Both effects
cause precession of a gyroscope orbiting a massive body
such as the Earth: Lense-Thirring precession is caused by
spacetime being dragged by the rotation of a massive
body whereas de Sitter precession is caused by the motion
of a gyroscope through spacetime curved by a mass
(present also for a nonrotating massive body). The
Lense-Thirring precession is characterized by the angular
velocity vector [50],

ΩLT ≈ g
2

5

GM
c2R

½3ðΩE · R̂ÞR̂ −ΩE�; ð2Þ

where g is the gyrogravitational ratio, G is Newton’s
gravitational constant, M is the mass of the Earth, R ¼
RR̂ is the position of the satellite relative to the center of the
Earth, c is speed of light, andΩE is Earth’s angular velocity
(ΩE ≈ 2π × 11.6 μHz). For a satellite instantaneously
above the North pole at R ≈ RE ≈ 6.5 × 106 m (where
RE is Earth’s radius), ΩLT ≈ 4 × 10−14 s−1 for g ¼ 1.
The de Sitter precession in a near-Earth orbit is [50,53]

ΩdS ≈ g
3

2

GM
c2R2

ðR̂ × vÞ; ð3Þ

where v is the satellite velocity. For the same satellite at
R ≈ RE one obtains ΩdS ≈ 10−12 s−1 for g ¼ 1. Note that
depending on the particular nature of the nonstandard
theory of gravity, it may be the case that g could take
on different values for the Lense-Thirring and de Sitter
effects [28,29].
Lense-Thirring and de Sitter precession of classical

angular momentum have been measured by satellite experi-
ments, and observed in astrophysical settings [54,55].
Gravity Probe B (GP-B), a satellite containing four highly
spherical niobium-coated fused quartz gyroscopes in a
cryogenic environment, measured the de Sitter precession
of the rotational angular momentum of the gyroscopes to a
0.3% precision and the Lense-Thirring precession of the
gyroscopes to 20% [56,57]. A different approach was to use
the satellite laser-ranging network [58] to precisely track
the precession of the angular momentum associated with
the orbital motion of satellites, rather than gyroscopes
[59–62]. Efforts are ongoing to observe these effects by
interferometry methods [63,64].

Our proposed experiment is modeled on GP-B, where
the rotating niobium-coated fused quartz spheres are
replaced by FGs. To evaluate the sensitivity, we assume
that the FG is housed within a satellite similar to that used
in the GP-B experiment [56] and referenced via a telescope
to a remote star. For our sensitivity estimates, we assume an
FG with characteristics as listed in Table I: a spherical
cobalt ferromagnet of radius r ≈ 1 mm with remanent
magnetization along n̂. The direction of the magnetic
moment of the FG can be measured using a superconduct-
ing quantum interference device (SQUID) to detect the
magnetic flux through a pick-up loop. A pick-up loop
placed at a distance d ≈ 1 mm away from the tip of the
ferromagnet with loop radius d sin θm ≈ 0.8 mm, where
θm ≈ 54.74° is the magic angle, maximizes the flux capture
and would measure a changing magnetic flux of amplitude
Φ ≈ 100 G · cm2 as the FG precesses. The sensitivity of a
low-temperature SQUID to flux change is δΦ≲ 10−13 G ·
cm2=

ffiffiffiffiffiffi
Hz

p
[65–68], which gives a detector-limited angular

resolution for the FG of δθdet ≈ δΦ=Φ≲ 10−15 rad=
ffiffiffiffiffiffi
Hz

p
.

This translates to a detection-limited spin-precession res-
olution:

ΔΩdet ≈ 10−15ðt½s�Þ−3=2 s−1; ð4Þ

where t is the time of measurement. Estimates show that the
fundamental quantum noise limit for an FG is far below
ΔΩdet [43].
We estimate that the dominant source of statistical

uncertainty in a satellite experiment using an FG to measure
GR effects is not from the detector noise of the SQUID but
rather from background gas collisions that impart angular
momentum to the FG, causing random walk of its spin hSi.
Based on analysis of Ref. [43], and accounting for the
spherical geometry of the FG, we find that the spin-
precession resolution is limited to

ΔΩgas ≈
mr2

6Nℏ

ffiffiffiffiffiffiffiffiffiffi
nvth3

πt

r
; ð5Þ

where m is the mass of the background gas (assumed to
be He in our case since the system is under cryogenic
conditions), vth is the average thermal velocity of the
background gas, and other relevant parameters are listed
in Table I, assuming a background-gas density correspond-
ing to cryogenic ultrahigh vacuum [36]. The effects of
other sources of noise are estimated to be negligible com-
pared to the effects of background gas (see Ref. [43] and
Appendix A). Indeed, recent experiments studying micron-
scale ferromagnets levitated above superconductors have
found that gas collisions are the dominant dissipation
mechanism [49].
Using a ferromagnet as a gyroscope requires exquisite

shielding and control of magnetic fields in order to avoid
systematic errors due to magnetic torques. We propose to
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use a multilayer superconducting Pb shielding system
based on the GP-B design as described in Refs. [69,70]
combined with a conventional multi-layer μ-metal shield-
ing and magnetic-field-control coil system as described, for
example, in Ref. [71]. To achieve ultralow magnetic fields,
the μ-metal/coil system, with feedback provided by internal
SQUID magnetometers, is used to achieve an ambient
magnetic field less than 10−11 G, close to the noise limit of
SQUID magnetometers for integration times of one second.
Nested collapsed Pb foil shields are inserted within the
μ-metal/coil system and subsequently cooled below the
superconducting phase transition. The collapsed Pb foil
shields are folded in such a manner as to minimize their
internal volume. Once the temperature of the Pb is below the
superconducting phase transition, the shields are expanded
by unfolding them so that they have a considerably larger
internal volume. Persistent currents in the superconducting
shields keep the flux constant and thus the field within the
expanded Pb shields is reduced by the ratio between the
effective areas of the expanded and collapsed Pb foil shield.
In practice, the residual field can be reduced by a factor of
more than a hundred per layer, with practical limitations due
to thermoelectric currents generated in the Pb shield. For
such a superconducting shield system, the magnetic field
within the shieldwill be determined by the frozen flux. These
techniques can be used to achieve a magnetic field at the
position of the FG, i.e., a backgroundmagnetic fieldB, much
smaller than the required threshold field for operation
(B� ≈ 3 × 10−10 G, see Table I and Ref. [43]).
The proposed size and geometry for the FG (a mm-

diameter sphere) is motivated by the need to minimize
perturbations from background gas collisions (ΔΩgas ∝
1=N and minimized for a spherical shape), achieve the best
possible detector-limited sensitivity (ΔΩdet ∝ 1=N [43]),
and maintain a reasonable requirement for the threshold
field B�.
Undoubtedly, some residual magnetic field B within the

shields will persist, and so the questions now become
whether the FG precession frequencyΩB due to this field is
sufficiently stable and whether ΩB can be reliably distin-
guished from the sought-after effects, ΩLT and ΩdS.
Superconductors can achieve remarkable stability: drifts
at the level of a part in 1011 per hour have been measured
[72]. Assuming the residual trapped field in which the FG
operates is B ∼ 10−11 G, this leads to a magnetic field drift
of ≈3 × 10−26 G=s, which corresponds to a drift of the
magnetic precession frequency of dΩB=dt ≈ 2 × 10−19 s−2.
For the purposes of these estimates, we assume the worst-
case scenario of a linear magnetic field drift at this rate
(although on long time scales the drift will likely be a
random walk of B and ΩB).
The stability of ΩB is crucial for distinguishing magnetic

precession from the Lense-Thirring and de Sitter effects.
For a residual field with B ∼ 10−11 G, ΩB ≈ 10−4 s−1,
which is much larger than the Lense-Thirring and de

Sitter effects [Eqs. (2) and (3)], and thus it is important
to find a way to distinguish ΩB from ΩLT and ΩdS. In the
case of the Lense-Thirring effect,ΩLT periodically varies in
time in a predictable way because R̂ changes in time with
respect to ΩE as the FG orbits the Earth. If the FG is placed
in an elliptical orbit, both ΩLT and ΩdS could be modulated
by order unity as R changes. Thus it would become
possible to search for the predictable periodic variation
of ΩLT and ΩdS on top of the stable background magnetic-
field precession. An example of how this can be done is
modelled in Appendix C.
Further discrimination of ΩLT and ΩdS from ΩB can be

obtained by using an array of FGs and taking advantage
of the vectorial nature of the general-relativistic spin-
precession. Consider, for example, the Lense-Thirring
effect (similar arguments can be made for the de Sitter
effect). IfΩB is parallel withΩLT, the effects add linearly to
the measured spin-precession frequency: Ω ≈ΩB þΩLT.
However, if ΩB is perpendicular to ΩLT, the contribution
of the Lense-Thirring effect is quadratically suppressed:
Ω ≈ΩB þ ΩLT

2=ð2ΩBÞ. An array of FGs in separate
shields can be employed with magnetic fields oriented in
different directions, such that the various FGs have different
predictable periodic patterns of sensitivity to general-
relativistic spin-precession effects. This will enable coher-
ent averaging and suppress systematic errors due to field
drift and local perturbations.
Additionally, it may be possible to rotate or modulate B

at a frequency much faster than the orbital frequency in
order to further discriminate ΩLT and ΩdS from ΩB. This
may be achieved by rotating the magnetic shielding relative
to the FG since the residual magnetic field will be
dominated by frozen flux rather than the finite shielding
factor. Further mechanisms to improve signal detection are
possible: if two types of ferromagnetic materials are used,
such that the materials’ gyromagnetic ratios are opposite,
their magnetic precession is in opposite directions but the
relativistic precession are in the same direction. For control
of systematic errors, it may also be interesting to consider
experiments with materials having high net spin polariza-
tion but negligible magnetization, high magnetization but
negligible spin polarization, and varying ratios of quantum
orbital angular momentum to intrinsic spin, such as used in
torsion pendulum experiments measuring exotic spin-de-
pendent interactions [73–75].
Relative motion between the SQUID pick-up loop and

the freely floating FG is another source of noise and
systematic error that will require precise control. Errors
due to this relative motion will ultimately be limited by
the satellite position/orientation feedback control system
referenced to the star-tracking telescope. We assume a star-
tracking telescope and position/orientation feedback con-
trol similar to that used by GP-B, which had a long-term
accuracy corresponding to 5 × 10−10 rad [76–78], which
would provide sufficient stability for measurement of the

PAVEL FADEEV et al. PHYS. REV. D 103, 044056 (2021)

044056-4



g ¼ 1 de Sitter and Lense-Thirring effects. Related tech-
nical issues are the trapping and release of the FG once the
satellite is in orbit, damping of rotational motion of the FG
such that L ≪ S, vibrations of the pick-up coil, and the
effect of electrostatic and magnetic forces on the FG that
might accelerate the FG relative to the satellite housing.
Protocols for measurement and control of the FG and pick-
up coil motion will need to be designed and could, for
example, involve damping of FG motion using eddy
currents [45] induced in a retractable conductor or various
trapping and cooling techniques that have been developed
to control the motion of macroscopic objects [79,80]. The
effects of stray electric fields and patch potentials, impor-
tant issues for GP-B [56], are considered in Appendix A 2.
Overall, we expect that the ultimate accuracy of an FG-
based measurement of general relativistic spin precession
will be determined by the SQUID sensitivity, collisions
of residual gas molecules with the FG, and magnetic
field drift.
Figure 1 shows the scaling of uncertainty in the meas-

urement of the spin precession frequencyΩ as a function of
time considering the aforementioned effects. In principle,
the projected measurement sensitivity of such a “Gravity
Probe Spin” experiment is sufficient to measure the de

Sitter and Lense-Thirring effects for g ¼ 1. Consequently,
stringent bounds will result on parametrized post-
Newtonian (PPN) physics, scalar-tensor theories, and other
standard-model extensions [37]. By comparing the sensi-
tivity of Gravity Probe Spin to existing experimental
bounds on anomalous gravity-induced spin-precession
[81–83] as shown in Fig. 1, the proposed experiment
has the potential to explore many decades of unconstrained
parameter space.
In conclusion, we have described a satellite experiment

using mm-scale ferromagnetic gyroscopes that has the
potential to perform the first measurement of gravitational
frame-dragging of electrons’ intrinsic spins. This experi-
ment, building on the technology of Gravity Probe B,
would be a unique test at the intersection of quantum
mechanics and general relativity.
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APPENDIX A: EXPERIMENTAL
REQUIREMENTS

1. Magnetic torque noise

An additional source of error affecting an FG, not
considered in Ref. [43], was pointed out in Ref. [44]
(see also Appendix B). As noted in Ref. [43], the spin-
lattice coupling generates stochastic fluctuations of the
FG’s magnetic moment μ described by the fluctuation-
dissipation theorem. In the presence of a nonzero magnetic
field B, this leads to a stochastic μ × B torque acting on the
FG, which in turn causes a random walk of the FG’s spin
axis hJi. This coupling of the FG to the external environ-
ment through B generates noise in a measurement of the
precession frequency:

ΔΩB ≈
Ω2

B

ω0Ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4αkBT
ℏNt

r
; ðA1Þ

where kB is Boltzmann’s constant and α is the Gilbert
damping constant, taken as 0.01. Under the conditions of
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FIG. 1. Sensitivity to general relativistic spin-precession effects
in the proposed “Gravity Probe Spin” experiment. The vertical
scale on the right is in units of milliarcseconds (mas) per year.
The black curve shows the projected uncertainty ΔΩ in the
measurement of the precession frequency Ω using a 1-mm radius
spherical FG under conditions listed in Table I. This curve results
from two contributions summed in quadrature. First, the short-
term statistical uncertainty is dominated by background gas
collisions [Eq. (5), dashed gray line]. Second, the long-term
uncertainty in the measurement is expected to be dominated by
magnetic field drift within the superconducting magnetic shields,
here assumed to be linear with rate 3 × 10−26 G=s (dotted gray
line). The blue line and light blue shaded area indicate the level
beyond which the measurements are sensitive to the de Sitter
effect [13,51,52] and the red line and pink shaded area indicate
the level beyond which the measurements are sensitive to the
Lense-Thirring effect [12,50], calculated for the GP-B orbit and
gyrogravitational ratio g ¼ 1 [Eqs. (2) and (3)]. The green line
and light green shaded area show existing experimental con-
straints on anomalous gravity-induced spin-precession [81–83].
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our proposed experiment, ΔΩB is significantly smaller than
other sources of error.

2. Electric field requirements

A precessing FG located in a spatial region with non-
vanishing electric field may experience an electric-
field-induced torque. In this section we estimate the
requirements on the electric field and its gradient, in order
to keep the FG precession rate due to this torque below the
expected signal level.
A conducting sphere in a uniform electric field experi-

ences no torque, since the induced electric dipole moment
is parallel to the electric field. However a slight deviation
from a spherical shape breaks the symmetry of the pola-
rizability tensor, and, in general, causes the induced dipole
moment to be at an angle to the electric field. Assuming
the FG is shaped as a prolate spheroid (with semi-axes
a, b, and c, where a > b ¼ c) with small eccentricity
ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2=a2

p
, the correction to the depolarization

factors is of order ε2 [84]. The torque on such a slightly
nonspherical FG of radius r in a uniform electric field E

can be estimated (in cgs units) as τð1Þe ≈ ε2r3E2=5. The

resulting precession rate is given by Ωð1Þ
e ¼ τð1Þe =ðNℏÞ. The

requirement to keep this rate below ΩLT with g ¼ 1,

Ωð1Þ
e ≲ 4 × 10−14 s−1, imposes the following condition

on the product between the eccentricity and the magnitude
of the electric field:

jεEj≲ 3 × 10−6 V=cm: ðA2Þ

It should be noted that, in practice, the requirement on jεEj
may be significantly reduced since orbital modulation can
be used to distinguish general relativistic precession effects
from nominally constant background torques, as discussed
in Sec. C.
An electric field gradient E0 will exert a force on the FG,

which must balance with all the other forces in the FG at its
equilibrium point. Since there are certainly other forces,
there may be a nonvanishing electric field gradient, which
exerts a torque on the FG even if it is a perfect sphere. The

magnitude of this torque can be estimated as τð2Þe ≈ r4EE0.
The resulting precession rate is given by Ωð2Þ

e ¼ τð2Þe =ðNℏÞ.
The requirement to keep this rate below ΩLT with g ¼ 1,

Ωð2Þ
e ≲ 4 × 10−14 s−1, imposes the following condition on

the product between the electric field and the gradient:

jEE0j < 10−11 V2=cm3: ðA3Þ

A procedure to reduce systematic error due to τð2Þe , often
employed in precision measurement protocols, is to apply a

large electric field E and use a measurement of Ωð2Þ
e to

minimize E0, then apply a large electric field gradient E0,

and use a measurement of Ωð2Þ
e to minimize E. Performed

iteratively, this procedure can enable cancellation of
residual E and E0 to relatively high precision, and will
also help reduce systematic error due to nonsphericity of
the FG [Eq. (A2)].
The electric field at the equilibrium position of the FG is

created by potentials on proximal surfaces. To control
electric fields these surfaces have to be coated with a high-
conductivity material, such as gold. Nonetheless, surface-
potential patches of order 10 mV are still likely to be
present [85]. The electric field from such patches falls off
exponentially with distance to the surface. We estimate that
10 mV patches with spatial scale of < 1 mm create electric
fields that satisfy requirements described by Eqs. (A2)
and (A3) provided the FG is> 1 cm away from the surface.
These estimates give the requirements on the surface
preparation necessary to ensure that electrostatic precession
remains below the GR signal. Again, FG precession due to

GR effects can be distinguished fromΩð1Þ
e andΩð2Þ

e through
orbital modulation as described in Sec. C.

3. Summary

Considerable development of FG technology is required
before a Gravity-Probe-Spin-type experiment will become
feasible. First and foremost, the gyroscopic precession of a
ferromagnet as predicted in Ref. [43] has to be experi-
mentally observed and studied. Several groups are working
on ground-based laboratory experiments studying the
behavior of micron-scale levitated ferromagnets [45–49].
To provide an overall sense of the target parameters for a
gravity spin experiment, Table II shows the benchmarks
required to achieve the estimated sensitivity plotted in
Fig. 1. These benchmarks are derived from the require-
ments to achieve the estimated best experimental sensitivity
to precession, ΔΩopt ≈ 10−15 rad=s, achieved after an
integration time of Topt ≈ 6 × 104 s.

TABLE II. Summary of benchmark experimental parameters
necessary to achieve the sensitivity plotted in Fig. 1. Electric-
field-related estimates assume the nearly spherical FG has an
eccentricity of ∼0.01.

Parameter Benchmark

Magnetic flux sensitivity δΦ≲ 5 × 10−8 G·cm2ffiffiffiffi
Hz

p

Magnetic field B≲ 10−11 G
Magnetic field drift j ∂B∂t j ≲ 3 × 10−26 G=s
Magnetic field gradient B0 ≲ 10−13 G=cm
Electric field E≲ 5 × 10−5 V=cm
Electric field gradient E0 ≲ 6 × 10−9 V=cm2

Electric patch potentials δV ≲ 0.01 V
Background gas density n≲ 103 cm−3
Temperature T ≲ 0.1 K
Angular stability Δθ ≲ 6 × 10−11 rad
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Although, as discussed in the text, many of these
benchmark experimental parameter values have been
achieved in laboratory settings, the achievable experimental
parameters have yet to be studied in the context of FG
precession. Furthermore, achieving these benchmarks in a
satellite presents a host of additional challenges. Detailed
studies of these sources of noise and systematic errors in
experiments with FGs in both laboratory and microgravity
environments will be required on the way toward a
Gravity Probe Spin experiment. Nonetheless, based on
the estimates presented here and the modeling presented in
Appendixes B and C, achieving these milestones appears
possible in principle. We reiterate that the main purpose of
our manuscript is to highlight the potential payoff of
developing FG devices for fundamental physics experi-
ments and to motivate further experimental efforts.

APPENDIX B: MODEL OF A FERROMAGNETIC
GYROSCOPE

We model the FG dynamics using the formulation
described in Ref. [44]. The FG is taken to be a single-
domain spherical magnet with body-fixed moments of
inertia IX ¼ IY ¼ IZ ≡ I . It is subject to a uniform
magnetic field B and general-relativistic precession
described by the angular velocity vector Ωr. The
Hamiltonian describing this system is given by:

Ĥ ¼ 1

2I
L̂2

|fflffl{zfflffl}
HR

−ðω0=ℏÞðŜ · n̂Þ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
HA

−μ̂ ·B|fflfflffl{zfflfflffl}
HB

þΩr · ðL̂þ gŜÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
HΩ

:

ðB1Þ
In the rotational Hamiltonian HR, L̂ is the orbital angular
momentum operator; in the anisotropy Hamiltonian HA

[86], Ŝ is the spin operator, n̂ is the operator for the unit
vector in the direction of the easy magnetization axis,
and ω0 is the ferromagnetic resonance frequency; in the
Zeeman Hamiltonian term HB, μ̂ ¼ gμBŜ is the magnetic
moment operator (μB is the Bohr magneton and g is the
Landé factor); and HΩ is the Hamiltonian accounting for
the angular velocity vector Ωr related to general-relativistic
precession, where g is the gyrogravitational ratio (if g ¼ 1
the GR effects for intrinsic spin S and orbital angular
momentum L are the same).
The dynamics are treated semiclassically since the FG

has large spin expectation value hSi, as done in Ref. [44].
We write the Heisenberg equations of motion in reduced
units, defining dimensionless vectors: the unit spin
m≡ S=S, the orbital angular momentum l≡ L=S, the
total angular momentum, j ¼ mþ l and the unit vector in
the direction of the magnetic field b ¼ B=B:

_m ¼ ωBm × bþ ω0ðm × nÞðm · nÞ
− αm × ð _m −Ω ×mÞ þ gðΩr ×mÞ; ðB2Þ

_l ¼ −ω0ðm × nÞðm · nÞ
þ αm × ð _m −Ω ×mÞ þΩr × l; ðB3Þ

_n ¼ ðΩþΩrÞ × n; ðB4Þ

where the angular velocity vector Ω is given by

Ω ¼ ω1l ¼ ω1ðj −mÞ: ðB5Þ

Here ωB ¼ gμBjBj is the Larmor frequency and ω1 ¼ S=I
is the nutation frequency. The terms containing the Gilbert
damping coefficient α account for Gilbert dissipation of
spin components perpendicular to the easy magnetization
axis. The Gilbert damping is due to interactions of the spin
with internal degrees of freedom such as lattice vibrations
(phonons), spin waves (magnons), thermal electric cur-
rents, etc. [87,88]. The Gilbert damping tends to lock the
spin to the easy axis because the components of the spin
orthogonal to the easy axis quickly decay [44]. Hence
we take mðtÞ ¼ nðtÞ, which also simplifies the numerical
calculations. Adding the spin and rotational angular-
momentum in Eqs. (B2) and (B3), we obtain

_j ¼ _mþ _l ¼ ωBðm × bÞ þΩr × ðlþ gmÞ; ðB6Þ

¼ ωBðm × bÞ þΩr × ½jþ ðg − 1Þm�: ðB7Þ

Using Eq. (B5) and our approximation that m ¼ n (hence
m × n ¼ 0), Eq. (B4) can be rewritten in the form

_m ¼ ðω1jþΩrÞ ×m: ðB8Þ

We can solve Eqs. (B7) and (B8) for a given satellite

trajectory that specifiesΩrðtÞ ¼ Ωð1Þ
LTðtÞ þΩð1Þ

dS ðtÞ to obtain
the dynamics of the FG. The upper index (1) in the
expression for ΩrðtÞ sets g ¼ 1 in Eqs. (2) and (3) of
the main text, since in the modeling g is present in the
dynamical equations such that it distinguishes between
the effect of general-relativistic precession of intrinsic spin
as compared to that of angular momentum, as seen in
Eq. (B1). The results of the modeling for illustrative cases
are discussed in the next section.

APPENDIX C: ORBITAL DYNAMICS OF
FERROMAGNETIC GYROSCOPE

In order to use an FG to measure GR-induced spin
precession, it is crucial to have a distinct signature that can
be differentiated from background effects. As noted in the
main text, periodic motion of an FG at harmonics of the
orbital frequency arise due to the modulation of ΩLT
and ΩdS as the FG orbits the Earth. This offers a method
to distinguish GR-induced spin precession from Larmor
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precession and nutation, whose frequencies are constant in
time for fixed B.
To illustrate the use of orbital modulation in a “Gravity

Probe Spin” experiment, we model the behavior of an FG
in a circular polar orbit around the Earth with radius
R ≈ 7; 000 km (Fig. 2). The FG operates in an external
magnetic field B oriented along Earth’s rotation axis ΩE,
chosen to be the z-axis of our coordinate system. As
discussed in Sec. B, the spin is locked along the direction of
its easy magnetization axis by Gilbert damping, and is
initially prepared to be perpendicular to B, along x. In this
geometry, precession due to the de Sitter effect [Eq. (3) in
the main text] is both constant in time, since R is constant,
and quadratically suppressed, since ΩdS is perpendicular to
ΩB and ΩdS ≪ ΩB. On the other hand, the Lense-Thirring
precession ΩLTðtÞ is parallel to ΩB when the FG is at the
north and south poles and as such is modulated at twice the
orbital frequency [Eq. (2) in the main text]. The orbital
modulation of ΩLTðtÞ can be understood based on the fact
that the Lense-Thirring effect generated by the rotation of
the Earth is the gravito-magnetic equivalent of a dipole
field, and possesses axial symmetry about z.
The results of a numerical solution of Eqs. (B7) and (B8)

for the FG dynamics, mðtÞ, under the conditions described
above are shown in Figs. 3 and 4. The figures show power
spectral densities (PSDs) of the estimated flux Φ through a
pick-up coil in the geometry described in the text [see
discussion surrounding Eq. (4) in the main text] as the FG
orbits the Earth as shown in Fig. 2. In order to clearly
discern the Lense-Thirring effect in Figs. 3 and 4, we
choose g ¼ 107, just below the present experimental

constraints on the Lense-Thirring effect (Fig. 1 in the main
text). The PSD shown in Fig. 3 demonstrates, as expected,
that the dominant signal is at the Larmor frequency (ΩB)
and prominent signals due to nutation appear at Ω1 with
sidebands at Ω1 � ΩB. There is a noticeable signal due to

ΩE x

y

z

B
m

FIG. 2. Conceptual schematic diagram of a “Gravity Probe
Spin” experiment. A freely floating spherical FG located within a
superconducting shield is in a circular polar orbit. The magnetic
field B (from the frozen flux in the superconducting shields) is
oriented parallel to the direction of Earth’s rotation axis ΩE,
both designated to point along z. The insert shows the initial
orientation of the FG’s magnetic moment and spin m along the x
axis. The pick-up coil measures the FG’s magnetization along x.
This geometry is designed for the detection of the Lense-Thirring
effect.
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FIG. 3. Estimated power spectral density (PSD) of the time-
dependent flux signal Φ due to a precessing FG that would be
measured by a SQUID pick-up coil as in Fig. 2. The plot shows
the PSD of a time-domain signal of duration T ¼ 3 × 107 s
obtained by numerical solution of differential equations based on
the model discussed in Sec. B. The parameters of the model
match those listed in Table I. The gray dotted line marks the
Larmor frequency, ΩB=ð2πÞ, the gray dot-dashed line marks
the nutation frequency, Ω1=ð2πÞ, and the red dashed line marks
the second harmonic of the orbital frequency, v=ðπRÞ. In order to
enhance visualization, for this plot we choose g ¼ 107 for the
Lense-Thirring effect, just below the present experimental con-
straints (Fig. 1 in the main text).

Gyrogravitational ratio = 107

Gyrogravitational ratio = 0

× − × − × − × −

( )

(G
)

FIG. 4. The black curve shows the PSD of the time-dependent
flux signal Φ under the same conditions and assumptions as in
Fig. 3. The blue curve, vertically offset for easier comparison,
shows the PSD of the time-dependent flux signal Φ for the case
where the gyrogravitational ratio g ¼ 0. The dashed red line
marks the second harmonic of the orbital frequency, v=ðπRÞ, and
prominent signals at sidebands shifted by the Larmor frequency
are indicated by the red arrows at v=ðπRÞ � ΩB=ð2πÞ. Note also
sidebands at v=ðπRÞ � ΩB=π.
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the Lense-Thirring effect (with g ¼ 107) at the second
harmonic of the orbital frequency, 2π × v=ðπRÞ (in rad/s,
note the frequency units in the figures are Hz). In Fig. 4, the
signal with g ¼ 107 is compared to the signal for g ¼ 0
near the second harmonic of the orbital frequency, 2v=R.
Figure 5 showsΔΦ2, the PSD of the difference between the
measured flux from two FGs situated in magnetic fields
with equal magnitudes but opposite directions (�ẑ) for the
case where g ¼ 1. The g ¼ 1 case would correspond to the
case of particular interest where intrinsic spin and orbital
angular momentum behave identically in general relativity.
As in the case where g ¼ 107, there are noticeable signals
arising from modulation of FG precession at twice the

orbital frequency due to the Lense-Thirring effect, seen at
the sideband frequencies 2v=R�ΩB. The results of the
modeling demonstrate that the Lense-Thirring effect indeed
modulates FG precession at the second harmonic of
the orbital frequency, offering a signature of GR effects
distinguishable from effects that do not vary periodically
with the orbit. The asymmetric shapes of the peaks in
Figs. 3, 4, 5, and subsequent plots are described by Fano
line shapes [89] that result from the interference of the
background and the resonances in the PSD.
For reference, the expected measurement noise floor due

to collisions with residual background gas, based on Eq. (5)
in the main text, is estimated to be

δðΦ2Þgas ≈
10−9ffiffiffiffi

T
p G2 cm4=Hz: ðC1Þ

Comparing δðΦ2Þgas to the signals plotted in Fig. 5 show
that for a measurement times T ≳ 104 s the Lense-Thirring
precession for g ¼ 1 should be resolvable, consistent with
the sensitivity estimates shown in Fig. 1 of the main text.
Employing a different geometry for the FG, namely

orienting B parallel to ΩdS, gives linear sensitivity to ΩdS
(in which case sensitivity to ΩLT is quadratically sup-
pressed). By putting the satellite into an elliptical orbit
(Fig. 6), R and v are modulated and a distinct signature in
the PSD of Φ can be obtained for the de Sitter effect,
as demonstrated in Fig. 7. Figure 7 gives the result of
modeling the FG dynamics for a polar elliptical orbit with
eccentricity of 0.3: the PSD shows the difference between
the measured flux from two FGs situated in magnetic fields
with equal magnitudes but opposite directions (�ŷ)

3.1×10−4 3.3×10−4 3.5×10−4 3.7×10−4

10−13

10−12

10−11

Frequency (Hz)

2
(G

2 c
m
4
H
z)

FIG. 5. PSD of the difference in time-dependent flux signal
with g ¼ 1 between two gyroscopes. The gyroscopes situated in
opposite external magnetic fields along the z axis. The conditions
and assumptions are the same as in Fig. 3. The dashed red line
marks the second harmonic of the orbital frequency, v=ðπRÞ, and
prominent signals at sidebands shifted by the Larmor frequency
are indicated by the red arrows at v=ðπRÞ � ΩB=ð2πÞ.

ΩE
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y

z

B

m

FIG. 6. Conceptual schematic diagram of a “Gravity Probe
Spin” experiment similar to that shown in Fig. 2 except that the
orbit is elliptical and the magnetic field B is directed along the y-
axis, perpendicular to the orbital plane. This geometry is designed
for the detection of the de Sitter effect.
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FIG. 7. PSD of the difference in time-dependent flux signal
with g ¼ 1 between two gyroscopes. The gyroscopes are situated,
respectively, in external magnetic fields along the y axis with
equal magnitudes and opposite directions. The FG is modeled for
the duration of 106 s in a polar elliptical orbit as indicated in
Fig. 6, with ellipticity of 0.3. The dashed red line marks the first
harmonic of the orbital frequency, ωorb=ð2πÞ, and prominent
signals at sidebands shifted by the Larmor frequency are
indicated by the red arrows at ωorb=ð2πÞ �ΩB=ð2πÞ.
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assuming g ¼ 1. Signals due to the de Sitter effect are
observed at sidebands around the orbital frequency ωorb,

ωorb ¼
ffiffiffiffiffiffiffiffi
GM
a3

r
; ðC2Þ

where a is the semimajor axis of the ellipse. This is
expected since ΩdSðtÞ is periodic with the modulation of

R and v as the FG orbits, leading to a signal at the first
harmonic of ωorb.
In conclusion, the numerical modeling demonstrates

that, in principle, for particular experimental geometries
there exist potentially measurable signatures of general
relativistic precession of an FG at harmonics of the orbital
frequency.
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