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Searching for dynamical black holes in various theories of gravity
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We construct models of Einstein and f(R) gravity with two scalar fields, which admit analytical
solutions describing time-varying dynamical black holes. Their thermodynamics is investigated in the
adiabatic approximation. In addition to the Misner-Sharp-Hernandez quasilocal mass, we provide time-
dependent thermodynamical quantities, including the Hawking temperature, Helmholtz free energy,
entropy, and thermodynamical energy. The latter does not always coincide with the Misner-Sharp-
Hernandez mass at the horizon, although they coincide in the static limit. For Schwarzschild-type
(i.e., g9, = —1) black holes in Einstein gravity, one of the two scalars is always a ghost with negative
kinetic energy. We show that this ghost can be avoided in f(R) gravity.
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I. INTRODUCTION

Black hole dynamics and thermodynamics, developed
for stationary and asymptotically flat black holes (e.g.,
[1-3]), are now mature fields of gravitational physics.
However, no black hole is truly stationary or asymptotically
flat. From the astrophysical point of view, realistic black
holes interact with their environments in binary systems or
in galaxies, through tidal forces, by accreting gas, and/or by
emitting gravitational waves. From the purely theoretical
point of view, black holes emit Hawking radiation losing
energy, and are embedded in the expanding universe
instead of being truly isolated, asymptotically flat, systems.
Therefore, the ultimate theoretical description of black
holes requires the consideration of dynamical solutions of
the gravitational field equations. This is not a small step,
both conceptually and computationally. Black holes are
defined by their horizons: for stationary black holes, these
are event horizons and null surfaces and their definition as a
connected component of the boundary of the causal past of
future null infinity [1] requires the knowledge of the entire
causal structure (including the future history) of spacetime,
which is summarized by saying that event horizons are
teleological [4-7]. This traditional black hole concept
becomes essentially useless for practical purposes in
dynamical situations and is replaced by the more useful
quasilocal definition of trapping surfaces and apparent or
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trapping horizons. Being defined quasilocally, apparent
horizons require only the knowledge of a limited portion of
spacetime [4-8]. In spite of some disadvantages (most
notably, a dependence on the spacetime foliation [9,10],
and the fact that they are spacelike or timelike surfaces and
that they can change their causal character during their
dynamical evolution), apparent horizons are widely used in
numerical simulations of the collisions of black holes
with other compact objects that led to the interferometric
discovery of gravitational waves [11-13]. Given the need to
predict in detail the waveforms of gravitational waves
emitted by binary systems containing black holes, banks
of templates for gravitational waveforms need to be built to
separate signals from environmental and other noise in the
laser interferometric detectors of gravitational waves.
The notion of event horizon is of little use in the numerical
study of fast astrophysical processes producing those
gravitational waves. Instead, “black holes” are routinely
identified with outermost marginally trapped surfaces and
apparent horizons in numerical research [4—7]. Numerical
relativity uses apparent/trapping horizons, not event
horizons.

Given this relatively recent paradigm shift, it would be
useful to have a catalog of analytical solutions of general
relativity (GR) and alternative theories of gravity describ-
ing dynamical black holes, and defined by their apparent
horizons. Contrary to static and stationary black holes, very
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few dynamical black hole solutions are known in GR, and
even fewer in alternative theories of gravity. Finding (and
interpreting) new time-dependent exact solutions describ-
ing time-varying black holes is a rather difficult task
already in GR. In principle, approaching this task in the
context of alternative theories of gravity, which provide
more gravitational degrees of freedom and, therefore, more
flexibility, should be easier, but this does not seem to be
the case.

From the point of view of black hole thermodynamics,
placing a black hole in a nontrivial environment changes its
mass-energy, which plays the role of internal energy in the
first law of black hole thermodynamics. This mass-energy is
best defined quasilocally. Here we set out to find analytical
solutions of various theories of gravity and, for simplicity,
we restrict ourselves to spherical symmetry, which has the
added advantage that apparent horizons coincide in all
spherical foliations [14]. In this case the mass-energy of a
spherical geometry, asymptotically flat or not, is the Misner-
Sharp-Hernandez mass universally used in relativistic fluid
dynamics and in studies of black hole collapse [15,16] and
which coincides, in spherical symmetry, with the Hawking-
Hayward quasilocal energy [17,18].

A few spherically symmetric solutions interpreted as
genuine black holes embedded in Friedmann-Lemaitre-
Robertson-Walker (FLRW) universes are known in GR,
beginning with the McVittie family' [19], which has been
generalized [20,21] and has been the subject of much
attention during the last decade [22-38], also in the context
of Horava-Lifschitz and Horndeski gravity [39,40]. The
phenomenology of apparent horizons can be rather bizarre
and provides several surprises, such as horizons appearing
and disappearing in pairs, as in the Husain-Martinez-Nuiiez
solution (a black hole embedded in a FLRW universe
sourced by a free scalar field) [41]. The nonrotating
Thakurta solution [42] is a late-time attractor of the
generalized McVittie solutions [43]. Other solutions of
Einstein’s theory are less significant because they suffer
from negative energy densities or instabilities in certain
spacetime regions [44-48], while attempts to build new
solutions have had mixed success [49-64].

Dynamical black hole solutions of alternative theories of
gravity include the Clifton geometry in f(R) = R" gravity
[65,66] and some members of the Clifton-Mota-Barrow
family in Brans-Dicke gravity with a perfect fluid [67,68].

|

Since many alternative theories of gravity contain
effective scalar degrees of freedom of gravitational origin,
in spherical symmetry scalars either collapse to the
Schwarzschild black hole [69-72] or tend to generate
naked singularities or wormhole throats. It is not surprising
that research in alternative theories produces these exotic
objects more often than new black holes (e.g., [73—-86]).
Here we dismiss these exotica and we look for dynamical
black holes, characterized by time-varying apparent hori-
zons, in various theories of gravity. We follow the notation
and conventions of Ref. [1], using units in which the
speed of light ¢ and Newton’s constant G are unity, while
K* = 87G.

II. SPHERICALLY SYMMETRIC AND
TIME-DEPENDENT GEOMETRIES

The most general spherically symmetric and time-
dependent line element in polar coordinates (z,p, 9, @) is

ds> = —A(z, p)dz* + 2B(z, p)drdp + C(z, p)dp?

+ D(t, p)(d9?* + sin*9d¢p?), (2.1)
where the areal radius r is defined by
r? =D(t,p), (2.2)

and D(z, p) (as well as A and C) is necessarily positive to
preserve the metric signature —+-+-. In principle, Eq. (2.2)
can be solved for p(z, r) (although, in practice, it may be
difficult to invert explicitly the one-to-one relation r =
\/D(z,p)). In terms of the areal radius, the line element
(2.1) is rewritten as

ds®> = |=A(z,p(z, 7)) + 2B(z, p(z, 1)) %} dr?

T
dp Ip\?
+2B(z, p(x, r))adfdr +C(z,p(z, 1)) (E) dr
+ r2(d9? + sin®9dg?). (2.3)

In order to diagonalize this line element, we introduce
a new time coordinate . Substituting 7 = (¢, r) into
Eq. (2.3), the line element becomes

57 = |=Ale(0.7).p(0.7).7) + 2800007, ) PR (P ) g

or ot

op(z(t,r),r)0z(t, r)

—‘,—2[8(70’ ’”),P(T(f’ r)7r)> or

ot

'"The well-known Schwarzschild-deSitter/Kottler geometry, which is a special case of the McVittie, is instead locally static.
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+ {—.A(T(t, Pople(t.r). 1) + 2B(c(t. ). plae. ). r)) 22 (T((;’T ") ’)} afgt, ") afg; ”] drdr
+etepte (%) + 816000 g0,y PGP0 LD
{2 A 0.0, 0.7). 1) + 2800007 g0, ) P
x (a’gr’ r)ﬂ dr + P2(d9? + sin?9dg?). (2.4)
By choosing the new time coordinate 7 so that
0= Blelt, 7). plalr, ), r) AT O )
=AU 0.7 7) + 2800007 plo(0, ). ) PEED) ST
the line element assumes the diagonal form
ds? = =21 di? + 40 dr? 4 r?(d9? + sin®9dg?), (2.6)
where
_elin) = {—A(T(l, P plelt.r). ) + 2B(e(t. r). pa(e. ). r)) 2 (T((;’Tr)’ ’)} <afgt’ r>> g (2.7)
61 = C(z, p(z, 1)) (%) 4 Be(e. ). ple(a, ). ) DD 0T
|~ AG0 P plol0.0). ) 4 2800 (0., ) LIS (FERIY o

We define the metric g;; of the unit 2-sphere by >, i, , §;;dx'dx/ = d9* + sin® 9dg*. For the metric (2.6), the only
nonvanishing connection coefficients are

I =7, Iy, = e 24y, I, =r,=v,
I, =e¥1, I,=I,=A4

r,=A Th=Th  T=-e%rg,,
A
Iy =T} =3 (2.9)

where I:jk is the metric connection of g;;, while an overdot and a prime denote differentiation with respect to 7 and r,
respectively. Using the expression of the Riemann tensor [1]

., — Fﬁm

R Hvp

A = + Tl = Tipl s, (2.10)

one finds

Ry = =i+ (1= 0)l] + 0+ (V= 1))

R = rI//eQ(l/—ﬁ)gij,

R,y = Argyj, Riiyj = Ay, Rij = (1 =) r*(gudji — Gudje)-

titj
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R, =—[i+ (A=0)i] + e [w + (W =AW+

Ry = 20 A i4 (= i)d] = V' + (/ = 2] + =

Rij = {1 + {—1 - r(l/ —/1/)}6_2’1]?]”,

. . . 4
R=2c%i+(A-0)A] +e [—21/’ =20 =)W - (

Any spherically symmetric metric can be recast in the
Abreu-Nielsen-Visser gauge [87,88]

ZMMSH(I, r) > dr2
- r dr” + 1— 2Myisu(1,7)

r

(2.12)

ds? = _e—2CI>(t,r) <1
+ r2(d9? + sin® 9dg?),

where r is the areal radius and Mgy is the Misner-Sharp-
Hernandez mass defined in spherical symmetry by [15,16]

_ 2Mysy
,

1 =VrV.r (2.13)

which, in the gauge (2.12), reduces to ¢ = 1-2Mysy/ 7.
(Although this definition was originally given in GR
[15,16], it applies to other theories of gravity as well,
but its role in the relevant equations may change [89,90].)
The more general Hawking-Hayward quasilocal mass
[17,18] reduces to the Misner-Sharp-Hernandez mass in
spherical symmetry [91] and is not restricted to asymp-
totically flat spacetimes (however, in the asymptotically

flat case, the Hawking-Hayward/Misner-Sharp-Hernandez
|

R
2k?

1 1
S(Grey) = / d*x\/=g {— - EA(¢,)()8ﬂ¢8”¢ = B(¢,x)0,¢0"y — 5€ (¢:20) 00y — V(¢’)()} :

2

2

26% — 2
it § (2.11)

V=)
+
r r

I
mass computed at spatial infinity reduces to the Arnowitt-
Deser-Misner (ADM) mass [92]).

By comparing the Abreu-Nielsen-Visser gauge (2.12)
with Eq. (2.6), one has the correspondence

o — o20 (1 _ 2MMSH> — e—2(ﬂ+<b)7 (214)
r

62/1 _ (1 _ 2MMSH>_1'
r

We are interested in apparent horizons, which can be
dynamical, and are located by the roots of V¢rV .r =0,
O Fpg — ZMMSH(FAH) [8,]5,]6,88]

(2.15)

III. SPHERICALLY SYMMETRIC AND TIME-
DEPENDENT SOLUTIONS OF EINSTEIN-
TWO-SCALAR MODELS

Let us first consider GR with two scalar fields ¢ and y as
the matter source, as described by the action

(3.1)

where g is the determinant of the metric tensor g,,, R is the Ricci scalar, V (¢, y) is the potential of the scalar doublet, and the
coefficients A, B, and C depend on the scalars. Scenarios with two or more scalar fields have been studied in the literature
many times, especially in relation with multiple scalar field inflation (e.g., [93-98]), but there is no specific relation between
those models and the theories that we use in the present manuscript. The matter energy-momentum tensor is

1 1
T = g {—§A<¢,x>6p¢aﬂ¢ = B(¢.2)0,0% =5 Clb- )0, — V(dm)]

+ A(. x)0,0,¢ + B(h. )(0,$0,x + 0,0,x) + C(¢. x)0,x0,x

and the contracted Bianchi identities read

A
0= %@,d)@"gf) +AVFO,p + A, 0,00y + (Bx - % C,/,) 00y +BVFO,x =V,

1 1
0= <—5AX + B(/,> 0,0 + BV, + 5 C,0,50% + CV 9,0 + 0,007 = V.,

(3.2)
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where Ay = 0A(¢.y)/0¢, etc. We now identify

¢ =1, y=Tr. (3.5)
This assumption does not lead to a loss of generality for the
following reason: for the spherically symmetric solutions
(2.6) of the theory (3.1), in general ¢ and y depend on both
coordinates ¢t and r. Given a solution, the #- and r-
dependence of ¢ and y can be determined and ¢ and y
are then given by specific functions ¢(¢,r), y(¢,r). On
spacetime regions where these relations are one-to-one, and
provided that d,¢ is timelike and d,y is spacelike, one can
invert these specific functional forms and redefine the
scalar fields to replace ¢t and r with new scalar fields,
say, ¢ and y with ¢(t,r) = ¢(¢p, ) and y(t,r) = x (. 7).
We can then identify the new fields with # and r as in (3.5),
¢—>¢=t and 7y - y =r. The change of variables
(¢.x) = (¢.7) can then be absorbed into redefinitions
of A, B, C, and V in the action (3.1). Therefore, the
assumption (3.5) does not lead to loss of generality.
Proceeding, the (¢, 1), (r, r), (i, j), and (z, r) components
of the Einstein equations assume, respectively, the form

WA 2y e -1 o A, C
SR e (e o)

(3.6)
1 (2 -1\ (A L, C

K2<r— r2 ) =€ (26 +§e —V>, (37)
1 . .

L e i Gmi)i) e 2 (r( — )

K

A C
+r2 P =) =1 <26_2" —Ee_u - V> , (3.8)

(3.9)

Due to spherical symmetry, the other components of the
Einstein equation are trivially satisfied. Equations (3.6)—
(3.9) can be solved with respect to A, B, C, and V,
obtaining the inverse relations

A :K—lz {—{14 (G=)3)

2,1_1 ! /1/
4 e2(-2) (e —l,-l/ * 4+ + (1/—/1/)1//>:| s (310)
r r
22
B= . (3.11)

1 le=2(—4) .. et —1
C= ; |:7r2 {i + (/1 - I/)/l} - r2
!/ l/
+2 + —1/’—(1/—/1’)1/}, (3.12)
;
e =) 2(e*-1)
V=— . 3.13
2K> [ r * r? } (3.13)

The right-hand sides of Egs. (3.10)—(3.13) are functions of ¢
and r. Replacing (7, r) with (¢, y) in these right-hand sides,
we obtain A, B, C, and V as functions of (¢, ). Conversely,
if we prescribe A, B, C, and V, the model has as solutions
spherically symmetric configurations (2.6) corresponding
to arbitrary functions v and A.

We may also consider solutions for which A = —v, as in
the Schwarzschild geometry. In a spherical spacetime in
which the line element is written using the areal radius r and
99,y = —1, r is an affine parameter along radial null
geodesics [99]. Furthermore, such a spacetime enjoys
special algebraic properties ([99], see also [100,101]): the
double projection R, I*1* of the Ricci tensor onto radial null
vectors [* vanishes identically [99]. Alternatively, the
restriction of the Ricci tensor to the (¢, r) submanifold is
proportional to the restriction of the metric g, to this
subspace [99]. Many analytical solutions of interest in
GR or in alternative gravities satisfy the condition
9u9gr = —1, including vacuum solutions, electrovacuum
solutions with the Maxwell or with nonlinear Born-Infeld
electrodynamics [99], and the string hedgehog global
monopole [102,103], also in higher dimension.

Under the condition A= —-v, Egs. (3.10)-(3.13)
simplify to

A= —r¥e®C
1 eZy d2 e—2u e—2y -1 e—ZD d2 eZu
:_2__ (2)+e4z/ 5 + (2) ;
K 2 dt r 2 dr
(3.14)
eZu d(e—Zu)
B=— , 3.15
K*r  dt (3.13)
e e d(e*) 2(e*-1)
V= - . 3.16
2k> ( r dr + r? ) ( )
Since AC = —r2e*(C? < 0, either ¢ or y has negative

kinetic energy in the action (3.1) and a ghost is always
present in this case.

We may further restrict ourselves to the static case,
v =1u(r) and A = A(r); then, Egs. (3.14) and (3.15) tell us
that A, B, and C depend only on y and not on ¢. However,
even in the static case, we still need ¢ to obtain a model
corresponding to arbitrary v and A.
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A. Ansatz 1

As an example, consider the ansatz

2m1)

W W=1]- , (3.17)

where the Misner-Sharp-Hernandez mass M (¢) is positive
and depends only on time (clearly, a negative Mgy signals
a violation of the energy conditions and makes apparent
horizons impossible). The Ricci curvature is

e (§ 2\ 2M+(¥)2
a r roo 1=

and it vanishes if M is constant, in which case the geometry
degenerates into the Schwarzschild one. There is only
one apparent horizon, with areal radius rpy(7) = 2M (7).
This horizon is dynamical and, since it is a single root
of the equation V¢rV.r=0, it is a black hole
horizon. [A curvature singularity corresponds to 2M /r = 1
if 2M(1_2M) 1 (2M)2 yapishes as O((1-2Y)%) when
2M /r=1, which is impossible.]

To discuss the thermodynamics of the spacetime (3.17),
we assume that the time evolution is sufficiently slow
(M < 1) and we regard the time 7 as a constant for the
purposes of thermodynamics. This adiabatic approximation
is necessary in order to avoid dealing with full nonequili-
brium thermodynamics, which is essentially unknown for
dynamical black holes [8]. It is present (although often not
made explicit) in the tunneling formalism for dynamical
black holes (see [104] for a review). In practice, it amounts
to requiring that the horizon moves “slowly,” or that the
time derivatives of the functions used in the thermody-
namical calculations are much smaller than the correspond-
ing spatial derivatives (the Kodama time is used in the
tunneling method, but other gauges are in principle
possible). In the adiabatic regime, the temperature is

(3.18)

1

= , 3.19
8zM(1) (3.19)
and the Bekenstein-Hawking entropy reads
¥4 [r AH(Z )]2 1
S = = . 3.20
4 167T> (3.20

Then, since dF/dT = —S&, where F is the free energy, we
have

1
F =
16T

(3.21)

by choosing the integration constant so that ' — 0 in the
formal limit 7 — oo (or M(t) — 0). The thermal energy is

1
E=F+TS=—=M().

= 3.22
8xT ( )

If M is constant, the expressions of 7, S, and E reduce to
those of the Schwarzschild black hole. We also find

2M' (p)\2
A L [me) | )
22 X 1 —2M@) |’
X
2M'(¢)
B= £ ,
K2r(1 — 2410
o 1 amr () (L)
o ZKZ)(Z(l _ 2M<(/7))2 X 1= 2M(¢) |’
X

V=0. (3.23)

Since AC < 0, one of the two free scalars ¢ or y is always a
ghost, which makes the theory physically inconsistent.

B. Ansatz 2

It is sometimes possible to find exact solutions by
separating the time and space dependence in the metric
coefficients (as done, for example, in [65,67]). As another
example, consider the ansatz

rg\ 1
¥ —e W= (1-20)2,
r)t

where 7 and 7, are positive constants. The Misner-Sharp-
Hernandez quasilocal mass is

Mygsu(t, r) = % [1 - (1 - r—f) %"]

and there is only one apparent horizon located by
ran = 2Mysu (2, Fan), which gives r = ry. Since this is
a single root, we have a black hole apparent horizon.
Remarkably, although the metric and the Misner-Sharp-
Hernandez mass® (of a generic sphere of radius r) are time
dependent, this apparent horizon has constant (areal)
radius. This horizon is a null surface and an event horizon.
In fact, if h(r) = r — ry, the horizon is the surface i(r) =0
with normal

(3.24)

(3.25)

N, = Vﬂh|r:r0 = Ou1, (3.26)
which is a null vector:
1,
N =, = (1=2)%) —0. @)
r r=ry

*The Misner-Sharp-Hernandez mass at the horizon Mgy (ro) =
ro/2 is time independent.
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We have, therefore, a static event horizon in a nonstationary
spacetime: the question of whether such a horizon can exist
was posed, and approached perturbatively, in Ref. [105].
Furthermore, since there is no timelike Killing vector, this
event horizon is not a Killing horizon, which is of interest in
relation with the strong rigidity theorem [106,107] stating
that the event horizon of a stationary black hole spacetime
is a Killing horizon. This theorem is not violated here
because it requires the matter stress-energy tensor to satisfy
the weak energy condition while, as we shall see shortly,
one of the two scalar fields is a phantom and violates it.
The Ricci curvature is

2 o
R==(1-"2).
A(-%)

This geometry has no spacetime singularities except for the
usual one at r = 0 and the big bang at r = 0.

With regard to the thermodynamics of the spacetime
(3.24), we assume again an adiabatic regime (which is
possibile when 7 is not close to zero and the metric changes
relatively slowly); then the temperature and the Bekenstein-
Hawking entropy are (see Appendix A for details)

(3.28)

Iy
— , 3.29
471'”"0 ( )
and
4 2
S= % (3.30)

Even though the apparent horizon is static, together with
its area A,y and the entropy S = Axy/4, the Hawking
temperature decreases monotonically with time, which is
interpreted as an effect of the accretion of the scalar doublet

onto the black hole. Indeed, 2 # 0 and, therefore, B # 0 [as

follows from Eq. (3.2)] and the component Tgf’)‘> of the
stress-energy tensor of the scalar doublet is nonvanishing,
signaling a nonzero radial energy flux onto the black hole.
It is noteworthy that, although the metric varies in time
[which causes the Hawking temperature to vary according
to Eq. (3.29)], the apparent horizon does not change its
location. We are not aware of a similar occurrence in
previous literature.
Eliminating ry, with Eq. (3.29) gives

15

and integrating dF/dT = —S§ yields the Helmholtz free
energy
2

Iy

and the thermal energy

2
E=F+TS=-2-, 3.33

i 22T (3:33)
and we obtain thermodynamical quantities with nontrivial
time dependence that obey the first law

P
1o

dE = —
21272

dT = TdS = dQ. (3.34)

where dQ is the heat transferred across the horizon.
We also find

22,2
A:—(l—@> o (3.35)
x) ¢
B = ! (3.36)
Kt '
1 12 1
c:—2<1—@>—02<iz——2>, (3.37)
K x) ¢ \ox™ x
e 2 =) 2(e*-1)
V=—s . 3.38
22 [ PR r? } (3:38)
Again, it is AC < 0 and ¢ or y is always a ghost.
C. Ansatz 3
Our last example choice is
_h
W—eh=— L 3.39
e e T Z_(; (3.39)
The Misner-Sharp-Hernandez quasilocal mass is
1+L
7'0 1
M tr)=— 3.40
wmsh (2, 7) 2(14_@) (3.40)

tor

and the apparent horizons are located by r = 2M sy,
which yields the only root r = ry. This is a single root
and the radius of a static black hole event horizon. The mass
at this horizon is Mysy(rg) = ro/2 and does not depend
on time.

Since e* = e — 1 as r — oo, the geometry is asymp-
totically flat.

In the limit # — oo with fixed r, the metric has the form

e? ~ (1 —"). Then, by introducing a new time coor-
ro r

dinate 7 defined by dr = t~'/2dt (or 7(t) = 2+/1), the line
element (2.6) is recast in the form

044055-7
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" 2

ds? = = (110 g2 10T g2
r 4tor(1 —ro/r)

+ r2(d9? + sin® 9dg?), (3.41)

in which the radial direction becomes larger like a throat as

the time 7 (or ¢) increases. The areal radius of the horizon,

however, remains constant. The time-dependent factor

(m 72) multiplies only dr? and not the angular part

of the line element, as would happen for a central object
embedded in a FLRW universe [8] (indeed, the metric is
asymptotically flat and not asymptotically FLRW).

The Ricci curvature of the geometry (3.39) is

2(1+2)% t t\ tro 121
R :(7/)3 {1 ——+2<1 ——) ﬂ+2—r‘§], (3.42)
(1 + {2 to to to}" tol"
and is regular on the horizon r = r,, although there are
spacetime singularities at r =0, t = 0, and ¢ — 0.
With the ansatz (3.39), the Hawking temperature is

1
T=—""—¥— 3.43
4ﬂr0(1+t/t0) ( )
and, since the entropy S is
Anrd 1
§=""10 2 (3.44)

4 16x(1 4 t/ty)*T?
the free energy and the thermodynamical energy are

1 1
F= 167(1 +t/1y)°T" E= 87(1+t/1y)*T’ (345)
respectively. Again, the black hole horizon is static while
the Hawking temperature decreases with time (the adiabatic
approximation can be satisfied by choosing ¢, and the range
of t appropriately).
We also have

(12
(1+2)?

tor

(1—r—;))(1+’7°)tr0[1+ 1 }

(1 +Z—‘;)2t0r3 (1+jg—3)2 ’
o

B=—11—,
K‘2l‘0r2(1+ﬂ)

tor

yo WDl
Kr (1+2)2 7140
0 0

(3.46)

As in the case of Egs. (3.46), (3.15), and (3.16), also this
example is plagued by a phantom with negative kinetic
energy because AC < 0.

IV. f(R) GRAVITY WITH TWO SCALAR FIELDS

The unavoidable recurrence of a phantom in Einstein’s
gravity with two scalar fields prompts us to investigate
f(R) gravity in the hope to exorcise this ghost. The
equation of motion for this modified gravity is

R
f/(R)R;w - %gﬂu = V”Vl,f/(R) - gyqu/(R)
+ &2 Tl(lrzlatter) 7 (4 1 )
(matter)

where T, is the matter energy-momentum tensor and
f'(R)=df/dR. Assuming the energy-momentum tensor
(3.2) of the scalar field doublet, as in (3.6)—(3.9), the
components of the field equation (4.1) become

2v . .
- SR = |~ (-0}

o
+ [—)18, + e (8% + <—/1’ + %) ar> } f'(R)

A C
— eZv <_§e—2v _ 56—2/1 _ V) ,

+ e2(v—/1){1// + W =W+ ZU’}]f/(R)

(4.2)

21
67 f(R) - {e—w—ﬂ {i+ (-4}
{4+ =)W+ 2ﬂ J'(R)
_ [_ezﬁ—zv(a% —00,) + (u + %) 64 I'(R)

A C
22 —2v —21 V ,
= —¢ <2 e + *2 (S >

SFR) = (14 {=1 =1/ = 2))e ) (R)

- [—e—b(a% + (=04 1)d,)

+e2 (a% + (u T i) a,> } F'(R)
)

(4.4)

2 R) + (0,0, - V0, ~ 30 (R) = ~B.  (45)

Then, we have
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/
- [_{z (A= 0)A} + &2 {w T =AW+ 27”}

2u

_i_z{l +{-1-r l/)}e_ZA}}f/(Iw

[ 07 + 00, +e*~ ”<u+ ) }f’( ),

8= 1(R) - (9,0, -0, ~ 10,/ (R).

c= [6‘2(”“) 4+ (A=) = + (/ =)

S - )

+ [_e_2p+2z/'13t+ <8§ + <_/1/ _%> 6,)] /' (R),

f(R)
2

+e‘2’1{1/’ + (/ —/1’)1/+y _ll}]f'( )

1 -2vfA92 ; 7
b3 @ - 0-ha)

el (v-22)a) e

Again, if we replace ¢ and r with ¢ and y in the right-
hand sides of Egs. (4.6)—(4.9), we obtain A, B, C, and V as
functions of ¢ and y. Conversely if we assign A, B, C, and
V, the model has a solution in the form of the spherically
symmetric configuration (2.6) corresponding to arbitrary v
and A.

(4.8)

V= +{ e 2+ (A-1)A}

(4.9)

In the case 4 = —v (or g,9,, = —1) already discussed,
we find
1 d2 —2v 1(12 2v 1d 2v
pm [ L) o (186 1de)
2 dt 2 dr rodr

2L (e A

2v —2v 2v 4v
| _ede™) 2w d(e™) ¥ /
[ S aer(e ar )OI,

(4.10)
- eZu d<e—2v) ,
e—2p d(eZu) 2u d(e—Zu) ,
- (00~ 45 o, -1 o) i,

(4.11)

—2v d2 —21/ ﬁdZ(CZy) e—ZU d(GZy)
dr 2 dr? 2 dr

[1 + {—1 —re= d(;jy)]eh}]f’(le)

e—2y d(e‘ u) ) e—2u d(eh) 1
+[‘ > ar @*(@*(77‘; O

(4.12)

V=

f(R) 1d?(e™) 1d%(e*) 1d(e*) ,
2 {E dr? 2 dr? rodr ]f( )

1 >y d(e—Qy) ) ( 21/)
oo 15, i (49,95
< f'(R). (4.13)

Contrary to the Einstein gravity case (3.14), (3.15), and
(3.16), it is now possible to avoid the ghost with a suitable
choice of the Lagrangian density f(R).

A. Example 1

With our previous ansatz (3.17) (with M < 1 to ensure
the adiabatic approximation), Eqs. (4.10)—(4.11) acquire
the form

A:‘[Z"*z((M)—)]f'( )

- [—a% - 2(1%_ g 0, ! (1 —Z—M) a,] f'(R), (4.14)

r

oM

+ (8%—% <1 —é>_l (1 —3TM> a,)]f'(k), (4.15)

y SR (1 —%)4 <g+2(1(%—)1‘247“))>f/(R)

M
{a%+l_rﬂa,}
+

Q
I

(4.16)

1 M\~ (M M M\,
(4.17)

Even in f(R) gravity, it is difficult to avoid the ghost and
we need to specify the model explicitly.
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As done for Egs. (3.19)—(3.22), let us discuss the
thermodynamics of the spacetime (3.17). Assuming again
a quasistatic evolution (M < 1) and treating the time 7 as
constant, the temperature is

1
= 4.1
8xM (1)’ (4.18)
whereas the Bekenstein-Hawking entropy reads
4x2M (1))*f'(R 2M !

4 o 16xT?

In order to obtain a nontrivial entropy, f’(4oco) must be
finite. The free energy is

ACES)

where we have chosen the integration constant so that F
vanishes in the limit 7 — oo (or M(¢) — 0). The thermal
energy is

_ f'(40)
- 8aT

= f'(+o0)M(1), (4.21)

where a correction f'(+o0) appears, as in the expression of
T. This correction must be present, as one realizes by
remembering that f(R) gravity is equivalent to an @ = 0
Brans-Dicke theory [108] with the Brans-Dicke scalar
¢sp = f'(R) [109-111], which plays the role of the inverse
of the effective gravitational coupling [108], ¢pp = G,
and with a potential V(¢gp). Restoring Newton’s constant
G, the corresponding expressions in Brans-Dicke gravity
contain 8zGeff = 8z/f'(R).

B. Example 2
Moving on to the ansatz (3.24), we find

- (1))

1 ro to y
+Pw—za+o—7)4ﬂfmy (4.22)

tr

_SfR) 1 o\t !
v |(-2) Ao
o\ %o 347 /
(1-2)0 5 : Hrw. a2
_/(®) i Lo )
B = - —(8,@—2(17_%0)@—5&)]0(1?)- (4.25)

The Ricci scalar (3.28) yields
[0 ro [0 y 41(2) "
A=——|1—-—)(|1-—= R)+——f"(R
(1) (1= )7 + S
40 l% tO 1
l——)==(1-— R
r)zlﬁ‘( t)}f (R),

(
1—”’)_l <1 —t—°>f’(R) +1r—§ (1 —%0)2]””(1%)
1 —t7°> (1 —r—r())_l (8 —9—:0>}f”(1€), (4.27)

2t ro\ ! 41 o fo)? 111
e (=0) -2 0-9) e
2 ro\! o Iy 8ro 11
| (-2) () ()

(4.28)

(4.26)

4[0 r()to ro -1 2 to
_ |2 _Dlofy 7o “(1=2)
|: r3t2 r4t2< r +r3t P f( )
(4.29)

In order to check whether the ghost can be avoided, let us
examine the functions A, B, and C in the regime of large r,
in which one finds

o o , 3l0 "
A~——(1 —7)f(R)+r2—t3f (R)

tr?
4 2
— S R), (4.30)
f/(R) 2 o\ 81‘0 111
B~ P <1 —7>f (R) —|—Wf (R), (4.31)
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Iy / 1
o~ L (1-0) w4

ol
16 !
_F< 0) f///( )

The popular power-law choice ([50,65,66,112-159], see
[160,161] for Solar System constraints on the parameter n)

2 n
r®~ s = 0|3 (1-2)]
produces

fonto | 2 o\ "2 f
An~— Z(1-l 6+ (2+4n) 2|, (434
A5 |2 p 6+(+”)t7(3)
n—1
CNfO? [%(1_20)} ,
tort r t

fo 2 o n 2f0n o 2 to n=1
(-9 S0 E0-)

The special case n = 1 gives

3fot
folo Cr— fi

e tor?t’

(4.32)

(4.33)

(4.35)

An~—

B~O(r %), (4.37)

therefore, if f, < 0, both A and B are positive and

2

AC — B? ~%, (4.38)
r'’t

which tells us that, at least as long as r is sufficiently large,
there is no ghost. Thus, it seems possible to avoid ghosts in
f(R) gravity.

Again, we obtain the thermodynamics of this spacetime
in the adiabatic approximation (assuming || > 7). The

temperature and the Bekenstein-Hawking entropy are

__Io
= dniry’ (439)
S:4nf/(R(r—>r0))r<2):ﬂf(2 <1—t—0>>r%, (4.40)
4 r3 t

and they are both time dependent. Eliminating r, with
Eq. (3.29) yields

5 P 327% P T? | 1o
41°T? 7 t))

For this explicit form of f(R), the use of dF/dT = —S and
E = F + TS produces the nontrivial expressions of the free
energy and the thermodynamical energy

(4.41)

A (22T (1 - 1)
— [ 8dT = - daT,

42T?
2272

s BrEET-)
—hrie= 42T

A R i
/ 4T ' (442)

By construction, these quantities satisfy the first law of
thermodynamics dE = TdS = dQ. For the model (4.33),
we find

3 fo (P (1=1)"
42n-1)PT
(n = Digfo(PmEE (1=4))"

E= 2(2n - )T - @4y

When ¢ > 1, the thermodynamical energy E is positive if
Jo>0 and n>1 or n<1/2, or if f, <0 and
1/2 < n < 1. Moreover, when ¢ < 1y and n is an integer,
E is positive in the following cases:

(i) fo > 0, n is an even integer, and n > 2 or n < 0;

(i) fo <0 and n = 0 (which corresponds to Einstein’s

gravity);
(iii) fo <0, n is an odd integer, and n > 3 or n < —1.
The cases with negative £ may be unphysical.

C. Example 3
For the example (3.39), we find

(1=2)(1+9) (- 1+2) 5

A= s F(R)
1+
T ( )(1+”“)
_|—p =2 _p W9, f(R), (4.4
il - f'(R)
R
1+ D)5 2 >
- (0.0, - Orrg Orro r f/( )
<’ (1="2)(1+ ’)’ 142
(4.45)

f troy g
:_(1+70>(__1+f0(;)10r04 "(R)

(=m0 + 27

tor

2tyr bl
t

(43 5
(1-2)?

trg

(s (i) was

tyr
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wamW_u+%%
2 (1 + )3

tor

(H%“),%}
ro\2
(I+32)

thr o2 tor 2
+§[1_i8t—li,_f8,+l+£_36,

r

. (% + i:) 8,} f'(R).

Ior

(4.47)

The Hawking temperature and the entropy now read, in
the adiabatic approximation || > 1,

f’ (ro o t2)>
I Y A S
47”"0(1 + é)

" rg 0 ’%>
s I ()

S=2200 - .
4 " 16a(1+ L)1

(4.49)

Nontrivial expressions of the free energy F and the
thermodynamical energy E can be obtained as done with
Egs. (4.42) and (4.43). See Appendix B for further com-
ments on f(R) gravity with two scalar fields.

V. SPHERICALLY SYMMETRIC,
TIME-DEPENDENT GEOMETRY
IN PURE f(R) GRAVITY

It is difficult to avoid the ghost degree of freedom even in
pure f(R) gravity. In this section, in the framework of pure
f(R) gravity, we construct a model which admits a
spherically symmetric and time-dependent solution.

Although the sought-for solution is time dependent,
we begin with a model that gives a static solution. We
choose A = @, B=C =0, and V = V,, = constant; then
Egs. (3.6)—(3.9) assume the form

e2(1/—}») 2 e 5 o> 5
— =——eY—e+Vy), (5.1
p <r+ r2> e(ze +0> (5.1)
1 /2 e¥—-1 az_y
F (T - r2 ) = —621 <7€ v Vo) s (52)
1
= e (r( =) + " + r*(V = X))
2
= <%e‘2” - V0>. (5.3)
Equations (5.1) and (5.2) give
(¥ —1) Krre? [oPe
N=- — Vo l, 5.4
2r 2 2 Yo (54)

/] — —
Yoo, 2

2 _ 1 i 2re (2
¢ rre (%e—h—m). (5.5)

By using Egs. (5.4) and (5.5), one checks that Eq. (5.3) is
automatically satisfied. Therefore, we can choose (5.4) and
(5.5) as our two independent equations. By solving them
with physically realistic boundary conditions, one obtains a
spherically symmetric and static solution v = v (r) and
A= lss(r )

Now the action has the form

. R &
S(/,:/d x\/—_g 2—K2—?a”¢a”¢—vo (5.6)

describing GR with a single, canonical, scalar field. Let us
examine the relation between the model (5.6) and f(R)
gravity. Under the conformal transformation g,, — g,, =
¢’ g, the Ricci scalar transforms according to [1]

- 3
R—>R= (R -30p - Eaﬂpaﬂp) e™” (5.7)
and the action (5.6) is mapped into
S, = /d“x —ge? i R-30p — iaﬂpa ple™”
¢ 21('2 2 H
o>
- ?e_/’ﬁﬂ(ﬁa”(ﬁ - V0:| . (58)
The choice p = ¢/+/3 yields
1 2 2 .
S¢ = /d4)C\/—g <Fe\/§R - eﬁV()) (59)
K

and the variation of the action (5.9) with respect to ¢ yields
the algebraic equation

1 =2 2
~—5eViR —2eviVy =0 (5.10)
2k
for e?/ \/g, which has the unique root
R
V3= . (5.11)
4k VO

By substituting Eq. (5.11) into the action (5.9), one obtains
the R? gravity model

1
Sy, =— d*x\/=gR>.
¢ 8K'4V0/ * 9

(5.12)

Due to the conformal transformation g,, — g,, = €’g,, =

et/ ‘/gg/“,, the spacetime metric that solves Eqgs. (5.4)
and (5.5) differs from g, by the conformal factor
e~?/V3 — e=1/V3 or
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ds? = e i[—e2s(Ndi? 4 21 dp?

+12(d9? + sin® 9dgp?))], (5.13)

a time-dependent line element.
Let us discuss now the solutions (5.4) and (5.5) in more
detail. Define X, = e*** and rewrite these equations as

2
X' = -kK*rx2 X! (%XfX:' + V0>,

X_(X,Xxz'-1)

X =
2r

(5.14)

There exists a nontrivial fixed point when V, <0 as

2 . 2 .
X, =X_= ,/—2“70. Therefore, if _ZLVO =1, there is an
asymptotically flat spacetime. In the following, we assume

that V, = —a?/2 and we rewrite Eq. (5.14) as

K*a? U
X, = —Trxix_l(xgx_l - 1),
X_(X,xz'-1)
X =" 2 5.15
2r ( )

Note also that X/, =0 when X, X_ =1 and X’ = 0 when
X, = X_. More precisely, the situation is summarized as
follows:

(1) When both X and X_ > 0,

(a) if X_ > X3!, then X', > 0;
(b) if X_ < X3!, then X', < O0;
and
(a) if X_ > X, then X_ < 0;
(b) if X_ < X_, then X_ > 0.
(2) When X, <0 and X_>0, then X >0 and
X_ <0.
(3) When X, X_ <0,
(a) if X_ > X3!, then X', > 0;
(b) if X_ < X3!, then X, < 0.
and
(a) if X_ > X, then X_ < 0;
(b) if X_ < X_, then X_ > 0.
(4) When X, >0, we have X_ <0, X/ <0, and
X_ > 0.

We also note that X/, — 0 as X, — 0. Furthermore,
when X_ — 0, then X, » —oo(X, >0) and X/ —
+o00(X, <0). In the Schwarzschild-like solution with
949 =—1, X, =1 and X_ vanishes at horizon.
Therefore, the solution with g¢,,g,. = —1 does not exist
in the model (5.14).

We now perturb the fixed points X = 1 as described by
X4 =14 6X.. Equation (5.14) yields

2,2

sX,' =21 (s5x, +6X), (5.16)
1
6X_ = - (6X, —6X.). (5.17)

The eigenvalues A of the matrix

Kot Kdir

M = 2 2
1 _1
2 2r

r

(5.18)

are the roots of the secular equation

2,2 2.2 2,2
) Kar_i Kt _Ka'r i _
4 ( 2 2r> 4 <’1 2 ></1+2r> 0.

(5.19)

hence both eigenvalues x*a’r/2 and —1/(2r) are negative
and the equilibrium point X, = 1 is a saddle point. The
negative eigenvalue —1/(2r) corresponds to the spacetime
where r becomes larger, X — 1; therefore, this geometry
is asymptotically flat.

There is also a line of (nonisolated) fixed points at
X_ — 0. To see this, we rewrite Eq. (5.15) as

K*o?

X, = —TrxiX:l(XfX:l -1),
XX xz'-1)

o (5.20)

Then, at X=! =0 we find X', = (XZ!)’ = 0. In order to
investigate the stability, we consider the perturbation 5X=!
of XZ! by fixing X . The second equation in (5.20)
reduces to

X!
2r

(6xzy (5.21)
The eigenvalue 1/(2r) is always positive.

Then there are several types of solutions. By fine-tuning
the initial condition, one could find a trajectory which
begins near X_ — +oco and approaches the fixed point
X, = 1. There could also be trajectories beginning near
X_ — 400, crossing the line X, = X_, and approaching
to X, — +oo. The details are not particularly illuminating
and will not be reported; however, the main point is that the
existence of time-dependent and spherically symmetric
solutions in pure f(R) gravity is determined.

VI. CONCLUSIONS

Many of our examples are plagued by the presence of a
ghost, a phantom scalar field with negative kinetic energy.
Such phantom fields suffer from instability and should not
exist; however, from time to time cosmological observa-
tions argue in favor of a phantom equation of state of the
cosmic quintessence fluid [162—166]. Should such claims
persist, one would be forced to take the phantom phenom-
enology more seriously, perhaps not as signaling a true
phantom field, but as a phantomlike phenomenon arising in
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a theory that is fundamentally ghost-free (this happens
occasionally in modified gravity, for example in f(R)
gravity, whose gravitational sector is ghost-free [109-
111]). In this case, a model with a phantom field would
be a mimicker of a more viable theory and the black hole
solutions described in the previous sections would then
become more interesting. These solutions include a static
apparent horizon in a time-dependent black hole geometry,
in which the black hole accretes scalar fluid and changes its
temperature, while keeping its horizon unchanged. The first
of our three ansatzes produces genuine time-dependent
black holes with apparent horizons scaling in time with the
Misner-Sharp-Hernandez mass (this horizon will look the
same to all observers associated with a spherically sym-
metric foliation [14], but not to those moving with respect
to the former in such a way that this symmetry is broken
[9,10], for example by a Lorentz boost along a nonradial
direction).

Thus far, solving directly the field equations of various
theories has not produced many physically reasonable
solutions describing dynamical black holes; naked singu-
larities and wormholes are much more common [8,73-86].
Another problem is that some of these analytical solutions
are cumbersome when expressed in terms of the areal
radius (e.g., [20,21,65,67]) and often the apparent horizons
cannot be located analytically, or the analytical expressions
providing them are not explicit [8]. Overall, designing
time-dependent black holes is difficult and we reverse
engineered the coupling functions of theories of gravity that
admit prescribed apparent horizons as their solutions.
Simpler analytical dynamical black holes will be searched
for in future work.
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APPENDIX A

When the metric can be regarded as static, or its time
dependence can be neglected, we consider the line element

dr?
ds?> = —P(r)(r —ry)dt* + —P(r)(r .y

+ r2(d9?* + sin® 9dg?). (A1)

We assume that P(r) is positive everywhere and is a
sufficiently smooth function of r near the horizon
r =ry, and that it can be approximated by a constant,
P(r) ~ P(rg). We then introduce a new coordinate p by

dr

dp——“ A2
P =10 (52)
that is,
. r—ry
p=2 P(ro) (A3

We also Wick-rotate the time coordinate as ¢ — iz. Then,
we obtain the Euclidean metric

P(ry)?

ds> =——""-p*d* +dp* +r(p)*(d9* +sin> 9d¢p?).

. (a4)

In order to avoid the conical singularity at p = 0, we need
to impose the periodicity on z,

P(ro)TNP(ro)
2 2

7+ 2r;. (A5)

For the finite temperature formalism in the path integral,

the periodicity P‘<‘f0 ) corresponds to the inverse of the

temperature
P(ro)
T=—-+. A6
4z (A6)
In the case of the metric given by (3.24), we find
lo
P =—, A7
(r0) = 12 (A7)

and we obtain the expression (3.29). ¢+ and T are the
Kodama time and Kodama temperature, respectively.

APPENDIX B

The action for Einstein gravity with a scalar field
doublet is

1
Sigy) = / d“x\/—_g{z% —54(0.2)0,00"¢
— B¢, x)0,90y
—%C(qﬁ,)()aﬂ;(@”;(— V((]ﬁ,;{)}. (B1)

In the static case where B = 0, the action (B1) reduces to
" R 1
Sy = | d'xv/=g W_EA(XW”(IS@”(’{)

-5 0D~ V() .
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We now redefine the scalar field y as

— [ arvIcw] (B3)
and we rewrite the action (B2) as
S = [ d4x\/_{2R2 SA)0,900
- 3en(CI0,20% = V(7 |
A =A(®). V@) =Vi@), (B4)
where
wo={" Wl

‘We now consider the relation between the model (B2) and
F(R) gravity, or models similar to F(R) gravity. For this
purpose, assume that C > 0, that is, sgn(C) = 1. Under
the scale transformation g,, — €g,,, the Ricci scalar
transforms as

R — <R =30p — %aﬂpaﬂp> e’ (B6)

and the action (B2) with sgn(C) = 1 transforms as

1
S —/d“x ge2/’{2 (R 3Dp——8"p8,,p>e ’
1- .
_EA (7)e™"0,p0"¢ —Ee-ﬂaﬂgaﬂ;} -V(7) } (B7)
Then, the choice p = 7/+/3 yields

St = /d“x\/_{efR - fA(;()efra Yo

- e%f/(;z)}. (BS)

By varying with respect to 7, one obtains the algebraic
equation
1 1
= \/§ 52
~ §a 2.
- EA'O?)MM@% — el V(7).

AR - —A(;()efa POHp — 2er(;()}
(B9)

which can in principle, be solved with respect to 7 as
7 = ¥(R.0,¢0"¢). Then by substituting the expression of

¥ =R,
Z(R,0,¢ 8"(/)) into the action (B8), we obtain an action

which is, in a sense, similar to the action of F(R)
gravity,

Sigy) = / d*x\/=gF (R, 0,$0" ), (B10)
where
F(R.0009) =53¢+ R
~ AR D400 0,00
~ETIGR 0,09). (1)

Therefore, even in the static case, Einstein’s gravity with
two scalar fields cannot be rewritten in a simple F(R)
gravity form, but we obtain a rather complicated model
instead.

In the time-dependent case it might be possible, in
principle, to rewrite the model in a way similar to the
form of F(R) gravity, although the situation is not simple
since the model obtained in this way assumes very
complicated forms.

The physical nature of analytic solutions of the field
equations may change radically when one goes from static
to time-dependent solutions. In GR with a single scalar
field, static black holes are Schwarzschild, or else the
Fisher solution, which describes a naked singularity, is
obtained for a single, static, asymptotically flat scalar field.
However, when the geometry and the free scalar field are
allowed to be time dependent, one obtains the Husain-
Martinez-Nufiez solution, which describes a cosmological
black hole for part of its history [41]. Similar conclusions
are reached by introducing an exponential potential for the
scalar field, which produces the Fonarev solution [82].

When one contemplates time-dependent, asymptotically
FLRW solutions of the Einstein equations with a fluid, one
finds the McVittie metric [19]. The latter cannot be
generated as a scalar field solution of the Einstein equa-
tions, or as a solution of scalar-tensor gravity. However, it is
an exact solution of cuscuton theory, a special case of
Hortava-Lifschitz gravity [39], which is the only form of
k-essence that admits McVittie solutions [39]. The McVittie
spacetime is also an solution of shape dynamics [167], and of
f(T) gravity (where T is the torsion scalar [168]). f(R)
gravity with a single scalar is essentially equivalent to GR
with two scalars and, while one does not expect much
difference from the case of GR with a single scalar in the
static case, one expects the time-dependent, asymptotically
FLRW situation to produce more analytic solutions which
contain dynamical black hole apparent horizons for part of
the spacetime history, as in the case of the Husain-Martinez-
Nuiiez [41] and Fonarev [82] solutions.
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