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The propagation of high-frequency gravitational waves can be analyzed using the geometrical optics
approximation. In the case of large but finite frequencies, the geometrical optics approximation is no longer
accurate and polarization-dependent corrections at first order in wavelength modify the propagation of
gravitational waves, via a spin-orbit coupling mechanism. We present a covariant derivation from first
principles of effective ray equations describing the propagation of polarized gravitational waves, up to first-
order terms in wavelength, on arbitrary spacetime backgrounds. The effective ray equations describe a
gravitational spin Hall effect for gravitational waves and are of the same form as those describing the
gravitational spin Hall effect of light, derived from Maxwell’s equations.
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I. INTRODUCTION

The advent of gravitational wave observations brings a
new range of phenomena related to the dynamics of the
gravitational field to our attention. Gravitational waves
propagate over cosmological distances and carry, in addi-
tion to information about their sources, imprints of cos-
mological expansion and inhomogeneities in the Universe.
The fact that the important sources of gravitational waves
emit in a very broad range of wavelengths [1] makes it
essential to include effects beyond geometrical optics on
their propagation, when considering lensing of gravita-
tional waves [2,3] (see also the similar but complementary
discussion in [4], where effects beyond general relativity
are considered).
Spin-orbit couplings play an essential role when analyz-

ing the propagation of spinning particles and fields in
inhomogeneous media beyond the geometrical optics and
test particle limit [5]. For the spin-1 Maxwell field, the spin
Hall effect of light has been verified experimentally [6,7].
When the wavelength is small in comparison with the
inhomogeneity scale of the media, an electromagnetic wave
packet undergoes a polarization-dependent deviation from

the path predicted by geometrical optics [6–11]. This can
be viewed as a manifestation of spin-orbit coupling via
the Berry curvature. In general relativity, the dynamics of
spinning particles is described by the Mathisson-
Papapetrou-Dixon equations [12–16], with a suitable clo-
sure relation, the so-called spin-supplementary condition.
Polarization-dependent effects for the propagation of

Maxwell fields in curved spacetime have been discussed
previously in Refs. [17–21]. A detailed review and further
references can be found in Ref. [22]. Recently, a covariant
derivation of the gravitational spin Hall effect of light,
based on first principles, has been given in Ref. [23].
Similarly, the effective ray equations for massive spin-1

2
Dirac fields, beyond the geometrical optics limit, have been
discussed in Refs. [24–26]. The spin-2 nature of the
gravitational field leads one to expect that corrections to
geometrical optics, involving the Berry curvature, will be
relevant also for gravitational waves [27,28]. Geometrical
optics for gravitational waves has a long history; see, for
instance, [29–34].
In this paper, we present the first covariant analysis of the

spin Hall effect for gravitational waves. Following the
strategy developed in Ref. [23] for the Maxwell field, as
well as the general theory given in Ref. [35], we provide a
derivation from first principles of effective ray equations
describing the propagation of gravitational waves, up to
first-order terms in wavelength, on arbitrary spacetime
backgrounds. The equations of motion are obtained
through a higher-order geometrical optics approximation
using a Wentzel-Kramers-Brillouin (WKB) ansatz. The
dynamics of the polarization is described in terms of the
Berry connection, and the terms of first order in wavelength
in the effective ray equations involve the Berry curvature,
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manifesting the spin nature of the gravitational field.
These corrections to the standard trajectories of geometrical
optics, the null geodesics, may be termed as the spin Hall
effect of gravitational waves [27]. It can be shown that
the equations of motion are of the same nature as the
Mathisson-Papapetrou-Dixon equations for massless spin-
ning particles [26,36], completed by the Corinaldesi-
Papapetrou spin supplementary condition (see [37],
Sec. 3. 2. 1]). Our treatment is covariant and applicable
to arbitrary curved spacetimes, in contrast to previous work
presented in the literature. For example, the derivation of
the spin Hall effect for gravitational waves given in
Ref. [27] is not explicitly covariant, and it is limited to
propagation in static spacetimes in the weak field limit. Our
derivation of the effect is obtained from the classical field
theory of linearized gravity, in contrast to Ref. [27] where
the author argues that the effect is quantum in nature.
Another derivation of a spin Hall effect for gravitational
waves was proposed in Ref. [28]. While this approach is
manifestly covariant, it is limited to stationary spacetimes.
Our starting point is the classical field theory of

linearized gravity, governed by a truncated form of the
Einstein-Hilbert Lagrangian. A metric perturbation in the
form of aWKB ansatz is inserted in the action for linearized
gravity, and the resulting expression is truncated after the
first order in the inverse of the frequency. This provides a
Lagrangian representing the WKB approximation of the
linearized gravity field theory. The corresponding Euler-
Lagrange equations, with Lorenz gauge imposed, provide
the dispersion relation and the transport equation for the
amplitude. The dispersion relation is used to define a
Hamiltonian for the effective ray equations.
The paper is organized as follows. Section II contains the

general setup. The basic equations for linearized gravity are
presented in Sec. II A, the gauge choice is discussed in
Sec. II B, and the WKB ansatz is introduced in Sec. II C.
The WKB approximation of the action is made in Sec. III,
and it is shown how the well-known results of geometrical
optics can be obtained from the corresponding Euler-
Lagrange equations. In Sec. III E, we discuss the dynamics
of the polarization tensor in terms of the Berry connection.
The effective dispersion relation is derived in Sec. III F.
Finally, the effective ray equations are discussed in
Sec. IV. Appendix A contains a discussion on some
algebraic properties of the symbol. Appendix B presents
a self-contained derivation of the equation of linearized
gravity. Appendix C contains a basic discussion of the
Lorenz gauge.

A. Notations and conventions

We consider an arbitrary smooth Lorentzian manifold
ðM; gμνÞ, where the metric tensor gμν has signature
ð−þþþÞ. The absolute value of the metric determinant
is denoted as g ¼ jdet gμνj. The phase space is defined as
the cotangent bundle T�M, and phase space points are

denoted as ðx; pÞ. The Einstein summation convention is
assumed. Greek indices represent space-time indices and
run from 0 to 3. Latin indices, ða; b; c;…Þ, represent tetrad
indices and run from 0 to 3. We adopt the curvature
conventions of [38].

II. THE EINSTEIN FIELD EQUATIONS
AND LINEARIZED GRAVITY

We consider the vacuum Einstein field equations with
vanishing cosmological constant

Rαβ −
1

2
Rgαβ ¼ 0; ð2:1Þ

where Rαβ is the Ricci tensor, R ¼ Rα
α is the Ricci scalar.

The Einstein field equations can be obtained as the Euler-
Lagrange equations of the Einstein-Hilbert action

JðgμνÞ ¼
Z
M
d4x

ffiffiffi
g

p
RðgμνÞ: ð2:2Þ

Our goal is to describe the propagation of gravitational
waves, treated as a small metric perturbation around a fixed
background solution of the vacuum Einstein field equa-
tions. For this purpose, in the next section, we derive the
linearization of the Einstein-Hilbert action and the corre-
sponding equations for the linearized gravitational field.
Note that we could have treated the case of a nonvanishing

cosmological constant since, in the high-frequency analysis,
the latter plays no role.

A. Linearization of the Einstein-Hilbert action

We remind here the form of the linearized Einstein-
Hilbert action; see Ref. [39]. For completeness, the deri-
vation, which is often not presented in detail in the
literature, is performed in Appendix B. Let gμν be a solution
of the Einstein field equations in vacuum,

Rαβ ¼ 0: ð2:3Þ

We consider a Lorentzian metric g̃μν, obtained through a
small perturbation hμν of gμν,

g̃μν ¼ gμν þ hμν: ð2:4Þ

Linearizing the Einstein-Hilbert action near gμν as in
Ref. [39], we obtain

Jðg̃μνÞ ¼ JðgμνÞ þ JlinðhμνÞ þOðjhj3Þ; ð2:5Þ

where
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JlinðhμνÞ ¼
Z
M
d4x

ffiffiffi
g

p �
1

2
∇γh∇γh −

1

2
∇γhαβ∇γhαβ

−∇αh∇βhαβ þ∇αhγβ∇γhαβ
�

ð2:6Þ

is the action for the perturbation hμν. Index manipulation
and covariant derivatives are defined with respect to the
background metric gαβ, and h ¼ hαβgαβ. Integrating by
parts and neglecting the boundary terms, the linearized
action can be written as

JlinðhμνÞ ¼
Z
M
d4x

ffiffiffi
g

p
hαβD̂αβ

γδhγδ; ð2:7Þ

where D̂αβ
γδ is the differential operator,

D̂αβ
γδ ¼ 1

2
ðδγαδδβ∇μ∇μ − gαβgγδ∇μ∇μ þ gγδ∇α∇β

þ gαβ∇γ∇δ − δδβ∇γ∇α − δδα∇γ∇βÞ: ð2:8Þ

The corresponding Euler-Lagrange equations are

D̂αβ
γδhγδ ¼ 0: ð2:9Þ

Introducing the trace-reverse tensor

h̆αβ ¼ hαβ −
1

2
hgαβ; ð2:10Þ

Eq. (2.9) becomes

∇α∇αh̆μν þ∇α∇βh̆
αβgμν

−∇α∇μh̆αν −∇α∇νh̆αμ ¼ 0: ð2:11Þ

Taking the trace of Eq. (2.11) leads to

∇α∇αh ¼ 2∇α∇μh̆αμ: ð2:12Þ

B. The Lorenz gauge

The Einstein field equations are gauged equations. The
gauge freedom can be exploited to reduce the Einstein field
equation to a hyperbolic system of equations. A detailed
discussion of this reduction in the particular case of the
wave gauge can be found in Ref. [ [40], Sec. 14. 1] or [ [41],
Sec. 2. 4].
A similar reduction can be applied to the linearized

equations (2.9). The linearization of the gauge freedom of
the Einstein field equations leads to the invariance of
Eq. (2.9) by the transformation

hμν ↦ hμν −∇μξν −∇νξμ; ð2:13Þ

where ξμ is a one-form on M. The gauge invariance of the
linearized field equations (2.9) can be exploited to make

these equations hyperbolic. The linearization of the wave
gauge for the Einstein field equations leads to the Lorenz
gauge condition for the linearized field equations (2.9),

∇αh̆
αβ ¼ ∇α

�
hαβ −

1

2
hgαβ

�
¼ 0: ð2:14Þ

The detailed derivation of this equation is presented in
Appendix C. Imposing the Lorenz gauge condition,
Eq. (2.9) is reduced to the following wave equation:

∇α∇αh̆μν − 2Rνασμh̆
ασ ¼ 0; ð2:15Þ

and Eq. (2.12) for the trace of the perturbation decouples,

∇α∇αh ¼ 0: ð2:16Þ

Using the expression of h̆μν given in Eq. (2.10), and using
the fact that gμν has vanishing Ricci curvature, we obtain

∇α∇αhμν − 2Rνασμhασ ¼ 0: ð2:17Þ

C. WKB ansatz

We assume that the perturbation metric hαβ admits a
WKB expansion of the form

hαβðxÞ ¼ Re½Aαβðx; kðxÞ; ϵÞeiSðxÞ=ϵ�;
Aαβðx; kðxÞ; ϵÞ ¼ A0αβðx; kðxÞÞ þ ϵA1αβðx; kðxÞÞ

þOðϵ2Þ; ð2:18Þ

where S is a real scalar function, Aαβ is a complex
amplitude, and ϵ is a small expansion parameter. The
gradient of S is denoted as

kμðxÞ ¼ ∇μSðxÞ: ð2:19Þ

We are allowing the amplitude Aαβ to depend on kμðxÞ.
This is justified by the mathematical formulation of the
WKB approximation [42,43], where kμðxÞ determines a
Lagrangian submanifold of x ↦ ðx; kðxÞÞ ∈ T�M, and the
amplitude Aαβ is defined on the Lagrangian submanifold.

D. Assumption on the initial data

We consider a Cauchy surface in M, and we make the
following assumptions. First, the gauge condition given in
Eq. (2.14) is initially satisfied. Second, the trace of the
perturbation h vanishes initially. Equation (2.16) guaran-
tees that this condition is conserved in the future of Σ.
Finally, the gravitational waves have initially circular
polarization (see Sec. III E).
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III. THE WKB APPROXIMATION FOR
LINEARIZED GRAVITY

TheWKB analysis of various field equations is generally
performed by inserting the WKB ansatz directly into the
field equation, followed by an analysis of the resulting
terms at each order in the expansion parameter ϵ. However,
for the purpose of studying spin Hall effects, we find it
more convenient to perform the WKB analysis by inserting
the WKB ansatz into the field action. The advantages
of such a variational formulation of the WKB approxima-
tion are extensively discussed in Ref. [44] (see also
Refs. [11,45]). In particular, a similar approach proved
to be effective in the derivation of the gravitational spin
Hall effect of light [23].

A. Euler-Lagrange equations in the
WKB approximation

We insert the WKB ansatz (2.18) into the linearized
Einstein-Hilbert action (2.7). Keeping only terms of the
lowest two orders in ϵ, we obtain

2ϵ2Jlin ¼
Z
M
d4x

ffiffiffi
g

p �
A�αβDαβ

γδAγδ

−
iϵ
2
ð∇v μDαβ

γδÞðA�αβ∇μAγδ − Aγδ∇μA�αβÞ
�

þOðϵ2Þ; ð3:1Þ

where

Dαβ
γδ ¼ 1

2
ðkμkμδγαδδβ − kμkμgαβgγδ þ kαkβgγδ

þ kγkδgαβ − kαkγδδβ − kβkγδδαÞ;

∇v μDαβ
γδ ¼ kμδγαδδβ − kμgαβgγδ þ kðαδ

μ
βÞg

γδ þ kðγgδÞμgαβ

− kðαδδβÞg
γμ − kγδμðαδ

δ
βÞ;

∇v μ∇v νDαβ
γδ ¼ gμνδγαδδβ − gμνgαβgγδ þ δμðαδ

ν
βÞg

γδ þ gμðγgδÞνgαβ

− δμðαδ
δ
βÞg

γν − gγμδνðαδ
δ
βÞ: ð3:2Þ

In the above equations, Dαβ
γδ represents the symbol of the

operator D̂αβ
γδ, and ∇v μ ¼ ∂

∂kμ denotes the vertical derivative
(see Ref. [ [23], Appendix A] for the definition of hori-
zontal and vertical derivatives). Formally, up to the
expression of the symbol Dαβ

γδ, the effective action
(3.1) is of the same form as the effective action obtained
in the electromagnetic case [ [23], Eq. (3.3)].
The effective action (3.1) depends on SðxÞ, Aαβðx;∇SÞ

and A�αβðx;∇SÞ, and the variation can be performed as in
Ref. [ [23], Appendix B]. The resulting Euler-Lagrange
equations are

Dαβ
γδAγδ − iϵð∇v μDαβ

γδÞ∇μAγδ −
iϵ
2
ð∇μ∇

v
μDαβ

γδÞAγδ

¼ Oðϵ2Þ; ð3:3Þ

Dαβ
γδA�αβ þ iϵð∇v μDαβ

γδÞ∇μA�αβ þ iϵ
2
ð∇μ∇

v
μDαβ

γδÞA�αβ

¼ Oðϵ2Þ; ð3:4Þ

∇μ½ð∇
v
μDαβ

γδÞA�αβAγδ

−
iϵ
2
ð∇v μ∇v νDαβ

γδÞðA�αβ∇νAγδ − Aγδ∇νA�αβÞ� ¼ Oðϵ2Þ:
ð3:5Þ

In the above equations, the symbol Dαβ
γδ and its

vertical derivatives are evaluated at the phase space point
ðx; pÞ ¼ ðx; kÞ.

B. WKB approximation of the Lorenz gauge

To remove unwanted pure gauge degrees of freedom, the
Euler-Lagrange equations (3.3)–(3.5) should be supple-
mented with additional equations. For this purpose, we
impose the Lorenz gauge condition on the metric pertur-
bation hαβ. The WKB approximation of the Lorenz gauge
condition is obtained by inserting the WKB ansatz (2.18)
into Eq. (2.14). At the lowest order in ϵ, we obtain

kαA0αμ ¼
1

2
kμA0; ð3:6Þ

and at Oðϵ0Þ we obtain

∇αA0αμ þ ikαA1αμ ¼
1

2
ð∇μA0 þ ikμA1Þ; ð3:7Þ

where A0 ¼ gαβA0αβ and A1 ¼ gαβA1αβ. These equations
can also be supplemented by the corresponding complex
conjugate equations.

C. Equations at order ϵ0

Keeping only terms of order ϵ0, Equations (3.3)–(3.5)
reduce to

Dαβ
γδA0γδ ¼ 0; ð3:8Þ

Dαβ
γδA0

�αβ ¼ 0; ð3:9Þ

∇μ½ð∇
v
μDαβ

γδÞA0
�αβA0γδ� ¼ 0: ð3:10Þ

Since Eqs. (3.8) and (3.9) are related by complex con-
jugation, it is enough to analyze only one of them. Using
the definition of the symbol Dαβ

γδ, Eq. (3.8) can be
written as
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1

2
ðkμkμδγαδδβ − kμkμgαβgγδ þ kαkβgγδ

þ kγkδgαβ − kαkγδδβ − kβkγδδαÞA0γδ ¼ 0: ð3:11Þ

This equation admits nontrivial solutions if and only if A0γδ

is in the kernel of the tensor Dαβ
γδ. The kernel of Dαβ

γδ is
discussed in detail in Appendix A. By imposing the Lorenz
gauge condition (3.6) in Eq. (3.11), we obtain

kμkμ
�
A0αβ −

1

2
gαβA0

�
¼ 0: ð3:12Þ

This equation can only be satisfied if either kμkμ ¼ 0 or
A0αβ − 1

2
gαβA0 ¼ 0. However, taking A0αβ − 1

2
gαβA0 ¼ 0

implies that A0αβ ¼ 0. Discarding this trivial solution,
we are left with the dispersion relation

kμkμ ¼ 0; ð3:13Þ

which is a well-known result of geometrical optics.
Furthermore, since kμ is the gradient of a scalar function,
it satisfies

∇μkα ¼ ∇αkμ: ð3:14Þ

Using this property, together with the dispersion relation
(3.13), we can derive the geodesic equation for kμ,

kν∇νkμ ¼ 0: ð3:15Þ

Imposing the Lorenz gauge condition (3.6) in Eq. (3.10),
we obtain

∇μ

�
kμ
�
A0

�αβA0αβ −
1

2
A0

�A0

��
¼ 0: ð3:16Þ

This equation represents a transport equation for the
intensity I0 ¼ A0

�αβA0αβ − 1
2
A0

�A0, which is another
well-known result of geometrical optics.

D. Equations at order ϵ1

We continue the WKB analysis by taking Eqs. (3.8) and
(3.9) at order ϵ1 only,

Dαβ
γδA1γδ − ið∇v μDαβ

γδÞ∇μA0γδ

−
i
2
ð∇μ∇

v
μDαβ

γδÞA0γδ ¼ 0; ð3:17Þ

Dαβ
γδA1

�αβ þ ið∇v μDαβ
γδÞ∇μA0

�αβ

þ i
2
ð∇μ∇

v
μDαβ

γδÞA0
�αβ ¼ 0: ð3:18Þ

We can simplify these equations by imposing the Lorenz
gauge condition (3.6) and (3.7) and by using Eqs. (3.13)
and (3.14). We obtain

kμ∇μ

�
A0αβ −

1

2
gαβA0

�

þ 1

2

�
A0αβ −

1

2
gαβA0

�
∇μkμ ¼ 0; ð3:19Þ

kμ∇μ

�
A0

�αβ −
1

2
gαβA0

�
�

þ 1

2

�
A0

�αβ −
1

2
gαβA0

�
�
∇μkμ ¼ 0: ð3:20Þ

Furthermore, using the lowest-order intensity I0, we can
write the amplitude tensors in the following way:

A0αβ −
1

2
gαβA0 ¼

ffiffiffiffiffi
I0

p
a0αβ;

A0
�αβ −

1

2
gαβA0

� ¼
ffiffiffiffiffi
I0

p
a0�αβ; ð3:21Þ

where a0αβ is a complex tensor, describing the polarization
of the gravitational wave. Note that, due to the Lorenz
gauge condition (3.6), the polarization tensor a0αβ satisfies
the orthogonality condition

kαa0αβ ¼ 0: ð3:22Þ

Using the transport equation (3.16), Eqs. (3.19) and (3.20)
reduce to

kμ∇μa0αβ ¼ kμ∇μa0�αβ ¼ 0: ð3:23Þ

The parallel propagation of the complex polarization tensor
a0αβ along kμ is another well-known result of the geomet-
rical optics approximation.

E. The polarization tensor in a null tetrad

The properties of the polarization tensor a0αβ become
more transparent when expressed in terms of a null
tetrad adapted to kα. Working with the metric signature
ð−;þ;þ;þÞ, we establish a set of four complex null
vectors fkα; nα; mα; m̄αg at each point in space-time, which
satisfy the following orthogonality relations:

mαm̄α ¼ 1; kαnα ¼ −1;

kαkα ¼ nαnα ¼ mαmα ¼ m̄αm̄α ¼ 0;

kαmα ¼ kαm̄α ¼ nαmα ¼ nαm̄α ¼ 0: ð3:24Þ

Since the polarization tensor a0μν is symmetric, it can have
at most ten independent components. However, due to the
orthogonality condition (3.22), we are left with only six
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independent components. Using the null tetrad, we can
write the polarization tensor as

a0μν ¼ z1mμmν þ z2m̄μm̄ν þ z3mðμm̄νÞ

þ z4kμkν þ z5kðμmνÞ þ z6kðμm̄νÞ; ð3:25Þ

where zi are complex scalar functions. Inserting this
expansion of the polarization tensor into the parallel
transport equation (3.23), and making use of the orthogon-
ality relations (3.24), we obtain the following transport
equations for the scalar functions zi:

kα∇αz1 ¼ −2z1m̄μkα∇αmμ; ð3:26aÞ

kα∇αz2 ¼ −2z2mμkα∇αm̄μ; ð3:26bÞ

kα∇αz3 ¼ 0; ð3:26cÞ

kα∇αz4 ¼ −ðz5mμ þ z6m̄μÞkα∇αnμ; ð3:26dÞ

kα∇αz5 ¼ −ðz3m̄μ þ 2z1mμÞkα∇αnμ

− z5m̄νkα∇αmν; ð3:26eÞ

kα∇αz6 ¼ −ðz3mμ þ 2z2m̄μÞkα∇αnμ

− z6mνkα∇αm̄ν: ð3:26fÞ

The transport equations for z1, z2, and z3 are decoupled.
Furthermore, the evolution of the trace of a0μν is described
by z3, which is covariantly constant along kα, and its value
will be fixed by the choice of initial conditions. As
mentioned in Sec. II D, we consider initial data such that
the metric perturbation is initially traceless. Thus, we
impose z3 ¼ 0. The other components, z4, z5, and z6,
describe the evolution of pure gauge degrees of freedom,
which were not fixed by imposing the Lorenz gauge. It is
shown in Appendix A that the components of the metric
perturbation proportional to z4, z5, and z6 do not contribute,
at the lowest order in ϵ, to the Riemann tensor. They are in
that sense pure gauge.
The nonpure-gauge degrees of freedom, describing the

polarization of the metric perturbation, are represented by
the terms proportional to the complex scalar functions z1
and z2. The tensors mμmν and m̄μm̄ν represent a circular
polarization basis for linearized metric perturbations, ana-
logue to the circular polarization basis covectorsmμ and m̄μ

used in the description of electromagnetic waves (a detailed
comparison between the polarization of electromagnetic
and gravitational waves can be found in [ [46], Sec. 35.6]).
By picking initial data such that the metric perturbation is
initially traceless (which is equivalent to z3 ¼ 0), Eq. (3.21)
implies that

a0�μνa0μν ¼ z�1z1 þ z�2z2 ¼ 1: ð3:27Þ

This relation restricts ðz1; z2Þ ∈ C2 to the unit three-sphere
S3. Furthermore, ðz1; z2Þ and ðeiϕz1; eiϕz2Þ (for any real ϕ),
represent the same polarization state. Thus, the space of
physically distinguishable polarization states is the com-
plex projective line CP1 ¼ S3=Uð1Þ ¼ S2 (in optics, this is
called the Poincare sphere; see Refs. [ [47], Sec. 1. 4. 2]
[[48], Sec 5.2]).
The transport equations for z1 and z2 have the same form

as in the electromagnetic case [ [23], Eq. (3.36)], the only
difference being a factor of 2, which corresponds to the fact
that here we are dealing with a spin-2 field, instead of the
electromagnetic field,which is a spin-1 field.As inRef. [23],
it is convenient to rewrite the transport equations for z1
and z2 in terms of the Berry connection. First, we should
remember that the covectors mα and m̄α are functions of x
and kðxÞ, because of the orthogonality relations given in
Eq. (3.24). Thus, we must carefully apply the chain rule
when taking covariant derivatives of mα and m̄α,

kμ∇μmα ¼ kμ∇μ½mαðx; kÞ�

¼ kμð∇h μmαÞðx; kÞ þ kμð∇μkνÞð∇
v
νmαÞðx; kÞ

¼ kμ∇h μmα; ð3:28Þ

where∇h μ is the horizontal derivative, defined in Ref. [ [23],
Appendix A]. As in the electromagnetic case, the scalar
functions z1 and z2 can be encoded in a two-dimensional unit
complex vector, which is analogous to the Jones vector used
in optics [10,11,45,49],

z ¼
�
z1
z2

�
; z† ¼ ð z�1 z�2 Þ: ð3:29Þ

The transport equations for z1 and z2 can be rewritten as

kμ∇μz ¼ 2ikμBμσ3z; ð3:30Þ

where σ3 is the third Pauli matrix,

σ3 ¼
�
1 0

0 −1

�
; ð3:31Þ

and Bμ is the Berry connection

Bμðx; kÞ ¼
i
2
ðm̄α∇h μmα −mα∇

h

μm̄αÞ

¼ im̄α∇h μmα: ð3:32Þ

The Berry connection has the same definition as in the
electromagnetic case [23]. The Berry phase can be defined
by considering a worldline xμðτÞ, with _xμ ¼ kμ. Then, by
restricting z to the worldline xμðτÞ, we obtain
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_z ¼ 2ikμBμσ3z: ð3:33Þ

This equation can be integrated along the worldline xμðτÞ as

zðτÞ ¼
�
e2iγðτÞ 0

0 e−2iγðτÞ

�
zð0Þ; ð3:34Þ

and we obtain the Berry phase γ as

γðτ1Þ ¼
Z

τ1

τ0

dτkμBμ: ð3:35Þ

Using Eq. (3.33), we can show that the following quantities
are conserved along kμ:

1 ¼ z�1z1 þ z�2z2 ¼ z†z;

s ¼ 2ðz�1z1 − z�2z2Þ ¼ 2z†σ3z: ð3:36Þ

Based on our assumptions on the initial conditions, given in
Sec. II D, we only consider metric perturbations which are
initially circularly polarized. This corresponds to

zð0Þ ¼
�
1

0

�
or zð0Þ ¼

�
0

1

�
: ð3:37Þ

Thus,we have s ¼ �2, depending on the choice of the initial
polarization state. Here, the parameter s represents the
helicity of the metric perturbation.

F. Effective dispersion relation

The results derived so far are based on a standard
approach to the WKB analysis, by imposing that terms
at different orders in ϵ in the Euler-Lagrange equa-
tions (3.3)–(3.5) vanish separately. With this approach,
we derived the well-known geometrical optics results: the
dispersion relation (3.13) and the transport equation for
the polarization tensor (3.23). While the dynamics of the
polarization tensor in Eq. (3.23) depends on kμ, and, hence,
on the dispersion relation (3.13), there is no backreaction
from the dynamics of the polarization tensor onto the
dispersion relation (3.23) and onto kμ. In other words, the
standard geometrical optics approach does not take into
account all the possible spin-orbit interactions between the
external and internal degrees of freedom, here represented
by the wave vector kμ and polarization tensor a0μν.
In the derivation of the spin Hall effect, as observed in

Ref. [23] (see also Ref. [5]), it is essential to gather terms
related to geometrical optics and terms involving the
polarization. This is the so-called spin-orbit coupling.
This can be achieved by collating the separately satisfied
Eqs. (3.3)–(3.5) into one quantity depending on powers of ϵ
at order 0 and 1, and vanishing at order Oðϵ2Þ.
Starting with Eqs. (3.3)–(3.5), an effective dispersion

relation can be derived in the in the following way.

We contract Eq. (3.3) with A�αβ and Eq. (3.4) with Aγδ.
Adding these equations together, we obtain

Dαβ
γδA�αβAγδ −

iϵ
2
ð∇v μ

Dαβ
γδÞðA�αβ∇μAγδ − Aγδ∇μA�αβÞ

¼ Oðϵ2Þ: ð3:38Þ

Using Aαβ ¼ A0αβ þ ϵA1αβ þOðϵ2Þ, the Lorenz gauge
condition given in Eqs. (3.6) and (3.7), as well as
Eq. (3.2), we can rewrite the above equation as

1

2
kμkμ

�
I0 þ ϵ

�
A0αβA1

�αβ þ A0
�αβA1αβ

−
1

2
A0A1

� −
1

2
A1A0

�
��

−
iϵ
2
kμ
�
A0

�γδ∇μA0γδ − A0γδ∇μA0
�γδ

þ 1

2
ðA0

�∇μA0 − A0∇μA0
�Þ
�
¼ Oðϵ2Þ: ð3:39Þ

The above equation can be further simplified by introduc-
ing the intensity

I ¼ AαβA�αβ −
1

2
AA�

¼ I0 þ ϵ

�
A0αβA1

�αβ þA0
�αβA1αβ −

1

2
A0A1

� −
1

2
A1A0

�
�

þOðϵ2Þ: ð3:40Þ

Then, we can rewrite the amplitude as

Aαβ ¼
ffiffiffiffi
I

p
aαβ ¼

ffiffiffiffĩ
I

p
ða0αβ þ ϵa1αβÞ þOðϵ2Þ; ð3:41Þ

where

Ĩ ¼ I0þ ϵ

�
A0αβA1

�αβþA0
�αβA1αβ−

1

2
A0A1

�−
1

2
A1A0

�
�
:

ð3:42Þ

From Eq. (3.39), we obtain

1

2
kμkμ −

iϵ
2
kμða0�αβ∇μa0αβ − a0αβ∇μa0�αβÞ

¼ Oðϵ2Þ: ð3:43Þ

This represents an effective dispersion relation,
containing OðϵÞ corrections to the geometrical optics
equation (3.13). We can also introduce the notation

Kμ ¼ kμ −
iϵ
2
ða0�αβ∇μa0αβ − a0αβ∇μa0�αβÞ ð3:44Þ
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and rewrite the effective dispersion relation as

1

2
KμKμ ¼ Oðϵ2Þ: ð3:45Þ

In a similar way, starting with (3.5), and considering
Aαβ ¼ A0αβ þ ϵA1αβ þOðϵ2Þ, the Lorenz gauge condition
given in Eqs. (3.6) and (3.7), as well as Eq. (3.2), we obtain

∇μðĨKμÞ ¼ Oðϵ2Þ: ð3:46Þ

This is an effective transport equation for the intensity Ĩ,
which includes OðϵÞ corrections to the geometrical optics
equation (3.16).

IV. EFFECTIVE RAY EQUATIONS

The transition from the WKB approximation of a field
theory to an effective point-particle description can be
realized by treating the dispersion relation as a Hamilton-
Jacobi equation for the phase function [ [50], Sec. 46]. It
has also been argued in Refs. [ [46], Box 25.3] [ [51],
Sec. II] that the physical interpretation of the effective
point-particle description provided by solving the
Hamilton-Jacobi equation is related to the principle of
constructive interference. One can define a localized wave
packet by considering a superposition of WKB wave
functions with slightly different wave vectors. The peak
of intensity of this superposition occurs where the waves
interfere constructively and coincides with the ray trajec-
tories given by the effective point-particle description.
At the lowest order in ϵ, we obtained in Eq. (3.13) the

dispersion relation

1

2
gμνkμkν ¼ 0; ð4:1Þ

where kμ ¼ ∇μS. This can be viewed as a Hamilton-Jacobi
equation, which is a nonlinear first-order partial differential
equation for the phase function S. We can solve the
Hamilton-Jacobi equation by using the method of charac-
teristics [ [50], Sec. 46]. This is done by defining a
Hamiltonian function Hðx; pÞ on T�M, related to the
dispersion relation by

Hðx;∇SÞ ¼ 1

2
gμνkμkν ¼ 0: ð4:2Þ

In this case, the Hamiltonian function is

Hðx; pÞ ¼ 1

2
gμνpμpν; ð4:3Þ

where pμ is a general covector on T�M, unlike kμ, which is
a gradient of a scalar function. The effective point-particle
description is given by Hamilton’s equations

_xμ ¼ ∂H
∂pμ

¼ gμνpν; ð4:4Þ

_pμ ¼ −
∂H
∂xμ ¼ −

1

2
∂μgαβpαpβ: ð4:5Þ

Given a set of ray trajectories fxμðτÞ; pμðτÞg representing a
solution of Hamilton’s equations, we can obtain a solution
of the Hamilton-Jacobi equation as [ [50], Sec. 46]

Sðxμðτ1Þ;pμðτ1ÞÞ¼
Z

τ1

τ0

dτ½_xμpμ−Hðx;pÞ�þ const: ð4:6Þ

Thus, at the lowest order in ϵ of the WKB approximation,
we have obtained an effective point-particle description in
terms of Hamilton’s equations (4.4) and (4.5). These are the
geodesic equations of the underlying spacetime.
To describe spin Hall effects, higher-order terms in the

WKB analysis must be taken into account. This can be
achieved by considering the effective dispersion relation
obtained in Eq. (3.43),

1

2
kμkμ−

iϵ
2
kμða0�αβ∇μa0αβ−a0αβ∇μa0�αβÞ¼Oðϵ2Þ: ð4:7Þ

Our aim is to treat this relation as an effective Hamilton-
Jacobi equation and to explore the corresponding effective
point-particle description. Using the expansion of the
polarization tensor a0αβ, given in Eq. (3.25), we can rewrite
the effective dispersion relation as

1

2
gμνkμkν−

iϵ
2
kμðz†∂μz−∂μz†zÞ− ϵskμBμ ¼Oðϵ2Þ; ð4:8Þ

where Bμ ¼ Bμðx; kÞ is the Berry connection defined in
Eq. (3.32), and s ¼ �2, depending on the initial state of
circular polarization. Note that, except for the different
value of the constant s, we have obtained the same effective
dispersion relation as in the electromagnetic case [ [23],
Eq. (4.12)]. Using Eq. (3.34), we can rewrite the second
term in Eq. (4.8) in terms of the Berry phase γ,

−
iϵ
2
kμðz†∂μz − ∂μz†zÞ ¼ ϵskμ∂μγ: ð4:9Þ

Using the Berry phase, we can define an effective
phase function S̃ ¼ Sþ ϵsγ and an effective wave vector
∇μS̃ ¼ k̃μ ¼ kμ þ ϵs∇μγ. Then, the effective dispersion
relation can be written as

1

2
gμνk̃μk̃ν − ϵsk̃μBμ ¼ Oðϵ2Þ: ð4:10Þ

This equation can be considered as an effective Hamilton-
Jacobi equation for the effective phase function S̃.
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Since circularly polarized WKB metric perturbations are of
the form

hαβ ¼ Re½
ffiffiffiffi
I

p
mαmβeiγeiSðxÞ=ϵ�;

hαβ ¼ Re½
ffiffiffiffi
I

p
m̄αm̄βe−iγeiSðxÞ=ϵ�; ð4:11Þ

the effective phase function S̃ represents the overall
phase factor of the WKB ansatz, up to order Oðϵ2Þ. As
in the previous case, we solve the effective Hamilton-Jacobi
equation for the unknown S̃ by using the method of
characteristics. We are seeking a Hamiltonian function
Hðx; pÞ on T�M, related to the effective dispersion
relation by

Hðx;∇S̃Þ ¼ 1

2
gμνk̃μk̃ν − ϵsk̃μBμ ¼ Oðϵ2Þ: ð4:12Þ

In this case, the Hamiltonian function is

Hðx; pÞ ¼ 1

2
gμνpμpν − ϵsgμνpμBνðx; pÞ; ð4:13Þ

and the effective point-particle description is given by
Hamilton’s equations

_xμ ¼ ∂H
∂pμ

¼ gμνpν − ϵsðBμ þ pα∇v μBαÞ; ð4:14Þ

_pμ ¼−
∂H
∂xμ

¼−
1

2
∂μgαβpαpβþ ϵspαð∂μgαβBβþgαβ∂μBβÞ: ð4:15Þ

These equations describe the spin Hall effect of gravita-
tional waves. The Hamiltonian and Hamilton’s equations
have the same form as in the electromagnetic case pre-
sented in Ref. [ [23], (4.15)–(4.17)], except for the value of
the constant s. The terms of Oðϵ1Þ are expressed in terms
of the Berry connection, and they depend on the state of
circular polarization through s. In the limit of infinitely high
frequencies, which corresponds to ϵ ¼ 0, we recover the
geodesic equations, as in Eqs. (4.4) and (4.5).
As observed in Ref. [23], the Hamiltonian (4.13) and the

effective ray equations (4.14) and (4.15) are not indepen-
dent of the choice of polarization vectorsmμ and m̄μ. This is
because the Berry connection Bμ is not invariant under
spin rotations mμ ↦ eiϕðxÞmμ. Such transformations can be
viewed as a change of gauge for the Berry connection. This
is similar to the case of a charged particle moving in an
electromagnetic field and described by the minimally
coupled Hamiltonian

H ¼ 1

2
gμνðpμ − eAμÞðpν − eAνÞ; ð4:16Þ

which is not invariant under gauge transformations of
the electromagnetic vector potential, Aμ ↦ Aμ þ∇μξ.
Generally, this issue can be solved by introducing nonca-
nonical coordinates, such that the connection one-form
(e.g., the electromagnetic vector potential Aμ for the case of
charged particles, or the Berry connection Bμ for the case of
spinning particles) is eliminated from the Hamiltonian, and
the ray equations are expressed in terms of the curvature
two-form (e.g., the Faraday tensor Fμν ¼ 2∇½μAν� for the
case of charged particles, or the Berry curvature for the case
of spinning particles). This procedure is discussed in
Ref. [52] for the case of a charged particle and in
Ref. [35] for Hamiltonians involving the Berry connection.
Also, it is generally the case that the effective ray equations
describing spin Hall effects in optics or condensed matter
physics are usually expressed in terms of the Berry
curvature [5,7,11,53–55].
Noncanonical coordinates for a Hamiltonian of the form

given in Eq. (4.13) were introduced in Ref. [23], based on
the general proposal of Littlejohn and Flynn [35]. The
relation between canonical coordinates ðxμ; pμÞ and non-
canonical coordinates ðXμ; PμÞ is

Xμ ¼ xμ þ iϵsm̄α∇v μmα; ð4:17Þ

Pμ ¼ pμ − iϵsm̄α∇μmα: ð4:18Þ

The coordinate transformation is performed perturbatively
with respect to ϵ, and terms of Oðϵ2Þ are ignored. We refer
the reader to Ref. [23] for the details of the calculations.
In noncanonical coordinates ðXμ; PμÞ, the Hamiltonian is

HðX;PÞ ¼ 1

2
gμνðXÞPμPν; ð4:19Þ

and the effective ray equations become

_Xμ ¼ Pμ þ ϵsPνðFpxÞνμ þ ϵsΓα
βνPαPβðFppÞνμ; ð4:20Þ

_Pμ ¼Γα
βμPαPβ− ϵsPνðFxxÞνμ− ϵsΓα

βνPαPβðFxpÞνμ: ð4:21Þ

In the above equations, we have the components of the
Berry curvature, defined as

ðFppÞνμ ¼ ið∇v μm̄α∇v νmα −∇v νm̄α∇v μmα

þ m̄α∇v ½μ∇v ν�mα −mα∇
v ½μ∇v ν�m̄αÞ;

ðFxxÞνμ ¼ ið∇μm̄α∇νmα −∇νm̄α∇μmα

þ m̄α∇½μ∇ν�mα −mα∇½μ∇ν�m̄αÞ;
ðFpxÞνμ ¼ −ðFxpÞμν

¼ ið∇v μm̄α∇νmα −∇νm̄α∇v μmαÞ: ð4:22Þ
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It can easily be verified that these equations are invariant
under spin rotations mμ ↦ eiϕðxÞmμ. However, given a null
covector Pμ, the orthogonal plane spanned bymμ and m̄μ is
not uniquely fixed, since one can always perform trans-
formations of the form mμ ↦ mμ þ cPμ. This orthogonal
plane can only be fixed uniquely by introducing additional
structure, such as a timelike vector tμ or another null vector
nμ, orthogonal tomμ and m̄μ. From a physical point of view,
this means that the orthogonal plane spanned bymμ and m̄μ

can only be fixed with respect to a timelike observer with
4-velocity tμ.
As discussed in Ref. [23], changing the vector field tμ,

defining a family of observers, corresponds to a change of
polarization vectors of the form mμ ↦ mμ þ cPμ. The
effective ray equations (4.20) and (4.21) are not invariant
under such transformations. This reflects the well-known
fact that the position of a massless spinning particle cannot
be defined independently of an observer. In particular, this
can be viewed as a manifestation of the relativistic Hall
effect [56] and the Wigner translation for massless spinning
particles [57,58] (see also Ref. [59] for a similar discussion
in the context of the Mathisson-Papapetrou-Dixon equa-
tions). It has been shown in Ref. [23] how Eqs. (4.20) and
(4.21) incorporate these effects.

V. CONCLUSION

We have presented a covariant WKB analysis of gravi-
tational waves, as described by the linearized Einstein
equations. By going beyond the standard geometrical
optics approach, we obtained effective ray equations
containing polarization-dependent terms and describing
the spin Hall effect of gravitational waves propagating
on arbitrary spacetimes. The effective ray equations have
the same form as in the electromagnetic case discussed in
Ref. [23], the only difference being a factor of 2, represent-
ing the spin-2 nature of the gravitational field. Thus,
considering electromagnetic and gravitational waves of
the same frequency, the spin Hall effect is twice as large
in the case of gravitational waves.
In an ongoing work [36] (see also [26]), the authors

prove that the resulting equations can be cast in the form of
the Mathisson-Papatreou-Dixon equations for massless
particles, with the Corinaldesi-Papapetrou spin supplemen-
tary condition. The latter is a consequence of the derivation
of the effective equations of motion. Furthermore, with
[23], it provides a first systematic covariant derivation of
the equations of motion for massless spinning particles.
The spin Hall effect of gravitational waves is expected to

play an important role for gravitational waves of finite
frequency. Hence, one important perspective is to under-
stand the observable consequences of corrections to geo-
metrical optics. First, the corrections to geometrical optics
should lead to measurable frequency-dependent corrections
to gravitational lensing, as discussed in [2,3]. To calculate

the effect, an analytic discussion of the effective equations
of motion must be performed. Second, the effect measured
is spin dependent. The effective equations of motion should
lead to different trajectories for electromagnetic and gravi-
tational wave packets. This could lead to different arrival
times. These aspects will be investigated in future works.
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APPENDIX A: PROPERTIES OF THE
SYMBOL Dαβ

γδ

The kernel of the symbol Dαβ
γδ, considered as a

endomorphism of the space of symmetric two-tensors, is
calculated in this section. We first observe that if bδ is any
covector, then

Dαβ
γδkðγbδÞ ¼ 0: ðA1Þ

The tensor kðγbδÞ is always in the kernel of Dαβ
γδ. More

generally, if Sγδ is a symmetric complex 2-tensor in the
kernel of Dαβ

γδ, then

2Dαβ
γδSγδ ¼ kαkβSþ gαβSγδkγkδ − kγSγαkβ − kγSγβkα

¼ 0: ðA2Þ

We consider a Newman-Penrose tetrad fkα; nα; mα; m̄αg
satisfying the orthogonality relations given in Eq. (3.24).
Considering symmetric tensor products of the Newman-
Penrose tetrad elements, the only nontrivial contractions
with the right-hand-side of Eq. (A2) are those with mαm̄β,
m̄αmβ, nαmβ, nαm̄β,

kγmβSγβ ¼ kγm̄βSγβ ¼ kγkβSγβ ¼ 0; ðA3Þ

and nαnβ,

S − 2nαkβSαβ ¼ 0 ¼ −2Sαβmαm̄β: ðA4Þ

A similar argument can be madewhen kμ is not null. Hence,
we obtain the following lemma:
Lemma 1.—When kμ is a null vector, the kernel of the

symbol Dαβ
γδ is the vector space of complex symmetric

two-tensors generated by

kαkβ; kðαnβÞ; kðαmβÞ; kðαm̄βÞ; ðA5Þ

mðαmβÞ; m̄ðαm̄βÞ: ðA6Þ
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When kμ is not a null vector, the elements of the kernel of
Dαβ

γδ are traceless symmetric two-tensors satisfying

kαSαβ ¼ 0: ðA7Þ

Using Eq. (A4), one checks easily that if Sγδ is in the kernel
of Dαβ

γδ, then its trace-reverse Šγδ satisfies

kαŠαβ ¼ 0; ðA8Þ

which is the form of the polarization tensor given in
Eq. (3.25).
Finally, we observe that two-tensors generated by the

elements of Eq. (A5) are pure gauge. The Riemann
curvature tensor of the particular perturbed metric tensor
g̃αβ ¼ gαβ þ ReðkðαbβÞeiS=ϵÞ, for an arbitrary kα ¼ ∇αS
and bα complex covector, is given by

R̃μ
ναβ ¼ Rμ

ναβ þ∇αΓðhÞμνβ −∇βΓðhÞμνα; ðA9Þ

R̃μ
ναβ ¼ Rμ

ναβ þOðϵ−1Þ; ðA10Þ

instead of the expected

R̃μ
ναβ ¼ Rμ

ναβ þOðϵ−2Þ: ðA11Þ

Hence, a perturbation of the form hαβ ¼ ReðkðαbβÞeiS=ϵÞ is
pure gauge at the lowest order in ϵ.
Lemma 2.—The only nonpure-gauge solutions of

Dαβ
γδSγδ ¼ 0 ðA12Þ

are generated by

mðαmβÞ; m̄ðαm̄βÞ: ðA13Þ

APPENDIX B: DERIVATION OF THE
LAGRANGIAN FOR LINEARIZED GRAVITY

In this section, we consider the full metric g̃αβ, written as
a sum of a background metric gαβ, and a small perturbation
metric hαβ,

g̃αβ ¼ gαβ þ hαβ: ðB1Þ

Recall that, with our conventions, we have

g̃αβ ¼ gαβ − hαβ þOðjhj2Þ: ðB2Þ

The Einstein-Hilbert action is for the full metric g̃αβ is

Z
M
d4x

ffiffiffĩ
g

p
R̃: ðB3Þ

As always, the linearization of the determinant of the metric
tensor leads to

ffiffiffĩ
g

p
¼ ffiffiffi

g
p �

1þ 1

2
gαβhαβ

�
þOðjhj2Þ: ðB4Þ

We introduce the notation

Γ̃α
βγ ¼ Γα

βγ þϒα
βγ;

ϒα
βγ ¼

1

2
gασð−∇σhβγ þ∇βhσγ þ∇γhβσÞ þOðjhj2Þ; ðB5Þ

where the Christoffel symbols Γα
βγ and the covariant

derivative ∇α are defined with respect to the background
metric gαβ. As the difference between two Christofell
symbols of two metrics, ϒα

βγ is a tensor. Now, we expand
the Riemann curvature tensor of g̃αβ,

R̃μ
ναβ ¼ Rμ

ναβ þ ∇̃αϒ
μ
νβ − ∇̃βϒ

μ
να

þ 2ðϒμ
σβϒ

σ
να −ϒμ

σαϒσ
νβÞ; ðB6Þ

where ∇̃α is the covariant derivative defined with respect to
g̃αβ. We contract in μ and α to get the Ricci curvature, and
with inverse metric tensor g̃νβ to get the scalar curvature,

R̃νβ ¼ R̃μ
νμβ

¼ Rνβ þ ∇̃μϒ
μ
νβ − ∇̃βϒ

μ
νμ

þ 2ðϒμ
σβϒ

σ
νμ −ϒμ

σμϒσ
νβÞ; ðB7Þ

R̃ ¼ g̃νβR̃νβ

¼ g̃νβRνβ þ g̃νβð∇̃μϒ
μ
νβ − ∇̃βϒ

μ
νμÞ

þ 2g̃νβðϒμ
σβϒ

σ
νμ −ϒμ

σμϒσ
νβÞ: ðB8Þ

We consider now the Einstein-Hilbert action for the
metric g̃αβ,

Z
M
d4x

ffiffiffĩ
g

p
R̃ ¼

Z
M
d4x

ffiffiffĩ
g

p
g̃νβ½Rνβ þ 2ðϒμ

σβϒ
σ
νμ −ϒμ

σμϒσ
νβÞ

þ ð∇̃μϒ
μ
νβ − ∇̃βϒ

μ
νμÞ�: ðB9Þ

In the above equation, the term on the third line is a
boundary term, which we drop. The term on the second line
can be rewritten as

g̃νβðϒμ
σβϒ

σ
νμ −ϒμ

σμϒσ
νβÞ

ffiffiffĩ
g

p
¼ gνβðϒμ

σβϒ
σ
νμ −ϒμ

σμϒσ
νβÞ

ffiffiffi
g

p þOðjhj3Þ: ðB10Þ

Using the expansion of the determinant of the metric tensor,
we obtain

PROPAGATION OF POLARIZED GRAVITATIONAL WAVES PHYS. REV. D 103, 044053 (2021)

044053-11



g̃νβ
ffiffiffĩ
g

p
¼ ffiffiffi

g
p �

gνβ − hνβ þ 1

2
hgνβ

�
þOðjhj2Þ: ðB11Þ

The expansion of the Einstein-Hilbert action, neglecting
terms of order 3 in hαβ, takes the preliminary form

Z
M
d4x

ffiffiffĩ
g

p
R̃¼

Z
M
d4x

ffiffiffi
g

p �
R−

�
Rνβ−

1

2
Rgνβ

�
hνβþRμνVμν

þ2gνβðϒμ
σβϒ

σ
νμ−ϒμ

σμϒσ
νβÞ

�

þOðjhj3Þ; ðB12Þ

where Vμν ¼ Oðjhj2Þ. Since we assume that the back-
ground metric gαβ satisfies the Einstein field equations in
vacuum with no cosmological constant, we have

Z
M
d4x

ffiffiffĩ
g

p
R̃ ¼

Z
M
d4x

ffiffiffi
g

p
gνβðϒμ

σβϒ
σ
νμ −ϒμ

σμϒσ
νβÞ

þOðjhj3Þ: ðB13Þ

Using the definition of ϒα
βγ, we can calculate

gνβϒμ
σβϒ

σ
νμ ¼

1

4
ð2∇σhμν∇μhσν −∇σhμν∇σhμνÞ

þOðjhj3Þ; ðB14Þ

gνβϒμ
σμϒσ

νβ ¼
1

4
ð−∇σh∇σhþ 2∇σh∇μhσμÞ

þOðjhj3Þ: ðB15Þ

The linearized Einstein-Hilbert action, neglecting terms of
order 3 in hαβ, is given by

Z
M
d4x

ffiffiffĩ
g

p
R̃ ¼

Z
M
d4x

ffiffiffi
g

p
LþOðjhj3Þ; ðB16Þ

where L is the Lagrangian for linearized gravity, defined as

L ¼ ∇σhμν∇μhσν −
1

2
∇σhμν∇σhμν

þ 1

2
∇σh∇σh −∇σh∇μhσμ; ðB17Þ

which agrees with the Lagrangian obtained in Ref. [ [39],
p. 55]. Integrating by parts and neglecting boundary terms,
we obtain

Z
M
R̃

ffiffiffĩ
g

p
dx ¼

Z
M
d4x

ffiffiffi
g

p
hαβD̂αβ

γδhγδ; ðB18Þ

where D̂αβ
γδ is defined as

D̂αβ
γδ ¼ 1

2
ðδγαδδβ∇μ∇μ − gαβgγδ∇μ∇μ þ gγδ∇α∇β

þ gαβ∇γ∇δ − δδβ∇γ∇α − δδα∇γ∇βÞ: ðB19Þ

APPENDIX C: LORENZ GAUGE

1. Linearization of the wave gauge

We start by the standard calculation of the linearization
of the wave gauge. Consider a chart ðU; xαÞ, and assume
that this chart is harmonic for the metric g̃αβ. That is

g̃αβ∇̃α∇̃βxδ ¼ Fδ; ðC1Þ

where Fδ are unknown functions to be chosen wisely. We
expand this to get

Fδ ¼ g̃αβ∇̃α∇̃βxδ

¼ g̃αβ∂xα∂xβx
δ þ g̃αβΓ̃μ

αβ∂xμxδ

¼ g̃αβΓ̃δ
αβ: ðC2Þ

Using

Γ̃α
βγ ¼ Γα

βγ þ
1

2
gασð−∇σhβγ þ∇βhσγ þ∇γhβσÞ; ðC3Þ

and neglecting the quadratic terms in hαβ, we obtain

gβγΓα
βγ|fflffl{zfflffl}

order 0 in hαβ

− hβγΓα
βγ þ

1

2
ð2∇βhβα −∇αhÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

order 1 in hαβ

¼ Fδ; ðC4Þ

∇β

�
hβα −

1

2
hgβα

�
¼ Fδ − g̃βγΓα

βγ: ðC5Þ

For a general background metric, we choose

Fδ ¼ g̃βγΓα
βγ; ðC6Þ

in order to obtain the Lorenz gauge condition

∇β

�
hβα −

1

2
hgβα

�
¼ 0: ðC7Þ

When gαβ is the Minkowski metric, and ðU; xαÞ the
Cartesian chart on R4, then Fδ can be chosen equal
to 0.

2. Propagation of the gauge

In that section, we check that the gauge condition is
conserved by the equation for linearized gravity. This is a
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linearization of the procedure described in Ref. [ [40],
Chapter 14.2]. We introduce

Gμ ¼ ∇αhαμ −
1

2
∇μh: ðC8Þ

Recall that h̆αβ is the trace reversed of hαβ. Observe that
Eq. (2.9) can be rewritten as

−∇α∇αh̆μν − gμν∇α∇βh̆
αβ

þ∇α∇μh̆αν þ∇α∇νh̆αμ ¼ 0: ðC9Þ

By commuting the covariant derivatives as

∇α∇μh̆αν ¼ ∇μ∇αh̆αν þ Rνασμh̆
σα; ðC10Þ

and using the fact that gαβ is Ricci flat, we obtain

∇α∇αh̆μν−2Rνασμh̆
σα ¼∇μGνþ∇νGμ−gμν∇αGα: ðC11Þ

Taking the divergence of the right-hand side of the previous
equations, we obtain

∇α∇αGμ þ RμαGα ¼ ∇μð∇α∇αh̆μν − 2Rνασμh̆
σαÞ: ðC12Þ

Hence, if we consider a solution of the reduced equation

∇α∇αh̆μν − 2Rνασμh̆
σα ¼ 0; ðC13Þ

and we assume that, initially,

Gμ ¼ 0 and ∇νGμ ¼ 0; ðC14Þ

then hαβ solves Eq. (2.9) in the Lorenz gauge. Furthermore,
the trace of hαβ satisfies the decoupled equation

∇μ∇μh ¼ 0: ðC15Þ
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