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The propagation of high-frequency gravitational waves can be analyzed using the geometrical optics
approximation. In the case of large but finite frequencies, the geometrical optics approximation is no longer
accurate and polarization-dependent corrections at first order in wavelength modify the propagation of
gravitational waves, via a spin-orbit coupling mechanism. We present a covariant derivation from first
principles of effective ray equations describing the propagation of polarized gravitational waves, up to first-
order terms in wavelength, on arbitrary spacetime backgrounds. The effective ray equations describe a
gravitational spin Hall effect for gravitational waves and are of the same form as those describing the
gravitational spin Hall effect of light, derived from Maxwell’s equations.
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I. INTRODUCTION

The advent of gravitational wave observations brings a
new range of phenomena related to the dynamics of the
gravitational field to our attention. Gravitational waves
propagate over cosmological distances and carry, in addi-
tion to information about their sources, imprints of cos-
mological expansion and inhomogeneities in the Universe.
The fact that the important sources of gravitational waves
emit in a very broad range of wavelengths [1] makes it
essential to include effects beyond geometrical optics on
their propagation, when considering lensing of gravita-
tional waves [2,3] (see also the similar but complementary
discussion in [4], where effects beyond general relativity
are considered).

Spin-orbit couplings play an essential role when analyz-
ing the propagation of spinning particles and fields in
inhomogeneous media beyond the geometrical optics and
test particle limit [5]. For the spin-1 Maxwell field, the spin
Hall effect of light has been verified experimentally [6,7].
When the wavelength is small in comparison with the
inhomogeneity scale of the media, an electromagnetic wave
packet undergoes a polarization-dependent deviation from
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the path predicted by geometrical optics [6—11]. This can
be viewed as a manifestation of spin-orbit coupling via
the Berry curvature. In general relativity, the dynamics of
spinning particles is described by the Mathisson-
Papapetrou-Dixon equations [12-16], with a suitable clo-
sure relation, the so-called spin-supplementary condition.

Polarization-dependent effects for the propagation of
Maxwell fields in curved spacetime have been discussed
previously in Refs. [17-21]. A detailed review and further
references can be found in Ref. [22]. Recently, a covariant
derivation of the gravitational spin Hall effect of light,
based on first principles, has been given in Ref. [23].
Similarly, the effective ray equations for massive spin—%
Dirac fields, beyond the geometrical optics limit, have been
discussed in Refs. [24-26]. The spin-2 nature of the
gravitational field leads one to expect that corrections to
geometrical optics, involving the Berry curvature, will be
relevant also for gravitational waves [27,28]. Geometrical
optics for gravitational waves has a long history; see, for
instance, [29-34].

In this paper, we present the first covariant analysis of the
spin Hall effect for gravitational waves. Following the
strategy developed in Ref. [23] for the Maxwell field, as
well as the general theory given in Ref. [35], we provide a
derivation from first principles of effective ray equations
describing the propagation of gravitational waves, up to
first-order terms in wavelength, on arbitrary spacetime
backgrounds. The equations of motion are obtained
through a higher-order geometrical optics approximation
using a Wentzel-Kramers-Brillouin (WKB) ansatz. The
dynamics of the polarization is described in terms of the
Berry connection, and the terms of first order in wavelength
in the effective ray equations involve the Berry curvature,
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manifesting the spin nature of the gravitational field.
These corrections to the standard trajectories of geometrical
optics, the null geodesics, may be termed as the spin Hall
effect of gravitational waves [27]. It can be shown that
the equations of motion are of the same nature as the
Mathisson-Papapetrou-Dixon equations for massless spin-
ning particles [26,36], completed by the Corinaldesi-
Papapetrou spin supplementary condition (see [37],
Sec. 3.2.1]). Our treatment is covariant and applicable
to arbitrary curved spacetimes, in contrast to previous work
presented in the literature. For example, the derivation of
the spin Hall effect for gravitational waves given in
Ref. [27] is not explicitly covariant, and it is limited to
propagation in static spacetimes in the weak field limit. Our
derivation of the effect is obtained from the classical field
theory of linearized gravity, in contrast to Ref. [27] where
the author argues that the effect is quantum in nature.
Another derivation of a spin Hall effect for gravitational
waves was proposed in Ref. [28]. While this approach is
manifestly covariant, it is limited to stationary spacetimes.

Our starting point is the classical field theory of
linearized gravity, governed by a truncated form of the
Einstein-Hilbert Lagrangian. A metric perturbation in the
form of a WKB ansatz is inserted in the action for linearized
gravity, and the resulting expression is truncated after the
first order in the inverse of the frequency. This provides a
Lagrangian representing the WKB approximation of the
linearized gravity field theory. The corresponding Euler-
Lagrange equations, with Lorenz gauge imposed, provide
the dispersion relation and the transport equation for the
amplitude. The dispersion relation is used to define a
Hamiltonian for the effective ray equations.

The paper is organized as follows. Section II contains the
general setup. The basic equations for linearized gravity are
presented in Sec. I A, the gauge choice is discussed in
Sec. II B, and the WKB ansatz is introduced in Sec. II C.
The WKB approximation of the action is made in Sec. 111,
and it is shown how the well-known results of geometrical
optics can be obtained from the corresponding Euler-
Lagrange equations. In Sec. III E, we discuss the dynamics
of the polarization tensor in terms of the Berry connection.
The effective dispersion relation is derived in Sec. III F.
Finally, the effective ray equations are discussed in
Sec. IV. Appendix A contains a discussion on some
algebraic properties of the symbol. Appendix B presents
a self-contained derivation of the equation of linearized
gravity. Appendix C contains a basic discussion of the
Lorenz gauge.

A. Notations and conventions

We consider an arbitrary smooth Lorentzian manifold
(M,g,,), where the metric tensor g, has signature
(—+++). The absolute value of the metric determinant
is denoted as g = |detg,,|. The phase space is defined as
the cotangent bundle 7*M, and phase space points are

denoted as (x, p). The Einstein summation convention is
assumed. Greek indices represent space-time indices and
run from O to 3. Latin indices, (a, b, c, ...), represent tetrad
indices and run from 0 to 3. We adopt the curvature
conventions of [38].

II. THE EINSTEIN FIELD EQUATIONS
AND LINEARIZED GRAVITY

We consider the vacuum Einstein field equations with
vanishing cosmological constant

1
Raﬂ - ERgaﬁ = 0, (21)

where R, is the Ricci tensor, R = R”, is the Ricci scalar.
The Einstein field equations can be obtained as the Euler-
Lagrange equations of the Einstein-Hilbert action

Jgu) = A 2 /TR (9. (22)

Our goal is to describe the propagation of gravitational
waves, treated as a small metric perturbation around a fixed
background solution of the vacuum FEinstein field equa-
tions. For this purpose, in the next section, we derive the
linearization of the Einstein-Hilbert action and the corre-
sponding equations for the linearized gravitational field.

Note that we could have treated the case of a nonvanishing
cosmological constant since, in the high-frequency analysis,
the latter plays no role.

A. Linearization of the Einstein-Hilbert action
We remind here the form of the linearized Einstein-
Hilbert action; see Ref. [39]. For completeness, the deri-
vation, which is often not presented in detail in the
literature, is performed in Appendix B. Let g, be a solution
of the Einstein field equations in vacuum,
R, = 0. (2.3)
We consider a Lorentzian metric g,,, obtained through a
small perturbation #,, of g,,,

g;w = 9w + h/w' (24)

Linearizing the Einstein-Hilbert action near g, as in
Ref. [39], we obtain

J(Gu) = J(Gg) + Jiin(hy) + O(AF),  (2.5)

where
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1 1
]lirz(hm/) = A/] d4x\/§<§ VthVh - Evyh“ﬁvyhaﬂ

— V,hV;h + vahyﬂwhaﬂ) (2.6)

is the action for the perturbation /,,. Index manipulation
and covariant derivatives are defined with respect to the
background metric g,5, and h = h,zg”. Integrating by
parts and neglecting the boundary terms, the linearized
action can be written as

Jiin(hy) = /M d*x\/gh® D 5" h, 5, (2.7)
where Daﬁ75 is the differential operator,
AL A A )

+ gop VI V? — 5ZV7V(1 - 8VIVy). (2.8)
The corresponding Euler-Lagrange equations are
Dy"°h,5 = 0. (2.9)
Introducing the trace-reverse tensor
ilaﬂ = hgp — %hga,;, (2.10)
Eq. (2.9) becomes
V(IV“EW + V,lvﬂizaﬂgw
- VeV, h,, — VeV, h,, = 0. (2.11)
Taking the trace of Eq. (2.11) leads to
V,Veh = 2V*V¥h,,. (2.12)

B. The Lorenz gauge

The Einstein field equations are gauged equations. The
gauge freedom can be exploited to reduce the Einstein field
equation to a hyperbolic system of equations. A detailed
discussion of this reduction in the particular case of the
wave gauge can be found in Ref. [ [40], Sec. 14. 1] or [ [41],
Sec. 2.4].

A similar reduction can be applied to the linearized
equations (2.9). The linearization of the gauge freedom of
the FEinstein field equations leads to the invariance of
Eq. (2.9) by the transformation

hy = hy, =V, & =V, (2.13)
where &, is a one-form on M. The gauge invariance of the
linearized field equations (2.9) can be exploited to make

these equations hyperbolic. The linearization of the wave
gauge for the Einstein field equations leads to the Lorenz
gauge condition for the linearized field equations (2.9),

. 1
vahaﬂ — va (ha/i _ 2hg(l/}> =0. (214)

The detailed derivation of this equation is presented in

Appendix C. Imposing the Lorenz gauge condition,

Eq. (2.9) is reduced to the following wave equation:
VoV, Ry = 2R 40, h = 0, (2.15)

vaoy

and Eq. (2.12) for the trace of the perturbation decouples,

V,V*h = 0. (2.16)
Using the expression of fzﬂ,, given in Eq. (2.10), and using
the fact that g, has vanishing Ricci curvature, we obtain

VAV by, = 2R, 0% = 0. (2.17)

C. WKB ansatz

We assume that the perturbation metric &,z admits a
WKB expansion of the form

hap(x) = Re[A5(x, k(x), €)eS¥/e),

Aaﬁ(x’ k(x)’ 6) = AOaﬂ(x’ k(x)) + €A1aﬂ(x? k(x))

+ O(€?), (2.18)

where S is a real scalar function, A,; is a complex

amplitude, and € is a small expansion parameter. The
gradient of S is denoted as

k,(x) = V,S(x). (2.19)

We are allowing the amplitude A4 to depend on k,(x).

This is justified by the mathematical formulation of the

WKB approximation [42,43], where k,(x) determines a

Lagrangian submanifold of x — (x, k(x)) € T*M, and the
amplitude A,y is defined on the Lagrangian submanifold.

D. Assumption on the initial data

We consider a Cauchy surface in M, and we make the
following assumptions. First, the gauge condition given in
Eq. (2.14) is initially satisfied. Second, the trace of the
perturbation /& vanishes initially. Equation (2.16) guaran-
tees that this condition is conserved in the future of X.
Finally, the gravitational waves have initially circular
polarization (see Sec. IIIE).
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III. THE WKB APPROXIMATION FOR
LINEARIZED GRAVITY

The WKB analysis of various field equations is generally
performed by inserting the WKB ansatz directly into the
field equation, followed by an analysis of the resulting
terms at each order in the expansion parameter ¢. However,
for the purpose of studying spin Hall effects, we find it
more convenient to perform the WKB analysis by inserting
the WKB ansatz into the field action. The advantages
of such a variational formulation of the WKB approxima-
tion are extensively discussed in Ref. [44] (see also
Refs. [11,45]). In particular, a similar approach proved
to be effective in the derivation of the gravitational spin
Hall effect of light [23].

A. Euler-Lagrange equations in the
WKB approximation

We insert the WKB ansatz (2.18) into the linearized
Einstein-Hilbert action (2.7). Keeping only terms of the
lowest two orders in ¢, we obtain

2€2Jlin = / d4x\/§ [A*aﬂDaﬁyéA},&
M
ie 2
- E (vﬂDaﬂy{s)(A*aﬁvﬂAyﬁ - AyﬁvﬂA*aﬂ)
+ O(e?), (3.1)

where

1
D(l/}y(S = 5 (kﬂkﬂégaz - k,ukﬂgnl/)’gy(S + kmrk/}gy{s

+ k}’kagaﬂ - kaky(sg - kﬂky52>,

v
VED o = k548 = K Gapg” + k(a0 g7 + KT W g

- k<a5;> g — kyé’(’aéz),
V"V” yé = g"”&yé‘s g’“’gaﬂg” + 5” 5D gy5 + ¢ y95 Yap
—%%W—W%%- (3.2)

In the above equations D, V‘s represents the symbol of the

operator Daﬂ , and V = ak denotes the vertical derivative

(see Ref. [[23], Appendix A] for the definition of hori-
zontal and vertical derivatives). Formally, up to the
expression of the symbol D(,/;75, the effective action
(3.1) is of the same form as the effective action obtained
in the electromagnetic case [ [23], Eq. (3.3)].

The effective action (3.1) depends on S(x), A,s(x, VS)
and A*#(x, VS), and the variation can be performed as in
Ref. [[23], Appendix B]. The resulting Euler-Lagrange
equations are

DaﬂyéA},é - ie(V”Daﬂ )V Ay§ - 5 (V V”Daﬂ )A

= O(e). (3.3)

DA% + ie(V*D s’ )V, A L (V VD o0 A*

= O(e?), (3.4)
vy KvﬂDaﬂy(s)A*aﬂAy&
i€ . vl/ *a *a
- S(Vﬂv Daﬂy(s)(A ﬂvuAy(S - Ayr?vL/A ﬁ)} = 0(62)‘
(3.5)
In the above equations, the symbol D(,,ﬂ}"s and its

vertical derivatives are evaluated at the phase space point
(x,p) = (x,k).

B. WKB approximation of the Lorenz gauge

To remove unwanted pure gauge degrees of freedom, the
Euler-Lagrange equations (3.3)—(3.5) should be supple-
mented with additional equations. For this purpose, we
impose the Lorenz gauge condition on the metric pertur-
bation /5. The WKB approximation of the Lorenz gauge
condition is obtained by inserting the WKB ansatz (2.18)
into Eq. (2.14). At the lowest order in €, we obtain

1
kaAOa” - EkﬂAo, (36)
and at O(e) we obtain
1
V"‘Ao(w + ikaAlaﬂ = E (VMAO + ikﬂA1>, (37)

where Ag = g™ Ag,s and A; = g”A; 5. These equations
can also be supplemented by the corresponding complex
conjugate equations.

C. Equations at order ¢’

Keeping only terms of order €°, Equations (3.3)—(3.5)
reduce to

Da/}yﬁAOyé =0, (38)
D(l/)’y(SAO*aﬂ = O, (39)
V., [(VFDs%)Ag* Ay ,5) = 0. (3.10)

Since Egs. (3.8) and (3.9) are related by complex con-
jugation, it is enough to analyze only one of them. Using
the definition of the symbol Daﬂ , Eq. (3.8) can be
written as
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(kK 5485 = Kk Gupg® + okiyg®

| =

KK gop — kok? 8 — kk? 3)Ag,5 = O. (3.11)
This equation admits nontrivial solutions if and only if A5
is in the kernel of the tensor D,4"°. The kernel of D4 is
discussed in detail in Appendix A. By imposing the Lorenz
gauge condition (3.6) in Eq. (3.11), we obtain

1
kﬂkﬂ (AO{lﬁ - EgaﬂAo) == 0 (312)
This equation can only be satisfied if either k,k* =0 or
AOaﬂ - %gaﬁAO =0. HOWeVer, taklng AOaﬂ - %g(lﬁAO =0
implies that Ay,s = 0. Discarding this trivial solution,
we are left with the dispersion relation

K,k =0, (3.13)

which is a well-known result of geometrical optics.
Furthermore, since k, is the gradient of a scalar function,
it satisfies

(3.14)

Using this property, together with the dispersion relation
(3.13), we can derive the geodesic equation for k,,

KV k, = 0. (3.15)

Imposing the Lorenz gauge condition (3.6) in Eq. (3.10),
we obtain

1
Vﬂ |:kﬂ <Ao*aﬁAoaﬁ - §A0*A0):| - O (316)

This equation represents a transport equation for the
intensity Zo = Ay*PAg,s —3A0"Ag, which is another
well-known result of geometrical optics.

D. Equations at order ¢!
We continue the WKB analysis by taking Egs. (3.8) and
(3.9) at order €' only,

v

- % (V,V*Dyy®)Ag,5 = 0, (3.17)
Dy ®A* P + i(V'D o)V ,Ag*
+ % (V,V#D %) Ay = 0. (3.18)

We can simplify these equations by imposing the Lorenz
gauge condition (3.6) and (3.7) and by using Egs. (3.13)
and (3.14). We obtain

1
K Vﬂ <A0aﬂ - EgaﬁA0>
1 1
+ E AOaﬁ’ — EgaﬁAO Vﬂk” = O, (319)

1
KV, (Ao*aﬁ -3 gaﬁAO*)

1 1
+3 (Ao*aﬂ -5 gﬂ/’Ao*> V,k*=0. (3.20)

Furthermore, using the lowest-order intensity Z,, we can
write the amplitude tensors in the following way:

1
AOaﬁ - zgaﬂAo =V Ioa(){l[)”

1
Ay — EQHﬁAO* = V/Zoa*?, (3.21)
where a,; is a complex tensor, describing the polarization
of the gravitational wave. Note that, due to the Lorenz
gauge condition (3.6), the polarization tensor ag,y satisfies
the orthogonality condition

k"aoaﬂ =0. (322)
Using the transport equation (3.16), Egs. (3.19) and (3.20)
reduce to

KV @05 = KV ,ay* = 0. (3.23)
The parallel propagation of the complex polarization tensor
agqp along k* is another well-known result of the geomet-
rical optics approximation.

E. The polarization tensor in a null tetrad

The properties of the polarization tensor ag,; become
more transparent when expressed in terms of a null
tetrad adapted to k,. Working with the metric signature
(—,+,+,+), we establish a set of four complex null
vectors { kg, ny, my, m,} at each point in space-time, which
satisfy the following orthogonality relations:

myem* =1, kn* = —1,

a __ a a _ = X —
k k* = n,n* = mom* = mam* =0,

(3.24)

k,m* = km* = nyam®* = ngm®* = 0.

Since the polarization tensor a,, is symmetric, it can have
at most ten independent components. However, due to the
orthogonality condition (3.22), we are left with only six
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independent components. Using the null tetrad, we can
write the polarization tensor as

Aoy = 21My,m, + Z2ﬁ1/4ﬁ1v + Z3m(;4ﬁ1v)

+ Z4kﬂk1/ —+ zsk(ﬂmy) + Z6k(”l’7’LD), (325)
where z; are complex scalar functions. Inserting this
expansion of the polarization tensor into the parallel
transport equation (3.23), and making use of the orthogon-
ality relations (3.24), we obtain the following transport
equations for the scalar functions z;:

k“Vazl = —2Z1i’7’lﬂkavamﬂ, (3.268.)
k*V 2o = —222mﬂkavaﬁ’lﬂ, (3.26b)
k*V,z3 =0, (3.26c¢)
k®V oz = —(zsm* + Z6ﬁ1”)kavanﬂ, (3.26d)
k*V 25 = —(z3m + 2zym*)k*Von,

— z5m*k*V m,, (3.26¢)
kavaz6 = _(Z3m” + 222ﬁ1”)kavanﬂ

— 26m k*V,im,,. (3.26f)

The transport equations for z;, z, and z3 are decoupled.
Furthermore, the evolution of the trace of a,, is described
by z3, which is covariantly constant along k%, and its value
will be fixed by the choice of initial conditions. As
mentioned in Sec. II D, we consider initial data such that
the metric perturbation is initially traceless. Thus, we
impose zz = 0. The other components, z4, z5, and zg,
describe the evolution of pure gauge degrees of freedom,
which were not fixed by imposing the Lorenz gauge. It is
shown in Appendix A that the components of the metric
perturbation proportional to z4, zs, and z do not contribute,
at the lowest order in ¢, to the Riemann tensor. They are in
that sense pure gauge.

The nonpure-gauge degrees of freedom, describing the
polarization of the metric perturbation, are represented by
the terms proportional to the complex scalar functions z,
and z,. The tensors m,m, and m,n, represent a circular
polarization basis for linearized metric perturbations, ana-
logue to the circular polarization basis covectors m, and i,
used in the description of electromagnetic waves (a detailed
comparison between the polarization of electromagnetic
and gravitational waves can be found in [ [46], Sec. 35.6]).
By picking initial data such that the metric perturbation is
initially traceless (which is equivalent to z3 = 0), Eq. (3.21)
implies that

ay™*ag,, = zj21 + 220 = 1. (3.27)

This relation restricts (z;, z,) € C? to the unit three-sphere
S3. Furthermore, (z;, z,) and (e?z,, e'?z,) (for any real ¢),
represent the same polarization state. Thus, the space of
physically distinguishable polarization states is the com-
plex projective line CP! = $3/U(1) = S? (in optics, this is
called the Poincare sphere; see Refs. [ [47], Sec. 1.4.2]
[[48], Sec 5.2]).

The transport equations for z; and z, have the same form
as in the electromagnetic case [ [23], Eq. (3.36)], the only
difference being a factor of 2, which corresponds to the fact
that here we are dealing with a spin-2 field, instead of the
electromagnetic field, which is a spin-1 field. Asin Ref. [23],
it is convenient to rewrite the transport equations for z;
and z, in terms of the Berry connection. First, we should
remember that the covectors m, and 7, are functions of x
and k(x), because of the orthogonality relations given in
Eq. (3.24). Thus, we must carefully apply the chain rule
when taking covariant derivatives of m, and m,,,

KMV, my, = KV, [m,(x, k)]
h v
= KV, ) (x, k) + K (V,k, ) (Vmg) (x, k)
h
= k*V,m,, (3.28)
h

where Vﬂ is the horizontal derivative, defined in Ref. [ [23],
Appendix A]. As in the electromagnetic case, the scalar
functions z; and z, can be encoded in a two-dimensional unit

complex vector, which is analogous to the Jones vector used
in optics [10,11,45,49],

z
zz( 1>, ' =(z; ).
22

The transport equations for z; and z, can be rewritten as

(3.29)

k'V,z = 2ik"B,05z, (3.30)
where o5 is the third Pauli matrix,
1 0
= , 3.31
=y ) (331
and B, is the Berry connection
i, h h B
B,(x, k) = 3 (m*V ,my, — m,V,in%)
ok
= im*V,m,. (3.32)

The Berry connection has the same definition as in the
electromagnetic case [23]. The Berry phase can be defined
by considering a worldline x*(z), with ¥* = k*. Then, by
restricting z to the worldline x*(7), we obtain
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= 2ik'B,o3z. (3.33)

This equation can be integrated along the worldline x*(7) as

e2ir(7) 0
(0= (7 )0 (39

and we obtain the Berry phase y as
y(z)) = / " 4ok B, (3.35)

0

Using Eq. (3.33), we can show that the following quantities
are conserved along k*:

1=1ziz) + 3z, = 7'z,

s =2(zjz) — 322) = 277032 (3.36)
Based on our assumptions on the initial conditions, given in
Sec. II D, we only consider metric perturbations which are
initially circularly polarized. This corresponds to

0= (1) o q0-(°)

Thus, we have s = 42, depending on the choice of the initial
polarization state. Here, the parameter s represents the
helicity of the metric perturbation.

(3.37)

F. Effective dispersion relation

The results derived so far are based on a standard
approach to the WKB analysis, by imposing that terms
at different orders in e in the Euler-Lagrange equa-
tions (3.3)—(3.5) vanish separately. With this approach,
we derived the well-known geometrical optics results: the
dispersion relation (3.13) and the transport equation for
the polarization tensor (3.23). While the dynamics of the
polarization tensor in Eq. (3.23) depends on k,,, and, hence,
on the dispersion relation (3.13), there is no backreaction
from the dynamics of the polarization tensor onto the
dispersion relation (3.23) and onto k. In other words, the
standard geometrical optics approach does not take into
account all the possible spin-orbit interactions between the
external and internal degrees of freedom, here represented
by the wave vector k, and polarization tensor ag,.

In the derivation of the spin Hall effect, as observed in
Ref. [23] (see also Ref. [5]), it is essential to gather terms
related to geometrical optics and terms involving the
polarization. This is the so-called spin-orbit coupling.
This can be achieved by collating the separately satisfied
Eqgs. (3.3)—(3.5) into one quantity depending on powers of €
at order 0 and 1, and vanishing at order O(e?).

Starting with Egs. (3.3)—(3.5), an effective dispersion
relation can be derived in the in the following way.

We contract Eq. (3.3) with A** and Eq. (3.4) with Ays.
Adding these equations together, we obtain

ie Uu
DaﬂyﬁA*aﬁAyé _ 5 (v Daﬂyﬁ) (A*"/’VMAW; _ AyévﬂA*aﬁ)
— 0). (3.38)

Using Ayp = Aggp + €A1q5 + O(e?), the Lorenz gauge
condition given in Egs. (3.6) and (3.7), as well as
Eq. (3.2), we can rewrite the above equation as

1
zkﬂkﬂ |:I0 + €(A0a/;A1*aﬁ + Ao*aﬁAlaﬂ

1 1
~ 5 A" ~ 2A1A0*>}

ic , y
- 5 kﬂ |:A0*y5vﬂA0},5 - AO}/ﬁvﬂAO 16

1
+3 (A" V, 40 —AUV,,AO*)} —0@E).  (3.39)

The above equation can be further simplified by introduc-
ing the intensity

1
I :AaﬁA*aﬂ —EAA*
1 1
=Ty +e| AgapAr™ +Ag* P A 5 — EAOAI* —5A4140"

2

+O(eY). (3.40)

Then, we can rewrite the amplitude as

Agp = \/faa/i = \/%(QO(I/J +edagp) +O(€),  (3.41)

where

- 1 1
I:IO+€<A0aﬁA]*(lﬁ +A0*aﬂAlaﬁ_§A0Al* —A1A0*> .

2
(3.42)
From Eq. (3.39), we obtain
! H ie w( g xab xaff
Ekﬂk — Ek (ao Vﬂaoaﬂ — aoaﬂvﬂdo )
= O(e?). (3.43)
This represents an effective dispersion relation,

containing O(¢) corrections to the geometrical optics
equation (3.13). We can also introduce the notation

ie
K;t = kﬂ - 5 (Clo*aﬂvﬂaoaﬁ - aoaﬂvﬂao*"/}) (344)
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and rewrite the effective dispersion relation as

1
EK”K” = O(e?).

(3.45)
In a similar way, starting with (3.5), and considering
Aup = Apap + €A145 + O(€?), the Lorenz gauge condition
given in Egs. (3.6) and (3.7), as well as Eq. (3.2), we obtain

V. (IK") = O(e?). (3.46)
This is an effective transport equation for the intensity Z,
which includes O(e) corrections to the geometrical optics
equation (3.16).

IV. EFFECTIVE RAY EQUATIONS

The transition from the WKB approximation of a field
theory to an effective point-particle description can be
realized by treating the dispersion relation as a Hamilton-
Jacobi equation for the phase function [ [50], Sec. 46]. It
has also been argued in Refs. [[46], Box 25.3] [[51],
Sec. II] that the physical interpretation of the effective
point-particle description provided by solving the
Hamilton-Jacobi equation is related to the principle of
constructive interference. One can define a localized wave
packet by considering a superposition of WKB wave
functions with slightly different wave vectors. The peak
of intensity of this superposition occurs where the waves
interfere constructively and coincides with the ray trajec-
tories given by the effective point-particle description.

At the lowest order in €, we obtained in Eq. (3.13) the
dispersion relation

% #kk, =0, (4.1)
where k, = V8. This can be viewed as a Hamilton-Jacobi
equation, which is a nonlinear first-order partial differential
equation for the phase function S. We can solve the
Hamilton-Jacobi equation by using the method of charac-
teristics [ [50], Sec. 46]. This is done by defining a
Hamiltonian function H(x,p) on T*M, related to the
dispersion relation by

1
H(x,VS) = Eg””k,,ky =0. (4.2)
In this case, the Hamiltonian function is
l v
H(x,p) = Egﬂ Pulus (4.3)

where p, is a general covector on T*M, unlike k,,, which is
a gradient of a scalar function. The effective point-particle
description is given by Hamilton’s equations

OH
)‘C’M = — = gﬂbpyv 44
on (4.4)
, OH 1,
Pu = _W = —5 u9 ﬁPaPﬁ- (4-5)

Given a set of ray trajectories {x*(7), p,(7)} representing a
solution of Hamilton’s equations, we can obtain a solution
of the Hamilton-Jacobi equation as [ [50], Sec. 46]

S(X”(Tl),p”(’l'l)):/rl dz[¥"p,—H(x,p)|+const. (4.6)

To

Thus, at the lowest order in € of the WKB approximation,
we have obtained an effective point-particle description in
terms of Hamilton’s equations (4.4) and (4.5). These are the
geodesic equations of the underlying spacetime.

To describe spin Hall effects, higher-order terms in the
WKB analysis must be taken into account. This can be
achieved by considering the effective dispersion relation
obtained in Eq. (3.43),

1 i€
Ekﬂkﬂ _Ek” (ao*aﬁvﬂaOaﬂ - aO(l/}vﬂaO*aﬂ) = O(€2>' (47)

Our aim is to treat this relation as an effective Hamilton-
Jacobi equation and to explore the corresponding effective
point-particle description. Using the expansion of the
polarization tensor a4, given in Eq. (3.25), we can rewrite
the effective dispersion relation as

1 ie
S0 kik, =5 K (20,2 = 0,272) —esk'B, = O(¢),  (4.8)

where B, = B, (x, k) is the Berry connection defined in
Eq. (3.32), and s = +2, depending on the initial state of
circular polarization. Note that, except for the different
value of the constant s, we have obtained the same effective
dispersion relation as in the electromagnetic case [[23],
Eq. (4.12)]. Using Eq. (3.34), we can rewrite the second
term in Eq. (4.8) in terms of the Berry phase v,

ie

—Ek”(zTayz - 0,2'z) = esk*9,y. (4.9)

Using the Berry phase, we can define an effective
phase function § = S + esy and an effective wave vector
VMS' = I~cﬂ =k, +esV,y. Then, the effective dispersion
relation can be written as

| R ~

Eg’“’kﬂku —esk’B, = O(e?). (4.10)

This equation can be considered as an effective Hamilton-
Jacobi equation for the effective phase function S.

044053-8



PROPAGATION OF POLARIZED GRAVITATIONAL WAVES

PHYS. REV. D 103, 044053 (2021)

Since circularly polarized WKB metric perturbations are of
the form

hos = Re[\/fmamﬂe”’em(")/e},

hap = Re[VZ i imge 7 eiS0/e], (4.11)
the effective phase function S represents the overall
phase factor of the WKB ansatz, up to order O(e?). As
in the previous case, we solve the effective Hamilton-Jacobi
equation for the unknown S by using the method of
characteristics. We are seeking a Hamiltonian function
H(x,p) on T*M, related to the effective dispersion
relation by

- 1 -~ -
H(x,VS) = Eg"”kﬂky —esk’B, = O(e?). (4.12)
In this case, the Hamiltonian function is
1 v v
H(x.p) = 59" pupy = 59" puBu(x. p). (4.13)

and the effective point-particle description is given by
Hamilton’s equations

aH v
W =—=¢g"p,—es(B*+ p*V'B,), (4.14)
opy
. OH
="
1
) IV Papp+€spa(0,97Bs+ g7 0,By).  (4.15)

These equations describe the spin Hall effect of gravita-
tional waves. The Hamiltonian and Hamilton’s equations
have the same form as in the electromagnetic case pre-
sented in Ref. [ [23], (4.15)—(4.17)], except for the value of
the constant s. The terms of O(e') are expressed in terms
of the Berry connection, and they depend on the state of
circular polarization through s. In the limit of infinitely high
frequencies, which corresponds to € = 0, we recover the
geodesic equations, as in Egs. (4.4) and (4.5).

As observed in Ref. [23], the Hamiltonian (4.13) and the
effective ray equations (4.14) and (4.15) are not indepen-
dent of the choice of polarization vectors m,, and m,,. This is
because the Berry connection B, is not invariant under
spin rotations m,, > ei‘/’(")mﬂ. Such transformations can be
viewed as a change of gauge for the Berry connection. This
is similar to the case of a charged particle moving in an
electromagnetic field and described by the minimally
coupled Hamiltonian

1
H = Eglw(pu - EAﬂ)(pu - eAy)v (416)

which is not invariant under gauge transformations of
the electromagnetic vector potential, A, — A, +V ¢
Generally, this issue can be solved by introducing nonca-
nonical coordinates, such that the connection one-form
(e.g., the electromagnetic vector potential A, for the case of
charged particles, or the Berry connection B, for the case of
spinning particles) is eliminated from the Hamiltonian, and
the ray equations are expressed in terms of the curvature
two-form (e.g., the Faraday tensor F,, =2V,A, for the
case of charged particles, or the Berry curvature for the case
of spinning particles). This procedure is discussed in
Ref. [52] for the case of a charged particle and in
Ref. [35] for Hamiltonians involving the Berry connection.
Also, it is generally the case that the effective ray equations
describing spin Hall effects in optics or condensed matter
physics are usually expressed in terms of the Berry
curvature [5,7,11,53-55].

Noncanonical coordinates for a Hamiltonian of the form
given in Eq. (4.13) were introduced in Ref. [23], based on
the general proposal of Littlejohn and Flynn [35]. The
relation between canonical coordinates (x*, p,) and non-
canonical coordinates (X¥, P,) is

Xt = Xt + iesm*V'my, (4.17)

P, = p, — iesm®V,m,. (4.18)

The coordinate transformation is performed perturbatively
with respect to €, and terms of O(e?) are ignored. We refer
the reader to Ref. [23] for the details of the calculations.
In noncanonical coordinates (X*, PM), the Hamiltonian is

H(X, P) = % #(X)P,P,. (4.19)

and the effective ray equations become
X+ = pr 4 esPY(F ) /' + engyPaP/’(Fpp)””, (4.20)
P,=T% P,PP —esP"(F.,),, —esTs P,PP(F,,)",. (4.21)

In the above equations, we have the components of the
Berry curvature, defined as

v v v v
(Fpp) = i(VH RN, — VRV m,

+ m“%[”%”] My — ma%b‘%”] m®),

(Fxx)yy = i(vymavuma - vymavyma
=+ ﬁz"‘V[ﬂVU] my — maV[”VU] ﬁ’La),
(pr)p” = _(Fxp)”y

— (VR my — V, ™ m,). (4.22)
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It can easily be verified that these equations are invariant
under spin rotations m,, — e m .- However, given a null
covector P, the orthogonal plane spanned by m,, and m,, is
not uniquely fixed, since one can always perform trans-
formations of the form m, + m, + cP,. This orthogonal
plane can only be fixed uniquely by introducing additional
structure, such as a timelike vector # or another null vector
n*, orthogonal to m,, and /n,,. From a physical point of view,
this means that the orthogonal plane spanned by m,, and m,,
can only be fixed with respect to a timelike observer with
4-velocity .

As discussed in Ref. [23], changing the vector field #,
defining a family of observers, corresponds to a change of
polarization vectors of the form m, — m, + cP,. The
effective ray equations (4.20) and (4.21) are not invariant
under such transformations. This reflects the well-known
fact that the position of a massless spinning particle cannot
be defined independently of an observer. In particular, this
can be viewed as a manifestation of the relativistic Hall
effect [56] and the Wigner translation for massless spinning
particles [57,58] (see also Ref. [59] for a similar discussion
in the context of the Mathisson-Papapetrou-Dixon equa-
tions). It has been shown in Ref. [23] how Egs. (4.20) and
(4.21) incorporate these effects.

V. CONCLUSION

We have presented a covariant WKB analysis of gravi-
tational waves, as described by the linearized Einstein
equations. By going beyond the standard geometrical
optics approach, we obtained effective ray equations
containing polarization-dependent terms and describing
the spin Hall effect of gravitational waves propagating
on arbitrary spacetimes. The effective ray equations have
the same form as in the electromagnetic case discussed in
Ref. [23], the only difference being a factor of 2, represent-
ing the spin-2 nature of the gravitational field. Thus,
considering electromagnetic and gravitational waves of
the same frequency, the spin Hall effect is twice as large
in the case of gravitational waves.

In an ongoing work [36] (see also [26]), the authors
prove that the resulting equations can be cast in the form of
the Mathisson-Papatreou-Dixon equations for massless
particles, with the Corinaldesi-Papapetrou spin supplemen-
tary condition. The latter is a consequence of the derivation
of the effective equations of motion. Furthermore, with
[23], it provides a first systematic covariant derivation of
the equations of motion for massless spinning particles.

The spin Hall effect of gravitational waves is expected to
play an important role for gravitational waves of finite
frequency. Hence, one important perspective is to under-
stand the observable consequences of corrections to geo-
metrical optics. First, the corrections to geometrical optics
should lead to measurable frequency-dependent corrections
to gravitational lensing, as discussed in [2,3]. To calculate

the effect, an analytic discussion of the effective equations
of motion must be performed. Second, the effect measured
is spin dependent. The effective equations of motion should
lead to different trajectories for electromagnetic and gravi-
tational wave packets. This could lead to different arrival
times. These aspects will be investigated in future works.
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APPENDIX A: PROPERTIES OF THE
SYMBOL Daﬁ7‘S

The kernel of the symbol Daﬂy‘s, considered as a
endomorphism of the space of symmetric two-tensors, is
calculated in this section. We first observe that if b; is any
covector, then

D"k, bs) = 0. (A1)

The tensor k(,bs is always in the kernel of Daﬁ75. More
generally, if §,5 is a symmetric complex 2-tensor in the
kernel of D", then

2D, S 5 = kS + gupSyskT K — k7S
=0.

ky — k7S, 5k,
(A2)

yo

We consider a Newman-Penrose tetrad {k,, n,, mg, i,

satisfying the orthogonality relations given in Eq. (3.24).
Considering symmetric tensor products of the Newman-
Penrose tetrad elements, the only nontrivial contractions
with the right-hand-side of Eq. (A2) are those with m®in”,
m*mP, n®mP, n*m”,

kymﬁSyﬂ = k”lhﬂSyﬂ = k”kﬂSﬂ; = O, (A3)

and n%n?,

S - 2n”kﬂS(,ﬁ =0= —2Saﬁm”ﬁ¢/’. (A4)
A similar argument can be made when &* is not null. Hence,
we obtain the following lemma:

Lemma 1.—When k* is a null vector, the kernel of the
symbol D[,,/J/‘S is the vector space of complex symmetric
two-tensors generated by

kakﬁ’ k(amﬂ), (AS)

kiamp). kialp).

M(gMp), M. (A6)
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When k* is not a null vector, the elements of the kernel of

D, are traceless symmetric two-tensors satisfying

k*Sqp = 0. (A7)
Using Eq. (A4), one checks easily that if S, is in the kernel
of Daﬁyfs, then its trace-reverse 5’75 satisfies

k%S, =0, (A8)

which is the form of the polarization tensor given in
Eq. (3.25).

Finally, we observe that two-tensors generated by the
elements of Eq. (A5) are pure gauge. The Riemann
curvature tensor of the particular perturbed metric tensor
Jop = Gup + Re(k(bpe’/€), for an arbitrary k, =V,S
and b, complex covector, is given by

Rﬂuaﬁ = Rﬂmx} + var(h)ﬂuﬁ - vﬂr(h)ﬂuow (A9)
R”yaﬂ =RVyop + O(e™h), (A10)

instead of the expected
RY Yy = RV s + O(e72). (Al1)

Hence, a perturbation of the form h,; = Re(k(,bg)e’/) is
pure gauge at the lowest order in €.
Lemma 2.—The only nonpure-gauge solutions of

Daﬁy(ss},g - 0 (AIZ)

are generated by

Mgy, M) (A13)

APPENDIX B: DERIVATION OF THE
LAGRANGIAN FOR LINEARIZED GRAVITY

In this section, we consider the full metric g,z, written as
a sum of a background metric g,4, and a small perturbation
metric A,

gaﬂ = Gap =+ ha/)" (Bl)
Recall that, with our conventions, we have
77 = g7 = h? + O(|h]). (B2)

The Einstein-Hilbert action is for the full metric g,4 is

/ d4x\/§i€.
M

(B3)

As always, the linearization of the determinant of the metric
tensor leads to

— L,
Vi=va(1+ 59 ) + OURP). (B4)
We introduce the notation
I =13, + TZY’

1
15, =56 (=Vahy, + Vha, +V,hgs) + O(AP),  (BS)

where the Christoffel symbols I'; and the covariant

derivative V, are defined with respect to the background
metric g,4. As the difference between two Christofell
symbols of two metrics, Tgy is a tensor. Now, we expand
the Riemann curvature tensor of g,

Rﬂyaﬂ - Rﬂbaﬂ + vanfﬁ - ﬁﬂ'ﬂf{l

+ (X400, — ThYT,), (B6)

where @a is the covariant derivative defined with respect to
Jap- We contract in p and a to get the Ricci curvature, and

with inverse metric tensor §*” to get the scalar curvature,

Ry=Rtp
- Rvﬂ + 6ﬂﬂr5ﬂ - @/,»Tl,fﬂ

+ 2(05, Y5, — YouX7p), (B7)

= QUﬁRvﬁ + Quﬁ(@ﬂﬁrﬁﬁ - vﬂwljﬁ

+ 29T, 5, = Y5,T5,). (B8)

We consider now the Einstein-Hilbert action for the
MEric Gz,

A d*x\/gR = /M d*x\/G3P Ry + 2(Xh, X0, — Y5, Y2,

+ (VX0 = VTh). (B9)

In the above equation, the term on the third line is a
boundary term, which we drop. The term on the second line
can be rewritten as

@”ﬁ(Tﬁp’Tgﬂ - TﬁwTZﬁ)\/é

= ¢ (Yo X5 = Yo Xip) /g + O(IRP).  (B10)

Using the expansion of the determinant of the metric tensor,
we obtain
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FVT = Va7 - 10+ b ) - OURP). - (B11)

The expansion of the Einstein-Hilbert action, neglecting
terms of order 3 in h,, takes the preliminary form

pog 1
finis sl -t o
+297 (04,7, — T/;MTZ/X)]
+O(|hP). (B12)
where V% = O(|h|?). Since we assume that the back-

ground metric g, satisfies the Einstein field equations in
vacuum with no cosmological constant, we have

A/z d*x\/gR = /w d*xy/99 (Y57, — YouX7y)

+ O(|n)?). (B13)
Using the definition of T"‘y, we can calculate
1
g, = 1 (2VenN by, — VN ;h,,)
+(9(|h|3), (B14)
1
gvﬂr';ﬂgﬁ =7 (=V,hV°h + ZVUhV”hW)
+(9(|h|3). (B15)

The linearized Einstein-Hilbert action, neglecting terms of
order 3 in h,g, is given by

/ d*x\/gR = / d*x\/gL + O(|h]*),  (B16)
M M
where L is the Lagrangian for linearized gravity, defined as

1
L = VY, hg, =5 VWY by,

o> (B17)

+ %V,,hV"h VA

which agrees with the Lagrangian obtained in Ref. [ [39],
p- 55]. Integrating by parts and neglecting boundary terms,
we obtain

/M R+\/gdx = Al d*x\/gh”Doy"°h,5.  (B18)

where ﬁaﬁ75 is defined as

o 1
Daﬁy(5 = E (5£52V”V” - gaﬂg}"svﬂvﬂ + gy(sVGVﬂ

+ g VIV = BVIV, — 5iVIV,). (B19)

APPENDIX C: LORENZ GAUGE

1. Linearization of the wave gauge

We start by the standard calculation of the linearization
of the wave gauge. Consider a chart (U, x*), and assume
that this chart is harmonic for the metric g,z. That is

gaﬁvaﬁ/ixﬁ = Féa (Cl)

where F? are unknown functions to be chosen wisely. We
expand this to get

F? = gV, V x0
= gaﬂaxaaxﬂxé + gaﬂf‘zﬁax"'xé
_ gaﬁf‘iﬁ'
Using
. 1
0, =15 + 59"”(—Vohpy + Vphey + Vyhys),  (C3)

and neglecting the quadratic terms in h,4, we obtain

1
TS, — WG, 45 (V= V) = B, (C4)
——

order 0in A, order 1in /1,4

1 .
v, (hﬂa - 5hg’"’> —Fogms.(CS)
For a general background metric, we choose
Fo = gﬁyrgy, (Co)
in order to obtain the Lorenz gauge condition
yiled 1 3

When g, is the Minkowski metric, and (U, x") the

Cartesian chart on R*, then F? can be chosen equal
to 0.

2. Propagation of the gauge

In that section, we check that the gauge condition is
conserved by the equation for linearized gravity. This is a
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linearization of the procedure described in Ref. [[40],
Chapter 14.2]. We introduce

Ly (C8)

(lﬂ_i utte

gﬂ — Vah

Recall that ﬁaﬁ is the trace reversed of f,4. Observe that
Eq. (2.9) can be rewritten as

- vavahuu - g;wvav[)’ha/j

+ VY, hy + V2V, by, = 0. (C9)
By commuting the covariant derivatives as
VoV, iy = V, Vo, + Ry h, (C10)
and using the fact that g,; is Ricci flat, we obtain
VoV, —2R,40h"* =V,G,+V,G, -, V%G,. (ClI)

Taking the divergence of the right-hand side of the previous
equations, we obtain

VoV9G, + R,uG* = V*(V,Voh,, — 2R 00, h*).  (C12)

Hence, if we consider a solution of the reduced equation

VoVeh,, = 2R 40, h"* = 0, (C13)
and we assume that, initially,
G,=0 and V,G, =0, (C14)

then £, solves Eq. (2.9) in the Lorenz gauge. Furthermore,
the trace of h,; satisfies the decoupled equation

ViV, h = 0. (C15)
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