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In this work we calculate the angular deflection of light in the strong field limit in two spacetimes which
were previously studied within the Eddington-inspired Born-Infeld gravity, namely, a black hole and a
wormhole, both with topological charge. We show that the presence of the parameters characterizing
Eddington-inspired Born-Infeld gravity and the topological charge promote significant changes in the
angular deflection of light with respect to that one obtained in Schwarzschild spacetime. Using the
expression for angular deflection in the strong field limit, we calculate the position and magnification of
the respective relativistic images.
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I. INTRODUCTION

The Eddington-inspired Born-Infeld gravity (EIBI) is an
alternative gravity model appropriate for the high energy
regime, i.e., the strong field regime [1,2]. This theory
avoids geodesic singularities, even in a classical treatment,
while asymptotically it coincides with the general relativity
(GR) [3]. The first proposal of such modified gravity
theories has been performed in a (pseudo-)Riemannian
scenario [1]. On the other hand, the version postulated by
Bañados and Ferreira [4] takes into account a metric-affine
(Palatini) version of EIBI in which the gravitational sector
is instead being described by the metric only, is charac-
terized by two degrees of freedom: the metric and the
connection which are supposed to be independent a priori.
As it is well known in these theories, the new degrees of
freedom of the connection are turned on by the matter
sources, otherwise, in the absence of them (vacuum case),
the theory reduces to GR. This study has motivated a series
of works regarding both the mathematical structure and
the phenomenology of EIBI. As for the structure of the
theory, EIBI is a specific example of a class of generalized
theories of gravity called Ricci-based gravity theories,
which in turn have been recently found to admit a mapping
to GR not only in vacuum, but in the general case [5–8]
where the matter sector develops nontrivial effective
interactions [9,10]. It is noteworthy that the particular
case of EIBI coupled to Maxwell electrodynamics maps

to GR coupled to Born-Infeld electrodynamics [8]. On the
phenomenological side, EIBI theories have been studied
coupled to a variety of matter sources and many interesting
solutions were found [11]. In addition, it is calling attention
to the most recent results found in this theory, for example,
multicenter and rotating solutions [12], stellar structure
models [13] and scalar compact objects [14]. The simplest
solutions, to the best of our knowledge, have been found in
[15,16] where the authors considered a global monopole
(GM) as the matter source. The EIBI is characterized by the
coupling constant ϵ (we will discuss its role in more details
in the next section). Many constraints on this parameter
have been considered in the literature. One can remark the
strong constraint with ϵ > 0 and ϵ ≤ 109 m2 from compact
objects [17]. More recently, constraints on this parameter
from observations of speed of gravitational waves have
been obtained [18]: jϵj ≤ 1021 m2 and jϵj ≤ 1037 m2.
The GM is a type of a topological defect which

hypothetically has been generated within phase transitions
with spontaneous symmetry breaking (SOð3Þ → Uð1Þ) in
the early Universe [19]. The main theoretical line of
studying such objects is devoted to their gravitational field
]20 ], and these studies have been done in many alternative

theories of gravity, both within metric formalism [21] and
Palatini formalism [15,22]. When an ordinary black hole
absorbs a GM, the corresponding space time presents a
solid angle deficit, characteristic for the topological charge.
One consequence is a change in the deflection of light in
comparison to the ordinary Schwarzschild black hole, it has
been checked in [23] by using the weak field limit [24].
Gravitational lensing is an important application of

GR aimed to investigate the structure of the spacetime
taking place in the cases of the most varied gravitational
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sources [25]. It can be studied either in the weak field
regime when the radiation is deflected too far from the
source or in the strong field regime when the radiation
passes very closely to the photon sphere and wraps several
times around it. Given the mathematical difficulties
imposed by the strong field approach, the weak field
scheme is the most usual one which had achieved its
success despite being mathematically simpler. However,
due to earlier and more recent theoretical and experimental
challenges faced by the GR, for example, one can remark
the recent pictures taken from a black hole published by the
Event Horizon Telescope collaboration [26–31], the strong
field regime has acquired great importance. The reason is
that it allowed to investigate the regions localized very
closely to the event horizon of a black hole or to the throat
of a wormhole. Moreover, it follows from the observations
that there is a possibility of detecting deviations with
respect to GR, which can allow to gather information on
the possible new degrees of freedom coming from the
strong field corrections (high energy regime) to GR.
Although this problem is rather complicated, in recent

years many studies have provided a reliable mathematical
apparatus to work with the deflection of light in the strong
field limit [32,33]. Many applications of these studies have
also been carried out. One can highlight [34], where the
authors provided, for the first time, a lens equation for a
black hole setup by considering an asymptotically flat
background. The remarkable feature found by them was
the existence of an infinite number of images (besides the
primary and second images) along the optic axis. The
background-independent lens equation has also been found
in [35]. In this scenario, the authors in [36] found the angle
of light deflection near the photon sphere. A new approach
proposed by Tsukamoto [33] allowed us to improve the
earlier results. The strong field limit has been explored in a
variety of other contexts, for example, regular solutions
(regular black holes [37] and wormholes [38]), spinning
black holes [39] and alternative theories of gravity [40].
The Barriola-Vilenkin global monopole has been inves-

tigated within the gravitational lensing context in [41]. In
[42], the authors obtained the impacts of the strong
gravitational lensing during considering a black hole which
acquired topological charge after swallowing the GM. In
[43], the strong gravitational lensing was investigated
within the contexts of an ordinary and a phantom GM.
In the framework of fðRÞ gravity, the work [44] also
investigates strong gravitational lensing. In [45,46] the
strong field lensing by the asymptotic flat electrically
charged EIBI black hole was studied. The aim of this
work is to investigate the strong gravitational lensing in
the spacetime of black holes and wormholes in EIBI
gravity [16].
The paper is organized as follows: in Sec. II we obtain

the metric describing the spacetime with the topological
charge of the GM in EIBI gravity. In Sec. III we find the

deflection of light in spacetime of the black hole in the
strong field limit. In Sec. IV we study the lensing equations
and evaluate the observables related to relativistic images.
In Sec. V we get the expansion for deflection of light in the
spacetime of the wormhole solution obtained in this theory
in the strong field limit. Finally, in Sec. VI, we provide a
summary and conclusions of the results. Throughout this
paper, we use the system of units where Newton gravita-
tional constant and the speed of light in vacuum are set
equal to unity: G ¼ c ¼ 1.

II. GLOBAL MONOPOLE SOLUTION
IN EIBI GRAVITY

In this section we briefly put forward the solutions of
EIBI gravity with a GM taken as matter source, which have
been discussed in details in [15,16]. Let us start by writing
down the EIBI gravity

SBH ¼ 1

κ2ϵ

Z h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ ϵRðμνÞðΓÞj

q
− λ

ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q i
d4x

þ Sm½gμν;Φ�; ð1Þ

where ϵ is a constant with the mass dimension (−2). The
vertical bars denote the matrix determinant. Here, RðμνÞðΓÞ
is the symmetric part of the Ricci tensor which is entirely
constructed from the connection Γ which, within the
Palatini approach, is independent of the metric tensor
gμν. Note that only the symmetric part of the Ricci tensor
contributes in the former action, the reason for that is due to
the projective invariance of the theory, which has recently
been proved to be an essential ingredient in order to avoid
ghost degrees of freedom [47,48]. The matter content is
only coupled to the metric in agreement to the equivalence
principle. As a result the action Sm½gμν;Φ� depends on the
metric and the matter fields, denoted here as Φ. The
constant λ, in general, is defined as λ ¼ 1þ ϵΛ, where
Λ is the cosmological constant, however, from now on,
it will be neglected, i.e., λ ¼ 1. In [49], it was shown that
for a matter described by the energy-momentum tensor
Tμ

ν ¼ diagð−ρ;−ρ; Pθ; PθÞ resembling an anisotropic
fluid, the gravitational field equations are solved by the
following metric:

ds2 ¼ −
1

1 − ϵκ2Pθ
AðxÞdt2 þ 1

ð1 − ϵκ2PθÞAðxÞ
dx2

þ r2ðxÞðdθ2 þ sin2 θdϕ2Þ; ð2Þ

where

x2 ¼ r2ð1þ ϵκ2ρÞ ð3Þ

and
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AðxÞ ¼ 1 −
2MðxÞ

x
; with

dMðxÞ
dx

¼ κ2r2ρ
2

: ð4Þ

We now turn our attention to the key object of this paper,
that is, global monopole. The energy-momentum tensor
describing the region outside of the core of the GM [20]

is Tμ
ν ¼ diagð− η2

r2 ;−
η2

r2 ; 0; 0Þ, where η stands for the
energy scale of the spontaneous symmetry breaking.
With this at hand, a straightforward comparison between
both aforementioned energy-momentum tensors leads us to

the following identification, ρ ¼ η2

r2 and Pθ ¼ 0.
From (3), it follows that

r2 ¼ x2 − ϵα2; ð5Þ
where we defined α2 ≡ κ2η2. One can note that if ϵ < 0, the
function r2ðxÞ has a minimal value given by rmin ¼ α

ffiffiffiffiffijϵjp
at x ¼ 0, see [16]. This possibility suggests the existence of
wormholelike solutions, and in fact, we will show that this
solution also describes an Ellis wormhole, as the mass
vanishes, plus a topological charge stemming from the GM.
On the other hand, if ϵ > 0, the function r2ðxÞ does not
have a minimal nonzero value, and in this case the solution
will describe a black hole with a topological charge [16].
Solving (4), we find AðxÞ ¼ 1 − α2 − 2M0

x , where M0 is
an integration constant which can be interpreted as the mass
of the object. Then, the (2), expressed in terms of the x
coordinate, becomes

ds2 ¼ −
�
1 − α2 −

2M0

x

�
dt2 þ

�
1 − α2 −

2M0

x

�
−1
dx2

þ ðx2 − ϵα2Þðdθ2 þ sin2 θdϕ2Þ: ð6Þ
We can rewrite this line element in terms of the r coordinate
by means of (5). For the region corresponding to x > 0 and
requiring ϵ > 0, the metric is

ds2 ¼ −
�
1 − α2 −

2M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ϵα2

p
�
dt2

þ r2

r2 þ ϵα2

�
1 − α2 −

2M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ϵα2

p
�

−1
dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ: ð7Þ
This solution was first obtained in [15]. From (6), we find
that picking the integration constant to be M0 ¼ 0, the
ϵ < 0 case provides a solution describing an Ellis-like
wormhole with topological GM charge [16]. Hence, doing
this and rescaling the metric (6): t → t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
, x → xffiffiffiffiffiffiffiffi

1−α2
p

and ϵ → ϵ
1−α2, we have

ds2 ¼ −dt2 þ dx2

þ ð1 − α2Þðx2 þ jϵjα2Þðdθ2 þ sin2 θdϕ2Þ: ð8Þ

It is worth calling attention to the fact that this solution
arises naturally in the EIBI case and does not violate the
energy conditions. In addition, it is the simplest solution of
a wormhole in EIBI gravity that we have known up to now.
For the sake of simplicity, we will suppose all distances

to be measured in terms of the Schwarzschild mass:
x → x

2M0
; t → t

2M0
; ϵ → ϵ

ð2M0Þ2. Thus the metric (6) takes

the form

ds2 ¼ −
�
1 − α2 −

1

x

�
dt2 þ dx2

ð1 − α2 − 1
xÞ

þ ðx2 − ϵα2Þðdθ2 þ sin2 θdϕ2Þ: ð9Þ

The methodology for treating gravitational lensing we are
going to adopt in the following cannot be applied to naked
singularities. So, let us restrict ourselves to the branch
x > 0 in the former equation. We should also point out that
in the case ϵ < 0, we can have 0 < x < ∞ and there is no
possibility for arising naked singularities. Already in the
case ϵ > 0, we have α

ffiffiffiffiffijϵjp
< x < ∞; therefore, from a

direct inspection of the former equation one concludes that
the horizon is located at xh ¼ 1

1−α2 and, as a result of (5), xh
must be bigger than the lowest value of the coordinate x,
that is, we must have [15]

α2ϵ ≤
1

ð1 − α2Þ2 ; ð10Þ

to ensure r is real.
In the next section we shall investigate the deflection of

light very closely these objects. For that, we shall imple-
ment the strong field scheme which is the most suitable
approach to dealing with black holes and wormholes as
remarked before.

III. STRONG FIELD DEFLECTION OF LIGHT

In order to introduce the main elements for the calculation
of light deflection in the strong field limit, let us follow the
methodology introduced by Bozza [32] and improved by
Tsukamoto [33]. We start by defining a generic static and
spherically symmetric spacetime whose line element is

ds2¼−AðxÞdt2þBðxÞdx2þCðxÞðdθ2þsin2θdϕ2Þ: ð11Þ

A photon starting from infinity,1 when it approaches a black
hole with a given parameter of impact b, is deflected at a
closest approach x0 and then goes to infinity. The impact

1In the case of spacetimewith a topological charge, wewill have
the limits limx→∞ AðxÞ ¼ 1 − α2, limx→∞ BðxÞ ¼ ð1 − α2Þ−1 and
limx→∞ CðxÞ ¼ x2 − ϵα2. With this we can show that the effective
potential V satisfies the condition limx→∞ V ¼ ð E

1−α2Þ2. As the
motion of the photon is allowed in the regionV ≥ 0, the topological
charge does not prevent the asymptotic existence of the photon.
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parameter is related to the closest approach through the
relation [50]

b ¼
ffiffiffiffiffiffi
C0

A0

s
; ð12Þ

where the subscript “0” indicates that the function is
evaluated at x ¼ x0, i.e., A0 ¼ Aðx0Þ. It can be shown that
the deflection of light, Λðx0Þ, is expressed in terms of the
closest approach x0 as

Λðx0Þ ¼ Iðx0Þ − π; ð13Þ

where

Iðx0Þ ¼ 2

Z
∞

x0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
RðxÞCðxÞ
BðxÞ

q and RðxÞ ¼ A0C
AC0

− 1: ð14Þ

At theweak field limit this integral is expanded up to the first
order in ϵ and the mass M [15,22]. When x0 is strongly
different from b, this limit is no longer valid. In this case, we
must consider the strong field limit. The dependence behaves
as follows: the lower x0, thegreater the deflection. Thenwhen
x0 coincides with the radius of the photon sphere xm the
deflection angle diverges. In [32] it was demonstrated that
this divergence is logarithmic, in addition, there was pre-
sented an algorithm for the calculation of the angular
deflection. Recently, Tsukamoto [33] presented a further
development of the method presented in [32], and this
approach will be used within our calculations.
After introducing the variable

z ¼ 1 −
x0
x
; ð15Þ

Iðx0Þ can be presented as

Iðx0Þ ¼
Z

1

0

fðz; x0Þdz; ð16Þ

where

fðz;x0Þ¼
2x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðz;x0Þ

p with Gðz;x0Þ¼
RC
B

ð1− zÞ4: ð17Þ

The integral Iðx0Þ can be split into two parts: the divergent
one, IDðx0Þ and the regular one, IRðx0Þ. The divergent part
is defined by

IDðx0Þ ¼
Z

1

0

fDðz; x0Þdz; ð18Þ

where fDðz; x0Þ ¼ 2x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1zþc2z2

p , c1 and c2 stand for coeffi-

cients of the power series expansion of the function

Gðz; x0Þ up to the second order in z (17). To find the
regular part one only needs to subtract the divergent part
from Iðx0Þ so that

IRðx0Þ ¼
Z

1

0

fRðz; x0Þdz;

fRðz; x0Þ ¼ fðz; x0Þ − fDðz; x0Þ: ð19Þ

In the strong field limit (x0 → xm, or b → bc), the
deflection angle of the light (13) is given by

ΛðbÞ ¼ −ā log
�
b
bc

− 1

�
þ b̄

þO½ðb − bcÞ logðb − bcÞ�; ð20Þ

where

bc ¼ lim
x0→xm

ffiffiffiffiffiffi
C0

A0

s
; ð21Þ

ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2BmAm

C00
mAm − CmA00

m

s
; ð22Þ

and

b̄ ¼ ā log

�
x2m

�
C00
m

Cm
−
A00
m

Am

��
þ IRðxmÞ − π: ð23Þ

The superscript X00
m means second derivative of XðxÞ with

respect to x evaluated in x ¼ xm, i.e., X00
m ¼ d2XðxÞ

dx2 jx¼xm .
The next step is to calculate the coefficients of expansion,
the radius of the photon sphere xm, the critical parameter bc,
and also, ā and b̄. We note that although the geometry we
are going to study differs slightly from Schwarzschild one,
the mathematical expressions describing the quantities
mentioned above will become much more complicated
than Schwarzschild ones. Thus, we will present the
analytical expressions in first order in the EIBI parameter
while keeping the part relative to the GR in an exact form.
We will also present the results numerically from the
quantities without approximation. We show, in comparison
with the relativistic case, what changes occur due to the
parameter ϵ.

A. Light deflection in EIBI GM

Our next step is obtaining the analytical expression for
the deflection of light in EIBI GM metric (9) in the strong
field limit. Comparing (9) and (11), we have

AðxÞ ¼ 1

BðxÞ ¼ 1− α2 −
1

x
and CðxÞ ¼ x2 − ϵα2: ð24Þ
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As found in [50], the radius of the photon sphere for a static
spherically symmetric spacetime is the largest of the real
solutions of the following equation:

C0ðxÞ
CðxÞ −

A0ðxÞ
AðxÞ ¼ 0: ð25Þ

Substituting (24) into (25), we arrive at

x3 −
3x2

2ð1 − α2Þ þ
ϵα2

2ð1 − α2Þ ¼ 0: ð26Þ

If we take ϵ ¼ 0, we readily get the real root xm ¼ 3
2ð1−α2Þ,

which is the result predicted by GR [42]. To find xm in
the EIBI gravity we must solve the cubic equation (26). The
exact solution of (26) is given in the Appendix. In the
leading order, we have

xm ≃
3

2ð1 − α2Þ −
2ϵα2

9
: ð27Þ

Thus, the photon sphere radius decreases when ϵ increases.
In the Fig. 1 we display the behavior of xm as a function
of ϵ for some values of α. Before any further proceeding, it
is worth stressing out that we are taking into account
constraints on the EIBI parameter imposed by observations
of gravitational waves [18], i.e., jϵj ≤ 1021 m2 and
jϵj ≤ 1037 m2. In regards to α, it was estimated in [22],
for a typical grand unification scale, α ≈ 10−2. Therefore,
we follow such constraints to constrain the space of
parameters. From Fig. 1 it becomes clearer that the radius
of the photon sphere grows as α increases, but decreases as
ϵ increases. Note that in the case of ϵ < 0, this means
that the radius of the photon sphere increases as the jϵj
increases. The solid line corresponds to the case of
Schwarzschild solution, where xm ¼ 1.5. It must be noted
that this result corresponds to the interval x > 0, and not the
entire range of x.

From (24) and (21), the critical impact parameter bc is
given by

bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3m − ϵα2xm

ð1 − α2Þxm − 1

s
: ð28Þ

In the leading order, (27) leads to

bc ≃
3
ffiffiffi
3

p

2ð1 − α2Þ3=2 −
ϵα2ffiffiffi
3

p ; ð29Þ

where the first term corresponds to the GR. As we can see,
the critical parameter displays the same behavior as the
radius of the photon sphere, that is, it decreases when ϵ
increases but grows when α increases. In the simple

Schwarzschild case, α ¼ 0, bc ¼ 3
ffiffi
3

p
2

≈ 2.6. We present
the behavior of bc in the Fig. 2(a).
Now let us look at the term ā, which is given by

ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1 − α2 − ϵα2

x3m

s
: ð30Þ

In the leading order,

ā ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p þ 4ϵα2

27
; ð31Þ

here the first term corresponds to the exact expression in the
GR and the second is the first order contribution in the EIBI
parameter ϵ. We note that ā grows when ϵ increases and
also when α increases. The behavior of ā for several values
of α is presented in Fig. 2(b).
Now we obtain b̄, defined by (23):

b̄ ¼ ā log

�
x2m

�
C00
m

Cm
−
A00
m

Am

��
þ IRðxmÞ − π; ð32Þ

where IRðxmÞ is given by (19). Let us evaluate b̄ step by
step. First, it is convenient to define I ¼ x2mðC

00
m

Cm
− A00

m
Am
Þ,

which with use of (24), can be rewritten as

I ¼ 2x2m
x2m − ϵα2

−
2

ð1 − α2Þxm − 1
: ð33Þ

Substituting (27) in (33) we have in the leading order:

I ≃ 6þ 8ϵα2

3
; ð34Þ

where the first term corresponds to the GR and the second
one is the EIBI leading-order correction. From (19), the
regular integral is found to be

FIG. 1. Radius of the photon sphere for several values of α, in
function of ϵ.
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IRðxmÞ ¼
Z

1

0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmð4x3m − 2ϵÞ

p
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4xmϵ − 6ϵÞz5 − ð14xmϵ − 21ϵÞz4 − ð4x3m − 16xmϵþ 22ϵÞz3 þ ð6x3m þ 6ϵ − 6xmϵÞz2
p

−
Z

1

0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmð2x3m − ϵÞ

p
dz

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðx3m − xmϵþ ϵÞ

p ; ð35Þ

or, in a more compact form,

IRðxmÞ ¼
Z

1

0

2xm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x3m − 2ϵ

p
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xmz2ð2z − 3Þðϵð2xmðz − 1Þ2 − 3ðz − 2Þz − 2Þ − 2xm3Þ
p −

Z
1

0

2xm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x3m − ϵ

p
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3xmz2ðx3m − xmϵþ ϵÞ
p ; ð36Þ

where the second term corresponds to the divergent part.
Substituting (27) into the (35), we are left with

IRðxmÞ ≃
4ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p logð3 −

ffiffiffi
3

p
Þ

−
4ϵα2

27
ð9 − 2

ffiffiffi
3

p
− 4 log ð3 −

ffiffiffi
3

p
ÞÞ: ð37Þ

From (31), (34) and (37), the approximate expression for b̄,
given by Eq. (32), can be written as

b̄ ≃
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p þ 4ϵα2

27

�
log

�
6þ 8ϵα2

3

�

þ 4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p logð3 −
ffiffiffi
3

p
Þ

−
4ϵα2

27
ð9 − 2

ffiffiffi
3

p
− 4 logð3 −

ffiffiffi
3

p
Þ − π: ð38Þ

The expression (32) can be evaluated numerically. The
result is presented in Fig. 2(c). One can observe that b̄
grows when ϵ and α increase. In the GR case, when α ¼ 0,
b̄ ≈ −0.4002. Finally, we can write the approximate

(a) (b)

(c) (d)

FIG. 2. Coefficients of the strong field gravitational lensing expansion.
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deflection at the strong field limit of the spacetime (9).
Substituting (29), (31) and (38) in (20) we have in the
leading order,

ΛðbÞ ≃ −
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p þ 4ϵα2

27

�
log

 
b

3
ffiffi
3

p
2ð1−α2Þ3=2 −

ϵα2ffiffi
3

p
− 1

!

þ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p þ 4ϵα2

27

�
log

�
6þ 8ϵα2

3

�

þ 4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p log
�
3 −

ffiffiffi
3

p �

−
4ϵα2

27

�
9 − 2

ffiffiffi
3

p
− 4 logð3 −

ffiffiffi
3

p
Þ
�
− π: ð39Þ

As expected, taking ϵ ¼ 0, we recover the expression for
the angular deflection obtained in GR [42]. In Fig. 2(d) we
plotted the deflection angle evaluated at b ¼ bc þ 0.005.
One can see that the angular deflection, besides increasing
with α, as we already know, also increases with ϵ. In the
Schwarzschild case, Λ ≈ 5.8528. Therefore, the analysis of
light deflection in the strong field gravitational lensing
allows us to distinguish between the black hole with
topological charge predicted by GR and EIBI gravity.

IV. LENS EQUATION

After obtaining the angular deflection of light, we are
now able to study gravitational lenses. Keeping this
purpose in mind, we start this section by briefly reviewing
the lens equation in the strong field limit. For that, let us
consider the lens configuration outlined in Fig. 3.
In Fig. 3, the light source, located in S, emits radiation

deflected towards the observer O due to the presence of the
compact object L. We represent the angular position of the
source by β, the angular position of the image measured by
the observer by θ, and the angular deflection of light by Λ.
In addition, DLS is the distance between the source S and

the lensL,DOL is the distance between the observerO and
the lens L and DOS ¼ DOL þDLS is the distance between
the observer and the source. All these quantities are
measured with respect to the optical axis, which is the
straight line through OL. As in [36], we assume that the
source S is almost perfectly aligned with the lens L; in this
limit, the relationship between the angular position of the
source, the position of the image seen by the observer and
the angular deflection is given by

β ¼ θ −
DLS

DOS
ΔΛn; ð40Þ

where ΔΛn is the deflection angle with subtracting all the
loops performed by the photons before moving towards the
observer, that is, ΔΛn ¼ Λ − 2nπ. Under this condition of
alignment, one finds b ≃ θDOL. Thus, the deflection angle
is given by

ΛðθÞ ¼ −ā log
�
θDOL

bc
− 1

�
þ b̄: ð41Þ

To find ΔΛn entering the lens equation, we expand ΛðθÞ
around θ¼θ0n [where Λðθ0nÞ¼2nπ]: ΔΛn¼ ∂Λ

∂θ jθ¼θ0n
ðθ−θ0nÞ.

From evaluating (41) in θ ¼ θ0, it follows that

θ0n ¼
bc
DOL

ð1þ enÞ; en ¼ eb̄−2nπ: ð42Þ

Thus, we obtain that ΔΛn ¼ − āDOL
bcen

ðθ − θ0nÞ. Introducing
these results in the lens equation (40) and noting that
bc
DOL

≪ 1, we obtain the position of the nth relativistic image

θn ≃ θ0n þ
bcen
ā

DOS

DOLDLS
ðβ − θ0nÞ: ð43Þ

Another observable of interest is the magnification μn
which is given by inverse of the modulus of the Jacobian,
μn ¼ j βθ ∂β∂θ jθ0n j−1:

μn ¼
enð1þ enÞ

āβ
DOS

DLS

�
bc
DOL

�
2

: ð44Þ

It is worth stressing out that we express the positions of the
relativistic images and also the magnification in terms of the
coefficients of the expansion. Once having found them one
can comparewith the experimental data. The inverse problem
consist of finding the coefficients of the expansion in the
strong field limit from the positions and the flow, and thus to
discover the nature of the object responsible for the lens. For
this, we suppose that only the outermost image θ1 is
discriminated, while all others are encompassed in θ∞.
Our observables are [32]FIG. 3. Lens diagram.
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θ∞ ¼ bc
DOL

; ð45Þ

s ¼ θ1 − θ∞ ¼ θ∞e
b̄−2π
ā ; ð46Þ

r̃ ¼ e
2π
ā : ð47Þ

Here s is angular separation and r̃ ¼ μ1P
∞
n¼2

μn
is the relation-

ship between the flux of the first image and the flux of all
other images. To perform the analysis of the observables, let
us consider that the gravitational lens is derived from a black
hole, like the one in the center of our galaxy, MilkyWay, and
that the geometry of the spacetime is described by the metric
(9). Themass of the black hole is estimated as 4.4 × 106 M⊙
and its distance to the earth is approximatelyDOL ¼ 8, 5 kpc
[51].With this, we estimate the values of the observables and
plot Fig. 4. We observe that the position θ∞ of the relativistic
image and the relative magnification rm (rm ¼ 2.5 log10 r̃)
decrease as ϵ increases. The angular separation s increases as
ϵ increases. Regarding the topological charge, both θ∞ and s
grow as α increases, this behavior also occurs in GR [42].
From the Fig. 4 and the Table I, we can extract the following
information: for a given value of α, we observe that
θGM∞ > θEIBI∞ > θSch∞ to ϵ > 0, and θEIBI∞ > θGM∞ > θSch∞ to
ϵ < 0. As for s, we have sEIBI > sGM > sSch to ϵ > 0, and

(a) (b)

(c)

FIG. 4. Observable.

TABLE I. Observable.

ϵ α θ∞ðμ arcsecsÞ sðμ arcsecsÞ rmðmagnitudesÞ
Schw 0 26.5473 0.03322 6.8218

GM
0.01 26.5513 0.03324 6.8215
0.02 26.5633 0.03330 6.8205
0.03 26.5832 0.03340 6.8188

EIBI 0.01 26.5515 0.03324 6.82157
0.02 26.564 0.03330 6.82064

−0.3 0.03 26.5848 0.03340 6.81908

EIBI 0.01 26.5514 0.03324 6.82156
0.02 26.5637 0.03330 6.8206

−0.2 0.03 26.5843 0.03340 6.81899

EIBI 0.01 26.5514 0.03324 6.82155
0.02 26.5635 0.03330 6.82056

−0.1 0.03 26.5837 0.03340 6.8189

EIBI 0.01 26.5512 0.03324 6.82153
0.02 26.563 0.03330 6.82048

0.1 0.03 26.5827 0.03341 6.81872

EIBI 0.01 26.5512 0.03324 6.82152
0.02 26.5628 0.03330 6.82044

0.2 0.03 26.5821 0.03341 6.81863

EIBI 0.01 26.5511 0.03324 6.82151
0.02 26.5625 0.03330 6.8204

0.3 0.03 26.5816 0.03341 6.81854
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sGM > sEIBI > sSch to ϵ < 0. As for rm, for a given α, we
have rSchm > rGMm > rEIBIm to ϵ > 0, and rSchm > rEIBIm > rGMm to
ϵ < 0. Note that the observables related to a black hole with
topological charge in the GR and in the EIBI gravity
exchange mutually when we go from ϵ > 0 to ϵ < 0.

V. DEFLECTION ANGLE IN THE ELLIS
WORMHOLE SPACETIME WITH

TOPOLOGICAL CHARGE

When the integration constant M0 is chosen to be equal
to zero, in the case ϵ < 0 in (8), the solution describes a
traversable wormhole with a topological charge α,

ds2 ¼ −dt2 þ dx2 þ ð1 − α2Þðx2 þ r20Þðdθ2 þ sin2 θdϕ2Þ;
ð48Þ

where r0 ¼
ffiffiffiffiffijϵjp
α is the radius of the throat of the

wormhole. As in [33], let us focus on the side x > 0
and admit that the light ray does not go through the throat of
the wormhole. From (25), we conclude that the radius of the
photon sphere is xm ¼ 0. But xm is assumed to be positive.
Thus we introduce a new radial coordinate r, given by

r ¼ xþ p; where p > 0 is a constant: ð49Þ

Thus, the (48) becomes

ds2 ¼ −dt2 þ dr2

þ ð1 − α2Þ½ðr − pÞ2 þ r20�ðdθ2 þ sin2 θdϕ2Þ: ð50Þ

Therefore,

A ¼ 1; ð51Þ

B ¼ 1; ð52Þ

C ¼ð1 − α2Þ½ðr − pÞ2 þ r20�: ð53Þ

In terms of this new radial coordinate, the radius of the
photon sphere, the critical parameter bc, ā and b̄ are
given by

rm ¼ p; ð54Þ

bc ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
; ð55Þ

ā ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ; ð56Þ

b̄ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p log

�
2p2

r20

�
þ IRðrmÞ − π; ð57Þ

From (19), we have

IRðrmÞ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi

1−α2
p

Z
1

0

�
r0

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20−2r20zþðr20þp2Þz2

p −
1

z

�
dz;

IRðrmÞ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi

1−α2
p log

�
2r0
p

�
: ð58Þ

Using all this, we find b̄ ¼ 3ffiffiffiffiffiffiffiffi
1−α2

p logð2Þ − π. Thus, the

deflection angle (20) takes the form

ΛðbÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p log

�
b

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p − 1

�

þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p log 2 − π

þO½ðb − bcÞ logðb − bcÞ�: ð59Þ

As we can see, the presence of the topological charge
increases the expansion coefficients for the angular deflec-
tion at the strong field limit. As expected, taking α ¼ 0 and
assuming r0 ≠ jϵjα, this deflection reduces to that of Ellis
wormhole, in the GR case [52].2

VI. SUMMARY AND CONCLUSIONS

In this paper, we considered the gravitational lensing in
EIBI gravity in a spacetime with a topological charge.
Starting from the energy-momentum tensor corresponding
to the region external to the GM core, we reproduced the
solution first obtained in [15]. We followed the approach
developed in [49] and found that, depending on the value of
the EIBI parameter ϵ, the solution can describe both a black
hole and a traversable wormhole with the topological
charge of the GM (ϵ < 0). In relation to GR, ϵ > 0 has
the effect of decreasing the event horizon radius of the
corresponding black hole, while ϵ < 0 increases. When we
take ϵ ¼ 0 or α ¼ 0, which corresponds to the vacuum
solution, we return to the GR, as expected. In addition,
asymptotically the solution we found tends to GR situation.
Therefore, it was necessary to investigate the deflection of
light in the strong field limit, as a counterpart to [15], where
the deflection of light was studied, but in the asymptotic
regime.
We adopted the methodology developed by Bozza [32]

and improved by Tsukamoto [33] to get the expansion of
the angle of deflection of light in the strong field limit of
our solution. Initially we considered the solution of black
holes taking into account both cases, ϵ > 0 and ϵ < 0, in
the region x > 0. We obtained the coefficients of the
expansion and expressed them analytically up to the first
order in the EIBI parameter ϵ, maintaining the exact

2We also observe that this result is in agreement with [53], the
authors evaluated the light deflection in a topologically charged
wormhole background (48). They have used the strong field limit
limg→1 KðgÞ ¼ − 1

2
logð1 − gÞ þ 3

2
log 2 þ O½ð1 − gÞ logð1 − gÞ�,

check Eq. (9) from [53] for more details.
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expression for the GR part. We have seen that, for a fixed
value of α, with the exception of the critical impact
parameter, all expansion coefficients, including the angular
deflectionΛðθÞ, given by Fig. 2, increase as ϵ grows. As for
α, all expansion coefficients increase while α grows [42].
At the next step, we numerically evaluated the observables
θ∞, s and rm, allowing to measure important characteristics
of relativistic images. For this, we simulated a scenario in
which the object would be the black hole in the center of
our galaxy, and the geometry is given by (6). We then find
that the position of the relativistic images θ∞ and the
relative magnification rm decrease with ϵ in comparison to
the GR, while s increases.
We still consider the strong field lensing due the presence

of the to wormhole with a topological charge. Using the
approach developed in [33], we have analytically obtained
the expansion for the deflection angle, showing its depend-
ence on α and ϵ (59).
In short, we have seen that the strong dependence of the

observables on the parameters of the object, either a black
hole or a wormhole, allows us to distinguish the results
predicted by GR and EIBI gravity in the strong field limit.
Therefore, we can test the possibility of deviations from GR
in the regime of high energies arising due to the topological
charge of the GM.
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APPENDIX: RADIUS OF THE PHOTON SPHERE

The radius of the photon sphere is given by the greatest
of the real roots of the equation

x3 −
3x2

2ð1 − α2Þ þ
ϵα2

2ð1 − α2Þ ¼ 0: ðA1Þ

Following [54], for simplicity, we can write this equation as

x3 þ a1x2 þ a2 ¼ 0; ðA2Þ

with the coefficients a1 ¼ − 3
2ð1−α2Þ e a2 ¼ ϵα2

2ð1−α2Þ. In terms
of the following quantities

Q ¼ −
a21
9

and R ¼ −2a31 − 27a2
54

; ðA3Þ

the discriminant D of the equation is given by
D ¼ Q3 þ R2, that is,

D ¼
�

ϵα2

4ð1 − α2Þ2
�

2
�
ð1 − α2Þ2 − 1

ϵα2

�
: ðA4Þ

When ϵ > 0, the condition (10) for avoiding naked singu-
larities yields 1

ϵα2
≥ ð1 − α2Þ2. Since we have no interest in

the transient case, we have D < 0, and thus (A1) has three
real solutions, the largest of which is given by

xm ¼ 2
ffiffiffiffiffiffiffi
−Q

p
cos

�
1

3
arccos

�
Rffiffiffiffiffiffiffiffiffi
−Q3

p ��
−
a1
3
: ðA5Þ

Substituting their values, we have

xm ¼ 1

2ð1−α2Þþ
1

ð1−α2Þcos
�
1

3
arccosð1−2ϵα2ð1−α2Þ2Þ

�
ðϵ> 0Þ: ðA6Þ

We conclude that the radius of the photon sphere decreases
when ϵ > 0 increases.
In the case ϵ < 0, the discriminant is positive, D > 0,

then there is only one real root for Eq. (A1), which is
given by

xm ¼ ½Rþ
ffiffiffiffi
D

p
�1=3 þ ½R −

ffiffiffiffi
D

p
�1=3 − a1

3
; ðA7Þ

that is,

xm¼ 1

2ð1−α2Þþ
�

1

8ð1−α2Þ3−
ϵα2

4ð1−α2Þ

þ ϵα2

4ð1−α2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−α2Þ2− 1

ϵα2

r �
1=3

þ
�

1

8ð1−α2Þ3−
ϵα2

4ð1−α2Þ

−
ϵα2

4ð1−α2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−α2Þ2− 1

ϵα2

r �
1=3

ðϵ< 0Þ: ðA8Þ

We can expand xm in series of powers in both cases (A6)
and (A8) to obtain the leading order

xm ≃
3

2ð1 − α2Þ −
2ϵα2

9
; ðA9Þ

this applies to both cases ϵ > 0 and ϵ < 0.
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E. Orazi, and D. Rubiera-Garcia, J. Cosmol. Astropart.
Phys. 07 (2020) 058.

[13] G. J. Olmo, D. Rubiera-Garcia, and A. Wojnar, Phys. Rep.
876, 1 (2020).

[14] V. I. Afonso, G. J. Olmo, and D. Rubiera-Garcia, J. Cosmol.
Astropart. Phys. 08 (2017) 031; V. I. Afonso, G. J. Olmo, E.
Orazi, and D. Rubiera-Garcia, J. Cosmol. Astropart. Phys.
12 (2019) 044.

[15] R. D. Lambaga and H. S. Ramadhan, Eur. Phys. J. C 78, 436
(2018).

[16] J. R. Nascimento, G. J. Olmo, P. J. Porfírio, A. Y.
Petrov, and A. R. Soares, Phys. Rev. D 101, 064043
(2020).

[17] P. Pani, V. Cardoso, and T. Delsate, Phys. Rev. Lett. 107,
031101 (2011).

[18] S. Jana, G. K. Chakravarty, and S. Mohanty, Phys. Rev. D
97, 084011 (2018).

[19] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[20] M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63, 341

(1989).
[21] A. Barros and C. Romero, Phys. Rev. D 56, 6688 (1997);

T. R. P. Caramês, E. R. Bezerra de Mello, and M. E. X.
Guimarães, Int. J. Mod. Phys. Conf. Ser. 3, 446 (2011);
Mod. Phys. Lett. A 27, 1250177 (2012); M. U. Dogru and
D. Taser, Mod. Phys. Lett. A 30, 1550217 (2015).

[22] J. R. Nascimento, G. J. Olmo, A. Yu. Petrov, P. J. Porfirio,
and A. R. Soares, Phys. Rev. D 99, 064053 (2019).

[23] N. Dadhich, K. Narayan, and U. Yajnik, Pramana 50, 307
(1998).

[24] R. M. Wald, General Relativity (Chicago University Press,
Chicago, 1984).

[25] A. Einstein, Science 84, 506 (1936); S. Liebes, Jr., Phys.
Rev. 133, B835 (1964).

[26] K. Akiyama et al., Astrophys. J. 875, L1 (2019).
[27] K. Akiyama et al., Astrophys. J. Lett. 875, L2 (2019).
[28] K. Akiyama et al., Astrophys. J. Lett. 875, L3 (2019).
[29] K. Akiyama et al., Astrophys. J. Lett. 875, L4 (2019).
[30] K. Akiyama et al., Astrophys. J. Lett. 875, L5 (2019).
[31] K. Akiyama et al., Astrophys. J. Lett. 875, L6 (2019).
[32] V. Bozza, Phys. Rev. D 66, 103001 (2002).
[33] N. Tsukamoto, Phys. Rev. D 95, 064035 (2017).
[34] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 62, 084003

(2000).
[35] S. Frittelli, T. P. Kling, and E. T. Newman, Phys. Rev. D 61,

064021 (2000).
[36] V. Bozza, S. Capozziello, G. Iovane, and G. Scarpetta, Gen.

Relativ. Gravit. 33, 1535 (2001).
[37] E. F. Eiroa and C. M. Sendra, Classical Quantum Gravity

28, 085008 (2011); Phys. Rev. D 88, 103007 (2013).
[38] L. Chetouani and G. Clément, Gen. Relativ. Gravit. 16, 111

(1984); V. Perlick, Phys. Rev. D 69, 064017 (2004); K. K.
Nandi, Y. Z. Zhang, and A. V. Zakharov, Phys. Rev. D 74,
024020 (2006); T. K. Dey and S. Sen, Mod. Phys. Lett. A
23, 953 (2008); A. Bhattacharya and A. A. Potapov, Mod.
Phys. Lett. A 25, 2399 (2010); G. W. Gibbons and M.
Vyska, Classical Quantum Gravity 29, 065016 (2012); K.
Nakajima and H. Asada, Phys. Rev. D 85, 107501 (2012);
N. Tsukamoto, T. Harada, and K. Yajima, Phys. Rev. D 86,
104062 (2012); K. K. Nandi, A. A. Potapov, R. N. Izmailov,
A. Tamang, and J. C. Evans, Phys. Rev. D 93, 104044
(2016); N. Tsukamoto, Phys. Rev. D 94, 124001 (2016); 95,
084021 (2017); N. Tsukamoto and T. Harada, Phys. Rev. D
95, 024030 (2017); R. Shaikh, P. Banerjee, S. Paul, and T.
Sarkar, J. Cosmol. Astropart. Phys. 07 (2019) 028.

[39] A. B. Aazami, C. R. Keeton, and A. O. Petters, J. Math.
Phys. (N.Y.) 52, 102501 (2011); 52, 092502 (2011); V.
Bozza and G. Scarpetta, Phys. Rev. D 76, 083008 (2007); S.
Vázquez and E. P. Esteban, Nuovo Cimento 119B, 489
(2004); V. Bozza, F. De Luca, G. Scarpetta, and M. Sereno,
Phys. Rev. D 72, 083003 (2005); 74, 063001 (2006); V.
Bozza, Phys. Rev. D 67, 103006 (2003); S. Vázquez and
E. P. Esteban, Nuovo Cimento 119B, 489 (2004); G. V.
Kraniotis, Classical Quantum Gravity 28, 085021 (2011);
Gen. Relativ. Gravit. 46, 1818 (2014).

[40] H. Sotani andU.Miyamoto, Phys. Rev.D 92, 044052 (2015);
S. W. Wei, K. Yang, and Y. X. Liu, Eur. Phys. J. C 75, 253
(2015); 75, 331(E) (2015); A. Bhadra, Phys. Rev. D 67,
103009 (2003); E. F. Eiroa, Phys. Rev. D 73, 043002 (2006);
K. Sarkar and A. Bhadra, Classical Quantum Gravity 23,
6101 (2006); N. Mukherjee and A. S. Majumdar, Gen.
Relativ. Gravit. 39, 583 (2007); G. N. Gyulchev and S. S.
Yazadjiev, Phys. Rev. D 75, 023006 (2007); S. Chen and J.
Jing, Phys. Rev. D 80, 024036 (2009); R. Shaikh and S. Kar,
Phys. Rev. D 96, 044037 (2017).

[41] V. Perlick, Phys. Rev. D 69, 064017 (2004).
[42] H. Cheng and J. Man, Classical Quantum Gravity 28,

015001 (2011).
[43] M. Sharif and S. Iftikhar, Adv. High Energy Phys. 2015,

854264 (2015).

STRONG GRAVITATIONAL LENSING IN A SPACETIME WITH … PHYS. REV. D 103, 044047 (2021)

044047-11

https://doi.org/10.1088/0264-9381/15/5/001
https://doi.org/10.1088/0264-9381/15/5/001
https://doi.org/10.1103/PhysRevD.72.084026
https://doi.org/10.1016/j.physrep.2017.11.001
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1103/PhysRevD.97.021503
https://doi.org/10.1103/PhysRevD.97.021503
https://doi.org/10.1140/epjc/s10052-018-6356-1
https://doi.org/10.1103/PhysRevD.99.044040
https://doi.org/10.1007/JHEP11(2019)149
https://doi.org/10.1007/JHEP11(2019)149
https://doi.org/10.1016/j.physletb.2018.03.002
https://doi.org/10.1016/j.physletb.2018.03.002
https://doi.org/10.1140/epjc/s10052-020-7880-3
https://doi.org/10.1140/epjc/s10052-020-7880-3
https://doi.org/10.1103/PhysRevD.92.024015
https://doi.org/10.1103/PhysRevD.98.064033
https://doi.org/10.1103/PhysRevD.98.064033
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1103/PhysRevD.86.044014
https://doi.org/10.1103/PhysRevD.86.044014
https://doi.org/10.1140/epjc/s10052-014-2804-8
https://doi.org/10.1103/PhysRevD.90.044003
https://doi.org/10.1103/PhysRevD.90.044003
https://doi.org/10.1103/PhysRevD.91.124001
https://doi.org/10.1103/PhysRevD.90.024066
https://doi.org/10.1103/PhysRevD.90.024066
https://doi.org/10.1140/epjc/s10052-020-08591-7
https://doi.org/10.1140/epjc/s10052-020-08591-7
https://doi.org/10.1088/1475-7516/2020/07/058
https://doi.org/10.1088/1475-7516/2020/07/058
https://doi.org/10.1016/j.physrep.2020.07.001
https://doi.org/10.1016/j.physrep.2020.07.001
https://doi.org/10.1088/1475-7516/2017/08/031
https://doi.org/10.1088/1475-7516/2017/08/031
https://doi.org/10.1088/1475-7516/2019/12/044
https://doi.org/10.1088/1475-7516/2019/12/044
https://doi.org/10.1140/epjc/s10052-018-5906-x
https://doi.org/10.1140/epjc/s10052-018-5906-x
https://doi.org/10.1103/PhysRevD.101.064043
https://doi.org/10.1103/PhysRevD.101.064043
https://doi.org/10.1103/PhysRevLett.107.031101
https://doi.org/10.1103/PhysRevLett.107.031101
https://doi.org/10.1103/PhysRevD.97.084011
https://doi.org/10.1103/PhysRevD.97.084011
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1103/PhysRevLett.63.341
https://doi.org/10.1103/PhysRevLett.63.341
https://doi.org/10.1103/PhysRevD.56.6688
https://doi.org/10.1142/S2010194511000961
https://doi.org/10.1142/S0217732312501775
https://doi.org/10.1142/S021773231550217X
https://doi.org/10.1103/PhysRevD.99.064053
https://doi.org/10.1007/BF02845552
https://doi.org/10.1007/BF02845552
https://doi.org/10.1126/science.84.2188.506
https://doi.org/10.1103/PhysRev.133.B835
https://doi.org/10.1103/PhysRev.133.B835
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1103/PhysRevD.66.103001
https://doi.org/10.1103/PhysRevD.95.064035
https://doi.org/10.1103/PhysRevD.62.084003
https://doi.org/10.1103/PhysRevD.62.084003
https://doi.org/10.1103/PhysRevD.61.064021
https://doi.org/10.1103/PhysRevD.61.064021
https://doi.org/10.1023/A:1012292927358
https://doi.org/10.1023/A:1012292927358
https://doi.org/10.1088/0264-9381/28/8/085008
https://doi.org/10.1088/0264-9381/28/8/085008
https://doi.org/10.1103/PhysRevD.88.103007
https://doi.org/10.1007/BF00762440
https://doi.org/10.1007/BF00762440
https://doi.org/10.1103/PhysRevD.69.064017
https://doi.org/10.1103/PhysRevD.74.024020
https://doi.org/10.1103/PhysRevD.74.024020
https://doi.org/10.1142/S0217732308025498
https://doi.org/10.1142/S0217732308025498
https://doi.org/10.1142/S0217732310033748
https://doi.org/10.1142/S0217732310033748
https://doi.org/10.1088/0264-9381/29/6/065016
https://doi.org/10.1103/PhysRevD.85.107501
https://doi.org/10.1103/PhysRevD.86.104062
https://doi.org/10.1103/PhysRevD.86.104062
https://doi.org/10.1103/PhysRevD.93.104044
https://doi.org/10.1103/PhysRevD.93.104044
https://doi.org/10.1103/PhysRevD.94.124001
https://doi.org/10.1103/PhysRevD.95.084021
https://doi.org/10.1103/PhysRevD.95.084021
https://doi.org/10.1103/PhysRevD.95.024030
https://doi.org/10.1103/PhysRevD.95.024030
https://doi.org/10.1088/1475-7516/2019/07/028
https://doi.org/10.1063/1.3642616
https://doi.org/10.1063/1.3642616
https://doi.org/10.1063/1.3642614
https://doi.org/10.1103/PhysRevD.76.083008
https://doi.org/10.1393/ncb/i2004-10121-y
https://doi.org/10.1393/ncb/i2004-10121-y
https://doi.org/10.1103/PhysRevD.72.083003
https://doi.org/10.1103/PhysRevD.74.063001
https://doi.org/10.1103/PhysRevD.67.103006
https://doi.org/10.1088/0264-9381/28/8/085021
https://doi.org/10.1007/s10714-014-1818-8
https://doi.org/10.1103/PhysRevD.92.044052
https://doi.org/10.1140/epjc/s10052-015-3469-7
https://doi.org/10.1140/epjc/s10052-015-3469-7
https://doi.org/10.1140/epjc/s10052-015-3556-9
https://doi.org/10.1103/PhysRevD.67.103009
https://doi.org/10.1103/PhysRevD.67.103009
https://doi.org/10.1103/PhysRevD.73.043002
https://doi.org/10.1088/0264-9381/23/22/002
https://doi.org/10.1088/0264-9381/23/22/002
https://doi.org/10.1007/s10714-007-0407-5
https://doi.org/10.1007/s10714-007-0407-5
https://doi.org/10.1103/PhysRevD.75.023006
https://doi.org/10.1103/PhysRevD.80.024036
https://doi.org/10.1103/PhysRevD.96.044037
https://doi.org/10.1103/PhysRevD.69.064017
https://doi.org/10.1088/0264-9381/28/1/015001
https://doi.org/10.1088/0264-9381/28/1/015001
https://doi.org/10.1155/2015/854264
https://doi.org/10.1155/2015/854264


[44] J. Man and H. Cheng, Phys. Rev. D 92, 024004
(2015).

[45] S. W. Wei, K. Yang, and Y. X. Liu, Eur. Phys. J. C 75, 253
(2015); 75, 331(E) (2015).

[46] H. Sotani and U. Miyamoto, Phys. Rev. D 92, 044052
(2015).
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