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The Einstein-Maxwell dilaton-axion gravity arises in the low energy effective action of the heterotic
string theory and provides a simple framework to explore the signatures of the same. The dilaton and the
axion fields inherited in the action from string compactifications have interesting consequences in
inflationary cosmology and in explaining the present accelerated expansion of the Universe. It is therefore
worthwhile to search for the footprints of these fields in the available astrophysical observations. Since
Einstein gravity is expected to receive quantum corrections in the high curvature domain, the near horizon
regime of black holes seems to be the ideal astrophysical laboratory to test these deviations from general
relativity. Exact, stationary and axisymmetric black hole solution in Einstein-Maxwell dilaton-axion
gravity corresponds to the Kerr-Sen spacetime that carries dilaton charge, while the angular momentum is
sourced by the axion field. The ballistic jets and the peak emission of the continuum spectrum from the
accretion disk are believed to be launched very close to the event horizon and hence should bear the
imprints of the background spacetime. We compute the jet power and the radiative efficiency derived from
the continuum spectrum in the Kerr-Sen background and compare them with the corresponding
observations of microquasars. Our analysis reveals that Kerr black holes are more favored compared
to Kerr-Sen black holes with dilaton charges.
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I. INTRODUCTION

General relativity is the most competent theory of
gravity, till date, due to its unprecedented success in
explaining a plethora of observations [1–4] namely, the
perihelion precession of mercury, the bending of light, the
gravitational redshift of radiation from distant stars, to
name a few. An accelerating Universe, the existence of
enigmatic objects like black holes, and the detection of
gravitational waves due to colliding black holes and
neutron stars are some of the remarkable predictions of
general relativity that increasingly received observational
confirmations with the advent of advanced ground-based
and space-based missions [5–9]. The recent observation of
the image of the black hole M87* by the Event Horizon
Telescope Collaboration has further added to its phenom-
enal success [10–16]. Yet, it is instructive to explore other
alternate gravity models since general relativity loses its
predictive power at the black hole and the big bang
singularities [17–19] and the ultraviolet character of gravity
continues to be ill understood. On the observational front,
one needs to invoke the exotic dark matter and the dark

energy [20–22] to explain the galactic rotation curves and
the accelerated expansion of the Universe, respectively, if
general relativity is considered to be the correct theory of
gravity.
It is therefore believed that close to the Planck scale,

general relativity must receive corrections from a more
complete theory of gravity that also incorporates its quantum
character [23–26]. A variety of alternate gravity models
have therefore been put forward which can potentially fulfil
the deficiencies in general relativity. This includes, higher
dimensional models [27–33], higher curvature gravity, e.g.,
fðRÞ [34–36] and Lanczos Lovelock models [37–40], and
the scalar-tensor theories of gravity [41–45]. Many of these
models are inspired from string theory [46–49], which
provides a framework to unify all the known forces of
nature under a single umbrella. The Einstein-Maxwell
dilaton-axion (EMDA) gravity, which is central to this work
is one such string inspired scalar-vector-tensor theory of
gravity. Such a theory arises in the low energy effective
action of superstring theories [50] when the ten-dimensional
heterotic string theory is compactified on a six-dimensional
torus T6. The resultant four dimensional action comprises of
N ¼ 4, d ¼ 4 supergravity coupled to N ¼ 4 super Yang-
Mills theory, in the low-energy limit. By introducing equal
numbers of Kaluza-Klein and winding number modes for
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each cycle, this effective action can be further truncated to a
pure supergravity theory exhibiting S and T dualities. The
bosonic sector of this N ¼ 4, d ¼ 4 supergravity with a
vector field is known as the EMDA gravity [51], which
provides a simple framework to study classical solutions.
The EMDA theory of gravity comprises of the scalar

field dilaton and the pseudoscalar axion coupled to the
metric and the Maxwell field. The dilaton and the axion
fields owe their origin from string compactifications and
have interesting consequences in inflationary cosmology
and late time acceleration of the Universe [52,53]. Various
classes of black hole solutions of string inspired low-energy
effective theories have been constructed [54–57] that
differ significantly from the general relativistic scenario.
While the static and spherically symmetric black hole
solutions bear nontrivial charges associated with the dilaton
and the antisymmetric tensor gauge fields, the charge
neutral rotating solution in string theory is identical with
the Kerr metric in general relativity [58]. However, the
stationary and axisymmetric black hole solution in EMDA
gravity represents the charged, rotating Kerr-Sen metric
which is similar but not identical to the Kerr-Newman
solution in general relativity. Although the Kerr-Sen space-
time bears strong resemblance with the Kerr-Newman
background, the inherent geometry of the two black holes
vary significantly. The distinguishing properties of the two
spacetimes have been extensively studied [59–62] in the
past. Since string theory incorporates the quantum nature
of gravity and provides a promising framework for force
unification, it is instructive to study the observational
features of the Kerr-Sen metric, which in turn can provide
an indirect testbed for string theory. Astrophysical impli-
cations of the Kerr-Sen black hole have been explored
extensively [59,63–66], which includes study of null geo-
desics, photon motion, strong gravitational lensing, and
black hole shadow. Rotation of the polarization of circu-
larly polarized light in the vicinity of the Kerr-Sen black
hole and an observation of a shadow of the same has been
studied in [67].
Astrophysical systems containing black holes are known

to exhibit energetic transient jets [68,69], which are often
believed to be powered by the rotational energy of the black
hole through the magnetic fields generated in the surround-
ing accreting plasma [70]. Jets are believed to be launched
very close to the event horizon and consequently the related
jet power encodes the information of the underlying
spacetime. Similarly, the continuum spectrum emitted from
the accretion disk surrounding the black holes bears the
imprints of the background metric and hence can be used to
extract information about the same [71]. In this work we
explore the role of the Kerr-Sen background in launching
jets and in affecting the continuum emission from the
accretion disk. We use the radiative efficiency derived from
the peak emission of the continuum spectrum and the
observed jet power of microquasars as the observables.
This in turn enables us to constrain the metric parameters

and hence provide an indirect observational evidence of
string theory.
The paper is organized as follows: in Sec. II we provide a

brief overview of the EMDA gravity and the associated
black hole solution. We explain the role of the background
metric in affecting the radiative efficiency and the jet power
in Sec. III. The theoretically computed jet power and
radiative efficiency are compared with the corresponding
observations of several black hole sources in Sec. IV.
Finally, we conclude with a summary of our findings and
discussion of our results in Sec. V.
We use (−;þ;þ;þ) as the metric convention and will

work with geometrized units taking G ¼ c ¼ 1.

II. EMDA GRAVITY: AN OVERVIEW

The EMDA gravity provides a generalization of the
Einstein-Maxwell action comprising of the couplings
between the metric gμν, the Uð1Þ gauge field Aμ, the
dilaton field χ, and the third rank antisymmetric tensor
fieldHμνα. The resultant action up toOðα0Þ (where α0 is the
inverse string tension) in the expansion of the effective
action for the heterotic string theory is given by [72]

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
R
2κ2

−
1

2
∂νχ∂νχ − 6e−2

ffiffi
2

p
κχHρσδHρσδ

−
α0

16κ2
e−

ffiffi
2

p
κχF αβF αβ

�
; ð1Þ

where g is the determinant and R the Ricci scalar with
respect to the four-dimensional metric gμν. The dilaton field
is denoted by χ while F μν represents the second rank
antisymmetric Maxwell field strength tensor such that
F μν ¼ ∇μAν −∇νAμ, where Aμ is the Uð1Þ gauge field.
In Eq. (1), the three-rank antisymmetric tensor fieldHρσδ is
defined by the relation,

Hρσδ ¼ ∇½δBρσ� −
α0

32κ
ffiffiffiffiffiffi−gp A½δFρσ�; ð2Þ

where Bμν is the second rank antisymmetric tensor gauge
field also known as the Kalb-Ramond field and the square
brackets associated with the indices represent the cyclic
sum over the indices. The cyclic permutation of Aμ and Fμν

in Eq. (2) represents the gauge Chern-Simons term. It is
important to note that the action in Eq. (1) is the low energy
effective action arising in heterotic string theory taken up to
Oðα0Þ and truncated to contain only those terms which
involves up to a maximum of two derivatives. Therefore,
higher curvature terms in Eq. (1) and Lorentz Chern
Simons terms in the definition of Eq. (2) are not taken
into account in this theory [50,72]. Such a truncation holds
good when we are interested in regions far away from the
spacetime singularity [67,72,73]. Moreover, it leads to
exact black hole solutions in string theory that we will
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discuss towards the end of this section. We further mention
that the effective string action also contains several gauge
fields, of which only the Uð1Þ component is kept in the
action, since we will be eventually interested in black hole
solutions carrying Uð1Þ charge [50,72].
In four dimensions Hμνα can be written in terms of the

pseudoscalar field ξ, also known as the axion field
[50,67,72], such that

Hρσδ ¼
e

ffiffi
2

p
κχ

6
ffiffiffi
2

p ϵρσδγ∂γξ −
α0

32κ
ffiffiffiffiffiffi−gp A½ρFσδ�: ð3Þ

In terms of the axion field the action in Eq. (1) can be
written as

S ¼
Z �

R
2κ2

−
1

2
∂νχ∂νχ −

1

2
∂νξ∂νξ −

α0

16κ2
F ρσF ρσ

−
α0

8κ

6
ffiffiffi
2

p

4!

ϵαβγδffiffiffiffiffiffi−gp ξF αβF γδ

� ffiffiffiffiffiffi
−g

p
d4x; ð4Þ

where we have considered eχ ≃ 1 since we are interested in
regions where the classical value of the dilaton field is
small, i.e., χ ∝ α0 [72]. From Eq. (4) it is clear that the axion

photon coupling constant is given by α0
8κ

6
ffiffi
2

p
4!
. Further, the

action in Eq. (4) also reveals that the axion and the dilaton
fields are massless, which is a characteristic feature of the
Lagrangian arising in heterotic string theory compactified
on a six-dimensional torus [50,73,74].
The resultant Maxwell’s equations coupled to the axion

and the dilaton are given by

∇μF μν ¼ −
κffiffiffi
2

p ð∂αξÞð�F Þαν; ð5Þ

while equations of motion for the dilaton and the axion
fields are, respectively, given by

∇μ∇μχ ¼ −
ffiffiffi
2

p
α0

16κ
F αβF αβ; ð6Þ

∇μ∇μξ ¼ α0

8κ

6
ffiffiffi
2

p

4!
F γσð�F Þγσ; ð7Þ

where ð�F Þμν ¼ ϵμναβffiffiffiffi−gp F αβ. The Einstein’s equations assume

the form

Gμν ¼ T μνðF ; χ; ξÞ; ð8Þ

where the energy-momentum tensor on the right-hand side
of Eq. (8) is given by

T μνðF ; χ; ξÞ ¼ −2ffiffiffiffiffiffi−gp δSðF ; χ; ξÞ
δgμν

: ð9Þ

It turns out that the Einstein’s equations with the axion, the
dilaton, and the Maxwell field as the source give rise to an
exact, stationary, and axisymmetric black hole solution
popularly known as the Kerr-Sen solution [50] in the
literature, which when expressed in Boyer-Lindquist coor-
dinates assumes the form [75–77]

ds2 ¼ −
�
1 −

2Mr

Σ̃

�
dt2 þ Σ̃

Δ
ðdr2 þ Δdθ2Þ

−
4aMr

Σ̃
sin2θdtdϕþ sin2θdϕ2

�
rðrþ r2Þ þ a2

þ 2Mra2sin2θ

Σ̃

�
; ð10Þ

where

Σ̃ ¼ rðrþ r2Þ þ a2cos2θ; ð11aÞ

Δ ¼ rðrþ r2Þ − 2Mrþ a2: ð11bÞ

The Arnowitt-Deser-Misner (ADM) mass of the above
spacetime is denoted by MADM ¼ M − r2

2
while a refers to

the rotation parameter of the black hole. The dilaton

parameter r2 ¼ q2

M where q ¼
ffiffiffi
α0
8

q
Q is proportional to

the electric charge Q of the black hole and the square
root of the inverse string tension α0. In the event q vanishes,
Eq. (10) reduces to the Kerr metric. The event horizon rH of
the above spacetime is obtained by solving for Δ ¼ 0 such
that

rH ¼ M −
r2
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M −

r2
2

�
2

− a2

s
: ð11Þ

From the form of r2 and Eq. (11) it can be shown that
0 ≤ r2 ≤ 2 leads to real, positive event horizons and hence
black hole solutions.
We note that the spacetime given by Eq. (10) is very

similar to the Kerr-Newman solution in general relativity
which differs from Eq. (10) due to the absence of the
coupling of the axion and the dilaton with the Maxwell
field. The solution of the axion and the dilaton fields are,
respectively, given by [50,72],

ξ ¼ q2ffiffiffi
2

p
κGM

a cos θ
r2 þ a2cos2θ

; ð12Þ

e2χ ¼ r2 þ a2cos2θ
rðrþ r2Þ þ a2cos2θ

; ð13Þ

while the solution of the Uð1Þ gauge field assumes the
form [50]
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A ¼ 2
ffiffiffi
2

p
qr

Σ̃
ð−dtþ asin2θdϕÞ: ð14Þ

We note from Eqs. (12)–(14) that all the above three
fields vanish for an asymptotic observer as r → ∞. Since
the gravity action in Eintein gravity and EMDA gravity are
identical and the additional fields present in EMDA gravity
vanish asymptotically, the gravitational waves in both the
theories travel with the speed of light. This is in accordance
with [78,79].
It is further evident from Eqs. (12)–(14) that the coupling

of the axion and the dialton to the Maxwell field is crucial,
as without this, the field strengths associated with both
these fields will identically vanish [Eqs. (12) and (13)].
Therefore, although the Kerr-Sen black hole carries
electric charge, it essentially originates from the axion-
photon coupling and not the infalling charged particles.
Moreover, the presence of axionic field renders angular
momentum to the black hole [Eq. (12)]. From the solution
of the axion and the dilaton fields the nonzero components
of Hμνα can also be evaluated [80]. When the rotation
parameter in Eq. (10) vanishes (i.e., in the absence of the
axionic field), the resultant spherically symmetric space-
time represents a black hole labeled by its mass, electric
charge, and the asymptotic value of the dilaton field
[55,81]. It is interesting to note that the Kerr-Sen back-
ground Eq. (10) can also be generated by a Newman-Janis
transformation [82] of the aforesaid spherically symmetric
spacetime in pure dilaton coupled gravity [55,81]. In what
follows we will compute the power associated with
astrophysical jets and the radiative efficiencies from the
continuum spectrum, in the Kerr-Sen background. This will
enable us to understand whether such a gravity theory can
be instrumental in explaining these observations.

III. OBSERVATIONAL AVENUES TO TEST THE
KERR-SEN SPACETIME

In this section we will consider two observational
avenues to test the nature of the background spacetime,
namely, the continuum spectrum emitted from the accretion
disk surrounding the black hole and the power associated
with the transient jets observed in such systems. Jets and
accretion are ubiquitous to astrophysical systems such as
active galactic nuclei and microquasars. “Transient” or
“ballistic” jets consist of blobs of radio or x-ray emitting
plasma moving ballistically outward with relativistic veloc-
ities. They are believed to be launched very close to the
event horizon [83] and hence it is expected that the power
associated with the transient jets will be affected by the
nature of the background metric.
The background spacetime also affects the continuum

spectrum from the accretion disk whose peak emission
originates very close to the marginally stable circular orbit.
The Novikov-Thorne model which is based on the “thin-
disk approximation” [71] is often used to theoretically

mimic the observed sectrum. This approximation holds
good primarily when the black hole dwells in the high/soft
state during the outbursts.
One may also explore superradiance due to scalar fields

in the Kerr-Sen background. When we consider super-
radiant instability of a scalar field in a given background,
the scalar field is treated as a perturbation to the given
metric. The equation of motion of the scalar field is
solved in the said background assuming an ansatz for
the scalar field and the energy flux at the horizon is cal-
culated. The flux tends to diverge below a given frequency
which depends on the mass of the scalar field. The onset
of superradiance causes the black hole to spin down.
Therefore, if the spin of the black hole does not change
over a long timescale (say, decades) then it implies that the
black hole is stable to superradiance. Comparing with the
available observations of black holes in the Regge plane
one can therefore establish constrains on the mass of the
scalar field [84–88].
It is important to note that when we consider super-

radiant instability of a scalar/vector field in a given back-
ground, the said field is treated as a perturbation to the
given metric. However, the scalar dilaton or the pseudo-
scalar axion in Eq. (4) are not treated as perturbations to
the metric, in fact, they are used as sources to derive the
metric and hence these are charges or hairs associated with
the black hole. In case one is interested in investigating
superradiant instability of scalar/vector bosons in the Kerr-
Sen background, then one needs to introduce test fields as
perturbation to the Kerr-Sen background. This has been
addressed with a test scalar field in [89] and for a massive
vector field in [90].
In the next section we will discuss how the continuum

spectrum and the power associated with transient jets
can be used to probe the background metric. A similar
analysis has been performed earlier [91] in the context of
Johannsen-Psaltis spacetime.

A. Radiative efficiency of black holes
from the continuum spectrum

In this section we highlight the basic features of the
Novikov-Thorne model [71] which is used to describe
the continuum spectrum observed in the black holes.
According to this model the electromagnetic emission
from the accretion disk surrounding the black hole chiefly
contributes to the continuum spectrum. The accretion disk
is assumed to be geometrically thin such that matter is
accreted chiefly along the equatorial plane. The accreting
particles are assumed to maintain nearly circular orbits
along the geodesics, with negligible radial velocity arising
due to viscous stresses, which facilitates the inspiral and
fall of matter into the black hole. Since the accreting
particles follow nearly circular geodesics the gravitational
pull of the central black hole supercedes the forces due to
radial pressure gradients. This in turn implies that the

BANERJEE, MANDAL, and SENGUPTA PHYS. REV. D 103, 044046 (2021)

044046-4



specific internal energy of the accreting fluid can be
neglected compared to its rest energy such that special
relativistic corrections to the local hydrodynamic, thermo-
dynamic, and radiative properties of the fluid can be safely
ignored compared to the general relativistic effects due to
the presence of the black hole.
As the matter falls towards the black hole they lose

gravitational potential energy, which gets converted into
electromagnetic radiation interacting very effectively with
the accreting matter before being radiated out of the system.
Consequently, the geometrically thin accretion disk is also
optically thick and practically no heat is trapped with the
accretion flow. Due to the efficient interaction between
matter and radiation, every annulus of the disk emits a black
body commensurate with the temperature of the disk. The
total emission from the accretion disk is therefore a
multicolor black body spectrum peaking in soft x-rays
for stellar mass black holes. For a more detailed description
of the thin-disk model one is referred to [71,92,93]. This
model provides an accurate description of the observed
continuum spectrum when the black hole is in the high/soft
state during the outbursts. In such a scenario the peak
emission from the accretion disk generally emerges from
the marginally stable circular orbit. The peak temperature
and flux of this continuum spectrum are used to estimate
the radius of the innermost stable circular orbit risco of a
black hole, provided its mass, distance, and inclination
angle are known from independent measurements. The
radius of the innermost stable circular orbit in turn depends
on the background metric and is obtained from the effective
potential Veff in which the accreting particles move. The
effective potential in a stationary and axisymmetric space-
time is given by [71,92,93],

VeffðrÞ ¼
E2gϕϕ þ 2ELgtϕ þ L2gtt

g2tϕ − gttgϕϕ
− 1; ð15Þ

where, gtt, gtϕ, and gϕϕ are the metric elements given in
Eq. (10) while E and L are the specific energy and specific
angular momentum of the particles such that

E ¼ −gtt −Ωgtϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2Ωgtϕ −Ω2gϕϕ

q ; ð16Þ

and

L ¼ Ωgϕϕ þ gtϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2Ωgtϕ −Ω2gϕϕ

q ; ð17Þ

where the angular velocity Ω ¼ ðdϕ=dtÞ of the test
particles is given by

Ω ¼ dϕ
dt

¼
−gtϕ;r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f−gtϕ;rg2 − fgϕϕ;rgfgtt;rg

q
gϕϕ;r

: ð18Þ

The radius of the innermost stable circular orbit corre-
sponds to the inflection point of this effective potential such
that Veff ¼ ∂rVeff ¼ 0 ¼ ∂2

rVeff [93]. Therefore, a meas-
urement of risco from the continuum spectrum can be used
to constrain the background spacetime. In particular, if the
background is taken to be Kerr spacetime, then a meas-
urement of risco from the continuum spectrum can be used
to predict the angular momentum of the black holes [94].
This forms the basis of the continuum fitting method used
to determine the black hole spins [95].
The continuum fitting method eventually determines the

radiative efficiency η of a black hole which corresponds to
the gravitational binding energy of a test particle at the
innermost stable circular orbit, such that

η ¼ 1 − Eisco ð19Þ

where Eisco is the specific energy of the test particle
computed at risco. It is evident from Eq. (19) that η also
depends on the background metric and if the spin of the
black hole is determined by the continuum fitting method
then η can also be evaluated.
In the event we consider departure from general rela-

tivity, the radiative efficiency computed from the con-
tinuum emission by the above method can be used to
determine the allowed values of the metric parameters for a
given black hole. Figure 1(a) depicts the variation of the
radiative efficiency η [Eq. (19)] with the dimensionless spin
parameter a for various values of the dilaton parameter r2
(here and in the rest of the paper the spin and the dilaton
parameter are scaled by the mass of the black hole, i.e.,
r2 ≡ r2=M and a≡ a=M.) We note that for a given r2, η
increases with a.

B. Jets in astrophysical systems and
the Blandford-Znajeck model

Microquasars generally exhibit two different types of jets
[69]: (i) steady, nonrelativistic jets (also known as outflows)
which are common during the hard state [96] and are
observed at a wide range of accretion luminosities and
(ii) transient or ballistic jets that occur at the Eddington
luminosity during state transitions, mainly when the source
transits from the hard to the soft state at high accretion
rates. Transient jets which reach out to parsec scales are
relativistic in nature and are believed to be launched very
close to the event horizon [83]. Hence these jets are often
instrumental in extracting large fractions of the spin energy
of the black holes [97]. Since the main goal of this work is
to constrain the Kerr-Sen metric from the jet power, we
will be concentrating on the relativistic transient jets in
this work.
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The exact mechanism of generating the transient jets
is unknown, although a number of theoretical models
[98–100] have been proposed that can potentially explain
the observed jet power. One of the popular models used
for explaining the formation of relativistic jets was put
forward by Blandford and Znajeck [70] where the relativ-
istic jets are powered by extracting the rotational energy of
the black holes by means of magnetic field lines which are
supported by the surrounding accretion disk due to the
presence of electric currents. The Blandford-Znajeck model
was originally proposed for Kerr black holes surrounded
by a stationary, axisymmetric force-free magnetosphere.
However, this can be generalized to any stationary, axi-
symmetric spacetime.
The force-free magnetosphere has the property that the

particle inertia is negligible such that the total energy
momentum tensor is dominated by the energy-momentum
tensor due to the electromagnetic fields, i.e.,

T tot
μν ≈ TEM

μν ¼ FμρF
ρ
ν −

1

4
gμνFαβFαβ; ð20Þ

which satisfies the conservation equation,

∇μTEM
μν ¼ 0: ð21Þ

In Eq. (21), Fμν ¼ ∂μAν − ∂νAμ is the Faraday tensor and
Aμ is the gauge field. In a force-free magnetosphere it can
be shown that

At;r

Aϕ;r
¼ At;θ

Aϕ;θ
¼ −ωðr; θÞ; ð22Þ

where ωðr; θÞ represents the electromagnetic angular
velocity [70]. With this force-free condition [Eq. (22)]
and assuming Aμ is axisymmetric and time independent,
one can write the Faraday tensor in the form

Fμν ¼
ffiffiffiffiffiffi
−g

p

0
BBB@

0 −ωBθ ωBr 0

ωBθ 0 Bϕ −Bθ

−ωBr −Bϕ 0 Br

0 Bθ −Br 0

1
CCCA: ð23Þ

It can be shown that the power associated with the
relativistic jet in the context of the Blandford-Znajeck
model is given by (Appendices A and B)

PBZ ¼ 4π

Z
π=2

0

ffiffiffiffiffiffi
−g

p
Tr
tdθ; ð24Þ

where, Tr
t represents the radial component of the Poynting

flux evaluated at the jet launching radius, which happens to
be the event horizon. This is given by

Tr
t ¼ 2rHMsin2θðBrÞ2ω½ΩH − ω�jr¼rH ; ð25Þ

where rH and ΩH ¼ a=ð2MrHÞ are the horizon radius and
the angular velocity of the event horizon, respectively.
At this stage, it is impossible to calculate the power PBZ

associated with the jet without knowing the form of ω and
Br. Ideally this should be obtained by solving Eq. (21),
which is quite nontrivial. Therefore, we follow the standard
approach [101,102], where an exact solution of Eq. (21) is
obtained for the Schwarzschild spacetime and then an
expansion in ΩH is considered to find the rotating solution
perturbatively. With this expansion, the jet power in the
Blandford-Znajeck model at the leading order in ΩH is
given by

PBZ ¼ kΦ2
totΩ2

H; ð26Þ

where k ¼ 1=6π for a split monopole field profile and
k ¼ 0.044 for a paraboloidal profile. In Eq. (26), Φtot
denotes the magnetic flux threading the event horizon and
is given by
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FIG. 1. This figure illustrates the variation of (a) the radiative efficiency η and (b) the angular velocity of the horizon ΩH with the
dimensionless spin parameter a for various choices of the dilaton parameter r2. The black solid line corresponds to the Kerr scenario.
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Φtot ¼ 2π

Z
π

0

ffiffiffiffiffiffi
−g

p jBrjdθ: ð27Þ

For a more detailed derivation of the jet power in the
Blandford-Znajeck model assuming Kerr-Sen background,
one is referred to Appendices A and B. We note that the
dependence of PBZ on the metric arises through ΩH. In
Fig. 1(b) we plot the variation ofΩH with the dimensionless
spin parameter a for various values of r2. The figure shows
that, for a given r2, jΩHj increases with jaj.

IV. COMPARISON OF THE THEORETICAL
MODEL WITH OBSERVATIONS

We have noted in Sec. III that the radiative efficiency
[Eq. (19)] and the jet power [Eq. (26)] are both sensitive to
the background metric. Therefore, if these quantities are
observationally constrained for some of the black holes,
it can be used to gain some insight on the observa-
tionally favored magnitude of the dilaton parameter r2.
Our observational sample comprises of six x-ray binaries,
namely, GRS1915þ 105, GROJ1655-40, XTEJ1550-564,
A0620-00, H1743-322, and GRS1124-683 whose jet
power and radiative efficiency are known from observa-
tions [97,103,104].
The spins of these microquasars have been estimated by

the continuum fitting method which in turn have been used
to evaluate the radiative efficiencies of these black hole
sources. The mass M, the distance D, the inclination angle
i, the dimensionless spin (Kerr parameter) a, and the
radiative efficiency η of these black holes are reported in
Table I [103].
For the six microquasars, we follow the prescription of

[97,104] to determine the observed jet power that assumes
that the entire power in the transient jet is proportional to
the peak 5 GHz radio flux density ðSν;0Þmax; 5 GHz, also
reported in Table I. This observed flux density needs to be
appropriately Doppler boosted for both the approaching
and the receding jets and summed to obtain the corre-
sponding emitted flux density [83,104]. This is scaled by
the distance of the black hole to obtain the luminosity and
by the black hole mass to remove any dependence. Using
the natural units for these systems the proxy for the jet
power is given by [97,104]

Pjet ¼
�

ν

5 GHz

��
Stotν;0

Jy

��
D
kpc

�
2
�

M
M⊙

�
−1

ð28Þ

where, νStotν;0 is the beaming corrected maximum flux after
taking into account the approaching and receding jets
[83,104]. In order to correct for the beaming the Lorentz
factor Γ associated with the jet is taken to be 2≲ Γ≲ 5
[105,106], commensurate with the mildly relativistic jets in
microquasars.
Assuming the Lorentz factors of Γ ¼ 2 and Γ ¼ 5 and

using Eq. (28), the Doppler corrected jet powers for the six
black hole sources are reported in Table II [103,107], which
are used for comparison with the theoretically derived jet
power given by Eq. (26). We note that, in Eq. (26), the
dependence of the jet power on the metric comes through
the term Ω2

H, while the remaining terms depend on the
nature and properties of the magnetic field threading the
event horizon. We rewrite Eq. (26) in the form

logP ¼ logK þ 2 logΩH; ð29Þ

where the magnitude of K has been estimated [97,107] by
fitting Eq. (29) to the observed jet power plotted against
ΩH, which in turn is calculated from the spin estimated by
the continuum fitting method (Sec. III B). Since the jet
power depends on the Lorentz factor Γ, the magnitude of K
varies accordingly. It turns out that, for Γ ¼ 2 and Γ ¼ 5,
logK ¼ 2.94� 0.22 and logK ¼ 4.19� 0.22, respec-
tively, at 90% confidence level [107]. In what follows
we continue to use these values of K while constraining the
metric parameters r2 and a from the observed jet power, as
K is independent of the background spacetime.

A. Results

1. A0620-00: the x-ray binary A0620-00 comprises of
a K-type main sequence star and a black hole of
6.6 M⊙ [108]. It is the nearest known x-ray binary to
the solar system [109] and has an orbital period of
7.75 hours [110,111]. The distance and inclination
of the source are reported in Table I [108]. The spin
of the source has been determined by the continuum
fitting method with −0.59 < a < 0.49, the best-
fitting value being a ¼ 0.12� 0.19 [111], which

TABLE I. Parameters of the transient black hole binaries.

BH Source MðM⊙Þ DðkpcÞ i∘ a η ðSν;0Þmax, 5 GHz(Jy)

A0620-00 6.61� 0.25 1.06� 0.12 51.0� 0.9 0.12� 0.19 0.061þ0.009−0.007 0.203
H1743-322 8.0 8.5� 0.8 75.0� 3.0 0.2� 0.3 0.065þ0.017−0.011 0.0346
XTEJ1550-564 9.10� 0.61 4.38� 0.5 74.7� 3.8 0.34� 0.24 0.072þ0.017

−0.011 0.265
GRS1124-683 11.0þ2.1−1.4 4.95þ0.69−0.65 43.2þ2.1−2.7 0.63þ0.16−0.19 0.095þ0.025−0.017 0.45
GROJ1655-40 6.30� 0.27 3.2� 0.5 70.2� 1.9 0.7� 0.1 0.104þ0.018−0.013 2.42
GRS1915þ 1051 12.4þ1.7−1.9 8.6þ2.0−1.6 60.0� 5.0 0.975 a� > 0.95 0.224 η > 0.19 0.912
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in turn enables us to compute its radiative efficiency
η (Table I). The blue shaded region in Fig. 2
represents the allowed values of r2 and a, which
can explain the radiative efficiency of this source
within the error bars. The blue solid line corresponds
to the contour in the r2-a plane when the theoretical
radiative efficiency given by Eq. (19) coincides with
the central value of the observed η (Table I). The
blue dotted lines are similarly associated with the
error bars in the observed η.
Radio observations of the object reveal the pres-

ence of strong radio jets [111,112], the 5 GHz radio
flux density being 0.203 Jy [97] (Table I). As
discussed earlier, the observed radio flux density
is converted to the emitted radio luminosity by
Doppler deboosting with Lorentz factors Γ ¼ 2
and Γ ¼ 5, the putative values being reported in
Table II. These are then compared with the theo-
retical jet power PBZ [given by Eq. (27)] to discern
the allowed values of r2 and a from jet related
observations. An error of 0.3 dex is considered in
the observed jet power Pjet [97,107]. The orange
shaded region in Fig. 2 depicts the allowed values of

r2 and a that can explain the observed jet power
within the error bars. Again the solid red line depicts
the contour in the r2-a plane, which can reproduce
the central value of Pjet while the dashed red lines
represent the values of r2 and a that can explain the
jet power with error of 0.3 dex about the central
value.
The results for Γ ¼ 2 and Γ ¼ 5 are depicted in

Figs. 2(a) and 2(b), respectively. The green shaded
region denotes the parameter space in the r2-a plane
with real positive event horizons, which leads to
black hole solutions in EMDA gravity. In the
subsequent discussion, the definition of the blue,
orange and the green shaded region remains the
same for the remaining x-ray binaries. From Fig. 2
we note that the observed η cannot be explained if
r2 > 1.5. The jet power on the other hand can be
reproduced by almost the entire range of r2 although
the Kerr parameter varies between 0≲ a≲ 0.05.
The intersection of the blue and the orange shaded
region represents the allowed values of r2 and a such
that both the observations related to Pjet and η can be
explained. From Fig. 2 we note that 0≲ r2 ≲ 0.8 can
describe both the aforesaid observations. Moreover,
the allowed ranges of spin from both the observa-
tions exhibit an overlap in the general relativistic
scenario (r2 ¼ 0).

2. H1743-322: this galactic microquasar is located at a
distance of 8.5� 0.8 kpc and has an inclination
of 75� 3° [113]. Although the mass of this object
has not been dynamically measured it has been
predicted to be in the range 8–13 M⊙ [103,114]. The
companion star consists of a late-type main sequence
star located in the galactic bulge [115] and the orbital

(a) (b)

FIG. 2. Black hole source A0620-00. The orange shaded area denotes the values of r2 and a when the theoretical jet power PBZ equals
the observed luminosity Doppler boosted by the Lorentz factor with (a) Γ ¼ 2 and (b) Γ ¼ 5. The solid red line corresponds to the
contour in the r2-a plane when PBZ equals Pjet (Table II), while the dashed red lines denote the error bar of 0.3 dex about Pjet. The blue
shaded region in the figure denote the values of r2 and a when the observed η is reproduced by the theoretically calculated radiative
efficiency. The blue solid line corresponds to the central value of the observed ηwhile the blue dashed lines represent the associated error
bars (Table I). The green shaded region indicates the values of r2 and a giving rise to a real positive event horizon and hence a black hole
solution. For more discussion see text.

TABLE II. Proxy jet power values in units of kpc2GHzJyM−1
⊙ .

BH Source PjetjΓ¼2 PjetjΓ¼5

A0620-00 0.13 1.6
H1743-322 7.0 140
XTEJ1550-564 11 180
GRS1124-683 3.9 390
GROJ1655-40 70 1600
GRS1915þ 105 42 660
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period of the binary is ten hours [116]. The spin of
the object estimated by the continuum fitting method
turns out to be 0.2� 0.3 at 68% confidence and
−0.3 < a < 0.7 at 90% confidence [113]. The
corresponding radiative efficiency is reported in
Table I. As before, the blue shaded region in Fig. 3
is associated with the allowed values of r2 and a that
can describe the observed radiative efficiency within
the error bars. The blue lines denote the contours in
the r2-a plane when the observed eta is reproduced
by the theoretical radiative efficiency given by
Eq. (19) (solid blue line for the central value and
the dashed blue lines describe the errors about the
central value Table I). From Fig. 3 it is evident that
r2 > 1.6 cannot explain the observed η.
The object exhibits strong ballistic jets [113] and

the emitted jet power corresponding to Γ ¼ 2 and
Γ ¼ 5 are reported in Table II. These are associated
with an error of 0.3 dex about the central value
[97,107]. In Fig. 3 the allowed values of r2 and a that
can explain the emitted jet power along with the
positive and the negative errors are depicted by the
orange shaded region. The definition of the red solid
and dashed lines remain identical to the previous
case. The emitted jet power corresponding to Γ ¼ 2
and Γ ¼ 5 are reported in Figs. 3(a) and 3(b),
respectively. We note from Fig. 3 that the allowed
values of spin from the observed jet power and the
radiative efficiency, exhibit an overlap in the general
relativistic scenario (r2 ¼ 0). We further note that
almost the entire allowed range of r2 can describe
the emitted jet power and the restriction on r2
actually arises from the observed η. Again the zone
of intersection between the blue and the orange
shaded region represents the values of r2 and a that
describes both the observations. From Figs. 3(a) and
3(b) we note that the allowed values of r2 correspond

to 0≲ r2 ≲ 0.8, which interestingly coincides with
the range allowed by the previous source.

3. XTE J1550-564: XTE J1550-564 consists of a
binary system with a black hole of mass 9.1�
0.61 M⊙ [117] and a late G- or early K-type star as
the companion [118]. The orbital period of the
binary is 1.55 days [118]. The distance and incli-
nation of the source are 4.38þ0.58

−0.41 kpc and 74.7�
3.8° respectively [117]. The spin of the black hole
has been estimated both by the continuum fitting and
the Fe-line methods. The result obtained from the
continuum fitting method corresponds to −0.11 <
a < 0.71 (90% confidence)[119], with a most likely
spin of a ¼ 0.34 while Fe-line method gives a spin
estimate of a ¼ 0.55þ0.15

−0.22 [119]. In Table I, the spin
corresponding to the continuum fitting method has
been reported and η is calculated based on this result
[103]. The object exhibits a 5 GHz radio-flux density
of 0.265 Jy. Using Lorentz factors Γ ¼ 2 and Γ ¼ 5,
the emitted jet powers are calculated and reported in
Table II [103,107]. As before, an error of 0.3 dex is
associated with the reported jet powers [97,107].
The emitted jet powers (corresponding to Γ ¼ 2 and
Γ ¼ 5) along with their errors is compared with the
theoretical jet power and the results are presented in
Figs. 4(a) and 4(b), respectively. The values of r2
and a that can explain the emitted jet power within
the error bars are denoted by the orange shaded
region. The blue shaded region on the other hand,
illustrates the allowed values of r2 and a when the
theoretical radiative efficiency equals the observed η.
As before r2 > 1.6 cannot explain the observed η
while no such restriction on r2 is imposed from the
observed jet power. Once again, the maximum
allowed magnitude of r2 from both the observations
is r2 ∼ 0.9 [in both Figs. 4(a) and 4(b)]. The range of
spin predicted from the jet power (when r2 ¼ 0) is

(a) (b)

FIG. 3. Black hole source H1743-322. The orange shaded region in the figure denote the values of r2 and a that can reproduce the
observed Pjet with (a) Γ ¼ 2 and (b) Γ ¼ 5, within the error bars. The blue shaded region is associated with the allowed values of r2 and
a that can address the observed η (Table I) within the error bars. For more discussion see text.
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consistent with the range estimated by the con-
tinuum fitting method.

4. GRS 1124-683: this x-ray binary comprises of a
black hole of mass 11.0þ2.1

−1.4 M⊙ [120] and a K-type
main sequence star as the companion with an orbital
period of 10.4 hours [121]. The distance to the
source is D ¼ 4.95þ0.69

−0.65 kpc while the inclination is
i ¼ 43.2þ2.1

−2.7
∘ [120]. The spin of the object has been

estimated by the continuum fitting method which
turns out to be a ¼ 0.63þ0.16

−0.19 [122]. Based on
this value for the Kerr parameter, the radiative
efficiency has been estimated (Table I). The allowed
values of r2 and a from observed η are described
by the blue shaded region in Fig. 5, which reveals
that r2;max ∼ 1.8.
The emitted jet power corresponding to this

source for Γ ¼ 2 and Γ ¼ 5 are reported in Table II.
A 0.3 dex error on the reported jet power is assumed

[97,107]. In Fig. 5 the orange shaded region repre-
sents the allowed values of r2 and a, which can
explain the emitted jet power within the error bars.
We note that the maximum magnitude of r2 that can
explain both the observed η and Pjet corresponds to
r2 ¼ 1.7 and r2 ¼ 1.5 for Γ ¼ 2 and Γ ¼ 5, respec-
tively. Moreover, unlike the previous black holes, the
allowed range of spin that can describe both the
observations when r2 ¼ 0 shows an overlap only
when Γ ¼ 5 is considered to compute the emitted jet
power from the observed 5 GHz radio-flux density.

5. GRO J1655-40: GRO J1655-40 consists of a black
hole of dynamical mass M ¼ 6.3� 0.5 M⊙ [123]
and an F-type secondary star of mass MS ¼ 2.34�
0.12 M⊙ with an orbital period of 2.62 days [124].
The distance of the source has been estimated to be
D ¼ 3.2� 0.5 kpc [125] while its orbital inclination
turns out to be i ¼ 70.2� 1.9° [123]. There is a lot
of controversy regarding the spin of this source.

(a) (b)

FIG. 5. Black hole source GRS 1124-683. The description of the blue, orange, and the green shaded regions remain the same as in the
previous figures. The solid and dashed, red, and blue lines also retain the same definition as in Fig. 2.

(a) (b)

FIG. 4. Black hole source XTE J1550-564. The orange shaded region represents the values of r2 and a when the theoretical jet power
explains the observed luminosity Doppler boosted by the Lorentz factor (a) Γ ¼ 2 and (b) Γ ¼ 5. The blue shaded region is associated
with the allowed values of r2 and a that can address the observed η (Table I) within the error bars. The green shaded region indicates the
values of r2 and a giving rise to a real positive event horizon and hence a black hole solution. For more discussion see text.
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While the continuum fitting method predicts a spin
a ∼ 0.65–0.75 [126], the spin estimated by the Fe-
line method is a > 0.9 [127]. Based on the quasi-
periodic oscillatons observed in the power spectrum
of GRO J1655-40, the mass and spin of this object
has been constrained to be M ¼ 5.31� 0.07 M⊙
and a ¼ 0.290� 0.003, respectively [128]. In this
work however, we consider the spin estimated by the
continuum fitting method to evaluate the radiative
efficiency. As before, the allowed values of r2 and a
that can explain the observed η within the error bars
are shaded in blue in Fig. 6, which shows that
r2;max ∼ 1.8.
Using the 5 GHz radio-flux density of 2.42 Jy, the

emitted jet power has been evaluated assuming
Lorentz factors Γ ¼ 2 and Γ ¼ 5, which are reported
in Table II. These are associated with an error of
0.3 dex. In Fig. 6 the orange shaded region repre-
sents the values of r2 and a, which can explain the
emitted jet power within the allowed errors. We note

that Figs. 6(a) and 6(b) corresponds to the emitted jet
power being computed using Γ ¼ 2 and Γ ¼ 5,
respectively. We note that the observed jet power
can be explained by the entire range of r2. However,
if we consider both the observations, 0≲ r2 ≲ 1 if
Γ ¼ 2 and 0≲ r2 ≲ 0.7 when Γ ¼ 5 is assumed.

6. GRS 1915þ 105: GRS 1915þ 105 is a galactic
x-ray binary consisting of a black hole and a K-type
star with an orbital period of 34 days [68,129]. The
black hole in this x-ray binary has a mass M ¼
12.4þ2.0

−1.8 M⊙ [130]. The distance to the source is
8.6þ2.0

−1.6 kpc and the inclination angle is 60� 5°
[130]. The spin of the black hole estimated by the
continuum fitting method turns out to be a > 0.98
[131], which is used to estimate the radiative
efficiency. In Fig. 7 the blue shaded region bounded
by the blue dashed and solid line shows the allowed
values of r2 and a that can explain the observed η.
We note that a higher value of r2 requires a lower
spin to reproduce the radiative efficiency.

(a) (b)

FIG. 7. Black hole source GRS 1915þ 105. The description of the blue, orange, and the green shaded regions remain the same as in
the previous figures. The solid and dashed, red and blue lines also retain the same definition as in Fig. 2.

(a) (b)

FIG. 6. Black hole source GRO J1655-40. The description of the blue, orange, and the green shaded regions remain the same as in the
previous figures. The solid and dashed, red and blue lines also retain the same definition as in Fig. 2.
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The object exhibits strong radio jets with 5 GHz
radio-flux density being 0.912 Jy [68]. The emitted
jet power derived from the flux density after Doppler
deboosting with Lorentz factors Γ ¼ 2 and Γ ¼ 5
are reported in Table II. As before the error asso-
ciated with the jet power is 0.3 dex. The orange
shaded region in Fig. 7 indicates the values of r2 and
a, which can address the observed jet power within
the error bars. The solid and the dashed red lines
bear the same definition as before. We note from
Fig. 7 that almost the entire allowed range of r2 can
explain both the observed Pjet and η. Also, when
r2 ≳ 1.5 both the observations can be simultane-
ously explained.

B. Implications on the axion-dilaton parameters
from observational constraints

We have noted in the last section that the observed
radiative efficiency and the jet power can be used to discern
the observationally favored magnitude of the dilaton
parameter. In order to gain a better understanding on this
we note that comparison of the theoretical radiative
efficiency [Eq. (19)] and the jet power [Eq. (26)] with
the corresponding observations of six microquasars (as
depicted in Figs. 2–7) exhibit a few common features:

(i) The observed jet power can be explained by almost
the entire allowed range of r2.

(ii) A higher value of r2 requires a lower a to explain the
observed Pjet and η.

(iii) The observational bound on r2 arises when one tries
to reproduce the observed η.

(iv) In most of the cases, when r2 ¼ 0 (general relativ-
istic scenario), the observationally allowed range of
a obtained from Pjet and η exhibit an overlap.

The above features motivate us to evaluate the chi square as
a function of r2 by comparing PBZ [Eq. (26)] and η
[Eq. (19)] with the corresponding observations. This
corresponds to the joint χ2 given by

χ2ðr2; fagÞ ¼
X
i

fηobs;i − ηðr2; fagÞg2
σ2η;i

þ
X
i

fPjet − PBZðr2; fagÞg2
σ2P;i

: ð30Þ

For every r2 we vary a in the allowed range: −ð1 − r2
2
Þ ≤

a ≤ ð1 − r2
2
Þ (such that the event horizon exists) and

compute χ2ðr2; fagÞ as in Eq. (30). The spin parameter
which gives the minimum χ2 for the chosen r2, is
considered to be the χ2 for that r2. Repeating this procedure
for all values of r2 in the range 0 ≤ r2 ≤ 2, we obtain the
variation of χ2 with r2.
Figure 8 shows the variation of the natural logarithm of

the χ2 computed by the above procedure with the dilaton

parameter r2. The red and blue dashed lines are associated
with the situation when PBZ in Eq. (30) is compared with
the observed Pjet corresponding to Γ ¼ 2 and Γ ¼ 5,
respectively. The black solid line denotes the joint χ2 when
both Γ ¼ 2 and Γ ¼ 5 are taken into account. From Fig. 8,
we note that while the Γ ¼ 2 scenario slightly favors a
nonzero dilaton parameter (r2 ∼ 0.1), the Γ ¼ 5 case favors
the general relativistic scenario. From the joint χ2, the
observationally favored dilaton parameter seems to be
r2 ∼ 0. The most important outcome of this analysis is
that the extreme or even moderate values of r2 are
disfavored from observations related to jet power and
radiative efficiency. This implies that pure dilaton black
holes (which are nonrotating) are less favored compared to
their axion-dilaton counterparts. Also, since the joint χ2

minimizes around r2 ∼ 0, the Kerr black holes seem to
explain the observations better than Kerr-Sen black holes.

V. SUMMARY AND CONCLUDING REMARKS

In this work we aim to discern the imprints of Einstein-
Maxwell dilaton-axion gravity from observations related to
jet power and radiative efficiency of microquasars. The
EMDA gravity essentially arises in the low energy effective
action of superstring theories and investigating the obser-
vational signatures of the same is important as it can
provide an indirect testbed for string theory. The theoretical
implications of this model has been explored extensively in
the past and the exact, stationary and axisymmetric black
hole solution in this theory has been worked out. Such a
solution corresponds to the Kerr-Sen spacetime which
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FIG. 8. The figure illustrates the variation of χ2 with the dilaton
parameter r2 for the sample of microquasars. The red dashed line
represents the situation when Pjet corresponding to Γ ¼ 2 is used
to compute the χ2, while the blue dashed line is associated with
the scenario when Pjet corresponding to Γ ¼ 5 is considered for
evaluating the χ2. The black solid line denotes the joint χ2 when
both Γ ¼ 2 and Γ ¼ 5 are taken into account. For more
discussions see text.
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contains dilaton charges while the axionic field renders
angular momentum to such black holes.
The observational signatures of the Kerr-Sen spacetime

has been explored in the context of strong gravitational
lensing and black hole shadows [59,63–65]. Therefore, in
this work we investigate the role of the Kerr-Sen back-
ground in affecting the jet power and the radiative effi-
ciency derived from the continuum spectrum associated
with the black holes. The transient jet power and the peak
emission of the continuum spectrum from the accretion
disk are sensitive to the background spacetime and hence
can be used as important observational tools to probe the
nature of strong gravity.
The power associated with transient jets is computed

based on the Blandford-Zanjeck model that explicitly
reveals the dependence of the background metric on the
jet power. This is then compared with the emitted jet power
of a sample of microquasars estimated from the peak 5 GHz
radio flux density which is Doppler boosted by Lorentz
factors Γ ¼ 2 and Γ ¼ 5 and scaled by the distance to
obtain the associated luminosity. The jet power estimated
by this method turns out to be model independent and
hence sufficiently reliable [97]. If the background is gover-
ned by the Kerr metric then such an observation can be used
to determine the black hole spins [97]. In the event the
background corresponds to the Kerr-Sen spacetime, the
allowed values of the spin and the dilaton parameters can be
determined based on the observed jet power. A departure
from general relativity therefore introduces a degeneracy
between the metric parameters, and only a combination of
these parameters can be constrained.
The radiative efficiency, the second metric dependent

quantity used in this work, is calculated based on the
Novikov-Thorne model for thin accretion disk. This is
subsequently compared with the observed radiative effi-
ciency of the same sample of microquasars whose jet
powers have been evaluated. The radiative efficiency is
derived from the peak emission of the continuum spectrum
and assuming general relativity, it can be used to constrain
the spins of the underlying black holes. This forms the
basis of the Continuum-Fitting method for determining the
spins of the microquasars. In the event the background is
governed by the Kerr-Sen spacetime, the radiative effi-
ciency can be used to determine the allowed values of spin
and dilaton parameters for each of the black holes.
We note that the dilaton-axion black hole can explain

the observed jet power and the radiative efficiency of the
microquasars. Although, in this case the jet is powered
by the interplay between the axion and the dilaton fields.
For each of the microquasars the spin and the dilaton
parameters which can explain both the observations are
considered. It turns out that in most of the cases large values
of the dilaton parameters, viz., r2 ≳ 1 are generally dis-
favored. A greater axionic field strength requires a smaller
dilatonic charge of the black hole to reproduce these

two observations. A chi-square analysis is performed where
the observed jet power and the radiative efficiency of the
microquasars are compared with the corresponding theo-
retical estimates depending on the metric parameters. Such
an analysis clearly reveals that pure dilaton black holes are
observationally less favored compared to their axion-
dilaton counterparts. Moreover, since the chi-square min-
imizes when r2 ≃ 0, the Kerr black holes seem to be
observationally more favored compared to the Kerr-Sen

black holes. We have noted earlier that r2=M ¼ α0Q2

8M2.
Therefore obtaining r2 ≃ 0 from the observations implies
Q ≃ 0 since α0 ≃ 0 would lead to gauge anomaly. Since
astrophysical black holes are expected to carry negligible
charge [70], our result r2 ≃ 0 also implies Q ≃ 0, in which
case we retrieve the Kerr metric. However, it is important
to note that observational validation of the Kerr scenario
does not necessarily validate general relativity since the
Kerr metric also arises as black hole solution for several
alternative gravity scenarios [50,72,132].
In the Kerr scenario, the axion or the Kalb-Ramond

field exhibit a vanishing field strength whose suppression
has been observed in several other physical scenarios,
e.g., in the context of higher curvature gravity where the
related scalar degrees of freedom reduces the coupling of
such a field with the Standard Model fermions [133,134],
in the warped braneworld scenario [135] with bulk Kalb-
Ramond fields [136,137] and the related stabilization of the
modulus [138] and in the inflationary era induced by higher
curvature gravity [139,140] and higher dimensions [141].
A similar conclusion r2 ≃ 0.2 (which is close to r2 ≃ 0) has
been independently achieved by comparing the theoretical
luminosity from the accretion disk in the Kerr-Sen back-
ground with the optical observations of quasars [142]. This
result can be further verified with the availability of a larger
observational sample or by considering more observations
in the electromagnetic domain, e.g., quasiperiodic oscil-
lations or black hole shadow, which will be reported in a
future work.
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APPENDIX A: DERIVATION OF
THE JET POWER IN THE

BLANDFORD-ZNAJECK MODEL

In this section we derive the jet power in the Blandford-
Znajeck model assuming a general stationary, axisym-
metric spacetime. We have already discussed that the
Blandford-Znajeck model assumes a force-free magneto-
sphere where the particle inertia is neglected compared to
the energy-momentum tensor due to the electromagnetic
fields, such that
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T tot
μν ¼ TEM

μν þ Tmatter
μν ≈ TEM

μν ðA1Þ

where

TEM
μν ¼ FμρF

ρ
ν −

1

4
gμνFαβFαβ ðA2Þ

satisfies the conservation equation

∇μTEM
μν ¼ 0: ðA3Þ

In Eq. (A2), Fμν ¼ ∂μAν − ∂νAμ is the Faraday tensor and
Aμ is the gauge field. In a force-free magnetosphere the
Faraday tensor satisfies the relation [70],

FμνJν ¼ 0 ðA4Þ

such that

At;rJr þ At;θJθ ¼ 0; ðA4aÞ

At;rJt þ Aϕ;rJϕ þ BϕJθ ¼ 0; ðA4bÞ

At;θJt þ Aϕ;θJϕ þ BϕJr ¼ 0; ðA4cÞ

Aϕ;rJr þ Aϕ;θJθ ¼ 0; ðA4dÞ

and Jν is the current four vector. From Eqs. (A4a) and
(A4d) one can define the electromagnetic angular velocity
ωðr; θÞ, where

At;r

Aϕ;r
¼ At;θ

Aϕ;θ
¼ −ωðr; θÞ: ðA5Þ

Assuming the validity of the force-free condition and that
Aμ is stationary and axisymmetric one can write the
Faraday tensor in the form

Fμν ¼
ffiffiffiffiffiffi
−g

p

0
BBB@

0 −ωBθ ωBr 0

ωBθ 0 Bϕ −Bθ

−ωBr −Bϕ 0 Br

0 Bθ −Br 0

1
CCCA: ðA6Þ

The power associated with the relativistic jet in the
context of the Blandford-Znajeck model is given by

PBZ ¼ 4π

Z
π=2

0

ffiffiffiffiffiffi
−g

p
Tr
tdθ; ðA7Þ

which takes into account the fact that the jets are bipolar.
In Eq. (A7) Tr

t represents the radial component of the
Poynting flux. From Eq. (A2) it can be shown that the radial
component of the Poynting flux assumes the form

Tr
t ¼ grrgθθFrθFθt − grtgθθF2

tθ þ grϕgθθFϕθFθt ðA8Þ

such that the information of the metric enters both through
its determinant and through Tr

t in the jet power.

APPENDIX B: JET POWER IN THE
EINSTEIN-MAXWELL-DILATON-AXION

GRAVITY

In this section we derive the jet power in the Kerr-
Sen background arising in Einstein-Maxwell-dilaton-axion
gravity. We assume that the jet launching radius corre-
sponds to the event horizon and hence the first term in
Eq. (A8) vanishes. In order to derive the jet power one
requires that the metric is regular at the horizon. As a result
we express our metric given by Eq. (10) in the Kerr-Schild
coordinates,

ds2 ¼
�
−1þ 2r

Σ̃

�
dt2 þ 4r

Σ̃
dtdr − sin2θ

4ar

Σ̃
dtdϕ

þ
�
1þ 2r

Σ̃

�
dr2 − 2asin2θ

�
1þ 2r

Σ̃

�
drdϕþ Σ̃dθ2

þ sin2θ

�
a2 þ rðrþ r2Þ þ 2sin2θ

a2r

Σ̃

�
dϕ2: ðB1Þ

Using Eqs. (A8) and (B1) the radial component of the
Poynting flux is given by

Tr
t ¼ 2rHMsin2θðBrÞ2ω½ΩH − ω�jr¼rH ; ðB2Þ

where

rH ¼ 1 − r2
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − r2

2

�
2 − a2

s
and ðB3Þ

ΩH ¼
�
−
gtϕ
gϕϕ

�����
r¼rH

ðB4Þ

is the horizon radius and the angular velocity of the event
horizon, respectively. It is important to note that, for the
metric in Eq. (B1),

ΩH ¼
�
−
gtϕ
gϕϕ

�����
r¼rH

¼
�
grϕ

grt

�����
r¼rH

¼ a
2rH

ðB5Þ

and
ffiffiffiffiffiffi−gp ¼ Σ̃ sin θ.

At this stage, it is impossible to calculate the jet power
without knowing the form of ω and Br. This requires
solving Eq. (A3) which is quite nontrivial. Therefore, we
follow the approach adopted by [101,102], where ω ¼
ΩH=2 is assumed. This can be obtained by maximizing the
radial Poynting flux Tr

t in Eq. (B2) with respect to ω [102].
With this assumption, Eq. (B2) is given by

Tr
t ¼ 2rHMsin2θðBrÞ2 Ω

2
H

4
: ðB6Þ

BANERJEE, MANDAL, and SENGUPTA PHYS. REV. D 103, 044046 (2021)

044046-14



In the stationary and axisymmetric spacetime at a constant
ðr; θÞ, the physical quantities are invariant along the
azimuthal direction, the so-called m loops [143]. Con-
sequently, by applying Stoke’s law along one of these
“m loops” the magnetic flux ΦB through it is given by

ΦB ¼
Z

B⃗:d⃗S¼
Z

ð∇⃗× A⃗Þ:d⃗S¼
I

A⃗:d⃗l¼ 2πAϕ: ðB7Þ

Further, from Eq. (A6) it is clear that Fθϕ ¼ Aϕ;θ ¼ ffiffiffiffiffiffi−gp
Br

such that

ΦB ¼ 2πAϕ ¼ 2π

Z
π

0

ffiffiffiffiffiffi
−g

p jBrjdθ ¼ 2πΨ: ðB8Þ

Therefore, the azimuthal component of the vector potential
Aϕ is directly related to the magnetic flux through the m

loops and is denoted byΨ. Assuming that the magnetic flux
Ψ approximately follows the split-monopole profile it can
be shown that [102]

Br ¼ Ψtot

r2
; ðB9Þ

where terms of the order Ω2
H and higher are neglected.

Substituting Eqs. (B9) and (B6) in Eq. (A7) and evaluating
it at the horizon radius, it can be shown that

PBZ ¼ kΦ2
totΩ2

H ðB10Þ

when terms of order Ω4
H and higher are neglected [102]. In

Eq. (B10) Φtot represents the magnetic flux threading the
event horizon.
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