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Scalar-tensor theory predicts solutions to the gravitational field equations which describe compact
objects in the presence of a nonminimally coupled scalar field to the Einstein tensor. These objects are black
holes with scalar hair and wormholes supporting scalar phantom matter. The evolution of test fields in fixed
asymptotically-flat backgrounds of exotic compact objects leads to the formation of echoes in the ringdown
signal, which designate the existence of trapping regions close to the event horizon. Here, we consider
minimally coupled test scalar fields propagating on compact object solutions of the Horndeski action,
which possess an effective cosmological constant, leading to anti-de Sitter asymptotics, and show that
echoes can form in the ringdown waveform due to the entrapment of test fields between the photon sphere
and the effective asymptotic boundary. Although the presence of an event horizon leads to the usual echoes
with decaying amplitude, signifying modal stability of the scalarized black hole considered, we find that
test scalar fields propagating on a scalarized wormhole solution give rise to echoes of constant and equal
amplitude to that of the initial ringdown, indicating the existence of normal modes. Finally, we find that,
near extremality, the test field exhibits a concatenation of echoes; the primary ones are associated with the
trapping region between the photon sphere and the effective anti–de Sitter boundary while the secondary
ones are linked to the existence of a potential well at the throat of the wormhole.
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I. INTRODUCTION

The direct observation of gravitational waves (GWs)
produced during the relativistic collision of two com-
pact objects, offers exciting new opportunities for the
study of the nature of the colliding bodies. In the near
future, following the recent LIGO detections [1–5], GW
astronomy will provide us a new understanding of the
gravitational interaction and astrophysics in extreme-
gravity conditions. The recent observations do not yet
probe the detailed structure of spacetime beyond the photon
sphere, however one expects that the strong gravity regime
will in the next years come to our understanding with future
GW observations. In particular, the expectation is to
precisely detect the ringdown phase, which is governed
by a series of damped oscillatory modes at early times,
named quasinormal modes (QNMs) [6–9], and may poten-
tially contain unexpected anomalies due to new physics at
late times [10].
The expectation is that future GW observations will

give us some information on the nature and physics of the
near-horizon region of black holes (BHs) and if these

regions exhibit any unexpected structure. Alternatives to
BHs, that is, objects without event horizons, were recently
constructed, known as exotic compact objects (ECOs)
[11–14]. The existence of any structure at near-horizon
scales would generate a series of “echoes” of the primary
gravitational wave signal, produced during the ringdown
phase [10,15]. The LIGO data have already been analyzed
on the presence of echoes [16–18].
It is believed that the ringdown waveform is dominated

by the QNMs of the compact object remnant. Thus, the
detection of overtones from the ringdown signal allows for
precision measurements of the characteristic parameters of
compact objects like the mass, charge and angular momen-
tum. Various studies suggest that the ringdown signal is
dominated by the mode excitations of photons trapped
in unstable circular orbits at the photon sphere, namely
the photon sphere (PS) modes [19–26]. These QNMs are
directly related to the existence of the PS, and if the
compact object is an asymptotically flat BH no other
oscillatory mode is excited. For ECOs, on the other hand,
although the PS excitations still exist at the early stage of
the ringdown signal, as in the case of BHs, they do not
belong to the QNM spectrum [10,15].
Wormholes are ECO solutions of the Einstein equations

that connect different parts of the Universe or two different
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Universes [27,28]. Although wormholes have distinct
causal structures from BHs, they possess PSs and, there-
fore, can disguise themselves as BHs in GW data if one
only focuses on the early stage of the ringdown signal.
Lorentzian wormholes in general relativity (GR) were
discussed in [29–31], where a static spherically symmetric
metric was introduced and conditions for traversable
wormholes were found. Unfortunately, wormhole solu-
tions of the Einstein equations lead to the violation of null
energy condition (NEC). A matter distribution of exotic or
phantom matter allows the formation of traversable worm-
hole geometries in GR. There have been many efforts to
build a wormhole with ordinary matter satisfying the NEC
[31–33] in modified gravity theories like Brans-Dicke
theory [34], fðRÞ gravity [35], Einstein-Gauss-Bonnet
theory [36], Einstein-Cartan theory and general scalar-
tensor theories [37].
A series of contemporary studies [10,15] suggest that the

ringdown signal may provide a conclusive proof for the
formation of an event horizon. Such expectation is based on
the assumption that an ECO would possess a reflective
surface beyond the PS instead of an event horizon. This
would lead to the existence of a trapping region between the
surface of the ECO and PS where perturbations could be
confined and manifest themselves as echoes in the late
stage of the gravitational waveform. Then, by considering
ringdown waveforms of ECOs, such as wormholes, it
has been claimed [10,15] that precision observations of
the late-time ringdown signal can distinguish between the
formation of ECOs or BHs.
In this work we will consider the ringdown phase of

exact compact object solutions of scalar-tensor theory,
which is part of the Horndeski class of solutions [38] that
give rise to second order field equations in four dimensions
[39–41] (for a review of this class of Horndeski theories see
[42]). The BH [43–48] and wormhole [49] solutions we
consider arise from a gravitational action with a real or
phantom scalar field, respectively, non-minimally coupled
to the Einstein tensor. These exact solutions encode the
‘gravitational’ scalar, and its coupling strength, in the
metric tensor components as a primary charge [44,49],
which asymptotically plays the role of an effective negative
cosmological constant. The motivation for considering
these objects is that they have a natural asymptotic reflec-
tive boundary, in the external region of the PS, which may
lead to different behavior compared with the case of flat
spacetimes. The anti–de Sitter (AdS) spacetime is a
necessity for holographic theories which were built by
applying the gauge/gravity duality. The aim of holography
is to study strongly coupled phenomena using dual gravi-
tational systems where the coupling is weak [50]. This
duality, which is well founded in string theory, has many
interesting applications and among them is condensed
matter physics. In these theories, AdS BHs play an essential
role in the gravity sector in order to achieve the abundant

phase structure of the condensed matter system lying on the
conformal boundary (for a review, see [51]). These holo-
graphic theories stimulated the extended study of AdS BHs,
their formation and their stability, with their QNMs
describing the approach to thermal equilibrium in the dual
conformal field theory on the boundary [52].
Wormholes in AdS spacetimes where discussed in [53],

in an attempt to yield some information about the physics
of closed Universes. Such discussion is connected with
the physics of inflation, and its connection with vacuum
decay. A unique realization of such ideas is baby-Universe
formation by quantum tunneling which eventually discon-
nect from the parent spacetime [54]. Recently, these ideas
of connecting the physics of wormhole spacetimes to baby-
Universes were revisited in [55], using features associated
with a negative cosmological constant and asymptotically
AdS boundaries.
Our main goal is to probe the ringdown of the afore-

mentioned exact compact object solutions of scalar-tensor
theory, by considering the propagation of linear test scalar
perturbations minimally coupled to the metric, with the
hope that these two objects are discernible, even though
both possess a PS and effective AdS asymptotics. We will
adopt the methodology used in [56,57] and introduce a new
minimally coupled test scalar field in the gravitational
action; the simplest case one can possibly envision. We
note that the test scalar field we utilize is linear and should
not be confused with the gravitational scalar of the theory,
which backreacts to the metric to give rise to the scalarized
BH and wormhole solutions we consider. By introducing a
novel minimally coupled linear test scalar field, we test the
response of such solutions to small fluctuations, which in
turn encode the information of the gravitational scalar that
places a natural asymptotic effective boundary, although a
negative cosmological constant is absent from the action.
More complicated nonminimal couplings have been con-
sidered in such theories, though the effect of a coupling
between the test and gravitational scalar leads to a critical
coupling constant below which the QNM boundary con-
ditions are not satisfied [57].
The work is organized as follows. In Sec. II we review

the BH and wormhole solution with the non-minimal
derivative coupling in the Horndeski scalar-tensor theory.
In Sec. III we derived the effective potentials for a test
scalar field scattered off from the BH and wormhole. In
Sec. IV we discuss the time-domain integration scheme.
In Sec. V we study the propagation of the test scalar field
in the background of the BH and the wormhole. Finally, in
Sec. VI we discuss our results and possible applications.

II. EXACT COMPACT OBJECTS IN
SCALAR-TENSOR THEORY

In this section, we briefly review two exact compact
object solutions [44,49] of the Horndenski Lagrangian with
nonminimal kinetic coupling
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S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R
8π

− ½εgμν þ ηGμν�ϕ;μϕ;ν

�
: ð1Þ

Here,R is the Ricci scalar, Gμν is the Einstein tensor, gμν is
the metric tensor with g ¼ det gμν, ϕ is a real massless
scalar field and η is a nonminimal coupling constant with
dimensionality length squared. In the case where ε ¼ 1, the
theory contains a canonical scalar field with a positive
kinetic term, while when ε ¼ −1 the theory describes a
phantom scalar field with a negative kinetic term.
The BH solution found in [44] is static, spherically

symmetric and possesses an AdS-like boundary. The
solution reads

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð2Þ

where

fðrÞ ¼ 1

4

�
3 −

8μ

r
þ r2

3l2η
þ lη

r
arctan

r
lη

�
; ð3Þ

gðrÞ ¼ ðr2 þ 2l2ηÞ2
ðr2 þ l2ηÞ24fðrÞ

; ð4Þ

Ψ2ðrÞ≡ ðϕ0ðrÞÞ2 ¼ −
ε

8πl2η

r2ðr2 þ 2l2ηÞ2
ðr2 þ l2ηÞ34fðrÞ

: ð5Þ

We would like to stress that this solution describes a BH
only in the case where ε ¼ 1 and εη < 0 (see [44,49] for
further details). Here, μ is an integration constant that plays
the role of mass and lη ¼

ffiffiffiffiffiffiffijεηjp
is a characteristic scale of

the nonminimal coupling. The inverse tangent function
restricts the domain of r to r ∈ ð0;∞Þ. In the limit r → 0
the function fðrÞ yields Schwarzschild asymptotics, i.e.,
fðrÞ ≈ 1 − 2μ

r , while for r → ∞ one obtains fðrÞ ≈ 3
4
þ r2

12l2η

i.e., AdS-like asymptotics. Note that in the metric functions
(3) and (4) the nonminimal coupling lη is present, which is
the strength of the coupling of the scalar field to curvature.
Therefore, the BH solution is dressed with a scalar field
given in Eq. (5).
The wormhole solution found in [49], by following the

approach of [44], reads1

ds2 ¼ −fðξÞdt2 þ gðξÞdξ2 þ ðξ2 þ a2Þðdθ2 þ sin2θdφ2Þ;
ð6Þ

where εη < 0, ε ¼ −1 and

gðξÞ ¼ ξ2ðξ2 þ a2 þ 2l2ηÞ2
ðξ2 þ a2Þðξ2 þ a2 þ l2ηÞ2FðξÞ

; ð7Þ

fðξÞ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þa2

p exp

�Z
ξ

0

ξðξ2þa2þ2l2ηÞ2
l2ηðξ2þa2Þðξ2þa2þ l2ηÞFðξÞ

dξ

�
;

ð8Þ

Ψ2ðξÞ≡ ðϕ0ðrÞÞ2 ¼ −
ε

8πl2η

ξ2ðξ2 þ a2 þ 2l2ηÞ2
ðξ2 þ a2Þðξ2 þ a2 þ l2ηÞ3FðξÞ

;

ð9Þ

with

FðξÞ ¼ 3 −
8μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ a2

p þ ξ2 þ a2

3l2η

þ lηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ a2

p arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ a2

p
lη

�
: ð10Þ

Again, the nonminimal derivative coupling appears in the
metric functions and the phantom scalar field generating
the wormhole is given in Eq. (9). The function FðξÞ has a
minimum at ξ ¼ 0, thus to make it positive definite one
should demand Fð0Þ > 0. Hence, one can derive the
limitation on the upper value of the parameter mass
parameter μ

2μ < a

�
3

4
þ α2

12
þ 1

4α
arctanα

�
; ð11Þ

where α≡ a=lη is a dimensionless parameter which defines
the ratio of the wormhole throat radius a and the scale of
the nonminimal kinetic coupling lη. Far from the throat,
in the limit jξj → ∞, the metric functions gðξÞ and fðξÞ
take the asymptotic form

gðξÞ ¼ 3
l2η
ξ2

þO

�
1

ξ4

�
; fðξÞ ¼ A

ξ2

l2η
þOðξ0Þ; ð12Þ

where A depends on the parameters a, lη, μ and can be
calculated only numerically. These asymptotics correspond
to AdS space with constant negative curvature. Close to the
throat ξ ¼ 0 one finds

gðξÞ ¼ B
ξ2

l2η
þOðξ4Þ; fðξÞ ¼ 1þOðξ2Þ; ð13Þ

where B depends on α and μ. Moreover, there is a
coordinate singularity at ξ ¼ 0 where gð0Þ ¼ 0.

1Note that the coordinates ðt; ξ; θ;ϕÞ used here are not the
Schwarzschild coordinates since, ξ is not the curvature radius of a
coordinate sphere ξ ¼ const > 0.
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III. SCALAR FIELD PROPAGATION ON FIXED
GRAVITATIONAL BACKGROUNDS

In this study, we will be interested in the response of the
compact object models described above against a linear test
scalar field Φ minimally-coupled to the metric, but not the
gravitational scalar ϕ in (1). The dynamical propagation of
a linear massless scalar perturbation Φ on the fixed back-
ground spacetime of a compact object, described by the
metric tensor gμν, is dominated by Klein-Gordon equation

□Φ ¼ 0 ⇔
1ffiffiffiffiffiffi−gp ∂μ½

ffiffiffiffiffiffi
−g

p
gμν∂νΦ� ¼ 0: ð14Þ

Due to spherical symmetry we can decompose the scalar
field Φðt; ρ; θ;ϕÞ into a radial and angular parts, by
introducing the ansatz

Φðt; ρ; θ;ϕÞ ¼ ψðρ; tÞ
RðρÞ Ylmðθ;ϕÞ; ð15Þ

where Ylm are the standard spherical harmonics, ρ is a
general radial-like coordinate and RðρÞ2 a function of ρ.
Equation (14) can, then, be recast into a Schrodinger-like
form

� ∂2

∂t2 −
∂2

∂ρ2� þ VðρÞ
�
ψðρ; tÞ ¼ 0; ð16Þ

with the effective potential given by

VðρÞ ¼ fðρÞ
�
lðlþ 1Þ
RðρÞ2 þ R00ðρÞ

gðρÞRðρÞ þ
f0ðρÞR0ðρÞ

2gðρÞfðρÞRðρÞ

−
g0ðρÞR0ðρÞ
2g2ðρÞRðρÞ

�
; ð17Þ

where l is the angular quantum number and ρ� is the usual
tortoise coordinate defined by

dρ� ¼
ffiffiffiffiffiffiffiffiffi
gðρÞ
fðρÞ

s
dρ:

Equation (16) demonstrates that one is able to reduce
the problem of scalar perturbations around compact
objects into a single one-dimensional scattering problem
with an effective potential. Applying this procedure on
the BH (3)–(5) and the wormhole (7)–(9) we find the
corresponding effective potentials a test scalar field “feels”
when propagating on these backgrounds.
Figure 1 shows the effective potentials for various

choices of nonminimal coupling constants. We observe
that the BH spacetime has a peak right outside the
event horizon, while asymptotically the effective potential
diverges. Such asymptotic divergence encodes the AdS-like
nature of the spacetime. The increment of lη leads to a more
distant asymptotic boundary which could be explained
from the fact that the nonminimal coupling has dimension-
ality length squared. In a sense, lη acts as an inverse
cosmological constant, therefore at the limit lη → ∞ the
spacetime becomes asymptotically flat, which would cor-
respond to a zero cosmological constant. The wormhole’s
effective potential is clearly different from that of the BH,
as seen in Fig. 1. There is a single peak at the throat ξ ¼ 0,
which corresponds to the PS, while asymptotically the
potential diverges. The effect of lη is apparent in this case as
well. Although not proven explicitly here, our numerics
indicate that both peaks of V occur close to the PS, since
their amplitude is solely affected by l which is directly
associated with the energy of null particles trapped in
unstable circular orbits at the PS.

IV. TIME-DOMAIN INTEGRATION SCHEME

In this section we briefly demonstrate the numerical
scheme of time-domain integration, first proposed in [58],

FIG. 1. The effective potential of scalar perturbations with l ¼ 1 for the black hole (3)–(5) (left) and the wormhole (7)–(9) (right) with
throat radius a ¼ 1, for three different values of lη and μ ¼ 0.1.

2RðρÞ≡ RðrÞ ¼ r for the BH and RðρÞ≡ RðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ a2

p
for the wormhole.
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which yields the temporal response of the scalar field as it
propagates on a fixed background. By defining ψðρ�;tÞ¼
ψðiΔρ�;jΔtÞ¼ψ i;j, Vðρðρ�ÞÞ¼Vðρ�;tÞ¼VðiΔρ�;jΔtÞ¼
Vi;j, Eq. (16) takes the form

ψ iþ1;j − 2ψ i;j þ ψ i−1;j

Δρ2�
−
ψ i;jþ1 − 2ψ i;j þ ψ i;j−1

Δt2

− Viψ i;j ¼ 0: ð18Þ

Then, by using as initial condition a Gaussian wave-packet

of the form ψðρ�; tÞ ¼ exp ½− ðρ�−cÞ2
2σ2

� and ψðρ�; t < 0Þ ¼ 0,
where c and σ correspond to the median and width of the
wave-packet, we can derive the time evolution of the scalar
field ψ by

ψ i;jþ1 ¼ −ψ i;j−1 þ
�

Δt
Δρ�

�
2

ðψ iþ1;j þ ψ i−1;jÞ

þ
�
2 − 2

�
Δt
Δρ�

�
2

− ViΔt2
�
ψ i;j; ð19Þ

where the Von Neumann stability condition requires that
Δt
Δρ�

< 1. Moreover, the effective potential is positive and
vanishes at the event horizon (but not at the wormhole
throat), however, it diverges as r → ∞ (or jξj → ∞). This
requires that ψ should vanish at infinity for both compact
objects in study, which corresponds to reflective boundary
conditions. To calculate the precise values of the potential
Vi, we integrate numerically the equation for the tortoise
coordinate and then solve with respect to the corresponding
radial coordinate. Various convergence tests were per-
formed throughout our numerical evolution, with different
integration steps and precision, to reassure the validity of
our ringdown profiles.

V. PROPAGATION OF PERTURBATIONS
ON COMPACT OBJECTS IN
SCALAR-TENSOR THEORY

By applying the numerical procedure outlined above, we
calculate the temporal response of linear massless scalar
field perturbations on the BH and wormhole solutions
discussed. In what follows, we assume the mass of both
compact objects to μ ¼ 0.1 (if not stated otherwise) and
obtain the perturbation response at a position arbitrarily
close to the event horizon for the BH, and at ξ ¼ 0.01 for
the wormhole.

A. Black hole

Figure 2 displays the evolution of a linear scalar
perturbation field on the background of the BH solution
(3)–(5). The most obvious effect we can observe is the
emergence of echoes following the initial quasinormal
ringdown. This pattern becomes more evident for higher
l due to the fact that more energy is carried away from the

PS when perturbed. For spherically-symmetric l ¼ 0
perturbations, on the other hand, the echo pattern is not
so evident since the field does not excite the PS signifi-
cantly, therefore the echoes fall off rapidly. Our inves-
tigation confirms that the decay rate of scalar perturbations
follows an exponential fall-off, as in [52,59], which is more
evident for the case of l ¼ 0. This behavior is in contrast
to that of asymptotically flat BH perturbations, where
the quasinormal ringing gives way to a power-law cutoff
[58,60,61], and its occurrence is related to the asymptotic
nature of timelike infinity in AdS spacetimes which serves
as a reflective boundary. The echoes have significantly
smaller amplitudes compared with the initial ringdown,
which is in agreement with the studies in [56,57,62] and
the dissipative nature of the event horizon, designating
modal stability.
It is worthy to note that further analytical investiga-

tions of perturbations in AdS BHs led to the conclusion
that solutions of the Klein-Gordon equation with fixed
angular quantum number l, indeed decay exponentially
[63]. However, an accumulation of all solutions, possessing
finite energy, achieves a logarithmic decay rate, due to the
presence of stable trapping [64] (for a discussion of the
wave equation in the interior of AdS BHs see [65,66]).
In Fig. 3 the effect illustrated. When lη increases the

effective AdS boundary moves further away from the event
horizon (see Fig. 1). As a consequence, the scalar wave
reflected off the PS has to travel a larger distance before
it reaches the reflective AdS boundary and return to re-
perturb the PS. Thus, the increment of lη leads to a delay of
the echoes. It is important to note that the echoes appear in
this case, not due to trapping of waves between the PS and
the surface of the compact object, but rather due to the
asymptotic nature of infinity. This effect may have impor-
tant implications in AdS=CFT correspondence, if an actual
negative cosmological constant is included, where a ring-
down in the bulk corresponds to the approach to thermal
equilibrium in the boundary CFT though a sequence of
ringdown signals, such as echoes, does not yet have a
proper boundary interpretation (though see [67,68]).
To justify our statement we have computed numerically

the time interval needed for light to perform a round trip
from the PS to the AdS boundary. For a metric of the
form (2) the characteristic timescale is given by [10,69]

Δt ¼ 2

Z
Boundary

PS

ffiffiffiffiffiffiffiffiffi
gðrÞ
fðrÞ

s
dr: ð20Þ

As can be seen from Fig. 3, the temporal location of the
echoes, as obtained from the numerical integration, is in
good agreement with the values of Δt calculated from
Eq. (20) (shown with dashed lines in Fig. 3). This agree-
ment further supports that the formation of echoes is due on
the secondary perturbations of the PS from the reflected
scalar field on the effective AdS boundary.
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B. Wormhole

In Fig. 4 we demonstrate the behavior of the test scalar
field as it propagates in the wormhole solution (8)–(9). The
temporal response exhibits echoes, as in the BH case above,
which follow the initial ringdown due to the first encounter
of the probe field with the PS. In a similar manner, the
l ¼ 0 perturbations do not significantly excite the PS of the
wormhole, thus the echoes are not as oscillatory as the ones
obtained for l > 0. However, we notice that the amplitude
of the echoes does not decrease with time, in contrast to the
response in the BH setup.

Through this effect, one then can easily distinguish if the
compact object is a BH or wormhole. The underlying
mechanism that leads to such a behavior could be under-
stood from the fact that instead of an event horizon we have
a wormhole throat, therefore, energy cannot be dissipated.
The probe field travels through the throat and into the
second Universe, to be reflected back from the second
effective AdS boundary (see Fig. 1). The small “glitches”
shown in echoes of Fig. 4 (in the linear scale) appear due to
the fact that we measure the response of the test field at
ξ ¼ 0.01, thus the reflected wave from the AdS boundary
of the primary Universe arrives slightly earlier than the

FIG. 2. Time evolution of scalar perturbations with l ¼ 0 (top panel) l ¼ 1 (middle panel) and l ¼ 2 (bottom panel) on the black hole
background (3)–(5) with μ ¼ 0.1 and lη ¼ 1.
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FIG. 3. Time evolution of scalar perturbations with l ¼ 2 on the black hole background (3)–(5) with μ ¼ 0.1 and lη ¼ 4 (left), lη ¼ 5
(right). The black vertical dashed lines indicate the time one expects the next echo to arrive, as calculated from (20).

FIG. 4. Time evolution of scalar perturbations with l ¼ 0 (top panel) l ¼ 1 (middle panel), l ¼ 2 (bottom panel) on the wormhole
background (8)–(9) with lη ¼ 10; μ ¼ 0.1 and a ¼ 1.

ECHOES OF COMPACT OBJECTS IN SCALAR-TENSOR … PHYS. REV. D 103, 044042 (2021)

044042-7



reflected wave from the boundary of the secondary
Universe, to superpose and lead to an echo of equal
amplitude to that of the initial outburst.
The effect of the nonminimal coupling lη is shown in

Fig. 5. Besides the fact that the initial ringdown and the
echoes have the same amplitude, one can realize that lη
serves as a scale of the Universe, since for higher lη values,
the field has to travel a larger distance from the throat to the
AdS boundary and back. This results in a proportionality
between the coupling lη and the echo time. To illustrate
this, we have approximated the time interval between two
echoes using the relation

Δt ¼ 2

Z
Boundary

Throat

ffiffiffiffiffiffiffiffiffi
gðrÞ
fðrÞ

s
dr: ð21Þ

The agreement between the resulting signal from time
integration and the characteristic time from Eq. (21) (see
vertical dashed lines in Fig. 5) justifies further that the
echoes are produced due to the presence of the effective
AdS boundary and not due to the existence of a double

barrier effective potential that usually appears in wormhole
solutions (see [10,70–73]).
The existence of echoes of equal amplitude to that of the

initial ringdown is an indication that such compact objects
may possess normal modes of oscillation, similar to those
found in [74–76]. In fact, one could perform a mode
decomposition on the test scalar field to calculate these
modes, though the complicated form of the metric compo-
nents render such analysis rather challenging. Since the
echoes seem to possess a characteristic timescale (21), it is
intriguing to approximate the normal modes as ω ∼ 2π=Δt.
Our numerics indicate that ω ∼ μ=lη, with l not playing a
dominant role in this approximation, besides affecting the
oscillation rate of each ringdown. A modal analysis would
shed more light to the validity of our approximation and to
the existence of normal modes in such wormholes.

1. Extremal wormhole

So far, the wormhole parameters considered give rise to a
single peak at the effective potential, which leads to two
trapping regions separated by a potential barrier. If we

FIG. 5. Time evolution of scalar perturbations with l ¼ 1 on the wormhole background (8)–(9) with μ ¼ 0.1, a ¼ 1 and lη ¼ 5 (left),
lη ¼ 10 (right).

FIG. 6. Left panel: effective potential with lη ¼ 1;l ¼ 10 and μ ¼ μextreme for each value of the throat radius a. Right panel: effective
potential with lη ¼ 1; a ¼ 1; μ ¼ μextreme for various angular momenta l.
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consider a different set of parameters, where the wormhole
mass is nearly extremal μ ≃ μextreme (or exactly extremal),
then the potential peak splits into two potential barriers, for
large angular momenta. In this case, three trapping regions
appear, which depend on the throat radius, near-extremal
mass an angular momentum in a manner which is dem-
onstrated in Fig. 6. The existence of three potential wells in
the wormhole background will lead to echoes which arise
from two different regions: the primary region between the
PS and the asymptotic AdS boundary, and the novel
secondary region between the wormhole throat.
In Fig. 7 we observe a new qualitative behavior of linear

scalar perturbations which is not present in the non-
extremal wormhole setups considered above. Besides the
primary echoes arising from the reflection of the test field at
the AdS boundary, a new series of echoes appears in
between them, with smaller amplitude than the primary
ones. These secondary echoes are a product of the new
trapping region at the wormhole throat. Although the first
couple of secondary echoes are quite visible in Fig. 7, at
sufficiently late times the superposition of primary and
secondary echoes renders them hardly distinguishable.
Nevertheless, the existence of primary and secondary
echoes, associated with different trapping regions, is
reported here for the first time in a wormhole spacetime
with trapping regions that arise naturally.

VI. CONCLUSIONS

The GW ringdown, where the final object relaxes to a
stable state, contains key information about the perturbed
compact object’s externally observably quantities. Recently,
it has been argued [10,15] that the late-time ringdown signal
may incorporate signatures for the existence of ECOs, such
aswormholes, or horizon-scale quantumcorrections [77–79]
(though see [80]), in the form of echoes.
Here, we considered minimally coupled test scalar

perturbations on exact BH and wormhole solutions of
scalar-tensor theory, which possess an effective negative
cosmological constant, leading to AdS asymptotics, due to
the presence of a nonminimally coupled “gravitational”
scalar to the Einstein tensor. We find that similar effects
arise in the late-time ringdown waveform for both compact
objects under study. After the initial ringdown, the test field
response exhibits echoes, with timescales proportional to
the nonminimal coupling constant. Although the BH
considered here does not contain any quantum corrections
at the event horizon, the effective asymptotic AdS boun-
dary, that the gravitational scalar introduces to the scalar-
ized solution, forces the partially reflected waves from
the PS to mirror off the AdS boundary and reperturb the
PS to give rise to a damped beating pattern which is
strikingly similar to echoes from quantum corrected

FIG. 7. Time evolution of scalar perturbations with l ¼ 5 on the wormhole background with μ ¼ μextreme ≈ 0.37, a ¼ 1 and lη ¼ 5
(top panel), lη ¼ 7 (bottom panel).
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compact objects [81]. The existence of echoes in such
AdS-like BHs may lead to interesting interpretations of
such a phenomenon on dual holographic descriptions at the
boundary, as AdS=CFT suggests (see [67,68] for a holo-
graphic description of echoes on a dual CFT at the near-
horizon quantum structure).
Interestingly, even though the wormhole studied here

possesses a single barrier effective potential (for nonex-
tremal masses), with its throat located at the peak [82]
(similar to that of Bronnikov-Ellis [83,84] and Morris-
Thorne [29] wormholes), we still observe echoes in the
late-time response of the test scalar field due to the
existence of the effective AdS boundary. Moreover, if
the wormhole is near-extremal or extremal, the response
of the probe scalar field exhibits primary and secondary
echoes, associated with the AdS boundary and throat
potential well, respectively. The concatenation of echoes
we observed here are very similar to those found in [85],
though our setup consists of naturally arising trapping

regions, solely depending on the spacetime and perturba-
tion parameters, in contrast to the reflective boundaries
placed by hand in [85].
Contrary to the BH case, the echoes found in the

wormhole background do not decay with time, but have
constant and equal amplitude to that of the initial ringdown.
The constancy of the amplitude of echoes is related to the
absence of dissipation and may be an indication of the
existence of normal oscillation modes, as well as potential
instabilities, similar to that found in [86]. The introduction
of gravitational perturbations (such as the ones considered
in [87–90]) may lead to an unstable wormhole, due to the
presence of phantom matter, which can potentially expand
or collapse into a BH [91,92].
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