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We present numerical solutions of several spacetimes of physical interest, including binary black hole
mergers, in shift-symmetric Einstein-scalar-Gauss-Bonnet (ESGB) gravity, and describe our methods for
solving the full equations of motion, without approximation, for general spacetimes. While we concentrate
on the specific example of shift-symmetric ESGB, our methods, which make use of a recently proposed
modification to the generalized harmonic formulation, should be generally applicable to all Horndeski
theories of gravity (including general relativity). We demonstrate that these methods can stably follow the
formation of scalar clouds about initially vacuum nonspinning and spinning black holes for values of the
Gauss-Bonnet coupling approaching the maximum value above which the hyperbolicity of the theory
breaks down in spherical symmetry. We study the collision of black holes with scalar hair, finding that the
theory remains hyperbolic in the spacetime region exterior to the black hole horizons in a similar regime,
which includes cases where the deviations from general relativity in the gravitational radiation is
appreciable. Finally, we demonstrate that these methods can be used to follow the inspiral and merger of
binary black holes in full ESGB gravity. This allows for making predictions for Horndeski theories of
gravity in the strong-field and nonperturbative regime, which can confronted with gravitational wave
observations, and compared to approximate treatments of modifications to general relativity.

DOI: 10.1103/PhysRevD.103.044040

I. INTRODUCTION

With the advent of gravitational wave astronomy, we are
now in an unprecedented position to test whether general
relativity (GR) provides an accurate description of gravity
in the strong-field, highly dynamical regime. Observations
of black hole and other compact object mergers have
already been used to constrain a number of deformations
of GR, including extra gravitational wave polarizations, a
graviton mass, and Lorentz violations [1]. Despite these
observational successes, for many alternative theories, it is
still unclear whether they are even on an equal theoretical
footing to GR, in the sense of being able to provide a full
prediction of what happens when two black holes merge.
Determining which theories that modify the principle

part of the Einstein equations are predictive in the strong-
field regime (in the mathematical sense that they have a
well-posed initial value problem) has been a pressing
question in efforts to test such theories with observations.
Some theories, for example dynamical Chern-Simons
[2–4], or theories that introduce Riemann-to-the-fourth-
power type terms in the action [5,6], no longer have second

order equations of motion (EOMs), which is a requirement
for a theory to be Ostrogradsky stable [7]. Thus one has
little choice but to treat such theories as valid on some
limited range of scales and to perturbatively solve for the
dynamics of those theories. In contrast, here we will
concentrate on Einstein-scalar-Gauss Bonnet (ESGB),
which is a representative example of a Horndeski gravity
theory. Horndeski gravity theories are the class of classical
scalar-tensor theories that have second order EOMs [8] and
thus can be thought of as the widest possible class of scalar-
tensor gravity theories that could act as classical, theoreti-
cally viable alternatives to GR. Given this, Horndeski
theories could be employed in model dependent tests of
GR using gravitational wave observations of black holes
and neutron star binaries (for a recent review see, e.g. [9]).
As an alternative to thinking of modified gravity theories

as complete classical field theories, the same as GR, one
can view them as effective field theories (EFTs) that
parametrize small deviations as a derivative expansion
from GR (for reviews see, e.g. [10,11]). The dynamics
of EFTs are naturally solved in terms of an order reduction
approach, where small corrections to Einstein evolution are
solved for order by order in terms of the effective coupling
parameters. However, even taking this viewpoint, there are
reasons to study exact solutions to Horndeski gravity
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theories. While not all potential effective deviations from
GR are Horndeski theories (such as dynamical Chern-
Simons gravity), a subclass of Horndeski gravity theories
called “four derivative scalar-tensor theory” (4∂ST) gravity
encompasses the leading order scalar-tensor interactions
that are parity invariant [12]. One challengewith computing
dynamical solutions to EFTs through an order reduction
approach is that the solution can be contaminated by
secular effects, which are purely artifacts of the order
reduction approximation, but which can grow in time.
There have been some proposals to address these problems
[13,14], including by changing the behavior of the theory at
short wavelengths in an ad hoc manner in order to cure
problems with well-posedness [15]. However, without full
solutions to compare to, it is difficult to quantify the errors
introduced by these methods. Stable numerical solutions to
the exact EOMs would not be subject to those kinds of
secular effects. For small enough modified gravity cou-
plings, exact solutions could be used to find essentially
perturbative corrections to the Einstein equations, while
avoiding spurious contamination of the solution from
secular errors.
One technical challenge that has prevented finding fully

nonlinear solutions to many Horndeski gravity theories for
spacetimes that lack any symmetries (as is the case for
binary black hole merger spacetimes) has been that there
was no known well-posed initial formulation for Horndeski
gravity. Recently though, Kovacs and Reall proved that the
equations of motion for Horndeski gravity theories possess
a well posed initial value problem in a modified harmonic
formulation [16,17],1 as long as the coupling parameter that
determines the beyond-GR corrections is much smaller
than all other length scales in the problem. Their result has
opened up the possibility for full numerical simulations of
Horndeski gravity theories for spacetimes of physical
interest, such as binary black hole spacetimes, and for
cosmologies that are not perfectly homogeneous. However,
determining for what range of couplings this formulation is
hyperbolic for strong-field, dynamical spacetimes is some-
thing that most likely needs to be done on case-by-case
basis numerically, for different Horndeski theories and
choices of initial data.
Here, we numerically solve for the dynamics of black

holes in shift-symmetric ESGB gravity. Shift-symmetric
ESGB gravity has attracted recent interest as the
Schwarzschild and Kerr black hole solutions of GR are
not stationary solutions to this theory [20]: vacuum black
holes will evolve to black hole solutions with stable scalar
field clouds (i.e. scalar hair) around them. Disregarding
Horndeski models that model dark energy (many of which

have been highly constrained, see e.g. [21–23]), ESGB
gravity have attracted recent attention as the couplings for
the theory are relatively weakly constrained, yet the theory
admits scalar hairy black hole solutions (see e.g. [24,25]),
the collision of which should produce gravitational wave
signals that differ noticeably from those of GR black holes.
ESGB gravity thus promises to act as a useful foil to
perform model dependent tests of GR in the strong field,
dynamical regime (for further discussion see, e.g., [26]).
Shift symmetric ESGB gravity can be motivated as the

leading order scalar tensor theory of gravity whose equa-
tions of motion are invariant under shifts in the scalar field:
ϕ → ϕþ const [12,25].2 While there is an EFTargument to
motivate this theory, we solve for the full equations of
motion without any perturbative assumptions, potentially
outside the regime of validity of the assumptions of EFT.
While in this article we only consider numerical solutions
to shift-symmetric ESGB gravity, for general interest we
also present the equations of motion for the leading order
scalar tensor theory of gravity whose equations of motion
are invariant under parity inversion: xa → −xa (4∂ST
gravity), in a form suitable for use in modified harmonic
evolution.
Earlier studies of shift-symmetric ESGB gravity have

been limited to either spacetimes with a high degree of
symmetry (e.g. [20,27,28]), stationary solutions [29,30], or
to perturbative/order reduction solutions to the theory (e.g.
[14,31–34]). In Refs. [27,28], it was found that in spherical
symmetry, for sufficiently large values of the Gauss-Bonnet
coupling, black hole spacetimes could develop elliptic
regions, where the hyperbolicity of the equations broke
down, outside the black hole horizon. This sets an upper
bound for the range of parameters where the theory will
remain hyperbolic once spherical symmetry is broken.
In this paper, we describe our methods for numerically

solving the full equations of ESGB gravity and use them to
study the dynamics of black hole scalar hair formation and
black hole mergers. One of our main results is that we find
that we are able to solve for spacetimes where the
deviations from GR are significant in terms of the changes
to the black holes due to dynamical scalar hair formation,
and the imprint on the gravitational waves. The remainder
of the paper is as follows. In Sec. II A, we present the
EOMs for the general class of 4∂ST gravity (which
includes ESGB) in the form we use for numerical evolu-
tions. In Sec. III, we describe our numerical methods for
evolving these equations. In Sec. IV, we presents our
results, beginning with a robustness test to illustrate the
improved hyperbolicity, and then moving on to several
physically interesting problems including the dynamical
formation of scalar hair about spinning black holes in

1We note that a different gauge condition was proven to
provide a well-posed initial problem for “cubic” Horndeski
theories (which do not include ESGB) by Kovacs [18], and that
gauge condition was numerically implemented in Ref. [19] to
study spherical collapse in that class of theories.

2Although in this paper, for simplicity we do not consider all
terms allowed by shift symmetry; in particular we do not consider
the term αX2; see Eq. (5).

WILLIAM E. EAST and JUSTIN L. RIPLEY PHYS. REV. D 103, 044040 (2021)

044040-2



axisymmetry and a fully 3D setting, and head-on and
quasicircular binary black hole mergers. We discuss these
results and conclude in Sec. V.
In this work we use geometric units:G ¼ c ¼ 1, a metric

sign convention of −þþþ, lower case latin letters to
index spacetime indices, and lower case greek letters to
index spatial indices.

II. EQUATIONS OF MOTION

A. Modified generalized harmonic formulation

We begin by briefly reviewing the modified generalized
harmonic (MGH) formulation [16,17]. In a Lorentzian
spacetime ðM; gÞ, we introduce two auxiliary Lorentzian
metrics g̃mn and ĝmn. Wewill always raise and lower indices
with the spacetime metric gab, so e.g. ĝab ≡ gacgbdĝcd.
We also define g̃≡ g̃abgab and ĝ≡ ĝabgab. The MGH
formulation imposes the following conditions on the
coordinates xc:

Cc ≡Hc − g̃ab∇a∇bxc ¼ Hc þ g̃abΓc
ab ¼ 0: ð1Þ

As in the generalized harmonic formulation, Hc are the
source functions that, along with g̃ab, determine the gauge
degrees of freedom, and Cc (which will generally not be
exactly zero in a given numerical solution) is called the
constraint violation. We next define the MGH EOMs as

Eab−P̂d
cab∇cCd−

1

2
κðnaCbþnbCaþρncCcgabÞ¼0; ð2Þ

where Eab are the EOMs derived from varying the metric,
na is a timelike vector (we assume na is timelike with
respect to gab, g̃ab, and ĝab), and

P̂d
cab ≡ 1

2
ðδadĝbc þ δbdĝ

ac − δcdĝ
abÞ: ð3Þ

We include constraint damping with the constants κ and ρ
[35].3 Note as well that Eq. (2) is slightly different from
Ref. [17]: here we use ∇cCd instead of ∂cCd. We choose
the form used here for consistency with the standard
generalized harmonic formulation (see Appendix C),
though either way the principal part, and hence the hyper-
bolicity results, will be the same. From Eq. (1), we see
that in the MGH formulation the coordinates xa obey a
hyperbolic equation with characteristics determined by g̃ab.
Taking the divergence of Eq. (2), and assuming ∇aEab ¼ 0
(which holds for all the theories we consider, including the
Einstein equations), we obtain a hyperbolic equation for the
constraint violating modes Ca,

−
1

2
ĝac∇a∇cCb − ĝcbRdcCd − ð∇aP̂d

cabÞð∇cCdÞ

−
1

2
κ∇aðnaCb þ nbCa þ ρncCcgabÞ ¼ 0: ð4Þ

FromEq. (4), we see that the constraint violatingmodes obey
a hyperbolic equation with characteristics determined by ĝab.
With the special choice of g̃ab ¼ ĝab ¼ gab, the MGH
formulation reduces to the generalized harmonic formulation
(for an explicit calculationof this in the context of theEinstein
equations, see Appendix C). Finally, we note that picking a
gauge in the MGH formulation amounts to choosing the
functional form of the auxiliary metrics g̃ab and ĝab, and
choosing the functional form of the source function Hc.

B. Equations of four derivative scalar tensor (4∂ST)
gravity for a modified harmonic formulation

While we only consider numerical solutions to shift-
symmetric ESGB gravity in this article, we derive the
EOMs in the MGH formulation for the following scalar-
tensor theory (Kovacs and Reall call 4∂ST gravity [16,17]),
for which ESGB gravity is a specific example. We do this
for the sake of generality and given the applications of
4∂ST gravity in, e.g., EFTs of the early Universe (e.g.
[12]). The action is

S¼ 1

8π

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
RþX −VðϕÞ þ αðϕÞX2 þ βðϕÞG

�
;

ð5Þ
where

X≡ −
1

2
ð∇ϕÞ2; ð6aÞ

G≡ 1

4
δabcdefghR

ef
abRgh

cd; ð6bÞ

δabcdefgh ≡ 4!δa½eδ
b
fδ

c
gδ

d
h�; ð6cÞ

and V, α, and β are functions of ϕ. If one interprets Eq. (5)
as an EFT, it contains (up to total derivatives, field
redefinitions, and conformal rescalings) all scalar-tensor
terms involving up to four derivatives. Thus, from an EFT
perspective, the theory represents the leading order (in
derivatives) scalar-tensor theory that is preserved under
parity transformations [12,16,17].4

3Note that we need κ < 0 to damp out the constraints. Also,
some of our sign conventions differ from [17].

4For more context regarding the theory we consider: Ref. [12]
considered the Weyl tensor coupling fðϕÞCabcdCabcd, which
when varied in the action leads to fourth order equations of
motion, which likely do not have a well-posed initial value
formulation when taken as classical PDE. References [16,17]
pointed out that if (through field redefinitions) one replaces
CabcdCabcd with the Gauss-Bonnet scalar G, then the EOMs are
second order in time and space, and furthermore have a well-
posed initial value problem in the MGH formulation.
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We obtain shift-symmetric ESGB gravity by choosing
VðϕÞ ¼ αðϕÞ ¼ 0 and βðϕÞ ¼ λϕ. Here λ is a constant
coupling parameter, that in geometric units has dimensions
of length squared. As the Gauss-Bonnet scalar G is a total
derivative in four dimensions, we see that the action of
shift-symmetric ESGB gravity is preserved up to total
derivatives under constant shifts in the scalar field:
ϕ → ϕþ constant.
Varying Eq. (5) with respect to the scalar field and metric

gives us the EOMs,

EðϕÞ≡□ϕ−V 0ðϕÞþ2αðϕÞX□ϕ−2αðϕÞ∇aϕ∇bϕ∇a∇bϕ

−3α0ðϕÞX2þβ0ðϕÞG¼ 0; ð7Þ

EðgÞ
ab ≡ Rab −

1

2
gabR −∇aϕ∇bϕþ ð−X þ VðϕÞÞgab

− 2αðϕÞX∇aϕ∇bϕ − αðϕÞX2gab

þ 2δefcdijgðagbÞdR
ij
ef∇g∇cβðϕÞ ¼ 0: ð8Þ

We take the trace-reverse of Eq. (8) to obtain

Eðg;TRÞ
ab ≡ EðgÞ

ab −
1

2
gabEðgÞ

¼ Rab −∇aϕ∇bϕ − VðϕÞgab
− 2αðϕÞX∇aϕ∇bϕ − αðϕÞX2gab

þ 2δefcdijgðagbÞdR
ij
ef∇g∇cβðϕÞ

− δefcijg R
ij
ef∇g∇cβðϕÞgab: ð9Þ

The last step we take before expanding out the EOMs is to
add in the MGH constraint propagation term and a
constraint damping term [17,35],

Eðg;CÞ
ab ≡ Eðg;TRÞ

ab −
�
P̂c

d
ab −

1

2
gabP̂c

d

�
∇dCc

−
1

2
κðnaCb þ nbCa − ð1þ ρÞncCcgabÞ; ð10Þ

where we have defined P̂d
c ≡ gabP̂d

cab.
Finally, we rewrite the 4∂ST EOMs, Eqs. (9) and (10), in

the following form:

�
Aab

cd Bab

Ccd D

�
∂2
0

�
gcd
ϕ

�
þ
�
FðgÞ
ab

FðϕÞ

�
¼ 0: ð11Þ

In Appendix A, we derive the explicit forms of the
components Aab

cd, etc. for the 4∂ST EOMs. For the
remainder of this paper we will restrict our attention to
the particular case of shift-symmetric ESGB gravity.

III. NUMERICAL IMPLEMENTATION

In this section, we describe our methods for numerically
evolving the equations of shift-symmetric ESGB gravity,
which we recall is a special case of 4∂ST gravity with
VðϕÞ ¼ α ¼ 0 and β ¼ λϕ. Our general strategy is to,
where possible, adapt the methods of Ref. [36] for evolving
Einstein gravity in a generalized harmonic formulation to
these new equations.

A. Form of equations of motion and gauge choices

We directly evolve the 22 variables (after accounting
for the symmetry of the metric components) fgab; ∂0gab;
ϕ; ∂0ϕg using the EOM given by Eq. (11).
In addition to the physical metric, we must also specify

the auxiliary metrics g̃ab and ĝab. In general, there is a large
degree of freedom in choosing these as functions of gab and
the spacetime coordinates, though here we restrict to a
relatively simple choice given by

g̃ab ¼ gab − Ãnanb; ð12aÞ

ĝab ¼ gab − Ânanb; ð12bÞ

where na is the (timelike) unit normal vector to the
spacelike hypersurfaces we evolve on, and Ã and Â are
constants. We emphasize that the MGH formulation only
requires g̃ab and ĝab to be Lorentzian. We have chosen the
ansatz (12) out of its simplicity to implement, and empiri-
cally we find that we are able to numerically solve the
ESGB equations of motion using auxiliary metrics of
this form.
As in the generalized harmonic formulation, we must

also choose the source functionsHa, which, combined with
the auxiliary metric, determine the coordinate degrees of
freedom. Here we restrict to the damped harmonic gauge
[37,38] (including the special case of Ha ¼ 0), which has
been found to work well for a large number of highly
dynamical spacetimes, or fix Ha to be constant in time for
some cases where we wish to maintain Kerr-Schild like
coordinates.

B. Numerical discretization

The numerical scheme we use follows that of Ref. [39].
We discretize the partial differential equations in space,
using standard fourth-order finite difference stencils,
and in time, using fourth-order Runge-Kutta integration.
We implement the EOM directly in the form given by
Eq. (11), and invert the set of linear equations at each point
using Gaussian elimination. We control high frequency
numerical noise using Kreiss-Oliger dissipation [40]. As
indicated in Eq. (2), we also use constraint damping to
control the constraint violating modes sourced by trunca-
tion error. We typically set κ ¼ −1=MBH, whereMBH is the
mass of the smallest black hole in the simulation, and
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ρ ¼ 0, which are similar values to those used in black
hole evolutions using the generalized harmonic formu-
lation [41].
As detailed in Ref. [36], we use compactified coordinates

so that physical boundary conditions (namely that the
metric is flat and the scalar field vanishes) can be placed
at spatial infinity. We use Berger-Oliger [42] style adaptive
mesh refinement (AMR) supported by the PAMR library
[43,44]. The interpolation in time for the AMR boundaries
is only third-order accurate, which can reduce the overall
convergence to this order in some instances. In some of the
cases here, we restrict to axisymmetric spacetimes, and use
the modified Cartoon method to reduce our computational
domain to a two-dimensional Cartesian half-plane [36].

C. Excision

A crucial ingredient in our ability to evolve black hole
spacetimes is the use of excision. In ESGB, the situation is
worse than in GR since, as shown in Ref. [27], elliptic
regions can develop just inside a black hole horizon, where
the EOMs are no longer well-posed, despite the region
having bounded curvature. Following Ref. [36], we
dynamically track any apparent horizons in our spacetime
and excise an interior region. This is done by finding an
ellipsoid that just fits inside the apparent horizon and
shrinking the axes, typically by 15% to 25%, to create a
buffer region between the apparent horizon and the excision
surface. In general, we find that we must use smaller
excision buffers as the coefficient of the modified gravity
terms (i.e. λ) is increased, which requires higher resolution,
in order to avoid instabilities near the excision surface.
As the apparent horizon evolves, points that were

previously excised may become unexcised and need to
be “repopulated” by extrapolating their values from
neighboring points. When evolving with unmodified GR
equations, this is often done with simple first-order
extrapolation, i.e. by taking the average value of the
neighboring unexcised points, to avoid high frequency
noise (and since the points should initially be out of causal
contact with the exterior domain). However, we find that
when evolving with ESGB we must use second-order or
higher extrapolation, which we speculate is due to the
presence of terms of the form ð∂∂gÞ2 and ð∂∂gÞð∂∂ϕÞ in
the EOM, which are sensitive to jumps in the second
derivative. We note that a possible alternative to the
excision method used here is to modify the EOMs inside
black hole horizons—e.g. by letting the non-GR coupling
go to zero—so that they remain hyperbolic [19].

D. Initial data

On our initial data surface, we must satisfy the gener-

alizations of the Hamiltonian constraint H≡ nanbEðgÞ
ab and

momentum constraint Mγ ≡ naEðgÞ
aγ , which for 4∂ST

gravity take the form,

H ¼ nanbRab þ
1

2
R − ðna∇aϕÞ2 þ X − VðϕÞ

− 2αðϕÞXðna∇aϕÞ2 þ αðϕÞX2

þ 2nanbδefcdijgðagbÞdR
ij
ef∇g∇cβðϕÞ ð13aÞ

Mγ ¼ naRaγ − na∇aϕ∇γϕ − 2αðϕÞXna∇aϕ∇γϕ

þ 2naδefcdijgðagγÞdR
ij
ef∇g∇cβðϕÞ: ð13bÞ

Here, we do not implement a method to solve these
equations for general ϕ. Instead, we consider initial data for
which ϕ ¼ ∂0ϕ ¼ 0 on the initial data surface. With this
choice of ϕ the ESGB contributions to the constraint
equations, which we define to be

HðGBÞ ≡ 2nanbδefcdijgðagbÞdR
ij
efggk∂k∂cβðϕÞ ð14aÞ

MðGBÞ
γ ≡ 2naδefcdijgðagγÞdR

ij
efggk∂k∂cβðϕÞ; ð14bÞ

are identically zero on the initial data surface. To show this,
we first expand Eqs. (14), imposing ϕ ¼ ∂0ϕ ¼ 0 (which
implies, e.g. ∂α∂0ϕ ¼ 0), rewriting terms to include the
unit normal to slices of constant time: na ¼ ð−N; 0; 0; 0Þ
(here N ¼ 1=

ffiffiffiffiffiffiffiffi
−gtt

p
is the lapse function) so that we are

left with

HðGBÞ ¼2

�
−
1

N

�
nanbngnqδ

efqd
ijgðagbÞdR

ij
efβ

0ðϕÞ∂2
0ϕ; ð15aÞ

MðGBÞ
γ ¼ 2

�
−
1

N

�
nangnqδ

efqd
ijgðagγÞdR

ij
efβ

0ðϕÞ∂2
0ϕ: ð15bÞ

We see that the na vectors symmetrize the totally
antisymmetric indices of the generalized Kronecker delta;
e.g. nangδefcdijga ¼ 0, so that the ESGB contributions to the
constraints equations on the initial data surface vanish.
Thus, in shift-symmetric ESGB gravity (α ¼ V ¼ 0,

β ¼ λϕ), and with scalar field initial data ϕ ¼ ∂0ϕ ¼ 0,
the constraint equations on our initial data surface reduce to
those of vacuum GR. For cases with a single black hole, we
use either harmonic [45,46] coordinates, or Kerr-Schild
[47] coordinates (which we discuss in more detail in
Sec. IV B). For constructing binary black hole initial data,
we solve the Einstein constraints using the conformal thin
sandwich solver described in Ref. [48].
Given a particular choice of Ha, we need to ensure that

the MGH condition, Eq. (1), is satisfied on the initial data
surface. Given initial data fgab; ∂0gαβg [and hence ĝab and
g̃ab, see Eq. (12)] that satisfy the constraints, we can always
do this by solving Eq. (1) for ∂0g0a. In the language of the
3þ 1 decomposition, the choice of Hc sets the initial time
derivative of the lapse function and shift vector.
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E. Diagnostic quantities

In order to characterize our results, we will make use of
several diagnostic quantities. Considering first just the
canonical coupling of the scalar field to gravity, we can
define a stress-energy,

TSF
ab ≡ 1

8π

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�
; ð16Þ

although note that when λ ≠ 0 this stress-energy is not
generically conserved, ∇aTSF

ab ≠ 0. We can also define an
effective stress energy tensor that is conserved, simply by
computing the Einstein tensor of the solution,

TEin
ab ≡ 1

8π

�
Rab −

1

2
Rgab

�
; ð17Þ

which would be equal to TSF
ab in the case that λ ¼ 0. From

TSF
ab and TEin

ab , we can define effective energies and energy
densities,

E≡
Z

tanbTab
ffiffiffi
γ

p
d3x≡

Z
ρE

ffiffiffi
γ

p
d3x; ð18Þ

and angular momenta and associated densities,

J ≡
Z

ϕ̂anbTab
ffiffiffi
γ

p
d3x≡

Z
ρJ

ffiffiffi
γ

p
d3x; ð19Þ

where ta and ϕ̂a are, respectively, the vectors pointing in the
time and azimuthal directions, which would be Killing
vectors in the case that the spacetime is stationary and
axisymmetric. We note that in axisymmetry, while ρSFJ will
be identically zero, ρEinJ can actually be nonzero. Using
these stress-energy tensors, we also define an energy flux
through a surface as

_E≡
Z

−NtaTi
adAi: ð20Þ

We will mainly be interested in computing this quantity in
the wavezone, at some surface at large radii. In that case, we
expect _EEin to be the same as _ESF, due to the faster fall-off
of the other curvature terms in the wavezone.
During the evolutions, we track any apparent horizons

present at a given time and compute several diagnostic
quantities with respect to them. From the area of the
apparent horizon, we can define an areal mass
MA ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=ð16πÞp
. In a different context, this would be

called the irreducible mass. However, the spacetimes
that we study here do violate the null convergence con-
dition (which states that Rabkakb ≥ 0 for all null ka),
and thus there will be cases where MA decreases. We

can also associate an angular momentum to the apparent
horizon,5

JAH ≡ 1

8π

Z
ϕ̂iKijdAj; ð21Þ

and using the Christodoulou formula, a mass,

MAH ≡
�
M2

A þ J2AH
4M2

A

�
1=2

: ð22Þ

As an indication of the scalar hair formation about the black
hole, we also keep track of the area averaged value of the
scalar field on the apparent horizon hϕiAH. In order to
compute the gravitational radiation, we extract the
Newman-Penrose scalar ψ4.

IV. RESULTS

A. Hyperbolicity tests with weak field data

As a first test, we consider a weak field configuration and
provide numerical evidence that the equations of motion for
shift-symmetric ESGB gravity are strongly hyperbolic in
the MGH formulation, with the gauge choices we have
made. A necessary condition for ESGB gravity to have a
well-posed initial value problem is for the equations of
motion to have a strongly hyperbolic formulation (e.g. [50]).
Papallo and Reall [51,52] have shown that in the generalized
harmonic formulation, the EOMs for ESGB gravity are not
strongly hyperbolic around generic weak field solutions,
instead they are only weakly hyperbolic. Later, Kovacs and
Reall showed that the equations of motion for ESGB gravity
are strongly hyperbolic in the MGH formulation [17], for
weak coupling backgrounds where all the characteristic
length scales (associated with the spacetime curvature and
scalar gradients) satisfy L ≫

ffiffiffi
λ

p
.

In general, one expects that a set of nonlinear weakly
(but not strongly) hyperbolic equations of motion will have
modes that exhibit frequency dependent growth, where the
growth rate increases as a polynomial in the frequency.
Given this, we expect that simulations of ESGB gravity in a
generalized harmonic formulation should generally not
converge with higher resolution, since the higher resolution
will resolve smaller scales, and thus allow faster growing
fluctuations. This being said, with sufficiently smooth
initial data (in particular without AMR, moving excision
surfaces, etc., which tend to introduce high frequency
numerical error), at a given fixed resolution, it may be
difficult to observe small scale growth over a finite
simulation run time, and one must use nonsmooth initial
data in order to make this problem apparent (see e.g. [53]
and references therein). This is the approach we take here.

5We recall that this quantity is conserved if ϕ̂i is tangent to a
Killing vector field, regardless of whether the Einstein equations
hold, or if the spacetime obeys any energy conditions [49].
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Usually, hyperbolicity or robustness tests in GR are
performed around Minkowski space or other trivial, scale
free background solutions. However, the analysis in
Ref. [52] indicates that a “generic” background solution
that violates strong hyperbolicity for the generalized
harmonic formulation requires nonvanishing derivatives
of the scalar field. Therefore, we must resolve a hierarchy
of scales given by L ≫

ffiffiffi
λ

p
≫ ω−1, where L is the

characteristic length scale of the background curvature,
and ω is the frequency of the modes which may violate
strong hyperbolicity.6 In order to make reaching these high
resolutions tractable, we impose a translational symmetry
in the z direction and restrict to a two-dimensional, periodic
domain of length L. The initial data we consider are as
follows. For the scalar field we set

ϕðt ¼ 0Þ ¼ ϕ̄ sinð2πx=LÞ sinð2πy=LÞ;
∂0ϕðt ¼ 0Þ ¼ 0; ð23Þ

where here we take the amplitude to be ϕ̄ ¼ 0.01. We set
the metric to be initially Minkowski, but add a small white
noise perturbation to the initial metric time derivative,

gabðt ¼ 0Þ ¼ ηab; ∂0gabðt ¼ 0Þ ¼ fN =L: ð24Þ

HereN gives a random number between −1 and 1 at every
spatial point, and f is a constant controlling the amplitude.
Even if f were zero, this solution does not satisfy the
constraints, though the constraint violation will in some
sense be small since ϕ̄ ≪ 1, and our goal here is merely to
study the hyperbolicity of the free evolution equations.7

We only perturb ∂0gab to avoid any issues with the
evolution equations being second order in gab (as con-
structing a first order version would require introducing a
new evolution variable constrained to be equal to ∂αgab).
We set λ=L2 ¼ 0.025, so that we are in the weak coupling
regime.
We consider a sequence of numerical evolutions where

we simultaneously increase the resolution for the numerical
grid, while decreasing f. In particular, we consider grid
spacings dx ¼ dy ¼ hi ¼ L=27þi with i ¼ 0; 1;…; 5, and
scale the white noise amplitude as fi ¼ f0=24i so that it
scales in the same manner as the truncation error with our
fourth-order scheme. We choose f0 so that the white noise
perturbation is small, but dominates over the truncation

error (f0 ≈ 5 × 10−6). To monitor the subsequent behavior
of the high frequency perturbation, we compute the
following difference between subsequent resolutions,

k∂0ghabk ¼
X
ab

�X
x;y
ð∂0ghab − ∂0g

h=2
ab Þ2

�
1=2

; ð25Þ

where ∂0ghab is the numerical solution computed with grid
spacing h, the outer sum is a sum over the ten unique metric
time derivatives, and the inner sum is a sum over the points
in the x and y directions (restricted to a coarse grid of points
shared by all resolutions).
We restrict to a gauge with Ha ¼ 0, but consider three

different choices for the auxiliary metrics corresponding to
Eq. (12) with ðÃ; ÂÞ ¼ ð0; 0Þ (harmonic gauge), ðÃ; ÂÞ ¼
ð0.1; 0.2Þ, and ðÃ; ÂÞ ¼ ð0.2; 0.4Þ. We show the results for
these cases in Fig. 1. When the auxiliary metrics are set
equal to the physical metric, we do indeed find a perturba-
tion that grows faster and faster as the grid spacing, and
hence the minimum wavelength of the perturbation, is
decreased. Changing the light cones for the auxiliary
metrics by using nonzero ðÃ; ÂÞ improves this, and for
ðÃ; ÂÞ ¼ ð0.2; 0.4Þ there is no evidence of frequency
dependent growth.
There is of course no requirement that Ã and Â be of

some fixed ratio, and in general there is a large degree of
freedom in choosing the auxiliary metrics which we do not
systematically explore here. For this study, we concentrate
merely on finding a choice of parameters that works,
and for most of the remaining applications, we will use
ðÃ; ÂÞ ¼ ð0.2; 0.4Þ, and rely on convergence tests to
estimate the accuracy of our results, and as a check for
contamination of the solution due to ill-posedness.

B. Single black hole initial data

We next present simulations where out initial data are a
single black hole, restricting to axisymmetry. As discussed
in Sec. III D, we begin our evolution in Kerr-Schild
coordinates [47]. Our main conclusion in this section is
that in full shift-symmetric ESGB gravity (for small enough
coupling parameters λ), Kerr initial data lead to stable,
rotating, scalar hairy black hole solutions. We note that
Kerr solutions for ESGB gravity were evolved using an
order-reduction approach in Ref. [34], and stationary
solutions to the full theory describing spinning black holes
with scalar hair were constructed in Refs. [29,30].
In Fig. 2, we plot the average scalar field value over the

black hole apparent horizon hϕiAH, along with the change
in the black hole mass and spin and the change in black
hole mass and spin as measured on the horizon [see
Eqs. (21) and (22)], as a function of evolution time t,
for different initial (dimensionless) black hole spin param-
eters a0, given a fixed value of λ=M2 ¼ 0.07 (where M is
the Arnowitt-Deser-Misner (ADM) mass). For a given

6We recall that we need L ≫
ffiffiffi
λ

p
, as we are considering

hyperbolicity in the weak field regime—in the strong field regime
it is likely the theory is not even weakly hyperbolic [27,54].

7Moreover we note that, the hyperbolicity analysis of Horn-
deski gravity theories in generalized harmonic formulations in
Refs. [51,52] indicate that the weakly hyperbolic modes were
constraint violating ones; thus we expect that the differences
between simulations in the MGH and generalized harmonic
formulations will be most apparent when we begin with initial
data which slightly violate the constraint equations.
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black hole spin, Ref. [29] found that there is a maximum
λ=M2 above which they could no longer construct regular
solutions to the theory, and this maximum decreased with
increasing spin. For a spin parameter of a ¼ 0.9, the
coupling limit was found to be λ=M2 ≈ 0.13, while for
a ¼ 0.99, it was found to be roughly a factor of 2 smaller
[29]. We find it difficult to consider couplings near this
limit for a given spin, which we believe is in part due to the
fact that the scalar hair initially exceeds its stationary value
during the growth of the scalar cloud before settling down
to a lower value (e.g. the top left panel of Fig. 2; see also
[28]), so that any problems that could occur from, e.g. loss
of hyperbolicity come closer to the horizon than one would
anticipate from studies of stationary solutions. But we have
not explored extensively whether better choices of gauge
and auxiliary metrics could also improve this.
We find that the average asymptotic scalar field value at

the horizon decreases as a function of initial dimension-
less Kerr spin parameter. This is consistent with the fact
that the average value of the Gauss-Bonnet scalar is a
decreasing function of black hole spin; in fact, at a critical
value of a≳ 0.766, the average value of the Gauss-Bonnet
scalar is negative on the black hole horizon. We find that
the average value of the scalar field only becomes
negative for larger spins (a≳ 0.95), which is most likely
due to the fact that stationary scalar field configurations
must balance gradients with the varying Gauss-Bonnet
source term on the horizon. We find that as we increase
the black hole spin, the scalar field becomes negative on
the spin axis (where the Gauss-Bonnet scalar is negative)
but remains positive on the equator of the black hole
(where the Gauss-Bonnet scalar is positive). The forma-
tion of scalar hair decreases both the mass and angular
momentum of (as measured on the horizon) the initial
spinning black hole. However, from Fig. 2, we can see

that for initial black hole spins that are roughly less than
a0 ≲ 0.7, black hole scalar hair formation increases the
dimensionless spin, while for greater initial black hole
spins, it decreases the dimensionless spin somewhat. For
initial black hole spin a ¼ 0.9 and λ=M2 ¼ 0.07, we see
that the change in the dimensionless black hole spin is
approximately ∼ − 2% while the change in the black hole
mass is approximately ∼ − 2%.
In Fig. 3, we show a convergence study of the average

scalar hair profile, along with the change of the black hole
angular momentum and mass [see Eqs. (21) and (22)] as
measured on the horizon of a black hole with initial
dimensionless spin parameter of a0 ¼ 0.99. We see that
the change in the black hole horizon angular momentum is
∼0.2%, while the change in the black hole mass is ∼0.8%.
In this study, the integrated constraint violation Ca con-
verges at third order, (consistent with the time interpolation
used by the AMR algorithm). Here, and in subsequent
sections, we show jCaj integrated over the coordinate
radius r ≤ 100M region of the domain. We found that
as we considered larger black hole spins, we could only
obtain stable, convergent evolution with small ESGB
couplings, and had to place our excision radius closer to
the black hole horizon. Figure 4 shows a snapshot of the
scalar field around a black hole with initial spin a ¼ 0.99,
taken after 150M of evolution. The scalar field is positive
around the equator of the black hole, while it is negative
around the spin axis.
One reason to expect that only smaller Gauss-Bonnet

couplings can be used to evolve higher spin black holes is
because the Kerr ring curvature singularity moves closer to
the black hole horizon for larger spins, and there is numerical
evidence that the equations of motion for ESGB gravity are
hyperbolic only for regions of relatively small curvature
(given a fixed Gauss-Bonnet coupling) [27,28,54].

FIG. 1. We show the difference in the evolution variables ∂0gab between subsequent resolutions, computed using Eq. (25), and
normalized by the initial value of the white noise perturbation, as a function of time, for a periodic scalar field configuration. The three
cases correspond to different choices of the auxiliary metrics in MGH with (left to right) ðÃ; ÂÞ ¼ ð0; 0Þ, (0.1,0.2), and (0.2,0.4). In the
first case, corresponding to harmonic gauge, frequency dependent growth can be clearly seen as higher frequencies perturbations are
sourced for the higher resolutions. With auxiliary metrics that differ sufficiently from the physical one, as in the rightmost panel, this
problem no longer appears. Note that the h=L ¼ 1=4096 resolution run (needed to compute the error of the h=L ¼ 1=2048 run) was
continued for a shorter time compared to the lower resolutions due to computational expense.
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C. Head-on binary black hole mergers

We next study binary black hole mergers in ESGB.
We begin by restricting to the axisymmetric case of a
head-on collision, which allows us to quickly cover
a number of different parameters, including different
values of λ, as well as different black hole spins
and mass ratios. Since the corrections in ESGB are
sensitive to the smallest length scale, we will label
the cases we consider in terms of the quantity λ=m2,
where m is the mass of the smallest black hole in the
initial data.

Our main result in this section is that we find that the
ESGB theory in general, and the MGH formulation in
particular, remains hyperbolic, even in the highly dynami-
cal setting of a (head-on) binary black hole merger, for
comparable values of λ to where the spherically symmetric
problem remains well posed. For reference, in Ref. [28], the
maximum value where the scalar hair grew about a
Schwarzschild black hole that could be evolved without
the loss of hyperbolicity was λ=m2 ≈ 0.19, and based on
extrapolation, it was estimated that hyperbolicity would be
lost outside the black horizon for λ=m2 ≳ 0.23.

FIG. 2. Left to right: The horizon-averaged scalar field hϕiAH, value of dimensionless black hole spin (normalized by the initial black
hole spin a0), and value of black hole mass m (normalized by the ADM mass M), for a one-parameter family of Kerr initial data. We
show the scalar cloud profile on the black hole horizon for λ=M2 ¼ 0.07 (runs with λ=M2 ¼ −0.07 give qualitatively similar results,
except hϕiAH has the opposite sign). Though the black hole always loses angular momentum as a result of scalar hair growth, from the
center panel we see that for small enough black hole spins (a≲ 0.7), the dimensionless spin decreases, while for larger spins it increases
(for the case a0 ¼ 0, the black hole spin does not change, so we omit it from this figure). The growth of the scalar cloud always coincides
with a decrease in the mass of the black hole, which we interpret as the scalar field extracting energy from the black hole.
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As discussed in Sec. III D, we start with initial data where
ϕ and ∂0ϕ are identically zero. Hence, initially the
individual black holes will develop scalar hair as they fall
towards each other and finally merge. We choose the initial
separation of the black holes to be d ¼ 50M (whereM it the
ADM mass of the spacetime) and set their initial velocities
to the value corresponding to the binary being marginally
bound. We show a number of cases with an equal-mass,
nonspinning binary black hole, and different values of the
coupling ranging from λ=m2 ¼ 0 to 0.18 in Fig. 5. Initially
scalar hair grows about the black hole, which loses mass as
the cloud grows. For larger couplings, there is a small
increase in the magnitude of ϕ on the horizons as the black
holes approach each other (bottom panel of Fig. 5) and a
corresponding decrease in black hole mass (top panel).
However, when the black holes merge, forming a larger

black hole, the Gauss-Bonnet curvature outside the
common horizon becomes smaller, and the scalar cloud
shrinks. As elaborated on below, most of the energy lost by
the smaller black hole goes back into the remnant black
hole, as opposed to escaping as radiation.
In Fig. 6, we show the radiation from the black hole

mergers. Increasing λ to larger values slightly decreases the
merger time and increases the gravitational radiation. More
pronounced is the effect this has on the scalar radiation,
which roughly scales as λ2, though on top of this, some
additional nonlinear enhancement is evident for large
values. For λ=m2 ≳ 0.1, the scalar field luminosity is
comparable to the gravitational wave luminosity for this
configuration.
Even though these black hole merger spacetimes are far

from being stationary, except at late times after the final

FIG. 3. Convergence study of the scalar hair growth about a black hole with a0 ¼ 0.99 and λ=M2 ¼ 0.02. We show the horizon-
averaged scalar field hϕiAH (top right), change in dimensionless black hole spin a (top left), relative change in the black hole mass
(bottom right), and constraint violation jCaj (normalized by the initial black hole mass M; bottom left). We find that the constraint
violation converges at third order, as expected. The medium and high resolutions have 1.5 and 2× the linear resolution of the low
resolution simulation. For an image of the scalar field density around the black hole, see Fig. 4.
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remnant has settled down, it is still instructive to study an
approximate measure of how energy is distributed as a
function of time. In Fig. 7, we show this for a stronger
coupling case with λ=m2 ¼ 0.15. We can see that as the
black holes form scalar hair and as their mass decreases,
there is a comparable increase in the effective energy
calculated from the Einstein tensor EEin, with roughly half
of this being attributable to the canonical scalar field energy
ESF. After the formation of a common horizon, these
quantities rapidly decrease. For this case, most of energy
that does not end up in the final black hole is actually
radiated away as scalar radiation (dotted green curve in
Fig. 7). In fact, the initial scalar hair growth of the
individual black holes produces stronger radiation than
the merger.
We also show the integrated norm of the constraint

violation [Eq. (1)] for λ=m2 ¼ 0.15 and several resolutions
in Fig. 8, demonstrating that this quantity is converging to
zero at the expected rate. Here the lowest resolution has a
grid spacing of dx ≈ 0.02M on the finest level, and the
highest resolution is twice as high.
To probe the effect of angular momentum, we also study

mergers of spinning black holes. We consider two

axisymmetric configurations where the magnitude of the
dimensionless black hole spin is jaj ¼ 0.6: one where the
spins are aligned, and one where they are antialigned.
In Fig. 9, we show how the angular momentum evolves in
the aligned cases. Initially, as the black holes grow scalar
hair, angular momentum moves from the black hole
horizons to the scalar clouds. As the black holes merge,
most of this angular momentum goes back into the final
black hole.
The scalar radiation produced by the spinning black hole

mergers is slightly smaller compared to the nonspinning
cases, as shown in the top panel of Fig. 10. We also find
that the differences between the aligned and antialigned
spins is negligible for these cases. We note that in
axisymmetry, the scalar field radiation does not carry
angular momentum.
Finally, we consider a 4∶1 mass-ratio merger of non-

spinning black holes. In this configuration, the smaller
black hole will have more scalar hair than the larger one,
which tends to suppress nonlinear effects in the coupling
due to the merger. In the bottom panel of Fig. 10, we show
the scalar radiation from two cases with λ=m2 ¼ 0.05 and

FIG. 5. Top: The sum of the masses of the merging black holes
(solid lines) or mass of the final black hole (dashed lines) as a
function of time for head-on mergers of equal mass, nonspinning
black holes and different values of λ. Bottom: The area-averaged
value of ϕ on the apparent horizon as a function of time.

FIG. 4. The scalar field value around a black hole of initial
dimensionless spin a0 ¼ 0.99 and dimensionless coupling
λ=M2 ¼ 0.02, taken after 150M of evolution. For the evolution
of the black hole parameters, see Fig. 3. The spacetime is
axisymmetric, and we show a slice at fixed azimuthal angle,
with the bottom of the figure corresponding to the axis of
symmetry. The excised region within the apparent horizon, which
is roughly 90% of the radius of the black hole, is shown in black.
The colorbar indicates the scalar field value, which in this case
varies between ϕ ∈ ½−0.095; 0.045�. We see that on the equator of
the spinning black hole (middle of the figure), the scalar field is
positive, while at the poles, the scalar field is negative. This is to
be contrasted with black holes with zero spin and λ > 0, where ϕ
is everywhere positive.
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0.1. Compared to the equal-mass cases, the luminosity is
smaller by roughly a factor of ∼12. After rescaling by λ2,
the λ=m2 ¼ 0.05 and 0.1 cases are indistinguishable for a
4∶1 mass ratio.

D. 3D results: Scalar hair formation about
a boosted, spinning black hole

We next discuss results for spinning, boosted black hole
initial data. To consider a fully 3D example, we choose
the initial spin axis and boost axis to be unaligned—e.g. the
initial spin of the black hole is in the z direction, and
the boost is in the y direction. As discussed in Sec. III D,
our initial data for the scalar field are ϕ ¼ ∂0ϕ ¼ 0, so that
we initially start out with a boosted, spinning black hole (in
harmonic coordinates), which subsequently forms a scalar

FIG. 8. Integrated norm of the constraint violation [Eq. (1)] as a
function of time (in units of total mass) for an equal-mass binary
black hole merger with λ=m2 ¼ 0.15 at three resolutions. The
medium and high resolutions have 1.5 and 2× the linear
resolution of the low resolution simulation.

FIG. 9. Angular momentum as a function of time for a head-on
collisions of equal-mass black holes with aligned a ¼ 0.6 spins
and λ=m2 ¼ 0.05 and 0.1. We show the difference of the total
angular momentum from the sum of the angular momentum of
the apparent horizons and the integrated angular momentum
calculated from the Einstein tensor JEin.

FIG. 6. Top: The gravitational wave luminosity from the head-
on collisions of equal-mass, nonspinning black holes with
different values of λ. Bottom: The flux of energy radiated away
in the scalar field for the same cases. The different cases have
been scaled to the highest value of λ assuming λ2 scaling.

FIG. 7. Various measures of energy as a function of time for a
head-on collisions of equal-mass, nonspinning black holes with
λ=m2 ¼ 0.15. We show the difference of the total mass from
the sum of the mass of the apparent horizons, the scalar field
energy radiated away (at r ¼ 50M), the integrated energy in the
canonical scalar field component ESF, and calculated from the
Einstein tensor EEin. We note that the last two quantities are
gauge dependent except when the spacetime is stationary, which
approximately holds at late times.
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cloud. Therefore, unlike in the vacuum Einstein equations
case, the black hole boost is more than just a coordinate
transformation. The main result of this section is that the
boosted, spinning black hole spontaneously form scalar
hair and that we obtain stable, convergent evolution.
We show one example case in this section: a Kerr black

hole with initial dimensionless spin a ¼ 0.4, and with a
boost ky;0 ¼ 0.1 (i.e. at 10% the speed of light) orthogonal
to the initial spin axis. (We found similar results for other
cases with higher spins and lower values of coupling, e.g.
a ¼ 0.2 and λ=M2 ¼ 0.05.) In Fig. 11, we show a con-
vergence study of the constraint violation jCaj and find
third order convergence, with no sign of resolution depen-
dent growth. Our results for the boosted, spinning black
hole are qualitatively similar to our simulations of spinning
black holes in axisymmetry: a scalar field grows and then
settles down to an equilibrium configuration around the
black hole, emitting a burst of scalar radiation in the
process.

E. 3D results: Binary black hole
inspiral and merger

Finally, we consider the inspiral and merger of a binary
black hole without continuous symmetries. Here we just
present results for one case consisting of an equal-mass,
nonspinning binary that undergoes ∼3 orbits before merg-
ing, and for a relatively small value of the Gauss-Bonnet
coupling λ=m2 ¼ 0.01 (where again, m refers to the mass
of one constituent of the binary), where nonlinear effects
are small. As part of the process for constructing initial
data, we evolve the binary black hole data obtained from
solving the constraint equations for ∼50M (whereM is the
ADMmass) just using the Einstein equations, to reduce the

FIG. 11. Convergence study of the horizon-averaged scalar field hϕiAH (left) and constraint violation jCaj (normalized by the initial
black hole mass M; right), for a fully 3D case with a black hole with initial boost ky;0 ¼ 0.1, dimensionless spin 0.1, and coupling
λ=M2 ¼ 0.1. We find that the constraint violation converges at third order. The transient growth at t ∼ 100M in this quantity is due to the
scalar radiation from initial scalar hair growth hitting the outermost mesh refinement level, which leads to some spurious reflection
(which converges away). The medium and high resolutions have 1.5 and 2× the linear resolution of the low resolution simulation.

FIG. 10. The scalar luminosity in the wavezone (r=M ¼ 100)
for various head-on black hole mergers. Top: A comparison of
different values of black hole spin and ESGB coupling for equal
mass mergers. The luminosity has been scaled assuming a λ2

dependence. Bottom: A comparison of different values of mass-
ratio and coupling for nonspinning mergers. The luminosity has
been scaled by λ2=μ4, where μ is the reduced mass of the binary.
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gauge dynamics and spurious high frequency gravitational
wave content. We then use this as initial data for the
evolution with the full ESGB equations.
As was found for the head-on black hole merger, the black

holes rapidly form scalar hair, after which the scalar field
around the individual horizons is essentially constant, with a
small uptick in the last stages of themerger that is cutoff by the
appearance of the common horizon. We show the gravita-
tional and scalar radiation for this system in Fig. 12. As was
seen in the head-on black hole mergers, the burst of scalar
radiation from the initial growth of the scalar hair about the
individual black holes of the binary is actually larger than for
themerger. Following this initial transient, the scalar radiation
tracks the inspiral of the binary evident in the gravitational
waves. As expected from the results in Sec. IV C, at this small
value of the coupling the scalar radiation ismuch smaller than
the gravitational radiation. Ignoring the initial burst, which is
just an artifact of our initial conditions, ≈3 × 10−6M is
emitted in scalar radiation during the last few orbits, mostly at

merger (compared to a few percent M emitted in gravita-
tional waves).
We perform this calculation at two different resolutions

where the lower resolution has a grid spacing of dx=M ≈
0.025 on the finest mesh refinement level, and the higher
resolution has 4=3× this resolution. We show the time
dependence of the integrated MGH constraint in Fig. 13.
This is consistent with third-order convergence and shows
no sign of resolution dependent growth.
We present these results primarily to illustrate that these

methods work for the binary inspiral problem, at least at
sufficiently modest values of the modified gravity coupling.
We leave the exploration of higher values of the coupling
and different binary configurations, as well as additional
resolution studies, to future work.

V. DISCUSSION AND CONCLUSION

In this article we present numerical solutions of
dynamical spacetimes in ESGB gravity without any
particular symmetry restrictions or approximations. We
evolve the shift-symmetric ESGB EOMs using the MGH
formulation, for which the theory has a well-posed initial
value problem (at least at weak coupling) [16,17]. We are
able to solve for the dynamics of single and binary (scalar
hairy) black hole spacetimes in this theory, including
cases with spinning black holes and binaries with unequal
mass-ratios, and in the regime where the formation of
scalar hair changes the black hole mass at the level of a few
percent, and the scalar radiation becomes comparable to
the gravitational radiation. Given the novelty of the
modified harmonic formulation, and the dearth of results
on the nonlinear dynamics of Horndeski theories in
regimes of physical interest, there are many avenues for
future research. In this section we outline a few such
directions.

FIG. 12. The radiation from the inspiral and merger of an equal
mass binary black hole with λ=m2 ¼ 0.01. Top: The real and
imaginary components of the l ¼ m ¼ 2 spin −2 spherical
harmonic of the Newman-Penrose scalar, which encodes the
gravitational waves. Bottom: The l ¼ m ¼ 2 component of the
scalar field in the wavezone. The burst at early times comes from
the growth of the scalar hair about the individual black holes of
the initially vacuum binary.

FIG. 13. The integrated norm of the MGH constraint violation
jCaj for the inspiral and merger of an equal-mass binary black
hole with λ=m2 ¼ 0.01. The high resolution case has 4=3× the
resolution of the low resolution, and the convergence is consistent
with third order.
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Here, we presented one case consisting of a few orbits
and merger of a quasicircular binary black hole at a
relatively modest value of the Gauss-Bonnet coupling, to
demonstrate that our methods work for such configurations.
However, based on the results from head-on collisions,
higher values of coupling, where nonlinear effects due to
the ESGB terms are more important, should be tractable. In
future work, we will explore the parameter space of binary
black hole mergers more thoroughly, in order to make a
better connection to gravitational wave observations, which
can be used test such modifications to GR. Here, we have
focused on shift-symmetric ESGB, but our methods should
be generally applicable both to ESGB with other couplings,
and Horndeski gravity theories in general, potentially
allowing binary black hole mergers in all these cases to
be explored. Direct simulations of the full EOMs could also
be compared to various approximate treatments of these
theories, including the order reduction approach [13], or
modified forms of the EOMs that are designed to improve
the hyperbolicity [15], in order to quantify the errors
coming from secular or nonperturbative effects in a binary
inspiral (such a comparison for a toy scalar-field problem
was carried out in Ref. [55]). This would help determine the
best methods to use for theories where the short wavelength
behavior is not known, and there is not a well-posed initial
value problem.
In tackling the above, another future research direction is

to better understand the robustness of the MGH formu-
lation, both of the Einstein equations, and of the Horndeski
gravity theories, under different gauge choices. In this new
formulation, one can freely choose not only the source
functions, but also the two auxiliary metrics g̃ab and ĝab

which determine the light cone of the gauge and constraint
propagating modes. Our particular choice of the auxiliary
metrics [Eq. (12)] was guided mostly by convenience, and
it would be interesting to look for improved choices of
auxiliary metrics that could, for example allow us to better
evolve black hole spacetimes with larger ESGB coupling.
Potential future directions include: considering different
ratios of the parameters Ã and Â, and considering different
ansatzes for the auxiliary metrics g̃ab and ĝab (for example,
it would be considering auxiliary metrics where Ã and Â are
functions of the spacetime geometry; for more discussion
see [17]).
Another research direction is to develop robust initial data

solution methods for the Horndeski theories. This will be
necessary for numerically constructing initial data for, e.g.
inhomogeneous cosmological solutions to Horndeski the-
ories, or binary initial data that do not have a strong initial
transient due to, e.g. initial black hole scalar hair formation.
The first step in this direction would be to formulate the
Horndeski constraints as elliptic equations, for example
using a conformal thin-sandwich type approach [56].
Finally, given the number of Horndeski theories that

have been invoked in both the early and late Universe

(e.g. [57–61]), a natural direction for future research is to
consider cosmological solutions to Horndeski theories.
Given the failure of GR coupled to ordinary matter to
resolve the initial cosmological singularity [62], it would be
interesting to determine if any classical field theory that had
well-posed evolution could resolve this issue in a math-
ematically satisfactory way, while also obeying current
observational and experimental constraints. Potential can-
didate theories that have been proposed (e.g. bouncing
universes [58], or “genesis” [59,63]), fall under the
Horndeski class of theories, and thus should be amenable
to being solved using a MGH formulation.
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APPENDIX A: DERIVATION OF EVOLUTION
MATRIX FOR 4∂ST GRAVITY IN A MODIFIED

HARMONIC FORMULATION

For completeness, and for reference, here we show
our derivation of the components of the evolution
matrix, Eq. (11), for the EOMs of 4∂ST gravity, Eqs. (7)
and (8).
We find it convenient to split our calculation into several

steps: first we rewrite the equations for the Einstein-
minimally coupled scalar field contributions to the
EOMs, then for the contributions that involve α, and then,
finally, for the contributions that involve β.

1. Terms: Einstein, minimally coupled scalar field,
and constraint damping

We first consider the Einstein-modified harmonic
contribution to the tensor EOMs,
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Rab −
�
P̂c

d
ab −

1

2
gabP̂c

d

�
∇dCc

−
1

2
κðnaCb þ nbCa − ð1þ ρÞncCcgabÞ

¼ 8π

�
Tab −

1

2
gabT

�
: ðA1Þ

It is straightforward to see that

Bab ¼ 0: ðA2Þ

We next consider

∇dCc ¼ ∇dðHc þ g̃efΓc
efÞ

¼ 1

2
g̃efgcgð∂d∂eggf þ ∂d∂fgge − ∂d∂ggefÞ

þ g̃ef∂dgcgΓgef þ ∂dg̃efΓc
ef þ ∂dHc

þ Γc
dgðHg þ g̃efΓg

efÞ: ðA3Þ

Using

Rab ¼ ∂cΓc
ab−∂aΓc

cbþΓc
dcΓd

ab−Γc
daΓd

cb

¼−
1

2
gcdð∂c∂dgab−∂c∂bgad−∂a∂dgbcþ∂a∂bgcdÞ

þ∂cgcdΓdab−∂agcdΓdcbþΓc
dcΓd

ab−Γc
daΓd

cb; ðA4aÞ

∂cgcdΓdab þ Γc
dcΓd

ab ¼ −ΓdΓd
ab; ðA4bÞ

∂agcdΓdcb ¼
1

2
∂agcd∂bgdc

¼ 1

4
∂agcd∂bgdc þ

1

4
∂bgcd∂agdc; ðA4cÞ

we then have

−
1

2
Aab

cdef∂c∂dgef −
1

4
∂agcd∂bgcd −

1

4
∂bgcd∂agcd − ΓdΓd

ab − Γc
daΓd

cb

−
�
P̂c

d
ab −

1

2
gabP̂c

d

�
ð∂dHc þ Γgefg̃ef∂dgcg þ Γc

ef∂dg̃ef þ Γc
dgðHg þ g̃efΓg

efÞÞ

−
1

2
κðnaCb þ nbCa − ð1þ ρÞncCcgabÞ ¼ 8π

�
Tab −

1

2
Tgab

�
; ðA5Þ

where

Aab
cdef ≡ δeaδ

f
bg

cd − δfaδdbg
ce − δcaδ

f
bg

de þ δcaδ
d
bg

ef þ 2

�
P̂ec

ab −
1

2
gabP̂

ec

�
g̃df −

�
P̂dc

ab −
1

2
gabP̂

dc

�
g̃ef: ðA6Þ

Note that we can interchange c ↔ d and e ↔ f, as partial derivatives commute and gef is symmetric. We use this fact below
to simplify some of the expressions. To see the structure of the principal symbol in more detail we expand out P̂cd

ab,

P̂dc
ab −

1

2
gabP̂

dc ¼ 1

2

�
δdaĝbc þ δdbĝa

c − gcdĝab − gab

�
ĝdc −

1

2
gcdĝ

��
: ðA7Þ

We then have

Aab
cdef ¼ δeaδ

f
bg

cd − ðδfaδdbgce − δfaĝbdg̃ceÞ − ðδcaδfbgde − δfbĝa
cg̃deÞ þ ðδcaδdbgef − δdðaĝ

c
bÞg̃

efÞ

−
�
gceĝab þ ĝcegab −

1

2
gabgceĝ

�
g̃df þ 1

2

�
gcdĝab þ gabĝcd −

1

2
gabgcdĝ

�
g̃ef: ðA8Þ

From Eq. (A5), we can read off Aab
cd and FðgÞ

ab ,

Aab
cd ¼ Aab

00cd; ðA9Þ
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FðgÞ
ab ¼ Aab

αβef∂α∂βgef þ 2Aab
ðα0Þef∂α∂0gef −

1

4
∂agcd∂bgcd −

1

4
∂bgcd∂agcd − ΓdΓd

ab − Γc
daΓd

cb

−
�
P̂c

d
ab −

1

2
gabP̂c

d

�
ð∂dHc þ Γgefg̃ef∂dgcg þ Γc

ef∂dg̃ef þ Γc
dgðHg þ g̃efΓg

efÞÞ

−
1

2
κðnaCb þ nbCa − ð1þ ρÞncCcgabÞ − 8π

�
Tab −

1

2
Tgab

�
; ðA10Þ

The contribution of the scalar field is

FðgÞ
ab ¼ −∇aϕ∇bϕ − VðϕÞgab; ðA11Þ

D ¼ g00; ðA12Þ
FðϕÞ ¼ gαβ∂α∂βϕþ 2gα0∂α∂0ϕ − gabΓc

ab∂cϕ: ðA13Þ

In Appendix C, we explicitly show how Eq. (A5) reduces in the special case of ĝab ¼ g̃ab ¼ gab to the Einstein equations in
the generalized harmonic formulation with constraint damping.

2. Term: α

We next consider the terms that involve α. There are no second derivative terms on the metric, so we have

Aab
cd ¼ 0 ðA14Þ

Bab ¼ 0; ðA15Þ
Ccd ¼ 0: ðA16Þ

The nonzero terms are

D ¼ 2αðϕÞðXg00 −∇0ϕ∇0ϕÞ; ðA17Þ

FðgÞ
ab ¼ −2αðϕÞX∇aϕ∇bϕ − αðϕÞX2gab ðA18Þ

FðϕÞ ¼ 4αðϕÞðXgα0 −∇αϕ∇0ϕÞ∂α∂0ϕþ 2αðϕÞðXgαβ −∇αϕ∇βϕÞ∂α∂βϕ

− 2αðϕÞðXgcd −∇cϕ∇dϕÞΓc
ab∂cϕ − 3α0ðϕÞX2: ðA19Þ

3. Term: β

Finally we consider the terms that involve the Gauss-Bonnet scalar. Due to the length of the necessary algebraic
manipulations, we write things out in stages. First we expand

Rij
ef ¼ gjkRi

kef;

¼ gjkð∂eΓi
kf − ∂fΓi

ke þ Γi
elΓl

kf − Γi
flΓl

keÞ

¼ 1

2
gjkgimð∂e∂kgmf þ ∂e∂fgmk − ∂e∂mgkf − ∂f∂kgme − ∂f∂egmk þ ∂f∂mgkeÞ

þ gjkð∂egimΓmkf − ∂fgimΓmke þ Γi
elΓl

kf − Γi
flΓl

keÞ ðA20aÞ
∇g∇cβðϕÞ ¼ gglð∂l∂cβðϕÞ − Γm

lc∂mβðϕÞÞ ¼ gglðβ0ðϕÞ½∂l∂cϕ − Γm
lc∂mϕ� þ β00ðϕÞ∂lϕ∂cϕÞ: ðA20bÞ

We find that

2δefcdijgðagbÞdR
ij
ef∇g∇cβðϕÞ − δefcijg R

ij
ef∇g∇cβðϕÞgab ¼ gjkgglΔefc

ijgabðgim∂e∂kgmf þ ∂egimΓmkf þ Γi
emΓm

kfÞ
× ðβ0ðϕÞ½∂l∂cϕ − Γm

lc∂mϕ� þ β00ðϕÞ∂lϕ∂cϕÞ; ðA21Þ
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where we have defined the tensor,

Δefc
ijgab ≡ 2ð2δefcdijgðagbÞd − δefcijg gabÞ; ðA22Þ

which is antisymmetric on the top three and first bottom three indices, and symmetric for the rightmost two bottom
indices.
It turns out that while the EOMs for 4∂ST gravity are fully nonlinear, they are linear with respect to repeated derivatives;

e.g. there are no terms like ð∂2
0gabÞð∂2

0ϕÞ or ð∂2
0gabÞ2 in the equations of motion (see Appendix B for an explicit calculation;

we note that this property holds more generally for all Horndeski gravity theories [51,52]). Thus, there is no ambiguity in
computing terms like Aab

cd and Bab.
From Eq. (A21) we have

Aab
cd ¼ gj0Δ0dγ

ijgabg
lggicðβ0ðϕÞ½∂l∂γϕ − Γm

lγ∂mϕ� þ β00ðϕÞ∂lϕ∂γϕÞ; ðA23Þ

Bab ¼ gg0gjkΔγρ0
ijgabðgim∂γ∂kgmρ þ ∂γgimΓmkρ þ Γi

γmΓm
kρÞβ0ðϕÞ ðA24Þ

Fab ¼ gjkgglΔefc
ijgabðgim∂e∂kgmf þ ∂egimΓmkf þ Γi

emΓm
kfÞðβ0ðϕÞ½∂l∂cϕ − Γm

lc∂mϕ� þ β00ðϕÞ∂lϕ∂cϕÞ
− Aab

cd∂2
0gcd − Bab∂2

0ϕ: ðA25Þ

We next look at the scalar field EOM. The Gauss-Bonnet scalar is

G≡ 1

4
δpqrsghij R

gh
pqRij

rs

¼ δpqrsghij ðghkggm∂p∂kgmq þ ghk∂pggmΓmkq þ ghkΓg
pmΓm

kqÞðgjvgiw∂r∂vgws þ gjv∂rgiwΓwvs þ gjvΓi
rwΓw

vsÞ: ðA26Þ

We then have

D ¼ 0; ðA27Þ

and

Ccd ¼ 2β0ðϕÞδαβ0dghij ðghkggm∂α∂kgmβ þ ghk∂αggmΓmkβ

þ ghkΓg
αmΓm

kβÞgj0gic; ðA28Þ

FðϕÞ ¼ β0ðϕÞG − Ccd∂2
0gcd: ðA29Þ

APPENDIX B: PROPERTIES OF THE
PRINCIPAL PART OF ESGB GRAVITY

The evolution equations for ESGB gravity, Eqs. (7) and
(8), form a fully nonlinear system of partial differential
equations. It turns out though (and this is a general property
of the EOMs of Horndeski gravity theories) that the
EOMs do not contain terms with repeated derivatives,
e.g. terms like ð∂c∂cgabÞ2. In this section, we review the
derivation of this fact. We consider the equations in the
form of Eq. (11).

(i) Aab
cdef: The only second order derivative term is

from ∂l∂pϕ. Consider then c ¼ d ¼ l ¼ p ¼ Z. We

then have δZqZfghij ¼ 0 and δZZfgij ¼ 0.
(ii) Bab

cd: The only nonzero second order term is
∂e∂kgmf. Set then c ¼ d ¼ e ¼ k ¼ Z. We then

have δZZefghij ¼ 0 and δZZfgij ¼ 0.
(iii) Ccdef: The only term second order in derivatives is

∂p∂kgmq. Set c ¼ d ¼ p ¼ k ¼ Z. We then have

δZqZfghij ¼ 0.
(v) Dab ¼ 0 for all a; b.

APPENDIX C: REDUCTION OF MODIFIED
HARMONIC FORMULATION

TO GENERALIZED HARMONIC
FORMULATION

For reference, here we demonstrate how the EOMs for
GR in the MGH formulation reduce to those of a gener-
alized harmonic formulation for the special choice that
ĝab ¼ g̃ab ¼ gab. Beginning with Eqs. (A7) and (A8), we
set g̃ab ¼ ĝab ¼ gab to obtain

Aab
cdef ¼ δeaδ

f
bg

cd; ðC1Þ

P̂c
d
ab −

1

2
gabP̂c

d ¼ gcðaδdbÞ; ðC2Þ
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so that the Einstein equations given by Eq. (A5) become

−
1

2
gcd∂c∂c∂dgab −

1

2
∂ðagcd∂bÞgdc − Γc

daΓd
cb þHdΓd

ab

× gcðaδdbÞð∂dHc þ Γgefgef∂dgcg þ Γc
ef∂dgef

þ Γc
dgðHg þ gefΓg

efÞÞ

−
1

2
κðnaCb þ nbCa − ð1þ ρÞncCcgabÞ

¼ 8π

�
Tab −

1

2
Tgab

�
: ðC3Þ

Simplifying, we obtain the Einstein equations in a gener-
alized harmonic formulation with constraint damping terms
(e.g. Ref. [36]),

−
1

2
gcd∂c∂dgab−∂cgdða∂bÞgcd−∇ðaHbÞ þHcΓc

ab−Γc
daΓd

cb

−
1

2
κðnaCbþnbCa− ð1þρÞncCcgabÞ

¼ 8π

�
Tab−

1

2
Tgab

�
: ðC4Þ
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