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By introducing external Maxwell and gravitational fields we modify the Bonnor-Vaidya field of an
arbitrarily accelerating charged mass moving rectilinearly in order to satisfy the vacuum Einstein-Maxwell
field equations approximately, assuming the charge e and the mass m are small of first order.
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I. INTRODUCTION

The solution of Einstein’s field equations describing a
space-time model of an arbitrarily accelerating point mass
found by Kinnersley [1] has been described as a photon
rocket by Bonnor [2]. Kinnersley’s metric tensor is of
Kerr-Schild form [3] and thus possesses a background
Minkowskian space-time obtained by putting the mass of
the source equal to zero. In this background the source of the
field is an arbitrary timelike world line. From this point of
view the 4-momentum radiated during a finite interval of
proper time is given exactly by the change in the particle
4-momentum during this interval (a “rocket effect”
described in detail by Bonnor [2]). In the background
Minkowskian space-time picture this radiated 4-momentum
is a flux of 4-momentum across a timelike world tube
surrounding the particle world line and bounded by two
future null coneswith vertices on theworld line separated by
a finite interval of proper time (see Fig. 1). It follows that the
particle is self-accelerated by photon emission and is there-
fore referred to as a photon rocket. An extension of the
Kinnersley rocket to include charge has been given by
Bonnor and Vaidya [4] (we assume for simplicity that the
mass and charge are both constant). This Bonnor-Vaidya
particle is also self-accelerating via photon emission (with
no loss of charge). In the present paper we consider a
Bonnor-Vaidya particle performing rectilinear motion but
driven by a suitable external Maxwell field. The Einstein-
Maxwell field equations are solved approximately assuming
that the mass m and the charge e of the particle are both
constant and small of first order. The field equations are solved
up to the second order of approximation which involves
working with an error of third order in these small quantities.

We demonstrate that the rocket effect can be removed, at least
to the order of approximation thatwe areworking, and instead
the particle is driven by the external field.
To make clear the background to the present study we

point out here that Kinnersley’s field [1] of an arbitrarily
accelerating point mass, in the special case of rectilinear
motion, is described by the line element

ds2 ¼ −r2fðdθ þ AðuÞ sin θduÞ2 þ sin2θdϕ2g þ 2dudr

þ
�
1 − 2AðuÞr cos θ − 2m

r

�
du2: ð1Þ

The constant m is the mass of the particle and AðuÞ is the
arbitrary acceleration. The corresponding Ricci tensor

FIG. 1. The world line Cðr ¼ 0Þ in the background space-time.
Σ is a world tube r ¼ const > 0 bounded by the future null cones
N1ðu ¼ u1Þ and N2ðu ¼ u2Þ with u2 > u1 constants.
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components Ri0j0 in the coordinates xi
0 ¼ ðθ;ϕ; r; uÞ with

i0 ¼ 10; 20; 30; 40 (we reserve unprimed indices for labeling
rectangular Cartesian coordinates and time later) take the
lightlike dust or Vaidya form

Ri0j0 ¼ −
6mAðuÞ cos θ

r2
ni0nj0 ¼ −8πTi0j0 ; ð2Þ

with ni0dxi
0 ¼ du and ni

0∂=∂xi0 ¼ ∂=∂r is a null vector
field. Charged generalizations have been given by Bonnor
and Vaidya [4]. The simplest example is

ds2 ¼ gi0j0dxi
0
dxj

0
;

¼ −r2fðdθ þ AðuÞ sin θduÞ2 þ sin2θdϕ2g þ 2dudr

þ
�
1 − 2AðuÞr cos θ − 2m

r
þ e2

r2

�
du2; ð3Þ

with the Maxwell 2-form

1

2
Fi0j0dxi

0 ∧ dxj
0 ¼ e

r2
du ∧ dr; ð4Þ

and e ¼ constant is the charge on the accelerating particle.
When AðuÞ ¼ 0 this coincides with the Reissner-
Nordström solution of the vacuum Einstein-Maxwell equa-
tions. With the electromagnetic energy-momentum tensor
given by

Ei0j0 ¼ Fi0k0Fj0
k0 −

1

4
gi0j0Fl0k0Fl0k0 ; ð5Þ

the Einstein-Maxwell field equations for (3) and (4) read

Ri0j0 − 2Ei0j0 ¼ −8πTi0j0

¼
�
−
6mAðuÞ cos θ

r2
þ 4e2AðuÞ cos θ

r3

�
ni0nj0 ;

ð6Þ

and

Fi0j0
;j0 ¼ Ji

0 ¼ −
2eAðuÞ cos θ

r2
ni

0
; ð7Þ

with the semicolon denoting covariant differentiation with
the respect to the Riemannian connection calculated with
the metric tensor given via (3). In (2), (6), and (7) the
resulting matter distribution is described by an energy-
momentum-stress tensor with components Ti0j0 and a
4-current Ji

0
.

The organization of the paper is as follows: In Sec. II the
axially symmetric background space-time is constructed in
the neighborhood of a timelike world line which is the
history of a particle performing rectilinear motion with
arbitrary acceleration. TheEinstein-Maxwell field equations

are solved in the neighborhood of this world line with a
Maxwell fieldwhich specializes to a pure electric field on the
world line. In Sec. III the charged particle is introduced as a
perturbation of the background space-timewhich is singular
on the world line but is otherwise a well-behaved perturba-
tion. This latter requirement places an important constraint
on the acceleration of the particle while solving approx-
imately the perturbedEinstein-Maxwell field equations. The
acceleration of the particle is no longer arbitrary but is driven
by the external electric field. Since the perturbed field
equations are solved approximately there is a residualmatter
distribution present which is described by a residual energy-
momentum-stress tensor and a residual 4-current. These are
examined in Sec. IV and interpreted physically in terms of
the flow of 4-momentum and charge away from the particle.
The paper ends with a brief comparison of our model with
the Bonnor-Vaidya model in Sec. V.

II. EXTERNAL FIELDS

The external gravitational and electromagnetic fields will
be modeled by a space-time and a Maxwell field which will
be solutions of the vacuum Einstein-Maxwell field equa-
tions. The accelerating charged particle will have a timelike
world line in this space-time. The particle will be intro-
duced as a perturbation of this “background” space-time
which is singular on this world line but whose electro-
magnetic and gravitational fields are otherwise free of
singularities. The Lorentzian character of the background
space-time means that in the neighborhood of the particle
world line the space-time is Minkowskian. This means that
if r is a distance from the world line, and if the world line
corresponds to r ¼ 0, then the metric tensor of the back-
ground, in rectangular Cartesian coordinates and time
Xi ¼ ðX; Y; Z; TÞ, satisfies

gij ¼ ηij þOðr2Þ; ð8Þ

for small values of r with ηij ¼ diagð−1;−1;−1;þ1Þ.
Since we are interested in a particle performing rectilinear
motion we will take it to be moving on the Z axis and thus
have a world line in the ðZ; TÞ plane in the Minkowskian
space-time neighborhood of its world line. The world line
r ¼ 0 will be given parametrically by Xi ¼ wiðuÞ with
wiðuÞ ¼ ð0; 0; w3ðuÞ; w4ðuÞÞ. The unit timelike tangent to
the world line is viðuÞ ¼ dwiðuÞ=du with ηijvivj ¼
−ðv3Þ2 þ ðv4Þ2 ¼ þ1 so that the parameter u, for which
−∞ < u < þ∞, is proper time or arc length along the
world line. The 4-acceleration of the particle with world
line r ¼ 0 is aiðuÞ ¼ dvi=du and, since vivi ¼ ηijvivj ¼
þ1, we have viai ¼ 0 indicating that the 4-acceleration is
spacelike. Defining AðuÞ ¼ fða3Þ2 − ða4Þ2g1=2 which we
shall refer to as the acceleration of the particle performing
rectilinear motion we note that a3 ¼ Av4 and a4 ¼ Av3.
The position 4-vector of an event in the neighborhood of
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the world line, i.e., for small positive values of r ≥ 0, can be
written (see, for example [5])

Xi ¼ wiðuÞ þ rki; ð9Þ

where ki is a future pointing null vector field, cf. Fig. 2,
parametrized by the polar angles θ, ϕ (for which 0 ≤ θ ≤ π
and 0 ≤ ϕ < 2π) and normalized by the condition viki ¼
þ1 so that we may satisfy these requirements by writing
(cf. [6])

ki ¼ ð− sin θ cosϕ;− sin θ sinϕ;

v3 − v4 cos θ; v4 − v3 cos θÞ: ð10Þ

The following Minkowskian scalar products are useful:

∂ki
∂θ

∂ki
∂θ ¼ −1;

∂ki
∂ϕ

∂ki
∂ϕ ¼ −sin2θ;

∂ki
∂θ

∂ki
∂ϕ ¼ 0;

ð11Þ

and

∂ki
∂ϕ

∂ki
∂u ¼ 0;

∂ki
∂θ

∂ki
∂u ¼ −A sin θ;

vi
∂ki
∂u ¼ −A cos θ;

∂ki
∂u

∂ki
∂u ¼ −A2sin2θ: ð12Þ

The formula (9) determines θ, ϕ, r, u implicitly as functions
of the coordinates Xi ¼ ðX; Y; Z; TÞ. Hence differentiating
(9) partially with respect to Xj gives

δij ¼
�
vi þ r

∂ki
∂u

�
u;j þ kir;j þ r

∂ki
∂θ θ;j þ r

∂ki
∂ϕ ϕ;j ð13Þ

with the comma denoting partial differentiation here. From
this we have

dXi ¼
�
vi þ r

∂ki
∂u

�
duþ kidrþ r

∂ki
∂θ dθþ r

∂ki
∂ϕ dϕ; ð14Þ

from which we derive the Minkowskian line element in
coordinates xi

0 ¼ ðθ;ϕ; r; uÞ:
ds2 ¼ −r2fðdθ þ AðuÞ sin θduÞ2 þ sin2θdϕ2g þ 2dudr

þ ð1 − 2AðuÞr cos θÞdu2: ð15Þ
Multiplying (13) successively by ki, vi, ∂ki=∂θ and ∂ki=∂ϕ
results respectively in

u;j ¼ kj; r;j ¼ vj − ð1 − rA cos θÞkj; ð16Þ

and

θ;j ¼ −
1

r

∂kj
∂θ − A sin θkj; ϕ;j ¼ −

1

rsin2θ

∂kj
∂ϕ : ð17Þ

When these are substituted into (1) and the lower index is
raised using ηjk (where ηjkηki ¼ δji ) we obtain the useful
formula

ηij ¼ −
∂ki
∂θ

∂kj
∂θ −

1

sin2θ
∂ki
∂ϕ

∂kj
∂ϕ þ kivj þ kjvi − kikj; ð18Þ

after making use of the identity

∂ki
∂u − A sin θ

∂ki
∂θ þ A cos θki ¼ 0: ð19Þ

The line element of Minkowskian space-time (15) can be
written in terms of basis 1-forms ϑð1Þ, ϑð2Þ, ϑð3Þ, ϑð4Þ as

ds2 ¼ ηijdXidXj ¼ −ðϑð1ÞÞ2 − ðϑð2ÞÞ2 þ 2ϑð3Þϑð4Þ

¼ gðaÞðbÞϑðaÞϑðbÞ; ð20Þ

with

ϑð1Þ ¼ rðdθ þ A sin θduÞ ¼ −ϑð1Þ;

ϑð2Þ ¼ r sin θdϕ ¼ −ϑð2Þ;

ϑð3Þ ¼ drþ
�
1

2
− rA cos θ

�
du ¼ ϑð4Þ;

ϑð4Þ ¼ du ¼ ϑð3Þ: ð21Þ

The 1-forms define a half null tetrad and the tetrad
components of the metric tensor are given by gðaÞðbÞ in

FIG. 2. Coordinates of an event Xi in the neighborhood of the
world line wiðuÞ. Here ki denotes a future pointing null vector
field, the parameter value r ¼ 0 corresponds to events on wiðuÞ.
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(20). We have used gðaÞðbÞ to lower the tetrad indices in each
of (21) and we shall raise the tetrad indices using gðaÞðbÞ

defined by gðaÞðbÞgðbÞðcÞ ¼ δac. Using (16) and (17) we
arrive at

ϑið1Þ ¼
∂ki
∂θ ; ϑið2Þ ¼

1

sin θ
∂ki
∂ϕ ;

ϑið3Þ ¼ ki; ϑið4Þ ¼ vi −
1

2
ki: ð22Þ

Having prepared the background space-time in the
neighborhood of the world line r ¼ 0 we now consider
the background space-time in more generality. A general
axially symmetric form of the line element which incor-
porates (15) as a special case is given by

ds2 ¼ −r2p−2fðeαdθ þ aduÞ2 þ e−2αsin2θdϕ2g
þ 2dudrþ cdu2 ¼ gi0j0dxi

0
dxj

0
; ð23Þ

where the functions p, α, a, and c are functions of θ, r, u.
This is an axially symmetric special case of a form of the
most general line element [7] (involving six functions of
four coordinates) originally used for studying gravitational
radiation from isolated sources. The 3-surfaces u ¼
constant are null hypersurfaces as in the special case of
(15). The coordinates θ, ϕ label the null geodesic gen-
erators of these hypersurfaces, while r is an affine param-
eter along the generators. The form of line element (23)
incorporates the Robinson-Trautman form [8] which cor-
responds to the special case α ¼ 0. For small values of r,
and to incorporate (15), we shall assume that the functions
p, α, a, c can be expanded in powers of r as follows:

p ¼ 1þ q2r2 þ q3r3 þ…; ð24Þ

α ¼ α2r2 þ α3r3 þ…; ð25Þ

a ¼ AðuÞ sin θ þ a1rþ a2r2 þ…; ð26Þ

c ¼ 1 − 2rAðuÞ cos θ þ c2r2 þ…; ð27Þ

with the coefficients of the powers of r functions of ðθ; uÞ.
For an axially symmetric Maxwell field we start by
choosing a potential 1-form of the form

A ¼ Ldθ þ Kdu; ð28Þ

with L and K functions of ðθ; r; uÞ. For small positive
values of r, and in order to arrive at an external Maxwell
field which is nonsingular on r ¼ 0, we assume the
following expansions of L and K in powers of r:

L ¼ L2r2 þ L3r3 þ L4r4 þ…;

K ¼ K1rþ K2r2 þ K3r3 þ…; ð29Þ

with the coefficients of the various powers of r functions of
ðθ; uÞ. We now write the line element (23) in terms of a
basis of 1-forms:

ds2 ¼ −ðϑð1ÞÞ2 − ðϑð2ÞÞ2 þ 2ϑð3Þϑð4Þ; ð30Þ

with

ϑð1Þ ¼ rp−1ðeαdθ þ aduÞ ¼ −ϑð1Þ; ð31Þ

ϑð2Þ ¼ rp−1e−α sin θdϕ ¼ −ϑð2Þ; ð32Þ

ϑð3Þ ¼ drþ 1

2
cdu ¼ ϑð4Þ; ð33Þ

ϑð4Þ ¼ du ¼ ϑð3Þ: ð34Þ

The candidate for external Maxwell field is the 2-form

F ¼ dA ¼ 1

2
FðaÞðbÞϑðaÞ ∧ ϑðbÞ; ð35Þ

which is the exterior derivative of the 1-form (28). With the
assumed expansions in powers of r given above we find the
following tetrad components of F:

Fð1Þð2Þ ¼ 0; Fð1Þð3Þ ¼ −2L2 þOðrÞ;

Fð1Þð4Þ ¼ L2 þ
∂K1

∂θ þOðrÞ; Fð2Þð3Þ ¼ 0;

Fð2Þð4Þ ¼ 0; Fð3Þð4Þ ¼ K1 þOðrÞ: ð36Þ

When these are calculated on r ¼ 0, and the tetrad vectors
(22) in coordinates Xi are used, we find that

FijðuÞ
∂ki
∂θ

∂ki
∂ϕ ¼ 0; FijðuÞ

∂ki
∂ϕ kj ¼ 0;

FijðuÞ
∂ki
∂ϕ

�
vj −

1

2
kj
�

¼ 0; ð37Þ

and

K1 ¼ FijðuÞkivj; L2 ¼ −
1

2
FijðuÞ

∂ki
∂θ kj; ð38Þ

with

L2 þ
∂K1

∂θ ¼ FijðuÞ
∂ki
∂θ

�
vj −

1

2
kj
�
; ð39Þ

where FijðuÞ ¼ −FjiðuÞ are the components of the
Maxwell tensor in coordinates Xi calculated on the world
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line r ¼ 0. We can simplify matters at this point by making
the assumption that to sustain rectilinear motion in the Z
direction requires only an electric field in the Z direction
and so we can satisfy (37) by taking Fij ¼ 0 except for
F34 ¼ −F43 ¼ EðuÞ (say). Now with ki given by (10) and
vi ¼ ð0; 0; v3; v4Þ we conclude from (38) that

L2 ¼ −
1

2
EðuÞ sin θ and K1 ¼ −EðuÞ cos θ; ð40Þ

and thus (39) reduces to

L2 þ
∂K1

∂θ ¼ 1

2
EðuÞ sin θ; ð41Þ

which is clearly satisfied. Now Maxwell’s equations
d�F ¼ 0, with F given by (35) and the star indicating
the Hodge dual of the 2-form F, are satisfied with an OðrÞ
error provided

∂K1

∂θ þ 2L2 ¼ 0: ð42Þ

This is satisfied by (40). Hence we see that the tetrad
components of the Maxwell tensor FðaÞðbÞ ¼ −FðbÞðaÞ on
r ¼ 0 vanish except for Fð1Þð3Þ ¼ EðuÞ sin θ, Fð1Þð4Þ ¼
1
2
EðuÞ sin θ, and Fð3Þð4Þ ¼ −EðuÞ cos θ. We note for future

reference that the components EijðuÞ of the electromag-
netic energy-momentum tensor calculated on r ¼ 0 in the
coordinates Xi are given by

Eij ¼ FikFj
k −

1

4
ηijFklFkl

¼ 1

2
diagð−E2;−E2;þE2;−E2Þ; ð43Þ

where the indices on Fij are raised using ηij with
ηikηkj ¼ δij.
With (40) we have evaluated the leading terms in the

expansions (29). In the sequel we will require the next term
in each of these expansions. In other words we will require
the functions L3 and K2. These are given by the vanishing
of the next to leading terms in the expansion of Maxwell’s
equations d�F ¼ 0 in positive powers of r. The results are
the differential equations

∂
∂θ ðL3 sin θÞ − 2K2 sin θ ¼ AEsin3θ; ð44Þ

and

sin θ
∂K2

∂θ þ 3L3 sin θ ¼ − _Esin2θ − AEsin2θ cos θ; ð45Þ

with _E ¼ dE=du. From these we easily see that K2 satisfies
the inhomogeneous l ¼ 2 Legendre equation, with the

right-hand side a linear combination of an l ¼ 0 and an
l ¼ 1 Legendre polynomial:

1

sin θ
∂
∂θ

�
sin θ

∂K2

∂θ
�
þ 6K2 ¼ −2AE − 2 _E cos θ: ð46Þ

The general solution which is nonsingular for 0 ≤ θ ≤ π is

K2 ¼ −
1

3
AE −

1

2
_E cos θ þ ωðuÞð3cos2θ − 1Þ; ð47Þ

where ωðuÞ is an arbitrary function of integration. The
corresponding expression for L3 follows from (45) and is

L3 ¼ −
1

2
_E sin θ þ

�
2ω −

1

3
AE

�
sin θ cos θ: ð48Þ

In the sequel we will assume that the external electromag-
netic field does not involve a second independent arbitrary
function of u in addition to EðuÞ and so we will take
ωðuÞ ¼ 0. The nonvanishing tetrad components of the
external Maxwell field now read

Fð1Þð3Þ ¼ E sin θ þ
�
3

2
_Eþ AE cos θ

�
r sin θ þOðr2Þ;

ð49Þ

Fð1Þð4Þ ¼
1

2
E sin θ þ

�
1

4
_Eþ 1

2
AE cos θ

�
r sin θ þOðr2Þ;

ð50Þ

Fð3Þð4Þ ¼ −E cos θ

−
�
_E cos θ þ 1

3
AEð3cos2θ − 1Þ

�
rþOðr2Þ:

ð51Þ

The components FijðuÞ ¼ −FjiðuÞ of the external Maxwell
field calculated on r ¼ 0 in the coordinates Xi can be
recovered from (49)–(51) using the formula

FijðuÞ ¼ FðaÞðbÞϑ
ðaÞ
i ϑðbÞj ; ð52Þ

with ϑðaÞi ¼ gðaÞðbÞηijϑ
j
ðbÞ, g

ðaÞðbÞ defined by gðaÞðcÞgðcÞðbÞ ¼
δab, gðaÞðbÞ given by (20) and ϑiðaÞ by (22). This results in

FijðuÞ ¼ 0 except for F34ðuÞ ¼ −F43ðuÞ ¼ EðuÞ as
before.
We now turn our attention to Einstein’s field equations

RðaÞðbÞ ¼ 2EðaÞðbÞ; ð53Þ

where RðaÞðbÞ are the components of the Ricci tensor on the
tetrad defined by (31)–(34) and EðaÞðbÞ are the components
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of the electromagnetic energy-momentum tensor on the
tetrad. When the expansions (24)–(27) and (29) in powers
of r are introduced this results in RðaÞðbÞ − 2EðaÞðbÞ having
expansions in powers of r starting with terms independent
of r. We will only require the functions q2, α2, a1, c2
appearing in the expansions (24)–(27) and these can be
obtained by requiring the vanishing of the terms indepen-
dent of r in RðaÞðbÞ − 2EðaÞðbÞ. This results in the following
seven equations to be satisfied by q2, α2, a1, c2:

q2 ¼
1

6
E2sin2θ; ð54Þ

∂
∂θ ðq2 þ α2Þ þ 2α2 cot θ − a1 ¼ E2 sin θ cos θ; ð55Þ

∂
∂θðα2þq2−c2Þþ2α2cotθþ2a1¼E2 sinθcosθ; ð56Þ

∂a1
∂θ þ a1 cot θ þ 2c2 − 4q2 ¼

2

3
E2cos2θ; ð57Þ

3

2

�∂a1
∂θ þ a1 cot θ

�
−

1

2 sin θ
∂
∂θ

�
sin θ

∂c2
∂θ

�
− 3q2

¼ −
1

2
E2sin2θ; ð58Þ

4
∂a1
∂θ þ a1 cot θ − χ þ 3c2 þ 6α2 − 12q2

¼ E2 − 2E2cos2θ; ð59Þ

∂a1
∂θ þ 4a1 cot θ − χ þ 3c2 − 6α2 − 12q2 ¼ −E2; ð60Þ

with

χ ¼ 1

sin θ
∂
∂θ

�
sin θ

∂
∂θ ðq2 þ α2Þ þ 2α2 cos θ

�
: ð61Þ

Combining (57) and (58), and using q2 given by (54), we
arrive at

1

sin θ
∂
∂θ

�
sin θ

∂c2
∂θ

�
þ 6c2 ¼ 2E2; ð62Þ

which is the inhomogeneous l ¼ 2 Legendre equation with
an l ¼ 0 Legendre polynomial on the right-hand side. The
general solution of this equation which is nonsingular for
0 ≤ θ ≤ π is

c2ðθ; uÞ ¼
1

3
E2 þ CðuÞð3cos2θ − 1Þ: ð63Þ

Here CðuÞ is an arbitrary function of integration. We
demonstrate below that CðuÞ is simply related to the
Weyl tensor of the space-time on r ¼ 0 in coordinates

Xi. Knowing q2 and c2 we see that (57) provides us with an
equation for a1, namely,

∂
∂θ ða1 sin θÞ ¼ 2CðuÞð3cos2θ − 1Þ sin θ; ð64Þ

and the solution which is nonsingular for 0 ≤ θ ≤ π is

a1ðθ; uÞ ¼ −2C sin θ cos θ: ð65Þ

Now (55) becomes

∂
∂θ ðα2sin

2θÞ ¼
�
−2Cþ 2

3
E2

�
sin3θ cos θ; ð66Þ

and the solution of this equation which is nonsingular for
0 ≤ θ ≤ π is

α2ðθ; uÞ ¼
�
−
1

2
Cþ 1

6
E2

�
sin2θ: ð67Þ

It is now straightforward to check that q2, c2, a1, α2 given
by (54), (63), (65), and (67) respectively satisfy (55)–(60).
The approximate solution of the equations (53) given

above involves two arbitrary functions of u, namely EðuÞ
and CðuÞ. We have already seen that EðuÞ ¼ F34ðuÞ where
F34ðuÞ is the nonvanishing component of the external
Maxwell field calculated on r ¼ 0 in coordinates Xi. We
now seek to demonstrate how CðuÞ is related to the
components CijklðuÞ of the Weyl tensor of the space-time
(the external gravitational field) calculated on r ¼ 0 in
coordinates Xi. We start by listing in the Appendix the
tetrad components of the Riemann tensor calculated on r ¼
0 using the functions q2, c2, a1, α2 derived above. The
components RijklðuÞ of the Riemann tensor calculated on
r ¼ 0 in the coordinates Xi are given in terms of these
tetrad components by

RijklðuÞ ¼ RðaÞðbÞðcÞðdÞϑ
ðaÞ
i ϑðbÞj ϑðcÞk ϑðdÞl ; ð68Þ

with ϑðaÞi given by (22) (with ϑðaÞi ¼ gðaÞðbÞηijϑ
j
ðbÞ) since we

are calculating on r ¼ 0 in coordinates Xi. We find that the
nonvanishing RijklðuÞ are

R1212ðuÞ ¼ −
5

3
E2 þ 2C; ð69Þ

R1313ðuÞ ¼ R2323ðuÞ ¼
1

3
E2 − C; ð70Þ

R1414ðuÞ ¼ R2424ðuÞ ¼ −
1

3
E2 þ C; ð71Þ

R3434ðuÞ ¼ −
1

3
E2 − 2C: ð72Þ
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A useful check on these components is to verify that

ηklRkijlðuÞ ¼ RijðuÞ ¼ 2EijðuÞ; ð73Þ
with EijðuÞ given by (43) confirming that Einstein’s field
equations are satisfied on r ¼ 0. Taking into consideration
(73) the components of the Weyl tensor on r ¼ 0 in
coordinates Xi are

CijklðuÞ ¼ RijklðuÞ þ ηikEjlðuÞ − ηilEjkðuÞ
þ ηjlEikðuÞ − ηjkEilðuÞ: ð74Þ

Using (43) and (69)–(72) we find that the nonvanishing
components of the Weyl tensor on r ¼ 0 in coordinates Xi

are

1

2
C1212 ¼ −

1

2
C3434 ¼ −C1313 ¼ −C2323

¼ C1414 ¼ C2424 ¼ −
1

3
E2 þ C: ð75Þ

This determines the relationship between the arbitrary
function CðuÞ and the external gravitational field or
Weyl tensor. In the sequel we shall assume, for simplicity,
that the particle with world line r ¼ 0 experiences only an
electric field as external field. Thus the external field
involves only one arbitrary function EðuÞ and we shall
take CðuÞ ¼ 0 from now on leading to the simplifications

α2 ¼
1

6
E2sin2θ; a1 ¼ 0; c2 ¼

1

3
E2sin2θ; ð76Þ

with q2 given by (54).

III. A CHARGED MASS PARTICLE

We introduce a particle of small mass m ¼ O1 and small
charge e ¼ O1 (both constant) as a perturbation of the
potential 1-form and space-time above by modifying (28)
and (30) using the expansions:

K ¼ ðeþ K̂−1Þ
r

þ K̂0 þ K̂1rþ K̂2r2 þ…; ð77Þ

with K̂−1 ¼ O2, K̂0 ¼ O1, K̂1 ¼ −E cos θ þO1, and
K̂2 ¼ − 1

3
AE − 1

2
_E cos θ þO1;

L ¼ L̂2r2 þ L̂3r3 þ…; ð78Þ
with L̂2 ¼ − 1

2
E sin θ þ l2 þO2, l2 ¼ O1, and

L̂3 ¼ − 1
2
_E sin θ − 1

3
AE sin θ cos θ þO1;

p ¼ P̂ð1þ q̂2r2 þ…Þ; ð79Þ
with P̂ ¼ 1þQ1 þQ2 þO3 and Q1 ¼ O1, Q2 ¼ O2 and
q̂2 ¼ 1

6
E2sin2θ þO1;

α ¼ α̂2r2 þ…; ð80Þ

with α̂2 ¼ 1
6
E2sin2θ þO1;

a ¼ â−1
r

þ â0 þ â1rþ…; ð81Þ

with â−1 ¼ O2, â0 ¼ A sin θ þO1, â1 ¼ O1;

c ¼ e2

r2
−
2ðmþ ĉ−1Þ

r
þ ĉ0 þ ĉ1rþ ĉ2r2 þ…; ð82Þ

with e2 ¼ O2, m ¼ O1, ĉ−1 ¼ O2, ĉ0 ¼ 1þO1,
ĉ1 ¼ −2A cos θ þO1, and ĉ2 ¼ 1

3
E2 þO1. These expan-

sions ensure that for small values of r the perturbed field
(gravitational and electromagnetic) resembles the Reissner-
Nordström field. The exact Maxwell 2-form (35) reads

F ¼ ∂L
∂r dr ∧ dθ þ

�∂K
∂θ −

∂L
∂u

�
dθ ∧ duþ ∂K

∂r dr ∧ du;

ð83Þ
and its Hodge dual is

�F ¼ F1dr ∧ dϕþ F2dϕ ∧ duþ F3dθ ∧ dϕ; ð84Þ

with

F1 ¼ −e−2α sin θ
∂L
∂r ; ð85Þ

F2 ¼ ce−2α sin θ
∂L
∂r þ e−2α sin θ

�∂K
∂θ −

∂L
∂u

�

þ ar2p−2e−α sin θ

�∂K
∂r − ae−α

∂L
∂r

�
; ð86Þ

F3 ¼ r2p−2 sin θ

�
ae−α

∂L
∂r −

∂K
∂r

�
: ð87Þ

In terms of F1, F2, F3 the exact Maxwell equations read

∂F3

∂r −
∂F1

∂θ ¼ 0;
∂F2

∂θ þ ∂F3

∂u ¼ 0;
∂F1

∂u þ ∂F2

∂r ¼ 0:

ð88Þ

We note that in coordinates xi
0 ¼ ðθ;ϕ; r; uÞ with g ¼

detðgi0j0 Þ, if Fi0j0 ¼ −Fj0i0 are the components of the
Maxwell tensor, then F20j0 ≡ 0 and (88) are equivalent to

ffiffiffiffiffiffi
−g

p
F40j0

;j0 ¼ 0;
ffiffiffiffiffiffi
−g

p
F30j0

;j0 ¼ 0;
ffiffiffiffiffiffi
−g

p
F10j0

;j0 ¼ 0;

ð89Þ

respectively, with the semicolon denoting covariant differ-
entiation with respect to the Riemannian connection
calculated with a metric tensor gi0j0 given via (23). In order
to solve (88) approximately we first substitute the expan-
sions (77)–(82) into the functions F1, F2, F3 to arrive at
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F1 ¼ ðEðuÞsin2θ − 2l2 sin θ þO2Þrþ
�
3

2
_Esin2θ þ AEsin2θ cos θ þO1

�
r2 þOðr3Þ; ð90Þ

F2 ¼
sin θ
r

�∂K̂−1

∂θ − e2E sin θ − eâ−1 þO3

�

þ sin θ

�∂K̂0

∂θ þ 2mEðuÞ sin θ − eâ0 −
3

2
e2 _E sin θ þ 2eAQ1 sin θ

− e2AE sin θ cos θ − 4ml2 þ 2Eĉ−1 sin θ − AK̂−1 sin θ þO3

�

þ r sin θ

�
3m _E sin θ þ 2mAE sin θ cos θ − ĉ0E sin θ þ 2l2 þ

∂K̂1

∂θ þ â−1K̂1 þO2

�
þOðr2Þ; ð91Þ

F3 ¼ e sin θ − 2eQ1 sin θ þ K̂−1 sin θ þO3 −
�
K̂1 þ â−1E sin θ þ 2Q1E cos θ þ 1

3
eE2sin2θ þO2

�
r2 sin θ

þ
�
_E cos θ þ 1

3
AEð3cos2θ − 1Þ þO1

�
r3 sin θ þOðr4Þ: ð92Þ

Now (88) are satisfied approximately in the sense that

∂F3

∂r −
∂F1

∂θ ¼ O1 × rþOðr2Þ; ð93Þ

∂F2

∂θ þ ∂F3

∂u ¼ O3 ×
1

r
þO2 þO1 × rþOðr2Þ; ð94Þ

∂F1

∂u þ ∂F2

∂r ¼ O3 ×
1

r2
þO1 þOðrÞ; ð95Þ

provided

K̂1 ¼ −E cos θ þ 1

sin θ
∂
∂θ ðl2 sin θÞ − â−1E sin θ

−
1

3
eE2sin2θ − 2EQ1 cos θ þO2;

∂K̂−1

∂θ ¼ e2E sin θ þ eâ−1; ð96Þ

and K̂0 satisfies

sin θ

�∂K̂0

∂θ þ ð2mEðuÞ − eAðuÞÞ sin θ þO2

�
¼ UðuÞ;

ð97Þ

for some function UðuÞ of integration. For a Maxwell field
which is nonsingular for 0 ≤ θ ≤ π wemust haveUðuÞ ¼ 0
and thence

K̂0 ¼ ð2mEðuÞ − eAðuÞÞ cos θ þO2: ð98Þ

A function of u of integration added to this is easily seen to
be a pure gauge term in the potential 1-form and so it has

been neglected. The second term in (98) is the Liénard-
Wiechert contribution to the potential 1-form (28). We will
return to F2 in Sec. IV and in particular determine the O2

part of K̂0 by requiring (94) to read

∂F2

∂θ þ ∂F3

∂u ¼ O3 ×
1

r
þO3 þO1 × rþOðr2Þ: ð99Þ

To solve (96) for K̂−1 we must first obtain â−1 by solving
approximately one of Einstein’s field equations Ri0j0 −
2Ei0j0 ¼ 0 in coordinates xi

0 ¼ ðθ;ϕ; r; uÞ with
i0 ¼ 10; 20; 30; 40. Specifically, requiring the coefficient of
r−1 in R1030 − 2E1030 to be small of second order yields

â−1 ¼ 2eE sin θ þO2; ð100Þ
and combining this with (96) results in

K̂−1 ¼ −3e2E cos θ þ kðuÞ þO3 with kðuÞ ¼ O2;

ð101Þ
where kðuÞ is an arbitrary function of integration.
With â−1 given by (100) and P̂ given by (79) we find that

requiring the coefficient of r0 in R2020 − 2E2020 to be small of
second order provides us with

ĉ0 ¼ 1þ Δ
0
Q1 þ 2Q1 − 8eE cos θ þO2; ð102Þ

where

Δ
0
Q1 ¼

1

sin θ
∂
∂θ

�
sin θ

∂Q1

∂θ
�
: ð103Þ

If we now require the coefficient of r−2 in R4040 − 2E4040 to
be small of second order we find that
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1

2
Δ
0
ĉ0 ¼ ð2eE − 6mAÞ cos θ þO2: ð104Þ

On substituting from (102) into this

−
1

2
Δ
0
ðΔ
0
Q1 þ 2Q1Þ ¼ 6ðmAþ eEÞ cos θ þO2: ð105Þ

This has the general solution, which is nonsingular for
0 ≤ θ ≤ π,

Δ
0
Q1 þ 2Q1 ¼ 6ðmAþ eEÞ cos θ þ φðuÞ þO2; ð106Þ

where φðuÞ ¼ O1 is an arbitrary function of integration.
This equation has the particular integral −ðmAþ
eEÞ cos θ logðsin2θÞ which is singular when θ ¼ 0 or π
so to have a solution Q1 of (106) which is nonsingular for
0 ≤ θ ≤ π we must have

mA ¼ −eEþO2: ð107Þ

Now the general nonsingular solution of (106) is

Q1 ¼
1

2
φðuÞ þ ψðuÞ cos θ; ð108Þ

where ψðuÞ ¼ O1 is another arbitrary function of integra-
tion. This is a linear combination of an l ¼ 0 and an l ¼ 1
Legendre polynomial. The 2-surfaces u ¼ constant,
r ¼ constant, for small values of r, have line elements
[specializing (23)]

dl2¼ r2ð1−2Q1þO2Þðdθ2þsin2θdϕ2ÞþOðr4Þ: ð109Þ

These 2-surfaces play the role of the wave fronts of the
radiation produced by the motion of the particle having
mass m and charge e. Near the particle (for small r) these
2-surfaces are smooth perturbations of 2-spheres. However
it is well known (see, for example, [9]) that perturbations in
which Q1 is an l ¼ 0 or l ¼ 1 Legendre polynomial are
trivial in the sense that the “perturbed” 2-sphere remains a
2-sphere in these cases. We will discard such perturbations
[by putting φ ¼ 0 and ψ ¼ 0 in (108)] and so take Q1 ¼ 0
with (107) holding. We note that EðuÞ ¼ F34ðuÞ ¼
−F43ðuÞ where F34 is the nonvanishing component of
the external Maxwell tensor in coordinates Xi, calculated
on the world line r ¼ 0 in the background space-time
described in Sec. II. As pointed out prior to (9) the
nonvanishing components of the 4-acceleration ai of the
particle satisfy a3 ¼ Av4 and a4 ¼ Av3. Thus since

E ¼ F34 ¼ −F43 ¼ −F3
4 ¼ −F4

3; ð110Þ

we have, on account of (107),

ma3 ¼ mAv4 ¼ −eEv4 þO2 ¼ eF3
4v4 þO2; ð111Þ

and

ma4 ¼ mAv3 ¼ −eEv3 þO2 ¼ eF4
3v3 þO2; ð112Þ

confirming the appearance of the Lorentz 4-force on the
right-hand side of these equations.
With Q1 ¼ 0 and â−1 given by (100) we see from (96)

that now

K̂1 ¼ −E cos θ þ 1

sin θ
∂
∂θ ðl2 sin θÞ −

7

3
eE2sin2θ þO2:

ð113Þ

The coefficient of r−1 in R1030 − 2E1030 was required to be
small of second order to obtain (100). If we now require it
to be small of third order we get the more accurate result

â−1 ¼ −4eðL2 þ l2Þ − 4K̂−1L2 þO3

¼ 2eE sin θ − 4el2 þ 2kE sin θ

− 6e2E2 sin θ cos θ þO3; ð114Þ

using L2 given by (78) and K̂−1 given by (101). With our
assumptions the quantities R1010 − 2E1010 and R2020 − 2E2020

both have the form O3 × r−2 þOðr0Þ. We can reduce this
form to O3 × r−2 þO3 þOðrÞ in each of these cases by
having respectively

ĉ0 ¼ 1 − 8eE cos θ þ Δ
0
Q2 þ 2Q2 þ 10e

∂l2
∂θ þ 6el2 cot θ

− 8kE cos θ þ 24e2E2 − 33e2E2sin2θ þO3; ð115Þ

and

ĉ0 ¼ 1 − 8eE cos θ þ Δ
0
Q2 þ 2Q2 þ 6e

∂l2
∂θ þ 10el2 cot θ

− 8kE cos θ þ 24e2E2 −
103

3
e2E2sin2θ þO3; ð116Þ

with Δ
0
the operator defined by (103). Subtracting these we

find that

l2 ¼
1

3
eE2 sin θ cos θ þ UðuÞ sin θ þO3; ð117Þ

where UðuÞ ¼ O1 is a function of integration. Now (117)
substituted into (115) or (116) yields

ĉ0 ¼ 1þ Δ
0
Q2 þ 2Q2 þ

14

9
e2E2 þ f−8eEþ 16eU

− 8kEg cos θ þ 125

9
e2E2ð3cos2θ − 1Þ þO3: ð118Þ
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The final three terms here are a linear combination of l ¼ 0,
l ¼ 1, and l ¼ 2 Legendre polynomials. With l2 given by
(117) we find from (113) and (114) that

K̂1 ¼ −E cos θ þ 2U cos θ −
8

3
eE2 þ 10

3
eE2cos2θ þO2;

ð119Þ
and

â−1 ¼ 2eE sin θ − 4eU sin θ þ 2kE sin θ

−
22

3
e2E2 sin θ cos θ þO3: ð120Þ

Furthermore requiring R1010 − 2E1010 and R2020 − 2E2020 to
both have the form O3 × r−2 þO3 þO2 × rþOðr2Þ we
arrive at the two equations

ĉ1 ¼ 2eAEsin2θ −
2

3
eAE − e _E cos θ −

5

3
mE2sin2θ

−
3

2

∂â0
∂θ −

1

2
â0 cot θ þO2; ð121Þ

and

ĉ1 ¼ −
2

3
eAE − e _E cos θ −mE2sin2θ −

1

2

∂â0
∂θ

−
3

2
â0 cot θ þO2: ð122Þ

Subtracting these, remembering that â0 ¼ A sin θ þO1, we
find that

â0 ¼ A sin θ þ
�
2

3
mE2 − 2eAE

�
sin θ cos θ

þ VðuÞ sin θ þO2; ð123Þ

with the function of integration VðuÞ ¼ O1. With this
information we have from (121) or (122) that

ĉ1 ¼ −
8

9
mE2 − ð2Aþ e _Eþ 2VÞ cos θ

þ
�
5

3
eAE −

2

9
mE2

�
ð3cos2θ − 1Þ þO2; ð124Þ

and we note the appearance of the Legendre polynomials of
degree 0, 1, and 2. Next we consider R4040 − 2E4040. One
finds directly that this component has the form O5 × r−6þ
O4 × r−5 þOðr−4Þ. However the coefficient of r−4 is
−2ekþO4 with kðuÞ the O2 function of integration which
first appeared in (101). We shall therefore take kðuÞ ¼ 0 so
the R4040 − 2E4040 has the more accurate form O5 × r−6þ
O4 × r−5 þO4 × r−4 þOðr−3Þ. The coefficient of r−3 here
is O3 if

Δ
0
ĉ−1 ¼ ð8meE − 4e2AÞ cos θ þO3: ð125Þ

The general solution of this equation which is nonsingular
for 0 ≤ θ ≤ π is

ĉ−1 ¼ ð2e2A − 4meEÞ cos θ þ gðuÞ þO3; ð126Þ

where gðuÞ ¼ O2 is an arbitrary function of integration.
Now R4040 − 2E4040 has the form O5 × r−6 þO4 × r−5þ
O4 × r−4 þO3 × r−3 þOðr−2Þ. The coefficient of r−2 here
is O3 provided

−
1

2
Δ
0
ĉ0 ¼ −â−1

∂2â−1
∂θ2 − 2

∂ĉ−1
∂u þm

∂â0
∂θ þ ĉ−1

∂â0
∂θ − 4

∂K̂−1

∂θ
∂K̂1

∂θ þ 1

2
â2−1ĉ0 − 16m2L2

2 − 2mĉ1 − 2ĉ1ĉ−1

þ 8m2q2 − e2K̂2
1 −

1

2
â−1

∂ĉ0
∂θ þ 4â0

∂ĉ−1
∂θ þ 3e2ĉ2 −

�∂â−1
∂θ

�
2

− 2

�∂K̂0

∂θ
�

2

þ 8mL2

∂K̂0

∂θ
− 4ĉ0L2

∂K̂−1

∂θ − 4mâ−1â0 þ 4eâ−1
∂K̂1

∂θ þ 4eâ0
∂K̂0

∂θ − 8e2L2
2ĉ0 − â−1

∂â−1
∂θ cot θ þ 4e2q2ĉ0 þ 2ĉ0K̂1K̂−1

þ 2eĉ0K̂1 − 8meK̂2 − 4e2L2

∂K̂1

∂θ þ â0ĉ−1 cot θ þmâ0 cot θ − 8meL2â0 þ 4eL2â−1ĉ0 þO3: ð127Þ

For simplicity we look for a model which is free from
singularity for 0 ≤ θ ≤ π and involves only one arbitrary
function of u, namely EðuÞ describing the electric field
experienced by the charged particle. Thus we can put the
arbitrary functions UðuÞ, VðuÞ, and gðuÞ zero. When (127)
is written out explicitly we arrive at the following differ-
ential equation for Q2:

−
1

2
Δ
0
ðΔ
0
Q2 þ 2Q2Þ

¼ ð6mAþ 6eE − 4e2 _Aþ 14me _EÞ cos θ
þ ð2m2E2 þ 6e2A2 þ 30e2E2Þð3cos2θ − 1Þ þO3:

ð128Þ
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The right-hand side here is a linear combination of l ¼ 1
and l ¼ 2 Legendre polynomials. It can be integrated
without encountering singularities at θ ¼ 0; π to provide
us with the second order differential equation for Q2:

Δ
0
Q2 þ 2Q2 ¼ ð6mAþ 6eE − 4e2 _Aþ 14me _EÞ cos θ

þ
�
2

3
m2E2 þ 2e2A2 þ 10e2E2

�

× ð3cos2θ − 1Þ þO3: ð129Þ

This will possess a particular integral which is singular at
θ ¼ 0; π unless the coefficient of cos θ (the l ¼ 1 Legendre
polynomial) vanishes. Thus we must require that

mA ¼ −eEþ 2

3
e2 _A −

7

3
em _EþO3; ð130Þ

with the result that (129) is solved by

Q2 ¼ −
1

2

�
1

3
m2E2 þ e2A2 þ 5e2E2

�
ð3cos2θ − 1Þ: ð131Þ

We have not added a linear combination of l ¼ 0 and l ¼ 1
Legendre polynomials to this solution because such terms
in Q2 correspond to trivial perturbations as pointed out
following (109).
In analyzing (130) we first note that the infinitesimal

Lorentz transformation

v̄3 ¼ v3 −
7

3
eEv4 þO2; v̄4 ¼ v4 −

7

3
eEv3 þO2;

ð132Þ

transforms away the _E term in (130) since

Ā ¼ Aþ 7

3
e _EþO3: ð133Þ

Then dropping the bars we have

mA ¼ −eEþ 2

3
e2 _AþO3: ð134Þ

Next using a3 ¼ Av4 and a4 ¼ Av3 we have, on account of
(110),

ma3 ¼ eF3
4v4 þ

2

3
e2 _Av4 þO3; ð135Þ

ma4 ¼ eF4
3v3 þ

2

3
e2 _Av3 þO3: ð136Þ

But

_Av4 ¼ _a3 − Aa4 ¼ _a3 − A2v3 ¼ _a3 þ ðajajÞv3; ð137Þ

_Av3 ¼ _a4 − Aa3 ¼ _a4 − A2v4 ¼ _a4 þ ðajajÞv4; ð138Þ

and so, remembering that v1 ¼ 0 ¼ v2, we can write (134)
in the equivalent form

mai ¼ eFi
jvj þ

2

3
e2f _ai þ ðajajÞvjg þO3: ð139Þ

The first term on the right-hand side here is the first order
external 4-force (the Lorentz 4-force). The second term is
the second order Lorentz-Dirac radiation reaction 4-force.
There is no second order “tail term” here because such a
term is presumably inconsistent with maintaining recti-
linear motion. We might have expected a second order
external 4-force proportional to e2hki F

p
kFpjvj where hki ¼

δki − vkvi is the projection tensor (projecting 4-vectors
orthogonal to vi). However in the present case

hki F
p
kFpjvj ¼ E2ðh3i v3 − h4i v

4Þ
¼ E2ðδ3i v3 − δ4i v

4 þ viÞ ¼ 0: ð140Þ

IV. RESIDUAL MATTER DISTRIBUTION

Since the Einstein-Maxwell field equations have been
satisfied approximately there exists a residual matter
distribution described, in coordinates xi

0 ¼ ðθ;ϕ; r; uÞ,
by a 4-current Ji

0
and an energy-momentum-stress tensor

Ti0j0 . We begin by examining the residual 4-current which is
given by Maxwell’s equations

Ji
0 ¼ Fi0j0

;j0 : ð141Þ

Thus in terms of the functions F1, F2, F3 in (85)–(87) the
4-current is given by

ffiffiffiffiffiffi
−g

p
Ji

0 ¼
�
−
∂F1

∂u −
∂F2

∂r ; 0;
∂F2

∂θ þ ∂F3

∂u ;
∂F1

∂θ −
∂F3

∂r
�
;

ð142Þ

with
ffiffiffiffiffiffi−gp ¼ r2p−2 sin θ. The evaluation of F1, F2, F3

leading to (90)–(92), and thus to the orders of magnitude
(93)–(95), can now be more explicit since we have found
that Q1 ¼ 0 and we are in possession of the functions K̂−1,
K̂1, l2, â−1, and â0 in more explicit form. The result is

F1 ¼
�
Esin2θ −

2

3
eE2sin2θ cos θ þO2

�
r

þ
�
3

2
_Esin2θ þ AEsin2θ cos θ þO1

�
r2

þOðr3Þ; ð143Þ
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F2 ¼ O3 ×
1

r
þ sin θ

�∂K̂0

∂θ þ
�
2mE − eA −

3

2
e2 _E

�

× sin θ þ ð8e2AE − 10emE2Þ sin θ cos θ þO3

�

þ ð3m _Esin2θ − 2eE2sin2θ cos θ þO2Þr
þOðr2Þ; ð144Þ

F3 ¼ e sin θ − 3e2E sin θ cos θ þO3

þ
�
E cos θ −

1

3
eE2ð3cos2θ − 1Þ þO2

�
r2 sin θ

þ
�
_E cos θ þ 1

3
AEð3cos2θ − 1Þ þO1

�
r3 sin θ

þOðr4Þ; ð145Þ
where we have used (107) to simplify the coefficient of r in
(144). We can achieve the accuracy required in (99) by
replacing (97) [with UðuÞ ¼ 0] by

∂K̂0

∂θ ¼ ðeA − 2mEþ 3e2 _EÞ sin θ
þ ð10emE2 − 8e2AEÞ sin θ cos θ þO3: ð146Þ

Thus the more accurate version of (98) reads

K̂0 ¼ −ðeA − 2mEþ 3e2 _EÞ cos θ
þ ð5emE2 − 4e2AEÞsin2θ þO3; ð147Þ

and (144) is finally given by

F2 ¼ O3 ×
1

r
þ 3

2
e2 _Esin2θ þO3 þ ð3m _Esin2θ

− 2eE2sin2θ cos θ þO2ÞrþOðr2Þ: ð148Þ

Now calculating Ji
0
from (142) we find that

ffiffiffiffiffiffi
−g

p
J1

0 ¼ O3 ×
1

r2
þ 2eE2sin2θ cos θ − 3m _Esin2θ

þO2 þOðrÞ; ð149Þ
ffiffiffiffiffiffi
−g

p
J2

0 ¼ 0; ð150Þ
ffiffiffiffiffiffi
−g

p
J3

0 ¼ O3 ×
1

r2
þO3 ×

1

r
þ f6m _E sin θ cos θ

− 2eE2 sin θð3cos2θ − 1Þ þO2grþOðr2Þ;
ð151Þ

ffiffiffiffiffiffi
−g

p
J4

0 ¼ O2 × rþO1 × r2 þOðr3Þ; ð152Þ
and from these the conservation equation for the 4-current
takes the approximate form

∂
∂xi0 ð

ffiffiffiffiffiffi
−g

p
Ji

0 Þ ¼ O3 ×
1

r3
þO3 ×

1

r2
þO2 þOðrÞ; ð153Þ

which is a check on the trigonometric terms in (149) and
(151). Solving (149)–(152) for Ji0, using p given by (79)
with P̂ ¼ 1þO2, results in

J1
0 ¼ O3 ×

1

r4
þ f2eE2 sin θ cos θ − 3m _E sin θ þO2g

×
1

r2
þO

�
1

r

�
; ð154Þ

J2
0 ¼ 0; ð155Þ

J3
0 ¼ O3 ×

1

r3
þO3 ×

1

r2
þ f6m _E cos θ

− 2eE2ð3cos2θ − 1Þ þO2g ×
1

r
þOðr0Þ; ð156Þ

J4
0 ¼ O2 ×

1

r
þO1 þOðrÞ: ð157Þ

We now introduce the half null tetrad defined via the 1-
forms (31)–(34) with p, α, a, c given by (79)–(82). This
consists of the covariant vectors (and their corresponding
contravariant expressions):

fi0 ¼ ðrp−1eα; 0; 0; rp−1aÞ ⇔
fi

0 ¼ ð−r−1pe−α; 0; 0; 0Þ; ð158Þ
ei0 ¼ð0; rp−1e−α sin θ; 0; 0Þ ⇔
ei

0 ¼ð0;−r−1peα csc θ; 0; 0Þ; ð159Þ

li0 ¼
�
0; 0; 1;

1

2
c

�
⇔

li
0 ¼

�
−ae−α; 0;−

1

2
c; 1

�
; ð160Þ

ni0 ¼ð0; 0; 0; 1Þ ⇔ ni
0 ¼ ð0; 0; 1; 0Þ: ð161Þ

The vectors fi
0
, ei

0
, li

0
, ni

0
constitute a half null tetrad with

fi
0
, ei

0
unit, orthogonal spacelike vectors, and li

0
, ni

0
two

null vectors. All scalar products involving the four vectors
vanish except fi0fi

0 ¼ ei0ei
0 ¼ −li0ni

0 ¼ −1. In terms of this
basis we can write the 4-current Ji

0
given by (154)–(157) as

Ji
0 ¼

�
O3 ×

1

r3
þ ð3m _E sin θ − 2eE2 sin θ cos θ

þO2Þ ×
1

r
þOðr0Þ

�
fi

0 þ
�
O3 ×

1

r3
þO3 ×

1

r2

þ ð6m _E cos θ − 2eE2ð3cos2θ − 1Þ þO2Þ ×
1

r

þOðr0Þ
�
ni

0 þ
�
O2 ×

1

r
þO1 þOðrÞ

�
li

0
: ð162Þ

To satisfy approximately the Einstein field equations
[starting after (99) above] we have worked with the tensor
Wi0j0 ¼ Ri0j0 − 2Ei0j0 . The residual energy-momentum-
stress tensor Ti0j0 is given by Einstein’s field equations:
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−8πTi0j0 ¼ Wi0j0 −
1

2
gi0j0W ¼ Ri0j0 −

1

2
gi0j0R − 2Ei0j0 : ð163Þ

Here W ¼ gi
0j0Wi0j0 , R ¼ gi

0j0Ri0j0 is the Ricci scalar. The
nonvanishing components Wi0j0 are found to be

W1010 ¼ O3 ×
1

r2
þO3 þO2 × rþO1 × r2 þOðr3Þ;

ð164Þ

W2020 ¼ O3 ×
1

r2
þO3 þO2 × rþO1 × r2 þOðr3Þ;

ð165Þ

W3030 ¼ O1 þOðrÞ; ð166Þ

W4040 ¼ O5 ×
1

r6
þO4 ×

1

r5
þO4 ×

1

r4
þO3 ×

1

r3

þO3 ×
1

r2
þ f6e _E cos θ þO2g ×

1

r
þOðr0Þ;

ð167Þ

W1030 ¼ O3 ×
1

r
þ 3e _E sin θ − 2mA2 sin θ cos θ þO2

þO1 × rþOðr2Þ; ð168Þ

W1040 ¼ O3 ×
1

r3
þO3 ×

1

r2
þ f−6em _E sin θ

þ 4m2A2 sin θ cos θ þO3g ×
1

r

þ 3

2
e _E sin θ þmA2 sin θ cos θ þO2 þOðrÞ;

ð169Þ

W3040 ¼ O3 ×
1

r4
þO3 ×

1

r2
þ f3e _E cos θ

−mA2ð3cos2θ − 1Þ þO2g ×
1

r
þO1 þOðrÞ:

ð170Þ

Calculating Ti0j0 using (163) and expressing the compo-
nents in terms of the half null basis (161) we arrive at

8πTi0j0 ¼ T 1ðfi0nj0 þ fj
0
ni

0 Þ þ T 2ni
0
nj

0 þ T 3fi
0
fj

0

þ T 4ei
0
ej

0 þ T 5li
0
lj

0 þ T 6ðli0nj0 þ lj
0
ni

0 Þ
þ T 7ðfi0 lj0 þ fj

0
li

0 Þ; ð171Þ

with T 1;…; T 6 given in the Appendix.
To interpret the energy-momentum-stress tensor (171)

we consider it a tensor field on the background space-time
in the neighborhood of the world line r ¼ 0 and we will
neglectO3 terms. To facilitate this we first express the basis
vectors fi

0
, ei

0
, li

0
, ni

0
in terms of the vectors

f
ð0Þ

i0 ¼ −r−1δi0
10 ; e

ð0Þ
i0 ¼ −r−1 csc θδi0

20 ; n
ð0Þ

i0 ¼ δi
0
30 ;

l
ð0Þ

i0 ¼ −A sin θδi
0
10 þ

�
−
1

2
þ Ar cos θ

�
δi

0
30 þ δi

0
40 : ð172Þ

These expressions are given exactly by

fi
0 ¼ pe−α f

ð0Þ
i0 ; ei

0 ¼ peα e
ð0Þ

i0 ; ni
0 ¼ n

ð0Þ
i0 ;

li
0 ¼ l

ð0Þ
i0 þ ðae−α − A sin θÞr f

ð0Þ
i0

þ
�
−
1

2
cþ 1

2
− rA sin θ

�
n
ð0Þ

i0 : ð173Þ

When the expansions of p, α, a, c in powers of r given by
(79)–(82) are substituted into (173) and the results are in
turn substituted into (171) we arrive at (neglecting O3

terms) the predominantly Vaidya form

8πTi0j0 ¼ 1

r2
f−6em _E cos θ þ 2e2E2 sin θ cos θg n

ð0Þ
i0 n
ð0Þ

j0

þO1 ×
1

r
þOðr0Þ: ð174Þ

Since we are working in the Minkowskian neighborhood of
the world line r ¼ 0 we can write this in the rectangular
Cartesian coordinates and time Xi, using ni0

ð0Þ
dxi

0 ¼ du ¼
kidXi which follows from (16), as

8πTij ¼ 1

r2
f−6em _E cos θ þ 2e2E2 sin θ cos θgkikj

þO1 ×
1

r
þOðr0Þ: ð175Þ

The flux of 4-momentum across r ¼ constant in the
direction of increasing r and between the future null cones
u ¼ u1 and u ¼ u2, with u2 > u1 constants (see Fig. 1) is
given by ([10] with our sign conventions)

Pi ¼ −r2
Z

u2

u1

du
Z

Tijr;j sin θdθdϕ; ð176Þ

with the integration with respect to θ, ϕ over the ranges
0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π respectively. With ki given by
(10) and the gradient of r given by (16) (remembering that
v4 ¼ Av3 and v3 ¼ Av4) evaluation of (176) using (175)
results in

Pi ¼ m2

Z
u2

u1

�
_A
A
þ π

16
A

�
aiduþOðrÞ ¼ O2 þOðrÞ:

ð177Þ

Expressing the residual 4-current (162) on the basis
(172), neglecting O3 terms, and then changing from
coordinates xi

0
to the rectangular Cartesians and time Xi,
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results in the residual 4-current in the Minkowskian
neighborhood of r ¼ 0 in the background space-time being
given by

Ji ¼ 1

r

�
ð6m _E cos θ − 3eE2ð3cos2θ − 1ÞÞki

þ ð−3m _E sin θ þ 2eE2 sin θ cos θÞ ∂k
i

∂θ
�

þO2 ×
1

r
þOðr0Þ: ð178Þ

Hence the total residual charge C crossing r ¼ constant in
the direction of increasing r and between the future null
cones u ¼ u1 and u ¼ u2 is

C ¼ −r2
Z

u2

u1

Z
Jir;i sin θdθdϕ ¼ O2 × rþOðr2Þ; ð179Þ

where we have used the gradient of r given by (16) and thus
kir;i ¼ 1 while ð∂ki=∂θÞr;i ¼ 0.

V. DISCUSSION

It is interesting to compare the orders of magnitude of the
fluxes of 4-momentum and charge (177) and (179) with the
corresponding quantities in the case of the Bonnor-Vaidya
particle. In this case the residual energy-momentum-stress
tensor Ti0j0 and the residual 4-current Ji

0
are given by (6)

and (7). The background space-time is Minkowskian
for 0 ≤ r < þ∞ since there is no external field present.
Considering (6) and (7) as tensor fields on the
Minkowskian background and expressing them in terms
of the rectangular Cartesians and time Xi, in the manner of
Sec. IV, we have

Tij ¼ 1

8π

�
6mA cos θ

r2
−
4e2A cos θ

r3

�
kikj; ð180Þ

and

Ji ¼ −
2eA cos θ

r2
ki: ð181Þ

In this case for Pi and C we find, in place of (177) and
(179),

Pi ¼
�
m −

2

3

e2

r

�Z
u2

u1

aidu; ð182Þ

and C ¼ 0. If e ¼ 0 (Kinnersley case) we have “the rocket
effect” for which the total 4-momentum escaping across
r ¼ constant in proper time u2 − u1 is precisely the differ-
ence in the particle 4-momentum between the end and the
beginning of this interval of proper time. This also applies
to the Bonnor-Vaidya particle in the limit r → þ∞ as can
be seen from (182). In our case however we can only
compare (181) and (182) with (177) and (179) for small

positive powers of r and neglecting O3 terms. We see that
the introduction of an external field has removed “the
rocket effect” at the expense of no longer having arbitrary
acceleration. Instead the acceleration is driven by the
external field according to the important formula (139).
Helpful background to the approach adopted in this paper
can be found in [11].
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APPENDIX: USEFUL FORMULAS

For use in Sec. II the nonvanishing tetrad components of
the Riemann tensor calculated on r ¼ 0 using the functions
q2, c2, a1, α1 are

Rð1Þð2Þð1Þð2Þ ¼
1

3
E2ð1 − 6cos2θÞ þ Cð3cos2θ − 1Þ; ðA1Þ

Rð1Þð2Þð2Þð3Þ ¼ð2E2 − 3CÞ sin θ cos θ; ðA2Þ

Rð1Þð2Þð2Þð4Þ ¼
�
−E2 þ 3

2
C

�
sin θ cos θ; ðA3Þ

Rð1Þð3Þð1Þð3Þ ¼ −3Csin2θ; ðA4Þ

Rð1Þð3Þð1Þð4Þ ¼ −
1

3
E2 þ C

�
1 −

3

2
sin2θ

�
; ðA5Þ

Rð1Þð3Þð3Þð4Þ ¼ 3C sin θ cos θ; ðA6Þ

Rð1Þð4Þð1Þð4Þ ¼ −
3

4
Csin2θ; ðA7Þ

Rð1Þð4Þð3Þð4Þ ¼
3

2
C sin θ cos θ; ðA8Þ

Rð2Þð3Þð2Þð3Þ ¼ð−2E2 þ 3CÞsin2θ; ðA9Þ

Rð2Þð3Þð2Þð4Þ ¼ E2

�
−
1

3
þ sin2θ

�
þ C

�
1 −

3

2
sin2θ

�
;

ðA10Þ

Rð2Þð4Þð2Þð4Þ ¼
�
−
1

2
E2 þ 3

4
C

�
sin2θ; ðA11Þ

Rð3Þð4Þð3Þð4Þ ¼ −
1

3
E2 − Cð3cos2θ − 1Þ: ðA12Þ

For use in Sec. IV the components on the half null basis
(161) of the perturbed energy-momentum-stress tensor
(171) are
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T 1 ¼ O3 ×
1

r4
þO3 ×

1

r3
þ f3em _E sin θ − 2e2E2 sin θ

× cos θ þO3g ×
1

r2
þ f2eAE sin θ cos θ þO2g ×

1

r
þOðr0Þ; ðA13Þ

T 2 ¼ O5 ×
1

r6
þO4 ×

1

r5
þO3 ×

1

r4
þO3 ×

1

r3

þ f−6em _E cos θ þ 2e2E2ð3cos2θ − 1Þ þO3g ×
1

r2

þ f−3e _E cos θ þ eAEð3cos2θ − 1Þ þO2g ×
1

r
þOðr0Þ; ðA14Þ

T 3 ¼ O3 ×
1

r4
þO3 ×

1

r2
þ f−3e _E cos θ

− eAEð3cos2θ − 1Þ þO2g ×
1

r
þOðr0Þ; ðA15Þ

T 4 ¼ O3 ×
1

r4
þO3 ×

1

r2
þ f−3e _E cos θ

− eAEð3cos2θ − 1Þ þO2g ×
1

r
þOðr0Þ; ðA16Þ

T 5 ¼ O1 þOðrÞ; ðA17Þ

T 6 ¼ O3 ×
1

r4
þO3 ×

1

r2
þO2 ×

1

r
þO1 þOðrÞ; ðA18Þ

T 7 ¼ O3 ×
1

r2
þ f−3e _E sin θ − 2eAE sin θ cos θ

þO2g ×
1

r
þO1 þOðrÞ: ðA19Þ
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