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Bonnor-Vaidya charged point mass in an external Maxwell field
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By introducing external Maxwell and gravitational fields we modify the Bonnor-Vaidya field of an
arbitrarily accelerating charged mass moving rectilinearly in order to satisfy the vacuum Einstein-Maxwell
field equations approximately, assuming the charge e and the mass m are small of first order.
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I. INTRODUCTION

The solution of Einstein’s field equations describing a
space-time model of an arbitrarily accelerating point mass
found by Kinnersley [1] has been described as a photon
rocket by Bonnor [2]. Kinnersley’s metric tensor is of
Kerr-Schild form [3] and thus possesses a background
Minkowskian space-time obtained by putting the mass of
the source equal to zero. In this background the source of the
field is an arbitrary timelike world line. From this point of
view the 4-momentum radiated during a finite interval of
proper time is given exactly by the change in the particle
4-momentum during this interval (a “rocket effect”
described in detail by Bonnor [2]). In the background
Minkowskian space-time picture this radiated 4-momentum
is a flux of 4-momentum across a timelike world tube
surrounding the particle world line and bounded by two
future null cones with vertices on the world line separated by
a finite interval of proper time (see Fig. 1). It follows that the
particle is self-accelerated by photon emission and is there-
fore referred to as a photon rocket. An extension of the
Kinnersley rocket to include charge has been given by
Bonnor and Vaidya [4] (we assume for simplicity that the
mass and charge are both constant). This Bonnor-Vaidya
particle is also self-accelerating via photon emission (with
no loss of charge). In the present paper we consider a
Bonnor-Vaidya particle performing rectilinear motion but
driven by a suitable external Maxwell field. The Einstein-
Maxwell field equations are solved approximately assuming
that the mass m and the charge e of the particle are both
constant and small of first order. The field equations are solved
up to the second order of approximation which involves
working with an error of third order in these small quantities.
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We demonstrate that the rocket effect can be removed, at least
to the order of approximation that we are working, and instead
the particle is driven by the external field.

To make clear the background to the present study we
point out here that Kinnersley’s field [1] of an arbitrarily
accelerating point mass, in the special case of rectilinear
motion, is described by the line element

ds? = —r*{(d6 + A(u) sin Odu)? + sin’*0d¢?} + 2dudr
2
n <1 —2A(u)rcos9——m>du2. (1)
r

The constant m is the mass of the particle and A(u) is the
arbitrary acceleration. The corresponding Ricci tensor

FIG. 1. The world line C(r = 0) in the background space-time.
2 is a world tube r = const > 0 bounded by the future null cones
Ni(u=u,) and N,(u = u,) with u, > u; constants.
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components Ry in the coordinates X' = (0, ¢, r,u) with
i =1/,2',3,4 (we reserve unprimed indices for labeling
rectangular Cartesian coordinates and time later) take the
lightlike dust or Vaidya form

6mA(u)cos6

B n,-/nj/ = —87[T-/ il (2)

R, = —
i i
J r 7’

with nydx" = du and n"0/0x" = 9/0r is a null vector
field. Charged generalizations have been given by Bonnor
and Vaidya [4]. The simplest example is
dSz = g,-/jrdx"’dxj,,

= —r?{(d0 + A(u) sin Odu)? + sin*0d¢* } + 2dudr

2 2
+ (1 —2A(u)rcos«9——m+e—2)du2, (3)
r r
with the Maxwell 2-form
1 / 7 e
EFi/j«dx A dx :ﬁdu/\dr, (4)

and e = constant is the charge on the accelerating particle.
When A(u) =0 this coincides with the Reissner-
Nordstrom solution of the vacuum Einstein-Maxwell equa-
tions. With the electromagnetic energy-momentum tensor
given by

! 1 ! 1!
Eyy = Fi’k’Fj’k - Zgi’j’Fl’k’Flkv (5)

the Einstein-Maxwell field equations for (3) and (4) read

Ri/j/ - 2Ei/j/ = —877,'Tl-/j/
( 6mA(u) cos N 4e?A(u) cos 9)

r2 r3

n,»/nj/,

(6)
and

2eA(u)cos@

7 7
2 n (7)

F'o,=J =
with the semicolon denoting covariant differentiation with
the respect to the Riemannian connection calculated with
the metric tensor given via (3). In (2), (6), and (7) the
resulting matter distribution is described by an energy-
momentum-stress tensor with components 7, and a

4-current J*.

The organization of the paper is as follows: In Sec. II the
axially symmetric background space-time is constructed in
the neighborhood of a timelike world line which is the
history of a particle performing rectilinear motion with
arbitrary acceleration. The Einstein-Maxwell field equations

are solved in the neighborhood of this world line with a
Maxwell field which specializes to a pure electric field on the
world line. In Sec. III the charged particle is introduced as a
perturbation of the background space-time which is singular
on the world line but is otherwise a well-behaved perturba-
tion. This latter requirement places an important constraint
on the acceleration of the particle while solving approx-
imately the perturbed Einstein-Maxwell field equations. The
acceleration of the particle is no longer arbitrary but is driven
by the external electric field. Since the perturbed field
equations are solved approximately there is a residual matter
distribution present which is described by a residual energy-
momentum-stress tensor and a residual 4-current. These are
examined in Sec. IV and interpreted physically in terms of
the flow of 4-momentum and charge away from the particle.
The paper ends with a brief comparison of our model with
the Bonnor-Vaidya model in Sec. V.

II. EXTERNAL FIELDS

The external gravitational and electromagnetic fields will
be modeled by a space-time and a Maxwell field which will
be solutions of the vacuum Einstein-Maxwell field equa-
tions. The accelerating charged particle will have a timelike
world line in this space-time. The particle will be intro-
duced as a perturbation of this “background” space-time
which is singular on this world line but whose electro-
magnetic and gravitational fields are otherwise free of
singularities. The Lorentzian character of the background
space-time means that in the neighborhood of the particle
world line the space-time is Minkowskian. This means that
if r is a distance from the world line, and if the world line
corresponds to r = 0, then the metric tensor of the back-
ground, in rectangular Cartesian coordinates and time
X' = (X,Y,Z,T), satisfies

gij = mij + O(r?), (8)

for small values of r with »,;; = diag(—1,-1,-1,+1).
Since we are interested in a particle performing rectilinear
motion we will take it to be moving on the Z axis and thus
have a world line in the (Z, T) plane in the Minkowskian
space-time neighborhood of its world line. The world line
r=20 will be given parametrically by X' = w'(u) with
w(u) = (0,0, w?(u), w*(u)). The unit timelike tangent to
the world line is v'(u) = dw'(u)/du with n;;0'v/ =
—(v%)? + (v*)? = +1 so that the parameter u, for which
—00 < u < 400, is proper time or arc length along the
world line. The 4-acceleration of the particle with world
line r =0 is a'(u) = dv'/du and, since v;v' = n;;v'v/ =
+1, we have v;a’ = 0 indicating that the 4-acceleration is
spacelike. Defining A(u) = {(a*)?> — (a*)?}'/> which we
shall refer to as the acceleration of the particle performing
rectilinear motion we note that a* = Av* and a* = Av°.
The position 4-vector of an event in the neighborhood of
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the world line, i.e., for small positive values of r > 0, can be
written (see, for example [5])

X' =wi(u) +rk', 9)
where k' is a future pointing null vector field, cf. Fig. 2,
parametrized by the polar angles 6, ¢ (for which0 <6 <z
and 0 < ¢ < 27) and normalized by the condition v;k’ =
+1 so that we may satisfy these requirements by writing

(cf. [6])

ki = (=sin@cos ¢, —sin O sin ¢,

3_ 4

v} —v*cos @, v* — v? cos ). (10)

The following Minkowskian scalar products are useful:

oki Ok, Ok Ok; Oki Ok,

Py, T gnzg, T T,
90 00 op oy om 90 94
(11)
and
ok Ok, Ok’ Ok, .
b ou 90 ou ~ Asing.
okl Ok Ok, Vs
Vg, = —Acos0, T o —A%sin®6.  (12)

The formula (9) determines 8, ¢, r, u implicitly as functions
of the coordinates X' = (X,Y, Z, T). Hence differentiating
(9) partially with respect to X/ gives

w(u)

FIG. 2. Coordinates of an event X’ in the neighborhood of the
world line w'(u). Here k' denotes a future pointing null vector
field, the parameter value r = 0 corresponds to events on w' ().

a l

06" a¢¢f (13)

J

‘ A ki
5’-:(v’+ 0 )u +k’r +r—
Ou

with the comma denoting partial differentiation here. From
this we have

dx' = (v +ra—k)du+k’dr+ra do+r oK dp, (14)

9 90 o

from which we derive the Minkowskian line element in

coordinates x' = (0, ¢, r,u):
ds* = —r*{(d6 + A(u) sin Odu)? + sin*0d¢?} + 2dudr
+ (1 = 2A(u)rcos 0)du?. (15)

Multiplying (13) successively by k;, v;, 0k; /90 and Ok; /D¢
results respectively in

u; = kj, r;=v;—=(1—=rAcos@)k;,  (16)
and

10k; 1 Ok;
0, =———J— Asin6k, =17
J r 00 SIOK; P, rsin%0 O¢ (17)

When these are substituted into (1) and the lower index is

raised using 7% (where /%y, = /) we obtain the useful
formula

oKW 1 Ok oK
o OKOM 1 OKOW i+ kivi— kK, (1
"=~ o6 00 smioagop KV HKY —KK. (18)

after making use of the identity

ok Ok i
%—Asm9%+Acosek =0. (19)

The line element of Minkowskian space-time (15) can be
written in terms of basis 1-forms 91, 92 9G) 9@ ag

ds* = n;;dX'dx) = —(91)2 — (92))2 + 290094
= g<a)(b>,9(“),9(b), (20)

with

W = r(do + AsinOdu) = -9,
9@ = rsindp = -9,

1
90 =dr+ (5 — rAcos 9) du =9,
I =du =094 (21)

The 1-forms define a half null tetrad and the tetrad
components of the metric tensor are given by g, in
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(20). We have used g(,)(p) to lower the tetrad indices in each

of (21) and we shall raise the tetrad indices using ¢{®)(*)
defined by ¢@®) gy = 5% Using (16) and (17) we
arrive at

. ok . 1 Ok
9 === ) 9, = AV
M08 () sinf O
L L (22)

Having prepared the background space-time in the
neighborhood of the world line » =0 we now consider
the background space-time in more generality. A general
axially symmetric form of the line element which incor-
porates (15) as a special case is given by

ds* = —r’p~2{(e*d0 + adu)* + e~ **sin’*0d¢*}
+ 2dudr + cdu® = gi/j/dxi/dxj/, (23)

where the functions p, a, a, and ¢ are functions of 0, r, u.
This is an axially symmetric special case of a form of the
most general line element [7] (involving six functions of
four coordinates) originally used for studying gravitational
radiation from isolated sources. The 3-surfaces u =
constant are null hypersurfaces as in the special case of
(15). The coordinates 6, ¢ label the null geodesic gen-
erators of these hypersurfaces, while r is an affine param-
eter along the generators. The form of line element (23)
incorporates the Robinson-Trautman form [8] which cor-
responds to the special case @ = 0. For small values of r,
and to incorporate (15), we shall assume that the functions
p, @, a, ¢ can be expanded in powers of r as follows:

p=1+qr+qr+.., (24)
a=aar’+mr+.., (25)
a=A(u)sind+a;r+ayr* + ..., (26)
c=1-2rA(u)cos+ c,r* + ..., (27)

with the coefficients of the powers of r functions of (9, u).
For an axially symmetric Maxwell field we start by
choosing a potential 1-form of the form

A= Ld0 + Kdu, (28)

with L and K functions of (6, r,u). For small positive
values of r, and in order to arrive at an external Maxwell
field which is nonsingular on r =0, we assume the
following expansions of L and K in powers of r:

L = L2r2 +L3r3 +L4r4 + ey
K=K1r+K2r2+K3r3+..., (29)
with the coefficients of the various powers of r functions of

(0, u). We now write the line element (23) in terms of a
basis of 1-forms:

ds? = _(,9(1))2 — (,9(2))2 +290G)94) (30)
with
W = rp=(e"d0 + adu) = —9y), (31)
9@ = rp~le~®sinOdp = —95). (32)
9% =dr +%cdu = 94). (33)
W = du = 9. (34)

The candidate for external Maxwell field is the 2-form

1
F =dA=F 99 A9¥), 35
A=5Fae) (35)
which is the exterior derivative of the 1-form (28). With the
assumed expansions in powers of r given above we find the
following tetrad components of F:

Fiyo =0, Fuye =—2L,+ 0(r).
oK,
Foyw =Lot 5, +0(r).  Fpe =0,
F(z)(4) = 0, F(3)(4) = K1 + 0(") (36)

When these are calculated on r = 0, and the tetrad vectors
(22) in coordinates X' are used, we find that

8k’ ak’ 8k‘

1
J——k ) =
<v 2k> (37)
and
, 1Ok
K] :Flj(u)k 1}‘/, LZI—EF”(M)%ICI, (38)
with
oK, ok
- = Jo—
L+ F()89< 2k> (39)

where F;;(u) = —F;(u) are the components of the
Maxwell tensor in coordinates X' calculated on the world
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line r = 0. We can simplify matters at this point by making
the assumption that to sustain rectilinear motion in the Z
direction requires only an electric field in the Z direction
and so we can satisfy (37) by taking F;; = 0 except for
F3, = —F,;; = E(u) (say). Now with k' given by (10) and
v' = (0,0, 2%, v*) we conclude from (38) that

1
L, = _EE(M) sind and K, =—E(u)cos@, (40)

and thus (39) reduces to

0K, 1
L, +8—91:5E(u) sin @), (41)
which is clearly satisfied. Now Maxwell’s equations
d*F =0, with F given by (35) and the star indicating
the Hodge dual of the 2-form F, are satisfied with an O(r)
error provided

% +2L, =0. (42)
This is satisfied by (40). Hence we see that the tetrad
components of the Maxwell tensor F ;) = —F )4 on
r=0 vanish except for F(j)3) = E(u)sin0, F(u4) =
SE(u)sin6, and F 34y = —E(u) cos 6. We note for future
reference that the components E;;(u) of the electromag-
netic energy-momentum tensor calculated on r = 0 in the
coordinates X’ are given by

1
E;= Fiijk - Zﬂiijlel

1
= Ediag(—Ez, —E?, +E* —F?), (43)

where the indices on F;; are raised using 7" with
n'ny = 8.

With (40) we have evaluated the leading terms in the
expansions (29). In the sequel we will require the next term
in each of these expansions. In other words we will require
the functions L3 and K,. These are given by the vanishing
of the next to leading terms in the expansion of Maxwell’s
equations d*F' = 0 in positive powers of r. The results are
the differential equations

0
%0 (L3 sin@) — 2K, sin@ = AEsin’0, (44)

and

0K .
sin 96—92 +3L5sin@ = —Esin’0 — AEsin*0cos 0,  (45)

with E = dE/du. From these we easily see that K, satisfies
the inhomogeneous / =2 Legendre equation, with the

right-hand side a linear combination of an [ =0 and an
[ = 1 Legendre polynomial:

19 /. 0K, :
P (anW) + 6K, = —2AE —2Ecosf.  (46)

The general solution which is nonsingular for 0 < 8 <z is

1 1.
K, = —§AE—§Ecosﬁ+a)(u)(3coszt9— 1), (47
where w(u) is an arbitrary function of integration. The
corresponding expression for L follows from (45) and is

1. 1
Ly = —EEsin9+ <2a) —§AE> sinfcos@. (48)

In the sequel we will assume that the external electromag-
netic field does not involve a second independent arbitrary
function of u in addition to E(u) and so we will take
@(u) = 0. The nonvanishing tetrad components of the
external Maxwell field now read

3.
Fy3) = Esing + <2E—|—AEcos9>rsint9+ o(r?),

(49)
1. 1. 1 .
Fiya = EEsme + (ZE - EAECOS 6) rsin@ + 0(r?),
(50)
F3)4) = —Ecosf
- {Ecos@ + %AE(3COS29 - 1)}r + 0(r?).
(1)
The components F;;(u) = —F ;;(u) of the external Maxwell

field calculated on » = 0 in the coordinates X’ can be
recovered from (49)—(51) using the formula

a b
Fij(u) = F(a)(b)lgg Lol (52)

with 9\ = g<a><b>,1ij,9{b), g\ ) defined by @) g, =
835 9(a)(v) g1ven by (20) and 8éa> by (22). This results in
Fij(u) =0 except for Fyy(u) =—Fs(u) =E(u) as
before.

We now turn our attention to Einstein’s field equations

Ria)(b) = 2E (@)1 (53)

where R, are the components of the Ricci tensor on the
tetrad defined by (31)—~(34) and E ;) are the components
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of the electromagnetic energy-momentum tensor on the
tetrad. When the expansions (24)—(27) and (29) in powers
of r are introduced this results in R,y — 2E(4)() having
expansions in powers of r starting with terms independent
of r. We will only require the functions ¢,, a,, a;, ¢,
appearing in the expansions (24)—(27) and these can be
obtained by requiring the vanishing of the terms indepen-
dent of rin R(4)(5) — 2E(4)()- This results in the following
seven equations to be satisfied by ¢,, @y, a;, ¢5:

1
q, = EEZSinze, (54)
B L
2 (g2 + @) + 2aycotd —a; = E*sinfcosf,  (55)

0
5 (ay+ gy —c3) + 2y cotd+2a; = E*sinfcosd,  (56)

Oda 2
8—91 +a coth+2c, —4q, = §E2c052€, (57)
3 aal 1 8 . (902
2 (% 0) ——— 2 (sino%2) _3
2 (aa +aico > 25in6 00 (Sm ae> 2
1
= —§E2s1n29, (58)
3611
4@ + a COtH —X + 3C2 =+ 6&2 - 126]2
= E? — 2E%cos?0, (59)

0
% +4a; cotf — y + 3¢y — 6ay — 12q, = —E?, (60)

with

L of. 0
)(—E%{smeﬁ(qz%—az)+2a200s¢9}. (61)

Combining (57) and (58), and using g, given by (54), we
arrive at

1 3 S. 6C2
00

il 2 = 2F? 2
sn00 \*"? >+6C2 ’ (62)

which is the inhomogeneous / = 2 Legendre equation with
an [ = 0 Legendre polynomial on the right-hand side. The
general solution of this equation which is nonsingular for
0<f8<rmis

o0, 1) = %E2 +Cu)(Beos’0—1).  (63)

Here C(u) is an arbitrary function of integration. We
demonstrate below that C(u) is simply related to the
Weyl tensor of the space-time on r =0 in coordinates

X'. Knowing ¢, and ¢, we see that (57) provides us with an
equation for a;, namely,

% (a;sin@) = 2C(u)(3cos’0 — 1)sin0,  (64)

and the solution which is nonsingular for 0 < 8 < 7 is
a,(0,u) = —2Csinfcos 6. (65)

Now (55) becomes

0 2
%0 (ap8in%0) = (—2C + §E2> sin*@cos @,  (66)

and the solution of this equation which is nonsingular for
0<O0<Lanris

1 1
a(0,u) = <—§C + 6E2> sin’@. (67)

It is now straightforward to check that ¢,, ¢,, a;, a, given
by (54), (63), (65), and (67) respectively satisfy (55)—(60).

The approximate solution of the equations (53) given
above involves two arbitrary functions of u, namely E(u)
and C(u). We have already seen that E(u) = F34(u) where
F34(u) is the nonvanishing component of the external
Maxwell field calculated on » = 0 in coordinates X’. We
now seek to demonstrate how C(u) is related to the
components C, (1) of the Weyl tensor of the space-time
(the external gravitational field) calculated on r =0 in
coordinates X’. We start by listing in the Appendix the
tetrad components of the Riemann tensor calculated on r =
0 using the functions ¢,, ¢, a;, a, derived above. The
components R, (u) of the Riemann tensor calculated on
r =0 in the coordinates X' are given in terms of these
tetrad components by

a) o(b) () o(d)
Rijkl(”) = R(a)(b)(c)(d)’gg )191‘ 9y )191 ) (68)
with 9}/ given by (22) (with 9} = g(@®)y,;97 ) since we

are calculating on r = 0 in coordinates X’. We find that the
nonvanishing R, ;,(u) are

5
R (u) = —§E2 +2C, (69)
1
Ry313(u) = Rozps(u) = §E2 -C, (70)
1,
Ryg14(u) = Rogpa(u) = —gE +C, (71)
|
Ragzq(u) = -z £ -2C (72)

044039-6



BONNOR-VAIDYA CHARGED POINT MASS IN AN EXTERNAL ...

PHYS. REV. D 103, 044039 (2021)

A useful check on these components is to verify that

Ry (u) = R;j(u) = 2E;;(u), (73)

with E;;(u) given by (43) confirming that Einstein’s field
equations are satisfied on r = (. Taking into consideration
(73) the components of the Weyl tensor on r =0 in
coordinates X' are

Ciju(u) = Rij(u) +niEjy(u) =, E i (u)
+njEp(u) —niEy(u). (74)

Using (43) and (69)—(72) we find that the nonvanishing
components of the Weyl tensor on r = 0 in coordinates X’
are

1 1
§C1212 = —§C3434 =—Ci313 = —Can3

1
= Ciy1a = Cypy = —§E2 +C. (75)

This determines the relationship between the arbitrary
function C(u) and the external gravitational field or
Weyl tensor. In the sequel we shall assume, for simplicity,
that the particle with world line » = 0 experiences only an
electric field as external field. Thus the external field
involves only one arbitrary function E(u) and we shall
take C(u) = 0 from now on leading to the simplifications

1
a, = — E?sin%0,

6
with g, given by (54).

1
ay, = O, Cyr = §E2Sin29, (76)

III. A CHARGED MASS PARTICLE

We introduce a particle of small mass m = O, and small
charge e = O; (both constant) as a perturbation of the
potential 1-form and space-time above by modifying (28)
and (30) using the expansions:

K_ A .
K:Lrl)+Ko+Klr+K2r2+..., (77)
with A_]:Oz, IA{O:O], klz—ECOSG+01, and
Ky =-1AE-1Ecosf+ Oy;

L:£2r2+1:3r3—|—..., (78)
with L, =-1Esin0+15L+0, L, =0, and
Ly=-1Esin0-1AEsin0cos0+ Oy;

p=Pl+gr+..), (79)

with P=1+4+Q, + 0, + 03 and Q, = 0, Q, = O, and
g, =+ E*sin’0 + Oy;

a=ar’+ ..., (80)

with &, = E%sin®0 + O;

~

a_ A A
a:Tl—l—ao—i—alr—i—..., (81)

with fl_l = 02, flo :ASIHQ+ 01, &1 = 01;

2 N
e 2(m+c_ . . .
C:p—%l)+CO+C1V+C2r2+..., (82)
with 62 = 02, m = 01, 6'_1 = 02, 6’0 =14+ 01,

¢ = —2Acosf+ Oy, and & = LE* 4 O,. These expan-
sions ensure that for small values of r the perturbed field
(gravitational and electromagnetic) resembles the Reissner-
Nordstrom field. The exact Maxwell 2-form (35) reads

OL 0K OL oK
F_Edr/\ do + <%—%)d9/\du+adr/\du,

(83)

and its Hodge dual is

“F = Fidr A dp + Fadp A du+ F3d0 A dg,  (84)

with
F,=—e2 sin@%, (85)
Fy = ce™@ sin@% + e sind (g_lg( - %)
+ar’p~le® sin@(%—lr{ —ae™® %) , (86)
F5 = r*p~2sin Q(ae‘“ g—i - 88_15) ) (87)

In terms of Fy, F,, F5 the exact Maxwell equations read

OFy OF, OF, OF; OF, 8F2_O
or 00 00 ou ou or
(88)
We note that in coordinates x” = (6, ¢, r,u) with g =
det(g;;), if F'/ =—F/" are the components of the
Maxwell tensor, then F2/ =0 and (88) are equivalent to
/_gF4/j/;j/ = 0, R /—gF3lj/;j/ = 0’ . /—gFl/jl;j/ = 0’
(89)

respectively, with the semicolon denoting covariant differ-
entiation with respect to the Riemannian connection
calculated with a metric tensor gy given via (23). In order
to solve (88) approximately we first substitute the expan-
sions (77)—(82) into the functions F;, F,, F3 to arrive at
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3,
F, = (E(u)sin?0 — 21, sin 0 + O,)r + {EEsinQG + AEsin?0 cos 0 + O, }r2 +0(r?), (90)
in6 [OK_
, = SH; { 091 —e’Esin0 —ea_; + 03}

A

06

19).¢ 3 ..
+ sin 9{—0 +2mE(u)sin @ — eay — zeQE sinf + 2eAQ, sin @

— e2AEsin@cos 0 — 4ml, + 2E¢_; sin@ — AK_, sin0 + 03}

0K
+ rsin 6{3mE sin@ + 2mAE sinfcos @ — ¢oEsinf + 21, + ——

A

a0 Lta_k, +02} +0(r), (o1)

N N 1
F3;=esinf —2eQ,sinf+ K_,sinf + 05 — {Kl + &_lEsinﬁ+2Q1Ec059+§eE2sin29+ 02}r2 sin @

. 1
+ {Ecos@ + gAE(300529 -1)+ 0, }r3 sin€ + O(r*). (92)

Now (88) are satisfied approximately in the sense that

OF; OF, )
E—%—ler—i—O(r ), (93)
oF OF 1
892+8*—0;x + 0,4+ 0, xr+0(r?), (94)
OF, OF, 1
E W_Og,Xﬁ‘I*OI‘I’O(T‘), (95)
provided
K = —Ecos0+ = 8(1 in@) —a_ Esind
1= COS 0090 ) a_jL&s

1
- geEzsinze —2EQ, cosf + 0,,

oK _ .
ﬁ = €2E sin @ =+ e&_l, (96)

and K, satisfies

oK
sin 9{8—6’0 + (2mE(u) — eA(u)) sin @ + 02} = U(u),
(97)
for some function U(u) of integration. For a Maxwell field

which is nonsingular for 0 < § < 7 we must have U(u) = 0
and thence

Ky = (2mE(u) — eA(u)) cos @ + O,. (98)

A function of u of integration added to this is easily seen to
be a pure gauge term in the potential 1-form and so it has

I
been neglected. The second term in (98) is the Liénard-
Wiechert contribution to the potential 1-form (28). We will
return to F, in Sec. IV and in particular determine the O,
part of K by requiring (94) to read

0OF, OF 1

8—92+a—3_03x;+03+01><r+0(r2)‘ (99)
To solve (96) for K_; we must first obtain a_, by solving
approximately one of Einstein’s field equations Ry —
2E;; =0 in  coordinates X' = (@,¢,r,u)  with
i =1/,2',3,4. Specifically, requiring the coefficient of

r~'in Ry;y —2E;y to be small of second order yields

a_, =2eEsind + 0,, (100)

and combining this with (96) results in

K_; = —3e2Ecos@ + k(u) + O3 with k(u) = O,,

(101)

where k(u) is an arbitrary function of integration.

With a_; given by (100) and P given by (79) we find that
requiring the coefficient of 7¥ in Ry, — 2Ey to be small of
second order provides us with

6'0 =1 =+ %Ql + 2Q1 — 8eE cosd + 02, (102)
where
1 0 00
%Ql " sinf 00 ( 6%) (103)

If we now require the coefficient of 72
be small of second order we find that

in R4!4! - 2E4'4! to
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%60 = (2¢eE — 6mA) cos0 + O,. (104)

| =

On substituting from (102) into this
1
_E%(%Ql +20;) = 6(mA + eE)cos0 + O,. (105)

This has the general solution, which is nonsingular for
0<0<m,

%Ql + 20, = 6(mA + eE) cos 0 + p(u) + O,, (106)

where @(u) = O, is an arbitrary function of integration.
This equation has the particular integral —(mA +
eE) cos @log(sin*9) which is singular when @ =0 or «
so to have a solution Q4 of (106) which is nonsingular for
0 <0 < 7 we must have

mA = —eE + O,. (107)
Now the general nonsingular solution of (106) is
1
0, = E(p(u) +w(u)cos, (108)

where y(u) = O, is another arbitrary function of integra-
tion. This is a linear combination of an / =0 and an [ = 1
Legendre polynomial. The 2-surfaces u = constant,
r = constant, for small values of r, have line elements
[specializing (23)]

dP> =r*(1-2Q; + 0,)(d®* +sin’0dp?) + O(r*).  (109)
These 2-surfaces play the role of the wave fronts of the
radiation produced by the motion of the particle having
mass m and charge e. Near the particle (for small r) these
2-surfaces are smooth perturbations of 2-spheres. However
it is well known (see, for example, [9]) that perturbations in
which Q; is an [ =0 or [/ = 1 Legendre polynomial are
trivial in the sense that the “perturbed” 2-sphere remains a
2-sphere in these cases. We will discard such perturbations
[by putting ¢ = 0 and w = 0 in (108)] and so take Q; = 0
with (107) holding. We note that E(u) = F3u(u) =
—F3(u) where Fs, is the nonvanishing component of
the external Maxwell tensor in coordinates X', calculated
on the world line r =0 in the background space-time
described in Sec. II. As pointed out prior to (9) the
nonvanishing components of the 4-acceleration a' of the
particle satisfy a® = Av* and a* = Av3. Thus since

E=Fy=-Fy=-F,=-F5 (110

we have, on account of (107),

ma® = mAv* = —eEv* + 0, = eF?,0* + 0,, (111)
and
ma* = mAv® = —eEv® + 0, = eF*31° + 0,, (112)

confirming the appearance of the Lorentz 4-force on the
right-hand side of these equations.

With Q; = 0 and a_; given by (100) we see from (96)
that now

N 1 0
Ky =-EcosO+ ——

7
1050 (I, sin@) — 3 eE*sin?6 + O,.

(113)

The coefficient of 7! in Ry — 2E;y was required to be
small of second order to obtain (100). If we now require it
to be small of third order we get the more accurate result

&_1 = —4€(L2 + lz) — 4k_1L2 + 03
= 2eEsinf —4el, + 2kE sin 6

— 6€%E*sinfcos 6 + O3, (114)
using L, given by (78) and K_; given by (101). With our
assumptions the quantities Ry;r — 2E | and Ryy — 2E5y
both have the form O3 x r=2 4+ O(r"). We can reduce this
form to O3 x ¥2 4+ O3 + O(r) in each of these cases by
having respectively

ol
¢o=1—-8eEcosf + %QQ +20, + 10e8—92+ 6el, cotd

— 8kE cos 0 + 24¢*E? — 33¢*E*sin’0 + 03,  (115)
and
. al
g =1—8eEcost + %Q2 +20, + 66%—1— 10el, cot &

103
— 8kE cos 0 + 24¢*E? — 5 e’E%sin’0 + 03, (116)

with % the operator defined by (103). Subtracting these we

find that
1
L= geE2 sinfcos@ + U(u)sinf + O3, (117)

where U(u) = O, is a function of integration. Now (117)
substituted into (115) or (116) yields

14
6'0 = 1 + %QZ + 2Q2 + gezEz + {—8€E + 16€U

125
— 8kE} cos @ +TeZE2(3cos26 —-1)+0;. (118)

044039-9



PETER A. HOGAN and DIRK PUETZFELD

PHYS. REV. D 103, 044039 (2021)

The final three terms here are a linear combination of / = 0,
[ =1, and [ = 2 Legendre polynomials. With /, given by
(117) we find from (113) and (114) that

K, = —Ecos®+2U cos 6 — geE2 + 1?OeEzcosze + 0,,
(119)
and
a_y =2eEsin@ —4eUsin€ + 2kE sin 6
—%ezEzsinécosﬁ—F 0. (120)
Furthermore requiring Ry;r — 2Ey and Ryy — 2Eyy to

both have the form O3 x r™2 + O3 + 0, x r + O(r*) we
arrive at the two equations

2 . 5
¢, = 2eAEsin*4 — 3 eAE — eEcosf — 3 mE?sin’6

3049 1,
—Ea—eo—iaocote—f— 02, (121)
and
2 . 10a
¢, = —Z eAE — eE cos — mE%sin?0 — = —2
Cq e er. coS meE~sim 269
3
—5&000t9+ 02. (122)

Subtracting these, remembering that a, = Asinf + O, we
find that

2
Gy = Asin@ + {ngz - 2eAE} sin@cos @

with the function of integration V(u) = O;. With this
information we have from (121) or (122) that

8 .
¢ = —§mE2 —(2A+ eE +2V)cos@

2
+ (g eAE — §mE2> (3cos?0— 1)+ 0,, (124)

and we note the appearance of the Legendre polynomials of
degree 0, 1, and 2. Next we consider Ryy —2E 4. One
finds directly that this component has the form Os x r=6+
O, x 1>+ O(r™*). However the coefficient of r~* is
—2ek + 04 with k(u) the O, function of integration which
first appeared in (101). We shall therefore take k(u) = 0 so
the Ryy —2Eyy has the more accurate form Os x r~0+4
O4 x 17> + 04 x r™* + O(r™3). The coefficient of =3 here
is O; if

Aby = (8meE — 4e*A) cos O + O;. (125)

The general solution of this equation which is nonsingular
for0<O<ris

¢_y = (2¢A — 4meE) cos 0 + g(u) + 03, (126)

where g(u) = O, is an arbitrary function of integration.
Now Ryy —2Eyy has the form Os x r™® + 0, x r5+
O, x 1™ + 03 x r=3 + O(r7?). The coefficient of =2 here

+ V(u)sin@ + O,, (123) " is 0, provided
|
1. D% 0é_ da, . Oa oK_, 0k, 1, . . o
—E%COZ Cl_laTzl—z au1+ma—;+C_1a—90— 8916—914‘50316'0—16”12[,%—277101—2C]C_l

1. de o . da_\2 0K\ ? )¢

+ 8m2q2 - ezK% - ECZ_] 8—90 + 4610 891 + 3€2C2 - ( 891> - 2(8—90> + SmLza—eo
oK _ oK Ok, da_ o

— 420L, ael —dma_ by + ded_, 3_9] + 4e€108—90 —8¢2L3¢) —a_, gel cotO + 4e2q e + 280K K _,

A

N A 0K
+ 266‘01{1 - 8meK2 - 482L2 8—91 + floé_l COtQ + m&() COtQ - 8m€L2£l0 + 4€L2&_160 + 03.

For simplicity we look for a model which is free from
singularity for 0 < @ < z and involves only one arbitrary
function of u, namely E(u) describing the electric field
experienced by the charged particle. Thus we can put the
arbitrary functions U(u), V(u), and g(u) zero. When (127)
is written out explicitly we arrive at the following differ-
ential equation for Q,:

(127)

I
2880, +20,)
= (6mA + 6¢E — 4¢2A + 14meE) cos 0
+ (2m*E? + 6€2A? + 30e%E?)(3c0s?0 — 1) + 0.
(128)
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The right-hand side here is a linear combination of [ = 1
and [/ =2 Legendre polynomials. It can be integrated
without encountering singularities at @ = 0,z to provide
us with the second order differential equation for Q,:

AQ; +20; = (6mA + 6eE — 4¢2A + 14meE) cos 0
+ {iszz +2e2A% + 10e2E2}
x (3cos?0 — 1) + Os. (129)
This will possess a particular integral which is singular at

0 = 0, 7 unless the coefficient of cos 8 (the [ = 1 Legendre
polynomial) vanishes. Thus we must require that

A
mA:—eE—I-gezA—gemE—f— 03, (130)
with the result that (129) is solved by
[ 242 272 2
Q2:—§ ng + e*A* 4 5¢*E* »(3cos*0 —1). (131)

We have not added a linear combination of / =0 and [/ =1
Legendre polynomials to this solution because such terms
in Q, correspond to trivial perturbations as pointed out
following (109).

In analyzing (130) we first note that the infinitesimal
Lorentz transformation

7 7
3:v3—§eEv4+02, 174204—§eEv3+02,

3
(132)
transforms away the E term in (130) since
_ 7T .
A:A—i—geE—i— O;. (133)
Then dropping the bars we have
2 5.
mA:—eE+§eA+O3. (134)

Next using a® = Av* and a* = Av? we have, on account of
(110),

2 .
ma® = eF?,v* + §€2A1)4 + O3, (135)
2 ..
ma* = eF*;30° + §€2AU3 + 0;. (136)
But
Avt = & - Ad* = & - A2} = &+ (dla;)v’,  (137)

AV =at — Ad® = ot — A%t = a* + (daj)v?,

(138)

and so, remembering that v! = 0 = »?, we can write (134)
in the equivalent form

. o2 . . .
ma' = eF' v/ +§ez{él’ + (ala;)v'} + 05 (139)

The first term on the right-hand side here is the first order
external 4-force (the Lorentz 4-force). The second term is
the second order Lorentz-Dirac radiation reaction 4-force.
There is no second order “tail term” here because such a
term is presumably inconsistent with maintaining recti-
linear motion. We might have expected a second order
external 4-force proportional to e?hfFPF ,;v/ where hf =
8¢ — vkv; is the projection tensor (projecting 4-vectors
orthogonal to »'). However in the present case

REFPLF ,0) = E* (i v? — hiot)
= E?(870° =t + ;) = 0. (140)

IV. RESIDUAL MATTER DISTRIBUTION

Since the Einstein-Maxwell field equations have been
satisfied approximately there exists a residual matter
distribution described, in coordinates x” = 0,¢,r,u),
by a 4-current J” and an energy-momentum-stress tensor
T%J'. We begin by examining the residual 4-current which is
given by Maxwell’s equations

J'=F" ;. (141)

Thus in terms of the functions Fy, F», F5 in (85)—(87) the
4-current is given by

. OF, OF, OF,
VgJ_( o or %0 T )

Ou’ 00  Or
(142)

with /=g = r’p~?sin@. The evaluation of F,, F,, Fj;
leading to (90)—(92), and thus to the orders of magnitude
(93)—(95), can now be more explicit since we have found
that Q; = 0 and we are in possession of the functions K_,,
K\, I, a_,, and &, in more explicit form. The result is

2
F, = (Esin29 -3 eE?sin?0 cos 0 + 02> r

3.
+ {5 Esin?0 + AEsin?@ cos 6 + O, }r2

+0(r?), (143)
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1 . (0K, 3 .
F2—03X;+S1H6{W+<2mE—€A—§€E)

x sin@ + (8¢*AE — 10emE?) sin @ cos 0 + 03}

+ (3mEsin20 — 2e E%sin0 cos 0 4 O,)r

+0(r?), (144)
Fy = esinf —3e’Esinfcos + O,

1
+ {Ecose —geE2(3cos2¢9 -1+ 02}r2 sin @

. 1
+ {Ecosé —|—§AE(300526— 1)+ 01}r3 sin @

+0(r%), (145)
where we have used (107) to simplify the coefficient of r in
(144). We can achieve the accuracy required in (99) by
replacing (97) [with U(u) = 0] by

ok .
0 — (eA —2mE + 3¢*E) sin0
00
+ (10emE? — 8¢?AE) sin@cos 0 + O5.  (146)
Thus the more accurate version of (98) reads
Ky = —(eA —2mE + 3¢*E) cos 0
+ (SemE? — 4¢*AE)sin®0 + 03, (147)
and (144) is finally given by
1 3 2 .. 2 — . 2
Fy, = 05 % —+§e Esin*0 + O3 + (3mEsin“6
r
—2eE%sin*@cos O + 0,)r + O(r?). (148)
Now calculating J” from (142) we find that
! 1 . .
V=9J" = 03 x = + 2eE*sin*6 cos 6 — 3mEsin*0
r
+ 0, + O(r), (149)
V=gJ* =0, (150)

, 1 1 o
V=917 = 03 x =+ O3 x =+ {6mEsinf cos 6
r r
—2eE?sin0(3cos’0 — 1) + O, }r + O(r?),
(151)
V=g =0, xr+ 0, x2+0(P), (152)

and from these the conservation equation for the 4-current
takes the approximate form

0 o 1 1
W(\/—gjl)203 Xﬁ+03x 2+02+0(i’), (153)

r

which is a check on the trigonometric terms in (149) and
(151). Solving (149)-(152) for J7, using p given by (79)
with P = 1 + 0,, results in

! 1 . e
JV' =05 X+ {2eE?*sinfcos @ — 3mEsin0 + 0,}
1 1
X—2+ 0<_>,
r r

/ 1 1 .
J¥ =03 x5+ 03 x5+ {6mEcos 6
r r

(154)

J? =0, (155)

1
—2eE*(3c0s’0 — 1) + 05} x —+ O(r%),  (156)
r

, 1
Y= 0y x—+ 0, +0(r). (157)

We now introduce the half null tetrad defined via the 1-
forms (31)—(34) with p, a, a, c given by (79)—(82). This
consists of the covariant vectors (and their corresponding
contravariant expressions):

fr=(rp~e%,0,0,rp7'a) &

f1=(=r""pe™,0,0.,0), (158)
e; =(0,rp~le™*sin0,0,0) &
e’ =(0,—r"'pe®csch,0,0), (159)
1
ly = <0,0, 1,§c> &
/ - 1
I = (—ae ”,O,—Ec,1>, (160)
ny =(0,0,0,1) & n' = (0,0,1,0). (161)

The vectors f7, e’', I, n” constitute a half null tetrad with
f¥, ' unit, orthogonal spacelike vectors, and I, n” two
null vectors. All scalar products involving the four vectors
vanish except f; f* = eye’ = —Iyn" = —1.In terms of this
basis we can write the 4-current J* given by (154)-(157) as

" 1 - :
J' = {03 X — + (3mEsin 6 — 2¢E? sin 6 cos 0
e

R 1 1
+02)X;+0(I’) fl‘l‘ 03XF+03XE

. 1

+ (6mE cos 0 — 2eE*(3cos*0 — 1) + 0,) x —

p

+ o(ro)}ni’ - {02 x%—l— 0, + o(r)}zi’. (162)

To satisfy approximately the Einstein field equations
[starting after (99) above] we have worked with the tensor
Wiy =Ryy —2Eyy. The residual energy-momentum-
stress tensor Ty is given by Einstein’s field equations:
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1 1
_877:Ti’j’ = Wi’j’ - Egi/j/W = Ri’j’ — Egi/le — 2Ei’j" (163)

Here W = ¢'/ Wy, R = g"/Ry; is the Ricci scalar. The
nonvanishing components W; ;. are found to be

1
WII’—O3X +O3+02Xr—|—01xr +0( )

(164)

1
Wyy = 03X =+ 03+ 0y xr+ 0y x P+ 0(r?),
I

(165)
W3/3/ — 01 + O(F), (166)
1 1 1 1
W4/4/*05X +O4X +04X +03X
r
1 1
+03x 5+ {6eEcos @ + 0y} x — +0( 0,

(167)
1 .
Wiy = O3 x —+ 3eEsin@ — 2mA?sinf cos 6 + O,
r

+ 0, xr+0(r?), (168)

1 1 .
Wiy = O3 X = + O3 X — + {—6emE sin 6
r- r

1
+4m?A%sinfcos + O3} x —
p
3.
—I—EeEsinQ + mA?sin@cos 0 + O, + O(r),

(169)

1 1
Wiy = O4 >< 7+ 03 x 5+ {3eE cos®

1
- mA2(3c052¢9 — 1)+ 0,} x=+ 0, + O(r).
r
(170)

Calculating Ty using (163) and expressing the compo-
nents in terms of the half null basis (161) we arrive at

8T/ =T\ (f'n/ + fin') + Ton"nl + T5f" f7

+ Tl el + Tl +Te(l'n/ + U'n'")

+ T (0 + 1), (171)
with 7, ...,7 ¢ given in the Appendix.

To interpret the energy-momentum-stress tensor (171)
we consider it a tensor field on the background space-time
in the neighborhood of the world line r = 0 and we will
neglect O; terms. To facilitate this we first express the basis

;! ! . oo
vectors f', €', [', n' in terms of the vectors

fi=—rts, e’ = —rlcschsl,, =5,
0) ! (0) : o
! s 1 s o
(l)’ = —Asin65), + <—§+Arcost9)5’3, + 0. (172)
0
These expressions are given exactly by
fi’:pe—afi” ei’:peaei” ni = I’li/,
(0) (0) (0)
I'= 1"+ (ae™* = Asin@)rf"
(0) (0)
+ ! +1 Asing | n? (173)
——c+=--—r n'.
2 2 (0)

When the expansions of p, a, a, ¢ in powers of r given by
(79)—(82) are substituted into (173) and the results are in
turn substituted into (171) we arrive at (neglecting O3
terms) the predominantly Vaidya form

o e 1 . . - .
82T/ = = {—6emE cos 0 + 2e*E*sinfcos O} n' n’
r (0) (0)

1
+ 0 x =+ 0(r°). (174)
r
Since we are working in the Minkowskian neighborhood of
the world line » = 0 we can write this in the rectangular
Cartesian coordinates and time X', using n,ydx" = du =
(0)
k;dX" which follows from (16), as

| . o
82T = — {—6emE cos 0 + 2¢*E* sin cos O }k'k/
r

1
+ 0; x=4 0(r). (175)
r
The flux of 4-momentum across r = constant in the
direction of increasing r and between the future null cones
u = u; and u = u,, with u, > u; constants (see Fig. 1) is
given by ([10] with our sign conventions)

P / " du / Tiir ; sin 0dodg,

with the integration with respect to 6, ¢ over the ranges
0 <0 <rand 0 < ¢ < 2x respectively. With k' given by
(10) and the gradient of r given by (16) (remembering that
v* = Av? and v = Av*) evaluation of (176) using (175)
results in

(176)

. u A .
P = m2/ : ( + 16A>a’du +0(r) = 0, + O(r).

(177)

Expressing the residual 4-current (162) on the basis
(172), neglecting O; terms, and then changing from

coordinates x! to the rectangular Cartesians and time X i
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results in the residual 4-current in the Minkowskian
neighborhood of r = 0 in the background space-time being
given by

1 . .
Ji=- {(6mE cos @ — 3eE?(3cos’0 — 1))k’

r

. ok’
+ (=3mEsin @ + 2eE? sin cos 0) 50 }

1
+ 0, x —+ 0(r°). (178)
r
Hence the total residual charge C crossing r = constant in
the direction of increasing r and between the future null
cones u = u; and u = u, is

C=—p / /Jir,i sin0dodgp = 0, x r + 0(), (179)
u

where we have used the gradient of r given by (16) and thus
kir; =1 while (9k'/00)r; = 0.

V. DISCUSSION

It is interesting to compare the orders of magnitude of the
fluxes of 4-momentum and charge (177) and (179) with the
corresponding quantities in the case of the Bonnor-Vaidya
particle. In this case the residual energy-momentum-stress
tensor 77/ and the residual 4-current J” are given by (6)
and (7). The background space-time is Minkowskian
for 0 < r < +oo since there is no external field present.
Considering (6) and (7) as tensor fields on the
Minkowskian background and expressing them in terms
of the rectangular Cartesians and time X', in the manner of
Sec. IV, we have

2
i i <6mA§059_ 4e A;:OS 9) Kk (180)
87 r r
and
) 2e¢Acos@ .
J'=—-—>—K. (181)

I%

In this case for P! and C we find, in place of (177) and

(179),
. 2e? u,
Pl = (m——e—>/2a’du,
3r ”

and C = 0. If ¢ = 0 (Kinnersley case) we have “the rocket
effect” for which the total 4-momentum escaping across
r = constant in proper time u, — u; is precisely the differ-
ence in the particle 4-momentum between the end and the
beginning of this interval of proper time. This also applies
to the Bonnor-Vaidya particle in the limit » — +o0 as can
be seen from (182). In our case however we can only
compare (181) and (182) with (177) and (179) for small

(182)

positive powers of r and neglecting O5 terms. We see that
the introduction of an external field has removed ‘“the
rocket effect” at the expense of no longer having arbitrary
acceleration. Instead the acceleration is driven by the
external field according to the important formula (139).
Helpful background to the approach adopted in this paper
can be found in [11].
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APPENDIX: USEFUL FORMULAS

For use in Sec. II the nonvanishing tetrad components of
the Riemann tensor calculated on » = 0 using the functions
q>, Cp, A1, @y are

1

Riye))2) = §E2(1 — 6c0s%0) + C(3cos’0—1),  (Al)
R(l)(z)(z)(3> :(2E2 - 3C) sin @ cos 9, (A2)
2 3 .
Ry = | —E +§C sinfcosf,  (A3)
R(1y3)(1)3) = —3Csin’0, (A4)
1, 3,
Riyeym@ = —§E +C(1 —5sin 0), (A5)
R(1)3)3)4) = 3Csinbcosd, (A6)
3.,
Raywm@ = =7 Csin"0, (A7)
3 .
R(])(4)<3)(4) = ECSII’IQCOS 9, (AS)
Ri)3)2)3) =(-2E* + 3C)sin’0, (A9)
R — 2L sine) + o 1-2sin2
2B)0)@ = 3 + s ) + —3sin’ ),
(A10)

1, 3\,
Rowew = <—§E2 +ZC>Sln26” (AL1)

1
R(3>(4)(3)(4) = —§E2 - C(300829 bl 1) (AIZ)
For use in Sec. IV the components on the half null basis

(161) of the perturbed energy-momentum-stress tensor
(171) are
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1 1
T,=0; X+ 0; X + {3emEsin 0 — 2¢*E2 sin 0

1

x cos@ + O3} x —2 + {2eAEsin@cosf + O,} x —
r r

+ 0(r7), (A13)

1
+0';X—
7”

1 1 1
Tz 05X_+04X_+03X
. 1
+ {—6emE cos 0 4 2¢*E*(3cos*0 — 1) + O3} X —
.

. 1
+ {-3eEcosf + eAE(3cos’0 — 1) + O, } x —
p

+0(r?), (A14)
1 1
T'; OgX—+O3X +{ 3€ECOSQ
1
— eAE(3cos’0 — 1) + 0,} x—+ 0(r°), (A15)
r

1 1
T4 03X—+03X +{ 3€EC059

1
— eAE(3c0s’0 — 1) + 0,} x —+ 0(1°), (A16)
r
Ts=0,+0(r), (A17)
1
TG 03 X + 03 X + 02 X — + 01 + 0( ) (Alg)
1 - .
T7 = 03 x - + {—3¢Esin — 2¢AE sin@ cos 0
I
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