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A recently introduced approach to the classical gravitational dynamics of binary systems involves

intricate integrals (linked to a combination of nonlocal-in-time interactions with iterated 1;—potential

scattering) which have so far resisted attempts at their analytical evaluation. By using computing
techniques developed for the evaluation of multiloop Feynman integrals (notably harmonic polylogarithms
and Mellin transform) we show how to analytically compute all the integrals entering the nonlocal-in-time
contribution to the classical scattering angle at the sixth post-Newtonian accuracy, and at the seventh order
in Newton’s constant, G (corresponding to six-loop graphs in the diagrammatic representation of the

classical scattering angle).
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I. INTRODUCTION

The detection of the gravitational wave signals emitted
by compact binary systems [1] has opened a new path for
investigating the structure of the Universe, and offers a
novel tool for studying the gravitational interaction. The
full exploitation of this new observational tool poses,
however, the theoretical challenge to model with improved
accuracy the gravitational wave signals emitted during the
last orbits of coalescing black-hole binaries.

The latter theoretical challenge has recently motivated
the construction of a new approach [2] to the analytical
description of the classical conservative dynamics of binary
systems. The latter approach is based on a novel way of
combining results from several theoretical formalisms,
developed for studying the gravitational potential within
classical general relativity (GR): post-Newtonian (PN)
expansion, post-Minkowskian (PM) expansion, multipo-
lar-post-Minkowskian expansion, effective-field-theory,
gravitational self-force approach, and effective one-body
method. Another feature of the approach of Ref. [2] is to
combine knowledge from gauge-invariant observables of
bound motions, and from gauge-invariant observables of
scattering motions. In view of its characteristic multi-
pronged nature, we henceforth refer to the method of
Ref. [2] as the tutti frutti (TF) method.

The TF method has succeeded in pushing the state of the
art to the sixth post-Newtonian (6PN) accuracy in the con-
servative dynamics of binary systems [3-5]. More pre-
cisely, the TF method has determined the full structure of
two gauge-invariant characterizations of the 6PN-accurate
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dynamics: the scattering angle y, and the radial action /,,
both being considered as functions of the total center-
of-mass (c.m.) energy, E = /s, and of the total c.m.
angular momentum, J. Both quantities are given as double
expansions in powers of the gravitational constant G
(PM expansion), and of the inverse velocity of light 1/c
(PN expansion), each term of these expansions being a
polynomial in the symmetric mass ratio v = m;m,/
(m; + my)?. Most of the O(200) coefficients entering
the latter gauge-invariant characteristics of the 6PN dynam-
ics have been analytically obtained within the TF method
except for six coefficients entering the local-in-time
Hamiltonian. In addition, the explicit implementation of
the TF method requires the evaluation of a certain number
of “scattering integrals,” A,,,,.x, arising in the computation of
the nonlocal-in-time contribution to the scattering angle.
Previous work [5] only succeeded in analytically comput-
ing a fraction of the latter scattering integrals: namely the
Api’s for m =0, 1 and for (mnk) = (200), (221). Some
other scattering integrals [namely A,,; for (nk) = (20),
(40), (41), (42)] were only numerically evaluated (with a
modest, eight-digit accuracy).

Many computing techniques [6-22] have been devel-
oped for the evaluation of multiloop Feynman integrals. We
show here how the use of some of these techniques, notably
involving the use of Mellin transforms [8], harmonic
polylogarithms (HPL) [9], and expansion of hypergeomet-
ric functions about half-integer parameters [13], allows one
to derive the analytical values of all the scattering coef-
ficients A,,,;’s entering the nonlocal-in-time contribution at
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the seventh order in G, and at the 6PN accuracy (the G’
order corresponds to the value m = 3 of the first index m of
the scattering integrals A,,,;). In particular, the present
work will determine the exact, analytical values of the
O(GY) scattering integrals A, that were left undetermined
in Ref. [5], and which enter the full determination of the
6PN local-in-time dynamics, via the combination D,
defined as [see Eq. (6.29) of [5]]

1/5 15
D —;(_AZZI + < Ao +A242>- (1.1)

2 8

The present work is an extension of Ref. [23] which
derived the analytical expressions of the scattering coef-
ficients A,,; entering the nonlocal-in-time contribution at
the sixth order in G.

II. SETUP ON THE GR SIDE

The TF method extracts information from various
classical GR observables. In particular, one of the crucial
gauge-invariant observables used in this approach is the
conservative' classical scattering angle y during a gravi-
tational encounter, considered as a function of the total c.m.
energy, E = /s, the total c.m. angular momentum, J, and
the symmetric mass ratio v. We use the notation

myny

M =m; + my; —
1 2 H My + my

Sk mmy

M (my 4 my)?

(2.1)
The TF approach decomposes y(E, J;v) into three separate
contributions:

)((E, J, y) :)(loc,f +}(nonloc.h +)(f—h’ (22)
corresponding to an analogous decomposition of the total
Hamiltonian:  H(t) = H'°(¢) + H™"oeh (1) + AFPH(7).
Here y'°°f is the scattering angle that would be induced
by the (f-route) local-in-time piece of the Hamiltonian,
H™f(¢). By contrast, y"°"°N is induced by the (h-route)
nonlocal-in-time piece of the Hamiltonian, H™"och(z),
while the last contribution, ™, is induced by the com-
plementary (f-route) term A™H(z), which is algorithmi-
cally derived [5] from the v structure of y"°"°¢h  The
present work will focus on y"°"°¢" which is perturbatively
determined as a double expansion in powers of the
gravitational constant G (PM expansion), and of the inverse
velocity of light 1/c¢ (PN expansion). It is convenient to
express the combined PM + PN expansion of y"noch in
terms of the dimensionless variables

'See Refs. [24-27] for discussions including the radiation-
reaction contribution to the scattering angle.

cJ
Gm1m2

Po=1\/r" -1, and j= . (23)

where the dimensionless energy parameter y is defined in
terms of the total c.m. energy E = /s by

E* —mic* — mict

(2.4)

~<
1

2mymyc*

The variable y is equal both to the Lorentz factor between
the two incoming worldlines, and to the uc’-rescaled
effective energy E. entering the effective-one-body
description [28] of the binary dynamics.

As j « &, the PM expansion of y""°“! js equivalent to
an expansion in inverse powers of j, and reads

1 AG(Poov) | Al (Poos V)
loc,h . _ 4 0\ oo 1 \Foo>
Exnonoc (}/,J,l/) _+Vpoo< 4 + 3
J Pl
Al cor U Al cor U 1
+ 2(12’ .6 ) 3(137 N )4_0(._8))_
Pl Pl J

(2.5)

The last-written contribution o< A%(po,,v)/(p3j’) belongs
to the 7PM approximation, O(G’). The dimensionless
coefficients A/, (ps,v), m=0,1,2,3,..., then admit a PN
expansion, i.e., an expansion in powers of p, = O(%)
modulo logarithms of p.,, say

A (pm) = 3 [Ams ) + A8, 00105 | i (26)

n>0

The coefficient A,,,(v) is a polynomial in v of order n and

. dn-m Aot .
parametrizes a term of order 25—~ Y% (with m >0,
J o

n > 0) in the combined PM + PN expansion of the non-
local scattering angle. The leading-order contribution to the
nonlocal dynamics is at the combined 4PM and 4PN level,
i.e., «« G*/c® [29]. The corresponding nonlocal scattering
coefficient, coming from m = 0 and n = 0, is Al (pe,, v) =
z[-FIn(Eg) - %] + O(p%) [25]. The higher-order loga-
rithmic coefficients AN, (v) were analytically determined
[3-5] so that we shall henceforth focus on the nonlogar-
ithmic coefficients A,,, (v). Finally, the numerical scattering
coefficient A,,,; is defined as the coefficient of the kth
power of the symmetric mass ratio v in A,,,(v):

Amn(l/) = ZAmnkl/k’ (27)
k=0

with £k =0,1,2,....
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III. CLASSICAL PERTURBATIVE EXPANSION
OF THE NONLOCAL-IN-TIME
SCATTERING ANGLE

Reference [25] has derived a general link [valid to first
order in tail effects, i.e., up to O[(G*/c®)?] = O[G®/c'%] ]
between the nonlocal-in-time contribution y"omloch to
the scattering angle and the integrated nonlocal action.
Namely,

awnonloc,h(E J I/)
oJ ’

)(nonloc,h(E7 J, I/) — (31)

where

+o0

Wnonloc,h(E’ J; IJ) = / d¢HPonloc.h (l‘) (32)

(Se]

is the integrated (h-route) nonlocal action. The TF
method expresses the latter quantity by the following
explicit (regularized) twofold integral [to be evaluated
along a hyperbolic-motion solution of the local-in-time
Hamiltonian H'°%f(z)],

|

spli G 1 3 3
R0 =5 0@ v

L o) g
+ n (9072 Iabcd( )Iabcd(t/)

Here n = 1/c and the superscript in parentheses indicates
repeated time derivatives. The multipole moments /;, J;
denote the values of the canonical moments M, , S; entering
the PN-matched [29-33] multipolar-post-Minkowskian
(MPM) formalism [34], when they are reexpressed as
explicit functionals of the instantaneous state of the
binary system. These multipole moments parametrize
(in a minimal, gauge-fixed way) the exterior gravitational
field (and therefore the relevant coupling between the
system and a long-wavelength external radiation field).

The subscript 2PN on F3%(z,7) indicates that the
multipole moments must be individually evaluated with
the PN accuracy needed for knowing Fih(z,), and
the corresponding ordinary (non-time-split) gravitational
wave flux,

Forn(t) = Fin(t.1), (3.5)

with a fractional 2PN accuracy. More explicitly, this means
that we need the 2PN-accurate value of the quadrupole
moment expressed in terms of the material source [35,36].

2. . . . .
We consider the conservative dynamics of a binary system
interacting in a time-symmetric way.

4
to7 84 Jt(zh)c( )Jz(zb>c<t/)>:| .

+oo [+ dtdf
pnonloed — Ppf / / FI1,1) + 0(a?).

-7
(3.3)

Here, a = GE/c® = G+/s/c’; Pf, denotes the partie-finie
regularization of the logarithmically divergent # integration
at ¢ =t [using the harmonic-coordinate-based time scale
At =271 (1) /c]; and F(z,7') is the time-split version
(defined below) of the gravitational-wave energy flux
(absorbed and then) emitted by the system.2 The nonlocal
expansion (3.3) is keyed by successive powers of a. The
O(a) term is called first-order tail; the O(a?) is the second-
order tail contribution, etc. The effects linked to the second-
order tail contribution have been analytically derived in [5],
at the combined 6PM and 5.5PN accuracy. [The next
term in the PN expansion of the second-order tail con-
tribution is at the 6.5PN level, which is beyond the accuracy
sought for in the present work.]

We shall deal first with terms belonging to the O(«),
first-order tail contribution explicated above. The time-split
version of the gravitational-wave energy flux is given, at
the needed accuracy, by

1@ (4) [y 16 3 @)y
— L (), (t)+—=J,(t)]  (t
189 abc( ) abc( ) 45 ab ( ) ab( )

(3.4)

|
The other moments (the electric octupole moment /;j;, the
electric hexadecapole moment, /;;;, the magnetic quadru-
pole moment, J;;, and the magnetic octupole moment, J, ;)
need only to be known at the 1PN fractional accuracy
[30,31,37]. Their explicit expressions (in the center-of-
mass harmonic coordinate frame) have been recalled in
Eq. (3.3) and in Table I of Ref. [5].
Introducing the shorthand notation

(F). = /_ T atF (), (3.6)

(e8]

and expressing the partie-finie operation Pf,, entering
Eg. (3.3) in terms of a partie-finie operation Pf5 /. involving
an intermediate length scale s, we decompose the nonlocal
integrated action W"°"°“h into two contributions:

anonloc,h(E7 ]) — thail,h(E’ ]) + Wtzail'h(E,j) + 0((12)’
(3.7)

where

WA ) E_a<Pf2S . / = |f;1§;§( /)> . (338)
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and

WE(E, j) = 205<-7:2PN<f) In (@) >00. (3.9)

The integrated nonlocal action W™°eh(E j) "and therefore
each partial contribution, Egs. (3.8) and (3.9), has to be
evaluated along a 2PN-accurate hyperbolic motion.

IV. QUASI-KEPLERIAN PARAMETRIZATION
OF THE HYPERBOLIC MOTION, AND ITS
LARGE-ECCENTRICITY EXPANSION

In view of Eq. (3.1), the PM expansion (2.5) of y"°"och jg
equivalent to the following expansion of the integrated
nonlocal action W™Moch(E ) in inverse powers of j,

W Sit) __yp, (Ahlmet) | M)
2Gmim, >\ 737 4peoj’
+A§(Poo”/)+Aél(poo’”)+0 l
5 2 5 6p3. i i7 ’
pLj P J

Remembering the proportionality between j = cJ/(Gmm,)
and the impact parameter b (via J = bP., , where P, is
the c.m. linear momentum of each body), we see that the
computation of the scattering coefficients A" (p.,v)
amounts to expanding the integrated nonlocal action in
inverse powers of b. An explicit way to compute the
large-impact-parameter expansion of W™°noch ig to use the
quasi-Keplerian parametrization [38] of the 2PN-accurate
hyperbolic-motion solution [39] of the 2PN dynamics of a
binary system in harmonic coordinates [40,41].

The hyperbolic quasi-Keplerian parametrization involves
a semi-major-axis-like quantity a,, together with several
eccentricity-like quantities e, e,,e;. The variable para-
metrizing the time development is an eccentric-anomaly-
like (hyperbolic) angle v varying from —oo to +oo:

r=a,(e.coshv—1),
£=n(t—tp)=e;sinhv—v+f,V(v)+gsinV(v),

n
¢ 4)_—](@0 =V(v)+ fysin2V(v) + g, sin3V(v).

(4.2)

Here, we use adimensionalized variables (and ¢ = 1),
notably r = PV /(GM), t = PV /(GM), while V(v) is
given by

v
V(v) = 2 arctan [Qe¢ tanhﬂ, (4.3)

where

. e(/,-f—l
€ €¢—1.

(4.4)

The expressions [as functions of the specific binding
energy E = (E — Mc?)/(uc?) and of the dimensionless
angular momentum j = ¢J/(GMpu)] of the orbital param-
eters 71 (hyperbolic mean motion) and K (hyperbolic peri-
astron precession), as well as a,, e, e, ey, [+, 91, f 4+ 94- can
be found in Appendix A of Ref. [5]. Let us only recall here the
expressions of @,, and e, in terms of E and j:

e2 =1+2E> + E5Ej?(v—3) +2v— 12]?

E
2 [(402 + 80 — 450) B2
J
+ (* + T4v + 30)Ej* + 560 — 32)n* (4.5)

When using this quasi-Keplerian parametrization, the com-
bined PM + PN expansion of Wmnloch(y j-1) can be con-
structed from the combined large-e, 4 large-a, expansion of
the function W™°ch(e 4 ). On the one hand, as the tail
action starts at the 4PN level, we need to work to the next-to-
next-to-leading-order (NNLO) in a—l’ ~ ’2—‘%; in order to reach the
6PN accuracy. On the other hand, as the tail action starts at the
4PM level [O(G*)], we need to work to the next-to-next-to-
next-to-leading-order (N3LO) in eL, in order to reach the 7PM,

O(G"), accuracy (seventh order in }).

Without presenting too many technical details, let us
illustrate the origin of some of the structures entering the
scattering integrals A,,,; by explaining how one can
compute the large-eccentricity expansion of the crucial
nonlocal integral

entering W"°"l°¢h_The first step is to introduce the auxiliary
time variable T € [—1, 1]:

(4.6)

T= tanh%. (4.7)

In terms of this variable, the 2PN-accurate functional

relation between the original (rescaled) time variable ¢ =
tP ys

cn and the hyperbolic eccentric anomaly v reads
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2 T
t= ﬁ etm - arctanh(T)
QT

+ f[ arctan (Qe¢ T)—'-g[ ﬁ s
€p

(4.8)

with a corresponding expression for # vs T’ = tanh % One
then forms |7 — 7|, whose 2PN-accurate large-eccentricity
expansion reads

1+7T 32

t—t|=T-T——57——5-0" "¢,
=t =T =Ty e

| =

;,]2 1 4
X [2—(1 +2y)a—+1(8v2—8y— 1) 2}

S]]

r

2 4
Py =Pi(T,.T') +Pp(T,T') Z— +Pu(T.T) %7
"t
Py = Poul(T, T’)37
't
P3 = Pau(T, T');- (4.10)

Let us illustrate the structure of the coefficients P,,,, (T, T")
entering the P,’s by citing the expressions of the first few
of them. Introducing the shorthand notation

At(T,T') = arctan(T) — arctan(7"),

X [1 +el731 +l2732 +l3733+0<i4>], (4.9) Ath(T,T') = arctanh(T') — arctanh(7"),  (4.11)
r er er er
with coefficients Py, P, and P; of the form we have
(1-T2)(1-1?
.7 =— Ath(T, T'),
1
Pu(T.T') = 3 (=8 +3)Pio(T.T').
1 1 (TT = 1)(1 =T?)(1 -T?)
T.7")=-v(-29+3 T,T7') +-v(-15 ,
7)14( ) SU( + Z/)P10< )+81/( +U)(1+T’2)(1+T2)(TT/+1)
3 (1=T7%)(1-T?) 1 TT'(1-T%)(1-T7)
T,7)=—=(-5+2 AT, T +-v(v—1
P24( s ) 2( 5+ y)(TT/+1)(T—T/) t( s )+2y(1/ 5) (1+T2)2(1+T/2)2
1 (1 _ T2)2(1 _ T/2)2 (T2T12 + 1)(T2 + TI2)
——(16 —43 2 2(—4+7 )
g T T R S e e T )
3 1 TT(TT - 1)(1 =T"%)(1 - T?)
T.7)==(-4+7 7,7 —-v(v—15
PolT.T) =3 (=4 + TP (T.T') = 30lv = 19) s s
1 TT - 1)(1=T*)(1 =T*)[(TT' + 1)* = (T = T")*|(TT' = 1)> = (T + T')?
Lt oy oy TT =D == P)IT 4 12 = (1 = TPI[IT = 1) = (T 7))
8 (TT' + 1)(1 + T*)*(1 +T7)
TT = 1)(1 =T%)(1 = T?)[T*(1 + T?)?> + T*(1 + T?%)?
+6(—5+2y)( I ,)( ) 2(:— )/2+3 a+7) ] (4.12)
(TT' + 1)1+ T (1 +T7)
Using the above relations one can compute the large-eccentricity expansion of the measure
drdt 1 dt dr
7deT’ = dM(T,T')' (413)

lt—7|  |((T) = ¢(T")|dT dT’

Its schematic 2PN-accurate structure reads

(1+T72)(1 + T?)dTdT’

dM(T.T/) = 2€r6_l§/2 |:1 - 2q n 8&2

1
X (1+M1+Ni2+/\/i3+0<—4

; >) (4.14)

r r r

14+ 2v 2_1—i—81/—81/2 4} "
(

1=-T?(1-TH(1+TT)|T - T
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where we have explicitly shown only the LO contribution
in the large-eccentricity expansion. The NLO, NNLO and
N3LO contributions [respectively described by the coeffi-
cients M (T, T";v, 1), My(T, T ;v, 1) and M5(T, T';v,17)]
have long expressions that we do not explicitly display
here. Let us simply note that [recalling the defini-
tions Eq. (4.11)] M(T,T';v,n) involves the function
Ath(T,T') linearly, M,(T,T';v,n) involves Ath(T,T’),
Ath®(T,T') and A«(T,T'), while M5(T,T';v,7) involves
Ath(T,T'), Ath*(T,T'), Ath*(T,T') as well as At(T,T")
and Ath(T, T)A«(T, T").

As illustrated here, apart from rational functions of 7" and
T’, the large-eccentricity expansion has a polynomial
dependence on the transcendental functions arctan(7),
arctan(7"), arctanh(7') and arctanh(7"). Using these expan-
sions (as well as corresponding expansions of the various
multipole moments), one finally gets explicit integral
expressions for the scattering coefficients A,,,; of the form

+1 +1 dT7dT’
mnk / / |T T/

with integrands a,,,; (T, T") of the form

mnk(T T/) (415)

Qye(T.T') =Y Ru#(T. T')Ath(T, T')? At(T, T')1,

2.g>0
(4.16)

where RZ’;”‘(T, T') are rational functions of 7 and T’,
and where we used the shorthands (4.11). The highest
power of Ath(T,T’) = arctanh(7) — arctanh(7’) in this
expression is directly equal to the order of expansion in
ei’ (and therefore in G, recalling the leading-order expres-

sion e, ~ v/ 1 + 2Ej?) of the relativistic hyperbolic motion.
Reference [5] succeeded in analytically computing (up to
the 6PN accuracy) the numerical coefficients A,,,; when
m =0 (G* level) and m = 1 (G level). By contrast, the
integrands of Eq. (4.15) become so involved when m = 2
and m = 3 (G° and G levels) that most of them resisted
analytical integration by standard integration methods.

V. MULTIPLE POLYLOGARITHMS AND
HARMONIC POLYLOGARITHMS

To determine the analytic expressions of the scattering
integrals A,,; we follow one of the strategies used in the
realm of multiloop Feynman calculus, namely the reduction
to iterated integrals [6,7,9—-12,14-22]. Given a sequence of
univariate functions g, (x), g4, (x),.... g, (x), assumed
(say) to be regular at x = 0, iterated integrals are recur-
sively defined by G(ay.ay,...,a,:x) = [§dtg, (1)) X
G(ay, ...,a,;t;), with the starting value G(@;x) = 1.
The simplest class of iterated integrals are the multiple
polylogarithms defined by considering a sequence of

inverse-linear functions: g, (x) = (x —a;)~". These were
introduced by Poincaré [42], and have been the topic of
many mathematical studies, e.g., [43—47]. They also came
up as important tools for expressing certain multiloop
Feynman integrals [17,48]. On the other hand, from the
practical point of view, a subclass of the multiple loga-
rithms, the harmonic polylogarithms (HPL) [9], has turned
out to be sufficient, and very useful, to express many
Feynman integrals. They are defined by restricting the
singular points a; entering G(ay, a,, ..., a,;x) to taking
one of the three values +1,—1 or 0, and by normalizing
the inverse-linear factors in a slightly different way.
Specifically, the HPLs are defined as the recursive integrals,

Hyooo(x) = / g () H, (1), (5.0)

with f4(x) = (1 F x)7!, fo(x) = 1/x, and a regulariza-
tion at x = 0 such that Hy,_  o(x) =1In"(x)/n!.

A crucial feature of the multiple polylogarithms, and
therefore of the HPLs, is that they enjoy special alge-
braic properties, going under the names of shuffle algebra,
stuffle algebra, scaling invariance, shuffle-antipode rela-
tions, Holder convolution, integration-by-parts identities,
etc. In addition, all these special algebraic properties
respect a filtration by the weight, i.e., by the number n
of singular values, a;, a,, ..., a,, or the number n of indices
on H;; ; (x). The weight corresponds to the number of
iterations appearing in the nested integral representation.
For instance, at weight 1 a multiple polylogarithm is a
simple logarithm, while at weight 2, it is a linear combi-
nation of a dilogarithm and a squared logarithm. The
remarkable algebraic properties of multiple polylogarithms
(and HPLs) allow one to express them algebraically, at any
given weight n, in terms of a minimal subset of them,
having weights n’ < n. For instance, at weights n = 2, 3,
and 4 the minimal subsets are formed by 3, 8, and 18
elements, respectively. In addition, their evaluation for
special values of their arguments a, a,, ..., a,; x can often
be reduced to a relatively small number of transcendental
constants. This is particularly the case if, besides 0O, the
arguments ai, d,, ..., d,; x are roots of unity. For introduc-
tions to the vast literature on the properties, and evaluation,
of multiple polylogarithms and HPLs (including computer-
program implementations) see, e.g., [10-12,14,15,17-19,
21,22,43,44,49,50].

VI. ANALYTIC EVALUATION OF THE O(G®)
SCATTERING INTEGRALS VIA HARMONIC
POLYLOGARITHMS

Let us now sketch how we could analytically compute
the O(G®) scattering integrals, i.e., Eq. (4.15), with m = 2,
by reducing these twofold definite integrals to the evalu-
ation of HPLs, of weight < 4, for the values x = 1, i of the
HPL variable.
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First, using symmetry properties of the integrands
amnk(T,T') entering Eq. (4.16), it is possible to reduce
the double integration to the triangle 0 <7 < 1,0 < 7T' < T.
Let us start by discussing the integration over 7’ on the
interval 0 < 7" < T. The crucial information needed for
discussing this first integration concerns the structure of
the integrands a,,,; (T, T"), and particularly of the denom-
inators entering the rational coefficients R72*(T,T’) in
Eq. (4.16), when m = 2. To be concrete, let us discuss the
case (mnk) = (242) and exhibit one representative part of
the integrand a,4, (7, T"). It reads

—16(1=T2)3(1-T7)3P,(T.T")
3I5(1+T2)¥ (1 + 1)1 +TT)(T-T')3
(T-1')?
2(1-T2)?

x {[arctanh(T) —arctanh(T")]? - (T-T)* }

T2(1-172)
(6.1)

where P,(T,T') is a (symmetric) polynomial in 7 and 77,
of order 14 in both variables. By partial fractioning (6.1)
with respect to 7" (keeping T fixed) one is reduced to
evaluating integrals of the type

arctanh” (T")
/drm, (6.2)
where p =0, 1,2, 1 < ¢ <8 and a::I:i,—%,T or 1.

Integrating by parts (with respect to T”), one can reduce
the power ¢ down to ¢ = 1. At this stage, remembering
that arctanh(7) = 1In((1 4 7)/(1 = T)) [and arctan(T) =
arctanh(iT)/i for other denominators] are (as explained
above) of weight 1, we see that the highest-weight term in
the numerator, o In?>((1 + 7")/(1 = T")), is of weight 2,
so that its integration over T’ with the additional kernel
(T' — a)~" will generate terms of weight 3. The explicit
computation of the needed integration over 7" € [0, T},
with the values of a listed above, is found to involve at most

the trilogarithm Li;(z) at the rational arguments z = — 1t

_ (1472
or z = —(7)%

Having so obtained an explicit weight-3 expression for
the result of the integration over 7/, we need to perform

the final integration over 7 € [0, 1]. This is done in three
steps. The first step is the same that was used for the
T’ integration. There are now polynomial denominators
involving powers of T2 + 1, powers of T % 1, and also
powers of T. Partial fractioning, and integrating by parts,
one can reduce these powers to the first power. Second, we
use the definition of HPLs to express the integrals con-
taining 7' and (T £ 1)~! in terms of HPLs. Third, we
consider the integrals containing (7 4= i)~': these cannot be
directly cast in HPL format (which admits poles only at
T = 0,£1). Therefore, we modify the integrands by the
insertion of a parameter x, to be later replaced by a suitable
value, so as to obtain the original integral back. Following
a technique introduced many years ago to analytically
evaluate multiloop Feynman integrals [6,7], the integral,
now function of x, is reduced to iterated integrals of the
type [§dx;(x; —ay)™ [ dxy(x, —ay)7"..., by combin-
ing repeated differentiations with respect to x with partial
fractioning, and integrations by parts, followed by quad-
ratures to get back the original integral.

Let us show an example of this technique: all the A,,;
integrals contain, after the 7" integration, the same combi-
nation of integrals of weight w = 4,

. /ldT-zln (177) — 3Lis[~ (1+T)2], (6.3)

J =
R

We modify the integral (6.3), to let it acquire a dependence
on the new parameter x, i.e., J—J (x), in the following
way:

J(x) E%ldm—ﬁ)
3Lis|({57r)

—2In’ (1+T) (57 (1+x)
2x(T +x)(T + 1/x)

(6.4)

It is easily seen that the original integral is recovered at the
value x =i, that is J=J(i), and that J(1) =0. By
differentiating and reintegrating 3 times over x, on the
model of J(x) = [{ dx(dJ(x)/dx), J(x) can be expressed
in terms of HPLs at weight w < 4; namely,

23 21 3 21
iJ(x) = mﬂ —211n(2)¢(3) + 72 In?(2) — In*(2) — 24a, + 7H_1 (x)¢(3) - §H0(x)C(3) + 7H1 (x)¢(3)
1 1 3 3 3 3
+§7T2H0, 1(x) +5 37 Ho, (x )_EﬂzH—l,—l(x)_E”ZH—I,I(X)_EﬂzHl,—l(x)_iﬂzHl,l(x)

+6Hy_110(x

- 6H_1’_1,1,0(x) - 6H—1,1,—1,0(X) - 6H—1,1,1,0(x)

—6H, __10(%)
- 6H1!111Y0(x) + 12H0’_1’_1 (X) 1[1(2) + 12H0’_1’1(x) ln(2)

)
+12H ;1 (x) ln( )+ 12H ;1 (x) In(2) — 12H _ _y 4 (x) + 6Ho_y _j o(x) = 12H_y 1 - (x)
)= 12H 1 _1 1(x) +6Hq 1 _10(x) = 12H 11 -1 (x) + 6Hg 1 1 o(%)

- 6H_1‘_1’_1,0(x)
- 6H1,—1,i,0<x) - 6H1,1’_1’0(x)

(6.5)
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TABLE 1. Analytical results for the O(G®) scattering coeffi-
cients Ay,.

Coefficient Value

o —2-2p0

v Ao ~4 = B 0) + 4 0)
i 192.4 20¢(3)
. i | o) )
e R | 150010(0) - S8 )
7 Ay, — SBIISL_ 100935 (3

This result expresses J = J(i) in terms of the values at the
fourth root of unity, i, of HPLs of weight w < 4 [together
with a, = Lig(1/2), and lower-weight quantities such as 7
and ¢(3)]. Using [12], we expressed the needed values
of the HPLs at x =i in terms of a small subset of
irreducible constants of weight w <4; namely, K=
ImLiy (i) = Y% (~1)"/(2n + 1)> (Catalan’s constant),
Qs =ImH (i), Q4 = ImH, 1 ,(i), a4 = Liy(1/2) and
fA(4) = ImLiy(i). The irreducible weight-4 constants are
found to cancel when evaluating J = J(i) by means of
Eq. (6.5) to yield
J=1J() = Lk + 2zrg(3)
2 2 )
Applying our technique to all the scattering integrals A,,,;,
we found that they could all be expressed in terms of the
values of HPLs of weight w < 4 at the arguments x = 1 or
x = i. Similarly to what happens for J = J(i), the irreduc-
ible weight-4 constants are found to cancel in the evaluation
of all the scattering integrals A,,;. Actually, the final results
for the A,,,;’s are found to factorize as the product of 7 with
constants of weight < 3. For instance, we found

583751 100935
Ay = —7T< + 5(3))

(6.6)

864 64 (67)

Our complete analytical results for the A,,;’s are listed
in Table I. We give below the relations between such
coefficients and those used in Ref. [5] to parametrize the
(nonlogarithmic) part of the scattering angle [see Eq. (4.15)
there]

7™ Ago = doo,
77 Ay = dag + 3dg.
77 Apy = dy — 2dy,

3
7 Aggp = dog + dyo + Edoo,

11
7 Ay = dy — ?doo + dyy — 2dyy,

7' Appy = dyy — 2dy; + 3dyy. (6.8)

Further details about our integration procedures, and our
intermediate results, are provided in the Supplemental
Material [51].

VIL. EVALUATION OF THE 0(G")
SCATTERING INTEGRALS

Atthe O(G’) level, i.e., for the integrals A,,,; with index
m = 3, the structure of the integrands a,,,,; (T, T') becomes
more complex. The rational functions R*(T, T') entering
as coefficients in Eq. (4.16) involve higher-order poly-
nomials in their numerators, but their most important
feature, namely the location of the poles in the denomi-
nators, stays the same as at the O(G®) level. Again the
poles are located at T = 7", T = —1/T', T = +1, T = +i,
T'=+1 and T’ = +i. However, an important change
concerns the powers p and ¢ with which the func-
tions A#(T,T') = arctan(T) — arctan(7") and Ath(T,T') =
arctanh(7) — arctanh(7") enter the numerator of a,,,,,; (T, T").
At the O(G") level, we have the values (p,q) = (0,0),
(1,0),(2,0),(3,0),(0,1),(1,1). In particular, the highest
value of p + ¢ is 3, and is reached via the presence of a
term proportional to Ath*(T,T’). We already noticed that
both Ath(T,T') and A¢(T, T") are of weight 1. The integrand
R3(T, T')Ath*(T, T') is therefore of weight 3. Its double
integral over T and T can therefore be a priori expected
to be of weight 5.

We succeeded in finding the analytic expressions of the
O(G’) integrals entering the 6PN nonlocal scattering angle
by using several methods. As a preliminary method, we
combined very-high-precision (200 digits) numerical com-
putation of the integrals (using a double-exponential
change of variables [52]) with the PSLQ algorithm [53]
and a basis of transcendental constants indicated by the
structure of the integrands. Let us recall that such an
experimental mathematics strategy is often used in the realm
of multiloop Feynman calculus, when a direct analytic
integration seems prohibitive, see e.g., Refs. [48,54,55].
Previous uses of experimental mathematics and high-
precision arithmetics within studies of binary systems
include Refs. [56-58]. We note in passing that one of the
integrals (in momentum space) contributing to the 4PN-static
term of the two-body potential, used in [58] and originally
obtained by analytic recognition [59], was later analytically
confirmed by direct integration (in position space) [60].

The application of experimental mathematics to the As,,;
integrals has shown that, similarly to what happened for
the A,,; integrals, the final results were simpler than what
was a priori expected. In particular, we found that the
final results do not go beyond weight 4, and that the only
weight-4 quantity entering (some of) the results is simply
{(4) «x 7t

Having obtained such simple semianalytic expressions
for the As,; integrals, we embarked on confirming them
by means of a purely analytical derivation. We found that
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an efficient method for doing so was to reformulate
the time-domain integral defining the integrated action
Eq. (3.3) in frequency space. Actually, when decomposing
wrenloch(E Y in the two contributions entering Eq. (3.7), the
most difficult one to evaluate is

ai . © di' i
Wt] l’h(E,])E—a<Pf25/C/ mf;}])pll\t](t,t,>> . (71)

In order to express thaﬂ‘h (E, j) in the frequency domain, the
first step is to Fourier transform’ the multipole moments.
For example,

todw . oa
L= [ Ee i), (02
where
A +oo .
(@) = / dre™' L (1), (7.3)
with the associated PN expansion
Tp(w) = Iy () + 7155 ()
+n* 5N (@) + 0 (). (7.4)

Inserting these Fourier representations into Eq. (7.1) then
yields (see Sec. V of Ref. [25] for details)

; G’Hy [ 2
Wt]aﬂ’h(E,j):2—5t°t dok(w)In (a)—seV), (7.5)
c 0 C
where
L o5 2
K(@) = £ 1,y(@)
o® . 16 -
2 TP + 32 0 Uun(oP
10 8
41 P 2,9 5 2
1, — | abe , 7.6
1 g a0 + g DallP] . 79

and we have used the result

Pf; / T a0 n(lw|Ter), (7.7)
0

T
with y = 0.577215.... Note the close link between the
expression (7.5) for W™ (E, j) and the frequency-domain

expression of the total energy flux emitted during the
scattering process, namely

3In the following, we use GM = 1, i.e., we work with GM-
rescaled time and frequency variables.

AEgy =2 / ™ dok(w). (7.8)

ic

The difference between the two expressions is embodied in
the logarithmic factor In (w2 e7), which is characteristic of
the tail in the frequency domain [61].

The relation between AEgy and W™ (E, j) is clarified
by stating them in the framework of the Mellin transform.
Let us first note that it is convenient to replace the
frequency w by the variable u, using

W= e,Tuf/Q’ (7.9)
so that Eq. (7.5) becomes”
WYINE, j) = 2Ina,GH o AEGy
42 G;I;ml erc%/z A " duk(u)Inu, (7.10)
where
AEgy = J%er%/z Am duk(u),  (1.11)
with
K(u) = IC(m)|w:u/(€'_d3/z), (7.12)
and
a :C:;?/zer. (7.13)

We recall that the Mellin transform of a function f(u) (with
u € [0, +oo|) is defined as

g(s) = M{f(u); s} = /O S fw)du.  (7.14)

It is then easily seen that the first two terms of the Taylor
expansion of g(s) around s = 1 are respectively given by

o(1) = / ® f(u)du. (7.15)

and

dg(s)
ds

(7.16)

= /oof(u) In udu.
s=1 0

“We take here e, and a,, as fundamental variables. At any stage
of the calculation these can be reexpressed, via Eq. (4.5), as
functions of E and j.
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This shows the possible usefulness of the Mellin transform
in connecting W™ to AEgy.

We have indeed been able to use the Mellin transform to
analytically compute all the scattering integrals at O(G’),
i.e., the values of the integrals appearing in the double
PN + PM (or 5* — e;!) expansion of

/mmmmmmmmww (7.17)
0
where
[K(M)]PNJrPM
= KR%(u) + P KKh () + 4’C%19N( )
1 n*
+6—K§Lo(u)+—’0§%£( >+ ’Csz%?( )
1
IO + L NO ) + LN
1 3 7]2 3 3
+;’C§ Lo(u)+;/@’pho(u)+ ’CS’pkO( ), (7.18)

as well as their simpler analogs appearing in the double

7> — ey expansion of

/ % dulfC(u) PN, (7.19)

0

The starting point of this approach rests on the simple value
of the Fourier transform of the multipole moments at the
lowest PN order, i.e., at the Newtonian order [O(#°)], but at

all orders in el
r

) = KR + - KEO () + 5 KNO() 4

r r

(7.20)

In the elliptic-motion case, it is well known that the
(discrete) Fourier expansion of the Newtonian multipole

hyperbolic-motion case the (continuous) Fourier transform
of the Newtonian-level multipole moments involve inte-
grals of the form

/oo edsinhvo=(p+k)v 7, — 2e—i’2-’(P+k)Kp+k(u)’ (7'21)

involving the modified Bessel function K., (u) of real
argument u, Eq. (7.9), but of order p + k, where k = 0,

+1, ... is an integer, while p defined as
p= i, q = iu, (7.22)
er

is purely imaginary, and u dependent. The Newtonian-level
energy integrand [/C(u)]y is quadratic in time derivatives of
the Newtonian multipole moments. Remembering the fact
that the variable u is proportional to the frequency, [K(u)]y
therefore involves functions of the type

WK i (0K o, (). (7.23)
with some integers ki, k,, k5.

There are several technical features which allow one to
compute integrals involving bilinear quantities in Bessel K
functions of the type (7.23). First, the Mellin transform
gk (83, v) of the function fxg (u; p,v) = K, (u)K,(u) has

a simple explicit expression, namely
s+u+v s—u+ 1/)

() (s

gxk (s34, V) )
o)

2
Differentiating the result (7.24) with respect to the Mellin
parameter s then allows one to compute the In u-weighted
integral of integrands of the form (7.23).
The situation becomes more involved when going beyond
the Newtonian level. Indeed, the post-Newtonian-level

Fourier-domain integrands K1 (u), KN (u), etc. can

(7.24)

moments involve ordinary Bessel functions, namely  no longer be explicitly computed. For instance, the 1PN-
Jpik(pes), where p and k are integers. In the level, ;-NLO term K5{ (u) reads
|
16 141 122 653 333u®> 39
NLO — .3 —4 - \K 2 2__K 4 _ - ZI\K
00 = 57| (= 460 = 20w + 32 (o = $35) Kok o+ (w8 = 0= )
48 , [ v\ | . .
—5 dv arctan tanhi sinh 2v(K(u) 4+ 2uK(u)) cos(u sinh v)
T -0
1
+5 (cosh3v — 5 cosh v)(uKy(u) + K (u)) sin(u sinh v)}
64 21u?> 3 6 95 23u* 21
—ibﬁ [(u4 T _4_1) Ko(u)? —§u<u + 24> Ko(u)K,(u) + <u4 =0 —%> Kl(u)z] v. (7.25)
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TABLE II.  Analytical results for the O(G’) scattering coef-
ficients As.
Coefficient Value
79936 _ 18688 88576
Azo0 s — 15 In(2) = 552L(3)
2239456 _ 568448 64256 621 4
As is7s° — 105 10(2) = %5557 ¢(3) =557
384 | 96512 901632
Az —i75 755 In(2) +=575=4(3)
57597448 | 1175968 135861232
Asa 51975 T 567 In(2) + 17325 3)
16848 2 | 31779 4
— o e
25 448
1677767408 | 22912832 12013696
Az —os0875 T 1505 In(2) 3465 ¢(3)
14067 _4
+an 7
5455648 _ 237824 132771328
Az =505 — =15 In(2) - Sgs €0)

Here, the terms on the second and third lines involve
an integral over v which cannot be explicitly evaluated.
[This wv-integral comes from the original integral
[ dte™ 1, (1) = fdv%:)e"“”(wlab...(t(v)) defining the
Fourier-transformed multipole moments, when inserting
for the function #(v) the PN + eccentricity expansion of the
relativistic Kepler equation, see Eq. (4.2), which notably
involves the (large-eccentricity-expanded) function V(v),
Eq. (4.3).] However, it is still possible to analytically
evaluate the resulting double integral [dulnu [dv[ -]
by integrating first over u (using Mellin-transform pro-
perties to replace the Inu factor by an s derivative),
and then integrating over v. These computations could
be done because we could obtain explicit expressions
for the Mellin transforms gg.q(s;v, v) and gggn(s; v, v)
of the functions

Sxeos(Us v, v) = K, (u) cos(u sinh v), (7.26)

and

Sxsin(usv,v) = K, (1) sin(u sinh v), (7.27)

which appear in Eq. (7.25), and also at higher PN orders.
See Eq. (A12).

Last, but not least, we are interested in expanding
the integrals in the large eccentricity limit, e, — oo. In
this limit, the u-dependent order p =  tends to zero, so

€r
that the eL, expansion is equivalent to evaluating deriv-
atives with respect to the order, v, of Bessel K,
functions.

Using all those technical features of the frequency-
domain integrals [as well as the program HYPEXP2 [13],
which allows one to evaluate the Taylor expansion of
hypergeometric functions around half-integer values of
their parameters, see Eq. (A26)], we were able to derive
analytic expressions for all the scattering coefficients As,,;

(which confirmed the results previously obtained by
experimental mathematics techniques). More technical
details on our analytical derivations are given in
Appendix A. The final results for the N3LO scattering
coefficients As,; appearing at the 6PN level are listed in
Table II.

VIIL FINAL RESULTS FOR THE NONLOCAL
CONTRIBUTIONS TO THE SCATTERING
ANGLE AT 0(G")

As briefly recalled in Sec. II, there are three types of
contributions to the scattering angle, as displayed in
Eq. (2.2): the f-route local contribution ;(}?C’f, the h-route

nonlocal contribution y"°"°Pand the additional contri-

bution ™. The f-route local contribution, yi was

computed (at the 6PN accuracy) up to G’ included in
Ref. [4] [see Eq. (8.2) there]. The two remaining contri-
butions are related to nonlocal effects. Previous results
[2-5] on y2°M*" and 4t were complete only up to order
G°. Here, we shall give complete results up to order G’,
within the 6PN accuracy.

The h-route nonlocal contribution y"°Moch i
Eq. (2.2), is directly linked [via Eq. (3.1)] to the integrated
nonlocal action Wronoeh(E J: 1), Egs. (3.2) and (3.3). The
work done in the sections above has allowed us to derive
the analytical expressions of the expansion coefficients
A, parametrizing WMoeh(E Ji1), and  therefore
oot [ag per Eq. (2.5)]. We gather the final results
for the function y"Mo¢h(y j 1) in the following
subsection.

The last contribution, »'" in Eq. (2.2) to the
scattering angle is indirectly related to nonlocal effects.
As explained in Refs. [3-5], this additional contribution
is defined as

1 1
5)(”‘ (r.jiv) =

fh(, -
W) g
2M-v aj
where Witi(y, j;v) is the additional contribution to the
integrated action related to the use of a suitably flexed
partie-finie scale f(t)At" = 2f(t)r",(t)/c in the defini-
tion of the nonlocal Hamiltonian. This generates the
following result for Wi:

GH tot

W = 2 S / AFI 6 ) In(f(). (8.2)

As discussed in Refs. [3-5], the flexibility factor
is determined, modulo some gauge freedom, by the
few contributions to the function y""°¢N(y, j 1) that
violate the simple v-dependence rules [62] satisfied by
the total scattering angle y''. The resulting value of
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7™ (y,j;v) will be discussed in the second subsec-

will be shown as a 6PN-accurate expansion (keyed by the

tion below. powers of p,, = +/y> — 1) of the type
Before listing our results for the various contributions to
the scattering angle, let us recall our conventional definition ha hadPN |  haSPN |  ha.6PN
of the expansion coefficients in the large-j limit (which A =X T T ’ (8.7)
include a factor §):
and
1
Xy, jsv) X” (8.3)
n>1 2.&2 _ EaZSSPN (88)
with
| Note that the third-order-tail contribution starts at the 7PN
L1 v) = 00 (i) + 20 (3 0). (8.4)  level, which is beyond the PN accuracy sought for in the
present work.
The various pieces of the nonlocal part
nonloc, nonloc,h /. f-h(,,. A. The h-route first-order-tail contribution
n 9 7 n 9 3 8.5 .
X (riv) =2 (rsv) +a07 (1) (85) to the scattering angle
with The %—expansion coefficients of the 4 + 5 4+ 6PN con-
" 2 tribution to the first-order-tail part of the scattering angle
PN BT 4 0@), (86)  are given by
|
[ 37 (p 63
_1 ha4PN _-r o\ _ Y 4
)(4 I 5 1 < 2 > 4:|Upoo7
[/ 1357 111 p 2753 1071
_1 h,a5SPN _ et R In( £} 2~ "~ 6
4 ( 280 10 ”) n( 2) 1120~ 40 ”]”p""’
[/ 27953 2517 111 p 155473 109559 186317
o1 ha6PN _ 2 B 21,8
-t —v—— In(—) — — , 8.9
44 ( 3360 5600 8 ”) n(z) 8960 | 40320~ 5040 ”]“p"" (89)
[ 6656 6272 p
hadPN _ o 3
bttt 1 )
s 45 T a5 n( 2)]“"""’
[/ 74432 13952 p 114368 221504
h,a,SPN __ o 5
=||l-———+——v|In(4—= ,
s < 525 43 ”>n< 2)+ 1125 ' 525 ”]”p‘”
[/ 881392 288224 21632 p 48497312 5134816 25465952
haoPN _ | [ _ _ 2\ 1n (4B - - 2\vpl 8.10
s ( 11025 1575 7 45 ¢ ) n( ) 231525 23625 . 33075 © ]”p‘”’ (8.10)
[ 99 2079
| 2 4
[ /811 13831 p 41297 9216 49941 3303 1937
—1,ha5PN oo .
=||l——v- In(—>) - ———1In(2) +——¢(3 —(3 ,
e = | (5 56>“<2) o - 220+ e+ (B + 5T o
[ /64579 75595 p 40711 1033549 10704
—1, h,a,6PN 2 o
= |{===—-785 In{— 2
X _(1008 Y 68 ”) n(z) 28 ¥+ 53 t—7 0@
75520 8008171 660675 100935 583751
——In(2 — 3 - 3) - 2lvpls, 8.11
+< 21 M) Tg0es T 256 o )>”+< ot )~ 564 )”]"p‘” 8.11)
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and
(9344 [ p.\ | 79936 88576
h,a,4PN o
wdPN |20 (g P ) P00 99010
47 15 ( 2)+ 225 75 5(3)]”’"’"’
284224 | 48256 P\ 621 , 2239456 64256 901632 384
h.a 5PN __ 0 4 3
I (4f2) 222 - 2003 :
¥ < 5 ”) “( 2> 0" T 55 s ) ( 75 ¢B)- 175)”]””“’
118912 | 11456416 587984 pe) | 135861232 57597448 16848 , 31779
h,a,6PN oo 2 4
I (4P2) 4 2220502 3 -
1 ( 575 " 567 ) n( 2>+ 7325 “3 T S0 T s T T g T
12013696 14067 , 1677767408 5455648 132771328
3 4 - - 3) o2 | upl.. 8.12
( TR A YT R T )”*( 2205 025 < ))4% (8.12)

B. The h-route second-order-tail contribution
to the scattering angle

The second-order-tail contribution W‘;f’;}ll‘lf to the non-
local integrated action is given by

B [~d '
Waenlee — a2<§/ el T)> . (8.13)
o T o
where B = }8; and
soli G 3 4 3 4
R (1) = S0 (01 0+ ) = 17 (01 (1 = <))
(8.14)
Working in the Fourier domain we find
G A
whenlee — —azBS— da)w7|1,-j(a))|2, (8.15)
e
where we have used the result
/°° SneT (8.16)
— T

At our present level of accuracy, it is enough to use the
Newtonian approximation to the Fourier transform I ne)
of the quadrupole moment. Using the relations given in the

previous section we have then
107G 1 0
loc _ 2

Using the results of Sec. V in [5], extending the large-
eccentricity expansion to the NNLO order and using the
frequency-domain integrals presented in Appendix A, one
finds

ha?sspN _ 47936 ¢
—1, h,a?5.5PN 10593
7% = =gy T VP
) 499904 4738816
h,a*,5.5PN 2 4
S . (818
7 ( 1575 23625 >”p°° (8.18)
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C. The f-h additional contribution
to the scattering angle

The flexibility factor f(z) has been determined in terms
of the 6PN-accurate, O(G®) h-route nonlocal scattering
angle in Sec. VII of [5]. [Our new results at the O(G”) level
do not change the determination of the flexibility factor.]
The corresponding additional contribution

SFRNE O In(f(1).  (8.19)

to the f-route nonlocal Hamiltonian has been determined in
[5] [Eq. (7.29) there] to be equal, modulo an irrelevant
canonical transformation, to

ATMHY oy = AT H Py + ATMHSE Gy (8.20)
Here, AT H'Di%  denotes the minimal part of the canoni-
cally transformed A™H [built with the minimal solution,
Eq. (7.28) there], while A™H'SD L denotes the part that
involves six arbitrary flexibility parameters; namely, C,,
C;, DY, DY, and D, = DY+ vD!}. Explicitly, the latter
contribution reads

Ath/gD U 3 14 3.4
+6PN pr 0 T v py
=G +C36+(D+3 C2>
3 v p;
+ |:Dg+l/<—2C2+6C3>:| r6
3
+ (DY + uD4) 7 (8.21)

On the other hand, the fully determined minimal
Hamiltonian A™ AT given in Eq. (7.30) of [5] involves
the coefficient

which could not be analytically determined in [5]. Our new
results, presented above, allow one to determine the exact

1/5 15
D = p <—A221 + A0 + Assn

g (8.22)
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analytical expression of the coefficient D. Though the
individual scattering coefficients A,,; entering D involve
£(3), it is remarkably found that D turns out to be equal to
the rational number

12607
108 °

(8.23)

which is compatible with the previous numerical estimate

of [5], namely D™™ = —116.73148147(1). The value

of D then determines the minimal value of the flexibility

coefficient Dg“i“ [see Eq. (7.28) in [5] ], namely
68108

min __

= 24
3 945 (8.24)

as well as the f-related, 6PN-level contribution to the
periastron precession [see Eq. (8.30) in Ref. [5] ]:5

68108 1°

AT H'T N _ 3 168 p_‘,‘

\ <271066 21736 ) S
1% 14 =
r

M 5 7 4725 189
712 p?} 1 2
439712 py 68 08&. (8.26)
189 » 945 15
Using the (canonically transformed) additional

Hamiltonian (8.20), it is a straightforward matter to
compute the large-eccentricity expansion of the corre-
sponding integrated action

] GH, spli
win = 4o Gl / dtFB (1, 1) In(£(1))
_ / thf_hH/jﬂ»GPN’ (827)

and the corresponding (halved) scattering angle contribu-
tion

f-h,circ,min ( 7\ _ i g ;
2 Wm0 '
Inserting the analytical value of D in Eq. (7.30) of [5] also
determines the analytical value of A™H'TIR | namely We find
|
3 27 3 15
I fh_ _ 2 2.6 oo 2 p )28
Xy 32C1V Poo+<64cll/ 64C1 756 1>l/ Poos
8 8 276 32 172 4 8 8
o (o0 -2 )+ (220 220, - o0 Gy~ 2Dy — — D, | PP,
s ( 571715 2)”"’”K% T 2)” 35 15 2T 7 T3S 2}”"”
L 45 15 15
7 lﬂ(gh = (—3—2C1 _1_6C2_EC3>1/2P§°
[ /495 275 105 615 95 15 75 15 5
e+ P e v -2 = 20 - 20 - 2D, = 2Dy — 2Dy [ 25,
+_<64 1T 2T 3)” 64 TR TR T TR ) 3]”"”
25 = (=8Cy —8C, — 16C3)? pl,
[ /252 216 344 292 264 24 16 16
+ _<5C1 +?C2 +5C3>1/— 100C1 —?Cz —?C:‘, —8D1 _?DZ —?Dg, —5D4:|U2p§°,
(8.29)
with minimal values [for vanishing values of C,, C;, DY, DY, and D, = D} +vD), and the minimal values
Cirin, pinin_ pmin_ pinin. given in Eq. (7.28) in [5], with Eq. (8.24) above]
) 63 199037 74959
“1th _ _9 5 _ 2.8
T Hamin = 70" °°+< 40320 +10080”>”p°°’
1344 7629872 6004832
fh o _ 2.5 _ 2.7
A5min = 775 ¥ Peo ( 33075 33075 ”)” Peo:
189 786449 50729
O R e J' _ 2 6
T Xﬁmin 4 Upoo+( 2016 + 216 V)”poov
. 1344 18044528 150944
f-h 2,3 _ 2p5 . 8.30
7 min 3 VP ( 4725 75 I/>I/ P ( )

°In Eq. (8.27) of Ref. [5], first line: the numerical coefficient —155/12 of In(2) should read —155/112. We thank Johannes Bliimlein

for noticing this typo.
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IX. CONCLUSIONS

By using computing techniques developed for the
evaluation of multiloop Feynman integrals, we have
advanced the analytical knowledge of classical gravita-
tional scattering at the seventh order in G, and at the sixth
post-Newtonian accuracy, by fully determining the non-
local-in-time contribution to the scattering angle. The
present work has given a new instance of a fruitful synergy
between classical GR and QFT techniques leading to an
improved theoretical description of gravitationally interact-
ing binary systems.
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APPENDIX A: DETAILS ON THE FREQUENCY
DOMAIN COMPUTATION

The first step is to Fourier transform® the multipolar
moments [see, e.g., Eq. (7.3)]. At the Newtonian level the
computation is done by using the integral representation of
the Hankel functions of the first kind of order p and
argument g:

1 [
Hg)(CI) _ _/ edsinhv=puv 1, (Al)
iT J
As the argument ¢ = iu of the Hankel function is purely
imaginary, the Hankel function becomes converted into a
Bessel K function, according to the relation

2 .
prl)(iu) = Z e BPHIK  (u).

- (A2)

Note that the order p = iu/e, of the Bessel functions is
purely imaginary, and proportional to the (frequency-

dependent) argument u = we,df/ ?. However, the order p
tends to zero when e, — oo, which allows most integrals to
be explicitly computed when performing a large-eccentric-
ity expansion. A typical term at the Newtonian level
[O(5°)] is of the kind e7%"P*=(P+K)?the Fourier transform
of which is

edsinhv=(p+kjv _y 5 ,—i5(p+k) g

pik(1), (A3)

°In the following, we use GM = 1, i.e., we work with GM-
rescaled time and frequency variables.

involving Bessel functions having the same argument u, but
various orders differing by integers. However, standard
identities valid for Bessel functions allow one to reduce the
orders p + k to either p or p 4+ 1. When taking the large-
eccentricity expansion, one expands with respect to the
order of the Bessel functions. This gives rise, at LO, to
Ko(u), and K,(u), and at NLO, NNLO, N3NLO, to
derivatives of K(u), and K (u) with respect to their orders.

Higher orders in the PN expansion [O(5?), O(n*)] imply
for the integration in » more complicated expressions like
" eqs0h v=(PHk)v and edsinhv=(r+K)vy (1)) The Fourier trans-
form of v"e4sMhv=(r+K)v Jeads to integrands involving

n

A 0 x
Pt 4 sinh v=(p+k)v _, 2(_1)n W [e—zi(p+k)Kp+k(uH , (A4)
P

while the Fourier transform of the terms e4"h v~ (k)0 (4))
requires to work with the large-e, expansion of the V-term
[see Eq. (4.3)], i.e.,

V(v) = 2arctan (tanh %)

1 sinh v
—tanhv + ————+ O(e;?). (A5
+e, an U+e%cosh2v+ (er?). (A3)
One then generally has terms of the form

e?sihv=(P+h)v (1) involving nontrivial functions f;(v),
which cannot be integrated analytically. However, in most
cases one can overcome this difficulty by integrating over
u, before integrating over v.

1. Integrating over the frequency spectrum
and Mellin transform

The integrated nonlocal action W‘f‘“'h [Eq. (7.10)] and the
GW energy AEGw [Eq. (7.11)] are connected by the Mellin
transform [Eq. (7.14)] of the function K(u), being defined
in terms of the integrals

Iy, = / ™ k() In (A6)

and

Ixg = /00 dulC(u), (A7)

respectively. Denoting by f(u) = K(u) and by g(s) its
Mellin transform, we then have that I,z = g(1) and
Iy, = d-‘;’jﬁj’) |_;. Mellin transforms are well implemented
in standard symbolic algebra manipulators.

At the Newtonian level, the function K(u) is expressed in
terms of modified Bessel functions of the second kind. The

typical term has the form
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(A8)

so that it is enough to compute the Mellin transform
gk (834, v) of the function

= Kﬂ(”)Ky(u)v

[see Eq. (7.24)] and its first derivative with respect to s,
further using the property MM{x*f(x);s} = g(s + k).
At higher PN orders also appear terms like

fr(u;p,v) (A9)

u*K,(u)cos(usinhv), u*K,(u)sin(usinhv),  (A10)

to be integrated both over u and ». Hence we also need the

Mellin transforms gg.os(s, v, v) and gggn(s,v, v) of the
functions

Seos(us v, v) = K, (u) cos(u sinh v),
Sxsin(usv, v) = K, (u) sin(u sinh v),

and their first derivatives with respect to s. Their Mellin
transforms are given by

252 s+v s—v
= r r
cosh*™v ( 2 > ( 2 )
l—=s—-vs—v 1
Fil—— h2
X 5 1( 3 5 2tan )
:2““lsinhvr s+v+1 r s—v+1
cosh!tstvy 2 2
2—-s+v s+v+13
2F1<

2
> , 5 x ; tanh >

(A12)

(A11)

chos(S; v, U)

ngin(S; v, U)

For each of them (i = KK, Kcos, Ksin) we need then

0? o?

ng’ gimzmgi (A13)

0
Gis = agi’ Jiw =

(for example, gxx, = gkks(s; 4, V), etc.) and higher deriv-
atives with respect to the order v for increasing PN accuracy
as well as level of expansion in the eccentricity parameter.
Explicit expressions can be obtained which generally
involve HPLs, coming from the derivatives of the hyper-
geometric functions with respect to their parameters (s, v/)
(see below).

2. Results

The function K(u) can be decomposed as in Eq. (7.18)
(here in a conveniently rescaled form)

2 4
K () = Kn() + = Kipn (1) + 55 Kops (). (AL4)
with
I/ T
Kopn(u) = 27 ,CnPN( )+6—K§PLI\?( u)
KE&L"( )+ KW (a19)

up to the 2PN order and to the N3LO order in the large
eccentricity.
At the Newtonian level we find

KO (u) = 320 Kl + u2> K3 (u) + 3uKy(u)K(u) + (1 + uz)K%(u)} ,

5 1\3
KN (u) = ukx (u).

~ 7[2 ~
KO (u) = = K0 (u)

1 3 O*K,(u)

+u2[<u2 +3)K0(u) +2uK1(u)} 5,2
2

RN () = ukNN () — - i3 RKO (u).

Using the same decomposition as above for I,z Ny we find

3
. +u? [2 uko(u) + (u* + I)Kl(u)]

—32u2{(1 +3u)K3(u) + TuKo(u)K, (1) + (1 + 2u?)K3 (u)

0K, (u)
o>

1/=1}

(A16)

32
508 = =Bk (5:1,1) + 39k (3: 1. 1) 4+ 9gxk (4: 0. 1) + 39k (550, 0) + gk (3:0,0)]

15
37

15"

2
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32

IR = 15 Bokk (65 1, 1) +3gkk (4: 1. 1) + 99k (5: 0. 1) 4 3gxk (650, 0) + gkk (4;0,0)]

1568
457
16
e = 15[ 99Kk (65 1,0) = 6gkk,. (750, 0) — 29kk,,(5;0,0)]
16
15

16 1
15 32 (QKK(7;0, 0) + gk (7; 1, 1) + gxk (5; 1, 1) + 39k (6:0, 1) + ggKK(5;0v0)>

=129k (5:1,1) = 6gxk (351, 1) — 4295k (4: 0, 1) — 18k (5:0,0) — 6gxk (350, 0)]
281

0"

16
IIE?EL,&) —45[ 279k (75 1,0) — 189xk,,(8;0,0) — 69Kk, (650, 0)]

16

45
16 1

45 Br*( gkx(8:1, 1) + gri (6; 1, 1) + 39k (7:0,1) + ggKK(6;0,0)

—18gkk (4:1,1) = 36gxk (651, 1) — 1269k (5;0, 1) — 549Kk (6;0,0) — 18gxk (4;0,0)]
7808
457

[ 9gKKuv(6 O 1) 69KKW(7; 1’ 1) - 69KKW(5; 1’ 1)}

[—27 9Kk (750, 1) — 18gxk,, (8: 1, 1) — 18gkk,, (651, 1)]

(A17)

where the values of the various Mellin transforms are listed in Table III. The corresponding result for Iy, y is obtained
simply by replacing each of them by its derivative with respect to the Mellin parameter, leading to

40 74 74
o= (- Zm2)-—
W,.N <3 3 n(2) 157)

4448 3136 3136
JNLO ) —
WN TRy T )
2479 843 281 2079
e = (55 -5 @ -5y + e )

Wil 030 5 5
23936 15616 15616 88576
NLO _ _ — -

Starting from the 1PN level, the Fourier transform of the multipolar moments can be explicitly done only partly, so that
the resulting function K(u) is not fully determined in closed form. Consider, for instance, the NLO term

N0 () = é—?mKu _ 46 —%)Ko(u)z 12214(”2—65—3)KO( VK (1) + (u4—333” 39>K1(u)}

5 122 10 5

48 , [o
-5, ut / dv arctan <tanh g) [sinh 20(Ko(u) + 2uK(u)) cos(u sinh v)
T —0o0

—Q—% (cosh3v — 5 cosh v)(uKy(u) + K;(u)) sin(u sinh v)}

64 ([, 21u® 3 , 6 [, 95 . 23 2l )
T [(u 20 4>K0(u) sulu +24 Ko(u)Ky(u) + | u 20 "0 Ky (u)*|v. (A19)

It is convenient taking the Mellin transform first (i.e., integrating over u), and then integrating over ». We find
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TABLEIIL.  List of Mellin transforms (7.24) used in Egs. 116 and (A 18). The function gk (s; 4, ) and its derivative with respect to the
Mellin parameter s are both evaluated at s = 1 + k.
1+k 2 v KK 9KKs KK IKKsvw
2 2%(61n(2)=5+2y) (2 77%¢(3) _
3 0 0 32 T e 64 (7* ~8) ) i e+ y” +i% 128
3.2 4
1 1 , —%+§7(T)1n( )—aﬂ ]n(2)
3 0 1 1 1 — 2y — B+7°) _B) _3_r_~
2 4(2In2=2y—1) 2 2 T84
2 @), 1 2
Y
. —1—22+ 4 +ﬁﬂ 111(2)
1 1 37 22(181In(2)—11+6y) 2 2 _ 217%¢(3) 2 21t
. 32 T E— & (37" = 8) = et Ty
_3 2 9 4
7” + In(2) -anr In(2)
4 0 0 1 ) +L -1 (#*-6) 2
3 3 ()Jrlg 37 18 l8+ 108~ T8
In(2) 2 1
. -3 ‘tﬁﬂ' 111(2)—5 (3)
322 181n(2)—17+6y _ 2723) 77 17
4 0 1 i ( <12>8 ) 28471: 2(97> — 68) _ 64( ) _ 57n6 + Wr
nt _3yxt 4 17 0 _9
, , - +Y% — By + 37 In(2) - 357 In(2)
2 2 _1_2 2723 2(3 2
s ) -3 e g
2_In@2) 12
Y
- ==+ 57" In(2)
277 277%(121n(2)—13+4 37%(—80+97° 83 2 _ 189 2 351
5 0 0 315 — = (1210Q)-13+4y) 2(()43; 7) S (1024 ) 256” s 7¢(3) + 4096” + 647’”
45 2 _ 81 _4
. i . 2 102471 vy +aIn(2)z® — 557" In(2)
2 2 5 _2 —21+4 23
5 0 1 3ln(2)+18 3]/ % 4( )+l44+
522 rnz 7ln( ) )
2 2 2 23 +W”86_T_ 5 +9 129(2)
45 372(1801n(2)—187-+60y 2(=368+45 23,2 | 561 4 _ 315 2
> b S12 — R LSO néoig - 3% d5r) 08 +4dr ) G+ et 512” £(3) + G n(2)7*
105 2 135 4
~ 2567 _W” v 1024” In(2)
16 16 172 _ 16 4,8 2 11 2 4
6 0 0 2 12In(2) + 535 — 137 -3+ 7 E_E (3)+6757I +3y 771' —-3In(2)
+EmQ2)r 2
13572 277%(60 In(2)—69+20; 372 (=1964+2257° 1473 1863 4 _ 945 2 — 45853 .2
6 0 ! 1024 - T 2(()9)6 2 (SO ) ToRa0 ) Serm i — i (3) - H5e 7
4419 2 _ 135 405
2 2 2 :1:1245760 ln(2357727 s jlrgcz/%_ m;ztts @
1357 277%(60 In(2) —69+20); 372(—20364225 _ 49147 2 4 _ 2
6 ! 0 021 - 2(()9)6 = ! 10240 =) BV i T L 1 LA R 4 €))
4581 2135 _4 405
8 8 76 _ 8 5,42 +25601n( " _mﬂy_mﬂ "in(2)
6 1 1 5 —111(2)4-%—5]/ _§+Gﬂ' 37+225ﬂ.’ ——C( ) (2)+———y7r
44 P
15ln(2)
112572> 7572 (1801n(2)—221460 57%(=2072+2257> 29023 -2 _ 7875 16575 1295
L 0 0 4096 - B ;16<3%4 = = T B ) Do — i W C(3) +3BR T + i’
1125 4 3885 22 — 3375 14
16 16 212 _ 16 172 8 1728]92 106+ 1021?(2) 1728192” n(2)
2
7 0 1 5 $I2) + 55 =37 SR L 7"’225” 563 ) 2In(2) + 35
Lynt + & ln(Z) 2
16 16 212 _ 16 188 , 8 2 188 106 2 16 188 8,2
7 1 0 5 ?11’1(2)4-?—?7 _K‘f‘ﬁﬂ' }/+225 C(3) ln( ) R4
8 ln( )7[2 - %
15757° 1522(12601n(2)—15234420 2(—14072+15757> 1759, 22 22845 4 11025 2 5277 2
7 1 1 109 — r;<63>84 ¥ = 3192 ) 1024 327637 ~ G096 (3) + 3024 1024 In(2)x
37283 2 _ 1575 4, _ 4725 4
— o5 TE Y "7 In(2)
288 288 10824 _ 288 56, 48 2 1294 | 1804 2
8 0 0 35 In(2) + 3555 - 55 5tz 55t 12228” +% 2 238587” - 3In(2)
+35 ln(2) -5 (3)
8 0 1 787572 12052572 _ 7875yx> _ 236257% In(2) 572(1102572—100628) _551252%¢(3) _ 210981237 + 125785y7° 4 12052574
8192 32768 3192 8192 114688 8192 2408448 28672 65536
_ 7875yx* 4 37735522 In(2) _ 236257 In(2)
16384 28672 16384
8 1 0 78757 12052572 __ 7875yx* __ 236257% In(2) 5722(1102572%-102428) _551252%¢(3) __ 217672737 + 128035y 7>
8192 32768 8192 8192 114688 8192 2408448 28672
4 1205057 _ 7875ya* i 3841057% In(2) _ 236252 In(2)
384 %84 13872 _ 384 208 | 64 2 20355%6 2312 16; . %84 28672208 16%332
8 1 1 S sIn(2) + 555 — 357 5 T sV tigsT 5C(3) =95 In(2) - 7555

yﬂ +& 1n(2) 2
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888 208 16 1952 10448
IZHE%N 35 gKK(6;171)_§gKK(4;191)+ﬁgKK(8;1,1)+ 105 gxk (750, 1) — 105 ——gxk(5:0,1)
16 752 736
+ agKK(g; 0,0) - ggKK(“'; 0,0) - jgm(@ 0,0)

— l / dv arctan (tanh <E> )
V3 2

48 96
X |:5 Slnh(zv)(ngcos (6; 1, l)) + chos(S; 0, U)) + ?COSh(U)(COSh(’l))Z - 2)(ngin (5; 1, 1)) + YKsin (6; 0, l)))

64 368 16 128 304
+ =57 9xk(8: 1. 1) + 9KK(6, L) +—gkx(4: 1, 1) + —gkk (7:0, 1) + —gxx (5:0. 1)
21 5 35 21
64 16 16
-~ 9kk(8:0,0) + — gxkk (6:0,0) + — gk (4;0,0) |v
21 5 7
25616 n / d ‘ tanh v sinh v 4032 n 2448 1136
== arctan ( tanh( = - -
315 v 2) ) cosh*s \" 5 " cosh?u) 45 ©
944 1136
1575 45 O (A20)

where we have used

IKeos(3:0,v) = (8 cosh* v — 40 cosh? v + 35),

2 cosh9
4571

2 cosh!! »

157z sinh v

2 cosh® v
15z sinh v

2 cosh't »

Okeos (03 1,0) = (8 cosh* » — 28 cosh? v + 21),

Iksin(351,0) = — (4 cosh? v —17),

Iksin(6;0,v) = (8 cosh* v — 56 cosh? v + 63). (A21)

The corresponding result for IW| IpN 1S

353651232 51232
INLO -
WileN = =35 T 3ys M2) 3y

+ / dv arctan | tanh v sinh v 376 + —8064 In(2) + —8064 + —16128 In(cosh v) —34464 _1
v 2y 2= 2 o) —
2) ) cosh®v 5 5 5 7 5 5 ) cosh?v

86592
( —9792 In(cosh v) + —5 - 48961n(2) — 48967) cosh4ﬂ]

T4 272 o 2272
45 7)Y
56144 1888 1888 77744 2272 2272
In(2 In(2 v,

B I TN YO PV (BN et ez A22
3375 1575 T 15757 o045 ~ a5 M)t 5 (A22)

where we have used
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12 35 25
JKkeoss(3;0, 1) = — coshj;v [<2cosh4v — 10cosh?v + Z) In(cosh v) + <}/ < T ln(2)>cosh4y
107 35 44 35
+ <? —5In(2) — 5;/) cosh?v + gln(Z) -5t §y] ,
180 21 1 127
Tkeoss (63 1,1) = —ﬁ [(ZCosh“v — Tcosh?v + I) In(cosh v) + Bcosh(’v + (y +In(2) — %) cosh*v

- <—%1n(2) -

zsinh v
2cosh’v
+(60y — 229 + 601n(2))coshy — 105y + 352 — 105In(2)).,

1583 7 21 21 563
200 L ) cosh?y + = In(2) £ =y — 22
120 27>C°S vt g @) tgr 60]’

Tksins (33 1,0) = [(120cosh?>v — 210) In(cosh v) + 6cosh*v

607 sinh 63 137
Iksins(6;0,0) = _ eIy [(— + 2cosh*vy — 1400sh2v) In(cosh v) + (7 -——+ ln(Z)) cosh*v

cosh!'y 4 30
809 63 563 63
+<30—7y—7ln(2)> cosh?v +§ln(2) —20+8y]. (A23)

At the NNLO the derivatives of the hypergeometric functions entering the Mellin transforms (A12) also generate HPLs of
weight 2. Consider, for instance, the Mellin transform gg..(6;0, v) and its derivative gg.oss(6;0, v). We find

120 840 945 274 1155 945

6:0.0) = (- - inh - , A24
Ireos(6:0. ) < cosh” o | cosh? »  cosh! v) VS 6y coshS o | cosh0 p (A24)
and
3 64 0 s 1—s5 1
IKeoss (030, 0) = —gkeos(6; 0, v) <1n(005h v) —In(2) +y - E) t o 952 ! (5 T tanh(”)z) . (A25)

respectively. The latter term can be computed, e.g., by using the tool HYPEXP2 [13], which allows for Taylor-expanding
hypergeometric functions around their parameters. It reads

0 (s 1-s1 tanh(0)? 15 105 945 i
o ST v == - vsinh v
s> \2" 2 2 e 8coshv ' 8cosh’v  64coshy

945 1155 137

- —1 h
T Gacosh®s ~ GacoshZy | 32} n(cosh v)

945 105 15
- inh v|H_ (| tanh
(128cosh51J T6cosh®s | 16cosh 1}) | sinh o]H_., (] tanh v])
247 3921 23 inh v+ 141 n 39 219
- - vsinhy + ———— + — - ——————
8cosh®v  128cosh’v 4 cosh v 128cosh*s = 64  128cosh?v
(A26)
where

. (1 |sinhv] . (1 |sinho

H_ (| tanh v|) = 21n(2 cosh v)|v| 4 Li, <§ ~ oo U) —-Li, <§ + Y oosho (A27)

is an HPL with weights 4, which can be in turn converted into HPLs with integer weights according to the rule
H_ (x)=—-H_ _(x)—H_(x) +H_i(x) + Hy,(x). (A28)

Going to the 2PN level we get more involved expressions, but with the same structure (further including terms containing
derivatives of the Bessel functions with respect to the order up to the fourth at N>LO as well as HPLs of increasing weight).
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APPENDIX B: SUMMARY OF FINAL RESULTS
FOR THE INTEGRATED NONLOCAL ACTION

We recap below our final results for the integrated
nonlocal action W@t up to the N’LO order in the large
eccentricity expansion, showing also equivalent forms
corresponding to different choices of orbital parameters
used as independent variables, i.e., either (a,, e,) or (E, j),
which are related by Eq. (4.5).

The

to the first-order tail Wtwilh —

Wtall ,h

1. First-order-tail part

2PN-accurate values of the two contributions
tail,h tail,Lh -
Wi+ Wy, e,

Wta.ll hLO thl hNLO

3
+ Wlall LhNNLO + Wlall hN°LO + 0(8;7

). (BI)

TABLE IV. Expressions for the various coefficients W‘f‘“‘h"LO of the large-e, expansion (B1) of the first-order-tail
tail.h
Wit
Coefficient Expression
tail, hLLO 2
W & 7/2Hm{1oo+371n( ) S 10 4 (B2 T In( ) £
3656939 18 235453 2 | (114101 _ 7055 1112 7t
+ 500z viSm v+ Cen vt e Y )1n(4 —%/2)}
tail, ANLO 2 M 2224 1568 28072 _ 38872 944 1136 ?
Wi Eeﬁl;/z Hlol{ + 5= ln(e -%/2) +[- 225 v+ (105 )ln( -2/2)}?;—,
67489874 _ 3115726 165086 L2 4 (419036 _ 3244 764 2 '14
= s — e vt + (%535 v+ In( V—?/’)}a_?}
tail ANNLO 2 aMi? 2479 | 6237 843
Wy Eﬂs ;j/thot{_“‘_c( )+Tln(4e ;3/2)
+[112223£9+276481 ( ) 2995115( )+(—737ﬁ—918§(3))y
66999 _ 1827 7
+=Tn )1n(4 -z/z)}
26903663 59760 571467 2338541 20224 918657
+[_ 16128 In (2)+ 128 (3)+( 2688 ln( )+ C( ))
321719 '%5613 2 442237 287%5 4497 2
( 334 + = (3))7/ +( B T vt g )111(4 -?/2)]5_;}3
iLhN*LO 11968 44288 7808
thm 15 6 7/2 tot{_ +5 (3) + 5 ln( %/7 )
753568 505984 621 871%6 577408
+[=H55 — 753 (3)+ 8 ”2+( o5 ¢(3))v
763712 _ 11584 1
(-2 V) In()] 2}
1261560660008 | 5617672 8424 72 — 367551 4
R L)
+(7es 495 £B) — e+ (Teis 6615 2205 {C)%
119081008 | 7488736
(= Togas - T 315 v+ 23840%)1 (%/z )} —2}
TABLE V. Expressions for the various coefficients W‘zail’h L0 of the large-e, expansion (B1) of the first-order-tail
tail.h
W3,
Coefficient Expression
tail h LO 2 M 9679 | 981 %429 37 i
W2 15 ”z-7y/2 Htot{ —-37 ln(ze a, ) + [_ﬁ +¥U + ( +5 )1 (2;5,)1 a,
1830565 | 54899 29969 , 2 114101 , 7055 111, 2
+=Teny TV~ amn Y T (et — g )l (2¢a)] 2}
tail,h NLO 2 M 2768 _ 1568 64904 _ 5992 944 | 1136 1
w, Eeﬁ;/z tnt{ In (ea)'i'[_ 275 __’/"_( 05T 3 ’/)m(ea)]g_
2925494 _ 542014 145498 | 2 419036 3244 _ 764 2 25 \11*
+[-55%s s Vs Vo (i 3 y)ln(e,d,)} a}
tail,h NNLO 2 3419 843
Wal 15 ”5_7/2 tnt{ In (2g a, )
103645 56559 66999 1827 i’
+ase v+ (O ”)ln(zea)]a_
2467109 _ 3706175, _ 1577635 2 | (442237 _ 28735, _ 4497 2 7t
+ 53824 5376 8064 + ( 1344~ 32 Y716 )In(3 2e ar)]df}
H 3
Wtzzul,hN LO 125 %/z Hy, {4384 78081 (e a,)
7182736 _ 210928 763712 | 11584 ?
=5t = s v+ (e + 73 v) In(; a)]d_
2135067428 | 392856316 1895524 2
(= S5osms T 33075 Y+ T v )
119081008 __ 7488736 ,, i
+(Moas s — a5ty — 238407 In()] at
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TABLE VI. Coefficients WV, entering the large-j expansion (B2) of the first-order-tail W@ilh = ytilh 4 yytaith

Coefficient Expression
Ws zz(%SE)2 M2 2{3'5+37ln(5) 12609 719, 4 (2393 _37,) ln(g)](ZE)nz
189347 _ 205831, 4 106032 4 (745 _ 72127491/_1_481 v2) In(B))(2E)**}
Wy (B2 )3/2 M2 (338 4 1568 10 (8 ) 4 [ 16184 _ 274856, (25468 _ 2900 )ln(SE_)](ZE);f
H, 28646896 _ 9?;;22 4 1860556,2 (1304327 _ 67060, 4 4353 vz)ln(8E)](2E)2174}
W5 ”(2E) M2 2{297 4 6237 62’%7 Z;( ) 1366 ln(%)
[65547 4 552961n(2) 1%;;49 (3) + ( 10;93 _ 7310635 (3))1/ + (46617 ]1251/)1 ( )](2E)i’]2
[ 388793 _ 36576 | (2) — 13845 (3 4 (— I340333 _ 123392 I () 4 1390239 ¢ (3)),
(218503 + 223533 £(3))A (14;9475 2671, 4 6987,2) ln(E)](zE)Z 4}
We (E>‘/2M2 - 79936+88576 (3) +46721n(8E)
H 14;84_’_28352 (3)+621 7 4 (36152 _ 2627390 £(3)),, - (146200 _ 7848y) In(8 )] (2E)
[ 19308599 _ 19317988 (3) | 16848 ;2 _ 132813 74 4 (1:2581%3725323 280672 ¢(3) _ 121620 74,
+(91§§;57+1112326085548 (3))1/24»(—% 582?273 4 33581 3581 2) ln(SE)]( )2,]}
are listed in Tables IV and V. It is easily seen that Wwailh _ Ws + 4 W, + 25 WS + 226 W6 +0(7) (B2)
the intermediate scale s cancels between the two con- ]2 j
tributions.
Reexpressing @, and e, in terms of E and j  with coefficients Wy, k = 3, 4, 5, 6 listed in Table VI.
we get The f-induced additional contribution reads
J
wih — MV f-h LO f-h NLO f-h NNLO f-h N’LO
9/2 H o W +— W —|—e w +—= 20 W (B3)
r r r
with the various WO Jisted in Table VII.
Using the minimal solution of the 5 4+ 6PN constraints
, 168 A .
C'Il'l'lln ? , Clﬁl‘lln — 0’ C13nm — 0’
min _ 271066 n 21736% min _ 39712
! 4725 189 2 189 7
. 68108 .
Drmn — l/, Dmll’l — 0’ B4
3 945 4 (B4)

the previous expression becomes

TABLE VII.  Coefficients WO entering the large-e, expansion (B3) of f-h contribution W to the first-order

tail.
Coefficient Expression
f-h LO 2
w %C1+(—3121/C1+312C1+1578D )’7—
f-hNLO 2
w S0+ 5C+[(-3C—£C v +3D +3C, + 55D, + 55 Cl %
PWE-hNNLO gcl +3C3 —|—§C2
32
H(-ULC =8O = L+ B G+ EDy + 150, +£D, - 36 + D)) L
WI-hN’LO ¢, + 136 Cs + %CQ

H(-EBC -8 -2 C)w+ 1D+ 8D, +3C; +{¢ D4+136C2+2130356C1+80D}Z-_;

044038-22



GRAVITATIONAL SCATTERING AT THE SEVENTH ORDER IN ... PHYS. REV. D 103, 044038 (2021)

TABLE VIII.  Coefficients W entering the large-e, expansion (B6) of f-h contribution W™ to the first-order tail.

Coefficient Expression
w3® 7QREPMV P fie Co 4 (& Cr + 3501 —30C) CE)T]
win (2E)_5/2M21/3’72{4 Ci+15 is £Cy + [( ZHC —5C)v+3D + 3 Cy + 55Dy + 5 G E)n?}
ngh H(ZE)ZMZ 2{8 C2 + Cl + C3
+[E_§C3 2C -3 Cz)” + 16D3 +3C+ 3+ 30+ 3D+ Do) 2E)}
wih (2E)**M* 2{8c1 e+ %G

+[(—%7C2—314C3—79C)u+103cl+ D3 +3D, +3%C, +8C5 +1¢D, + 3D, ] 2E)}

win MV (@21 (43007 SBO061\ pP] | 1672 (1668832 4703992
B R AT 15120° T 60480 ) a,| T &4 |25 33075 © ' 33075 ) a,

© [441 1732117 594173\ 2] 1 [3584 3267904 95857952\
S (- v+ —+—= |5t (- v+ . (B5)
5120 30240 4480 0| 25 6615 99225 ) a,

Aoe

Reexpressing @, and e, in terms of E and j we find

Wf—h th Wf—h th
Wi = =34 S+ S e+ 0GT), (B6)

with the coefficients W listed in Table VIII below.
Using the minimal value solutions of the C; and D; we find

2E) 21 /294293 10229 \ _ .

Wf—l_l :( M2 3.2 _ 2F 2

7 {ELOJF (60480 3024 ”>( n }

(2E)"V2 [672 (4370596 2446756 B

- 1%

i 125 T \733075 T 33075 1
2E)-1 1 4 2281 i

#(2E) [ 89 <83 077 228 3y> (2E>’4

2 |10 5040 270
(2E)7%/2 [448 (18520808 143384 _
5 s s YRR g (B7)

2. Second-order-tail part

Finally, the second-order-tail contribution turns out to be

. M2 [23968 10593 7° 835456 4738816 1
Wailh,s.SPN _ all 2 ) — 1, B8
A { 675 1400 e, < 4725 " 0875 " ) e%} (B8)
or equivalently
) M?V*(2E)? [23968 10593 73 (2E)'/? 499904 4738816 1
WailhS.SPN _ .S E)* [239 (2E) + 937 _) 799 + )= (B9)
Jj 675 1400 j 4725 70875 Jj
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