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We provide a theoretical model of FðRÞ gravity in which it is possible to describe in a unified way
inflation, an early and a late dark energy era, in the presence of a light axion particle which plays the role of
the dark matter component of the Universe. Particularly, the early time phenomenology is dominated by an
R2 term, while the presence of the other terms fðRÞ ensure the occurrence of the early and late-time dark
energy eras. The inflationary phenomenology is compatible with the Planck 2018 data for inflation, while
the late-time dark energy era is compatible with the Planck 2018 constraints on the cosmological
parameters. Also, the model exhibits an early dark energy era, at z ∼ 2.5 approximately, followed by a
deceleration era, which starts at approximately z ∼ 1.5, which in turn is followed by a late-time dark energy
era for redshifts z ∼ 0.5, which lasts for approximately 5 billion years up to present time. A notable feature
of our model is that the dark energy era is free from dark energy oscillations, at least in the redshift interval
z ¼ ½0; 10�. In addition, we also discuss several features related to observational data at z ∼ 2.34, at which
redshift intricate observational data exist in the literature. Moreover, the numerical code for the dark energy
phenomenology, written in PYTHON3, is presented in the end of the article. Finally, the model has another
interesting characteristic, a sudden jump of the value of the Hubble rate in the redshift interval z ∼ ½2; 2.6�
where its value suddenly increases and then decreases until z ∼ 0.
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I. INTRODUCTION

The observation that utterly changed the way of thinking
in modern theoretical cosmology was made in the late 90’s
[1] and indicated that the Universe is expanding in an
accelerated way, contrary to the standard model of cosmol-
ogy. This late-time acceleration era is known as the dark
energy era and to date still remains a mystery on its driving
force. In the context of general relativity (GR), the dark
energy era can be generated by using a cosmological
constant, and the model that is successful in fitting the
observational data is the Λ-cold-dark-matter (ΛCDM)
model. However, the ΛCDM model strongly relies on
the presence of a tiny cosmological constant, which is
added by hand in the model, and of course in the presence
of the other mysterious component of the dark sector, dark
matter [2–7]. The fact that the cosmological constant has
such a small value, is in conflict with the vacuum energy
predictions of quantum field theory, thus such a short-
coming has to be alleviated in a theoretical way. Moreover,
in the context of GR, the early and late-time era are usually
described by two distinct theories; in the case of inflation,
the usual description is given by a canonical scalar field

with a sufficiently flat potential, while the late-time era is
generated by the cosmological constant. Thus, a unified
description is lacking in the context of GR. Modified
gravity bridges the gap between the early and late-time
phenomenology, since a unified description can be
achieved; see, for example, the pioneer article [8] and
Refs. [9–16] and also Refs. [17–22] for reviews. Apart from
the unified description of the early and the late-times
acceleration eras, modified gravity has the attribute of
generating a dark energy era with nonconstant equation of
state (EOS) parameter, since for theΛCDMmodel, the dark
energy era has the EOS P ¼ −ρ.
In this paper, we shall present an FðRÞ gravity model for

which the unification of the early and the late-time
acceleration eras can be achieved. In addition, the model
also generates an early dark energy era around z ∼ 5,
followed by a deceleration era, and the latter is followed
by the present day acceleration. In addition to the FðRÞ
gravity model, we assume the presence of a light misalign-
ment axion field [15,23–78] which has a broken Peccei-
Quinn symmetry during inflation. During inflation, the
axion remains frozen at its vacuum expectation value, but
after the inflationary era it starts oscillating and behaves as
cold dark matter. We analyze the inflationary phenomenol-
ogy of the model at hand in detail and we demonstrate that*v.k.oikonomou1979@gmail.com
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it is compatible with the Planck constraints on inflation
[79]. Also, we provide a thorough numerical analysis of
the dark energy era, utilizing a numerical code written in
PYTHON 3 which is freely available and can be found in [80]
(see the Appendix for details on the code). For the dark
energy era, we quantify our analysis by expressing all the
physical quantities as functions of the redshift and as
functions of an appropriate statefinder quantity. As we
demonstrate, the results are compatible with the latest
Planck constraints on the cosmological parameters [81].
Furthermore, an early dark energy era is produced by our
theoretical model, starting approximately at z ∼ 2.5 and
ending at z ∼ 1.5. Accordingly, the model decelerates until
z ∼ 0.5 and after that it accelerates again until the present
time era. In the literature, several models of early dark
energy models have been worked out; see, for example,
Refs. [82–86]. Furthermore, we analyze an interesting
feature of the model, a sudden jump in the Hubble rate
at z ∼ 2. Interestingly enough, the Hubble rate at the
aforementioned redshift has a local minimum followed
by a local maximum, and after that it decreases until the
present day. Finally, we briefly discuss our results in view
of the observational data [87] for redshifts z ∼ 2.
The motivation for using a combined scalar field and fðRÞ

gravity framework is twofold. First, the scalar field in our
case is basically a misalignment axion field, which is a
primordial scalar field coming as a remnant of the quantum
theory preceding the inflationary era. Second, the infla-
tionary era emerged directly from a quantum epoch of our
Universe, where all interactions were unified and possibly
spacetime could be higher dimensional. However, during
the inflationary era, the Universe was four-dimensional
and classical; nevertheless, there inflationary effective
Lagrangian may contain higher order curvature terms and
even string corrections as remnants of the quantum era of our
Universe. Such terms could be fðRÞ gravity terms, such as
the case we shall study in this paper, or even Gauss-Bonnet
terms coupled to the scalar field, thus effectively having an
Einstein-Gauss-Bonnet theory [88–127]. Einstein-Gauss-
Bonnet theories in the presence of R2 terms were studied
in Ref. [128], and it would be interesting to study these in the
case that the scalar field is actually the axion; however, this is
out of the scope of this paper. Also let us notice that if higher
order curvature terms are present in the inflationary effective
Lagrangian, these terms would apparently dominate the
evolution at early times compared to the Einstein-Hilbert
term or even the frozen axion, since even for the low scale
inflationary scenario, the Hubble rate during inflation is of
the order of HI ∼Oð1013Þ GeV. We shall explicitly show
this in the following sections.

II. ESSENTIAL FEATURES OF THE
f ðRÞ-AXION MODEL

We shall assume that the gravitational action of our
model has the following form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
FðRÞ − 1

2
∂μϕ∂μϕ − VðϕÞ þ Lm

�
;

ð1Þ

with κ2 ¼ 1
8πG ¼ 1

M2
p
, where G is Newton’s gravitational

constant and Mp is the reduced Planck mass. In addition,
Lm describes the Lagrangian density of the perfect matter
fluids present, which in our case is radiation. The light
axion field is quantified by the scalar field ϕ and its
dynamics will be explained shortly. The FðRÞ gravity
model has the following form:

FðRÞ ¼ Rþ 1

M2
R2 þ λR exp

�
−
γΛ
R

�
þ γλΛ −

Λð R
m2

s
Þδ

ζ
;

ð2Þ

where ms is m2
s ¼ κ2ρð0Þm

3
, ρð0Þm is the present day energy

density of cold dark matter, and 0 < δ < 1, while ζ and γ
are dimensionless constants to be specified latter. Also,
M is chosen to be M ¼ 1.5 × 10−5ðN

50
Þ−1Mp for infla-

tionary phenomenological reasoning [129], where N is the
e-foldings number. Moreover, the parameter Λ takes values
of the order of the cosmological constant and has dimen-
sions eV2, while λ is a dimensionless parameter. For a flat
Friedmann-Robertson-Walker (FRW) metric,

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2; ð3Þ

the field equations for the fðRÞ gravity in the presence of
axion dark matter and radiation, and the scalar field reads

3H2FR ¼ RFR − F
2

− 3H _FR þ κ2
�
ρr þ

1

2
_ϕ2 þ VðϕÞ

�
;

− 2 _HF ¼ κ2 _ϕ2 þ F̈R −H _FR þ 4κ2

3
ρr; ð4Þ

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0 ð5Þ

with FR ¼ ∂F
∂R, and the “dot” and the “prime” denote

differentiation with respect to the cosmic time and the
scalar field, respectively.
Let us turn our focus to the axion scalar field, and let

us discuss how it evolves during the evolution of the
Universe. Here we shall briefly outline the axion dynamics,
which is described in detail in Refs. [15,26]. We shall
consider an axion scalar field with a broken Uð1Þ Peccei-
Quinn symmetry during the inflationary era, with a
potential during inflation of the form [26]

VðϕÞ ≃ 1

2
m2

aϕ
2
i ; ð6Þ
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where ϕi is the large vacuum expectation value of the axion
field during inflation. The axion field is frozen during the
inflationary era to its vacuum expectation value and does
not evolve dynamically, so the following initial conditions
describe it as [26]

ϕ̈ðtiÞ ≃ 0; _ϕðtiÞ ≃ 0; ϕðtiÞ≡ ϕi ¼ faθa; ð7Þ

where ti is the cosmic time during the inflationary era, fa is
the axion decay constant, θa denotes the initial misalign-
ment angle, and ma is the axion mass. The above frozen
dynamical evolution continues to occur as long asH ≫ ma.
When ma ∼H, the axion starts to oscillate and thus for
the eras that ma ≽H; the axion energy density evolves
as [15,26]

ρa ≃ ρð0Þm a−3; ð8Þ

where ρð0Þm ¼ 1
2
m2

aϕ
2
i ; hence, it evolves as a cold dark matter

component for the eras for which the condition ma ≽H
holds true. In the following, we shall study the dynamics of
the model (1) for both the early and late-time eras.

III. INFLATIONARY EVOLUTION
OF THE MODEL

During the inflationary era, the Hubble rate is of the
order of HI ¼ 1013 GeV for most grand unified theories
with low-scale inflation. Thus, the Ricci scalar R ∼H2

I
takes quite large value; hence, at leading order, the effective
FðRÞ of the model (2) becomes

FðRÞ ≃ ð1þ λÞRþ R2

M2
−
γ3λΛ3

6R2
þ γ2λΛ2

2R
−
Λð R

m2
s
Þδ

ζ
; ð9Þ

and thus at leading order, the effective FðRÞ gravity during
inflation is equal to

FðRÞ ≃ ð1þ λÞRþ 1

M2
R2 −

Λð R
m2

s
Þδ

ζ
: ð10Þ

Now, in order to analyze the inflationary dynamics, we
need to understand which terms in the equations of motion
(4) dominate the evolution. First, ms which was defined
below Eq. (2) ism2

s ≃ 1.87101 × 10−67 eV2 and the param-
eter M coupled to the R2 term in Eq. (2) is M ¼ 1.5 ×
10−5ðN

50
Þ−1Mp [129]; hence, for N ∼ 60, M is equal to

M ≃ 3.04375 × 1022 eV. Moreover, since the inflationary
era is a slow-roll era, meaning that _H ≪ H2, we have
R ≃ 12H2, and for H ¼ HI ∼ 1013 GeV, we have
R ∼ 1.2 × 1045 eV2. Also the reduced Planck mass is
Mp ≃ 2.435 × 1027 eV, and the parameter Λ will be
assumed to take the value Λ ≃ 11.895 × 10−67 eV2, which
is close to the value of the cosmological constant at present

day. Finally, for phenomenological reasoning, the values
of ϕi and ma are chosen to be ϕi ¼ Oð1015Þ GeV and
ma ≃Oð10−14Þ eV. Let us now compare the terms appear-
ing in the equations of motion, having in mind that the
leading order terms in the FðRÞ gravity are ∼R and R2.
First, the radiation density term during inflation is highly
subdominant since κ2ρr ∼ e−N during inflation, and also the
kinetic term of the axion scalar ∼ _ϕ2

i is also subdominant,
since the axion during inflation is frozen and obeys the
initial conditions (7). Now let us proceed with the potential
term which is of the order κ2VðϕiÞ ∼Oð8.41897×
10−36Þ eV2, while the terms R and R2 are R ∼ 1.2 ×
Oð1045Þ eV2 and also R2=M2 ∼Oð1.55 × 1045Þ eV2.
Finally, the power-law curvature terms, for δ ¼ 0.1 and
ζ ¼ 0.2 (which are the values for ζ and δ we shall also
assume for the late-time analysis), take values of the order
Λð R

ms
Þ0.1

0.2 ∼Oð10−55Þ eV2 and the rest of the terms are highly
subdominant. Thus during the inflationary era, the dynami-
cal evolution of the cosmological system is controlled by
the fðRÞ gravity,

FðRÞ ≃ ð1þ λÞRþ 1

M2
R2: ð11Þ

By looking the effective form of the FðRÞ gravity appearing
in Eq. (11), one would expect that the term (1þ λ) will
affect the phenomenology of this deformed R2 model. We
shall work out in detail the inflationary phenomenology of
the model (11) and to our surprise, for the R2 model there
is no difference between the λ ≠ 0 and λ ¼ 0 theories. Let
us explicitly show this, so by substituting Eq. (11) in
the Friedmann equation in Eq. (4), we get without any
approximation, the following differential equation:

Ḧ þ 3H _H −
_H2

2H
þ 1

12
λM2H þ 1

12
M2H ¼ 0: ð12Þ

Since the inflationary era is governed by the slow-roll
approximation, quantified by the relations,

Ḧ ≪ H _H; _H ≪ H2; ð13Þ

in view of the relations (13), the Friedmann equation (12)
becomes

_H ≃ −
1

36
ðλþ 1ÞM2; ð14Þ

which is solved easily and yields a quasi–de Sitter
evolution,

HðtÞ ¼ HI −
1

36
tðλM2 þM2Þ; ð15Þ

where HI is an integration constant, which is basically
the inflationary scale. Now, we can obtain easily the
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phenomenology of the model and the slow-roll parameters
are [17,88,130]

ϵ1 ¼ −
_H
H2

; ϵ2 ¼ 0; ϵ3 ¼
_FR

2HFR
; ϵ4 ¼

F̈R

H _FR

;

ð16Þ

and the spectral index of the primordial scalar curvature
perturbations and the tensor-to-scalar ratio are [130]

ns ≃ 1 − 6ϵ1 − 2ϵ4; ð17Þ

r ≃ 48ϵ21: ð18Þ

Now, the exact expression for the slow-roll index can easily
be found [130], and it is equal to

ϵ4 ≃ −
24FRRRH2

FRR
ϵ1 − ϵ1: ð19Þ

Hence, for the deformed R2 model of Eq. (11), the slow-roll
index ϵ4 is ϵ4 ≃ −ϵ1. Hence, the spectral index of the pri-
mordial curvature perturbations and the tensor-to-scalar
ratio are

ns ≃ 1 − 4ϵ1; ð20Þ

r ≃ 48ϵ21: ð21Þ

The slow-roll index ϵ1 can easily be found by using the
analytic quasi–de Sitter solution for the Hubble rate (14), and
it is equal to

ϵ1 ¼ −
−λM2 −M2

36ðHI − 1
36
tðλM2 þM2ÞÞ2 ; ð22Þ

and from it we can easily find the time instance at which
inflation ends, namely, tf, by solving the equation ϵ1ðtfÞ ¼ 1,
and the solution is

tf ¼ 6ð6HIλM2 þ 6HIM2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3M6 þ 3λ2M6 þ 3λM6 þM6

p
Þ

λ2M4 þ 2λM4 þM4
: ð23Þ

We can now use the definition of the e-foldings number N,

N ¼
Z

tf

ti

HðtÞdt; ð24Þ

in order to find ti as a function of the e-foldings number and
the rest of the parameters, so we have

ti ¼
6ð6HI þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ 1ÞM2ð2N þ 1Þ

p
Þ

ðλþ 1ÞM2
: ð25Þ

Now if we calculate the slow-roll index ϵ1 at the first
horizon crossing time instance ti, we get remarkably a
λ-independent result,

ϵ1ðtiÞ ¼
1

1þ 2N
; ð26Þ

so the spectral index and the tensor-to-scalar ratio are at
leading order ns ∼ 1 − 2

N and r ∼ 12
N2, which are identical to

the R2 model with λ ¼ 0. The model is compatible with the
latest Planck data [81]. Thus, the inflationary phenomenol-
ogy of the model (2) is viable and compatible with the
Planck data. As a final comment, the fact that the parameter
λ does not affect at all the phenomenology of the model
is an artifact of the R2 model and of the fact that the
axion scalar is not dynamically evolving during the infla-
tionary era. In fact, it can be shown that if a dynamically
evolving canonical scalar field is present, this rescaled

Einstein-Hilbert R term affects the inflationary phenom-
enology significantly in some cases [131].

IV. EARLY AND LATE DARK ENERGY ERAS

For the FðRÞ gravity theory in the presence of radiation
and the axion dark matter fluid, the field equations for the
flat FRW metric can be cast in the Einstein-Hilbert form as
follows:

3H2 ¼ κ2ρtot;

−2 _H ¼ κ2ðρtot þ PtotÞ; ð27Þ
where ρtot ¼ ρa þ ρDE þ ρr stands for the total energy
density, ρa is the axion field energy density, which recalls
that it scales as ∼a−3, while ρr is the radiation energy
density and ρDE is the dark energy density, a purely
geometric term since it is equal to

κ2ρDE ¼ FRR − F
2

þ 3H2ð1 − FRÞ − 3H _FR: ð28Þ

Also, Ptot ¼ Pr þ Pa þ PDE denotes the total pressure of
the cosmological fluid, and the dark energy pressure is

κ2PDE ¼ F̈R −H _FR þ 2 _HðFR − 1Þ − κ2ρDE: ð29Þ
In this section, we aim to study the late-time behavior of
the model (2), by solving numerically the Friedmann
equation (4). To this end, we shall use the redshift as a
dynamical parameter quantifying the evolution instead of
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the cosmic time, and also we shall introduce an appropriate
statefinder quantity, which will make the dark energy
effects more transparent. The redshift z is defined as

1þ z ¼ 1

a
; ð30Þ

and the present time scale factor, that is, at z ¼ 0, is
assumed to be equal to unity. The statefinder we shall use is
the function yHðzÞ [15,17,132–135],

yHðzÞ ¼
ρDE

ρð0Þm

; ð31Þ

with ρð0Þm being the present time energy density of cold
dark matter. Obviously, yHðzÞ is a dark energy–dependent
quantity, and it is different from zero, when geometric
terms appear in the gravitational action. We can write
the first Friedmann equation in terms of the statefinder
quantity yHðzÞ and by recalling that for the axion field

ρa ¼ ρð0Þm ð1þ zÞ3,

yHðzÞ ¼
H2

m2
s
− ð1þ zÞ3 − χð1þ zÞ4; ð32Þ

where we introduced the parameter χ ¼ ρð0Þr

ρð0Þm
≃ 3.1 × 10−4,

and ρð0Þr is the radiation energy density, and recall that

m2
s ¼ κ2ρð0Þm

3
¼ H0Ωc ¼ 1.37201 × 10−67 eV2. Apparently,

the statefinder yHðzÞ clearly shows deviations from the
standard model of cosmology, and it is constant for the
ΛCDM model. Hence, it is indeed a statefinder for dark
energy since it shows deviations from the Einstein gravity
and also shows if the dark energy is dynamical or not, and
the latter issue is still a mystery too, along with dark energy
itself. In terms of the statefinder yHðzÞ, the Friedmann
equation reads [133]

d2yHðzÞ
dz2

þ J1
dyHðzÞ
dz

þ J2yHðzÞ þ J3 ¼ 0; ð33Þ

with the dimensionless functions J1, J2, and J3 being
defined in the following way:

J1¼
1

zþ1

�
−3−

1−FR

ðyHðzÞþðzþ1Þ3þχð1þ zÞ4Þ6m2
sFRR

�
;

J2¼
1

ðzþ1Þ2
�

2−FR

ðyHðzÞþðzþ1Þ3þχð1þ zÞ4Þ3m2
sFRR

�
;

J3¼−3ðzþ1Þ

−
ð1−FRÞððzþ1Þ3þ2χð1þ zÞ4ÞþR−F

3m2
s

ð1þ zÞ2ðyHðzÞþð1þ zÞ3þχð1þ zÞ4Þ6m2
sFRR

;

ð34Þ

with FRR ¼ ∂2F
∂R2. Our aim is to solve numerically the dif-

ferential equation (33) in the redshift interval z ¼ ½0; 10�,

by using appropriate physical motivated initial conditions
which correspond to the late stages of the matter domina-
tion era. These are

yHðzfÞ ¼
Λ
3m2

s

�
1þ ð1þ zfÞ

1000

�
;

dyHðzÞ
dz

����
z¼zf

¼ 1

1000

Λ
3m2

s
: ð35Þ

We developed a numerical code appropriately constructed
to integrate the differential equation (33) backward from
z ¼ 10 to z ¼ 0, using PYTHON 3, and specifically the
“solve_ivp” function of the SCIPY module. Also we per-
formed the analysis with Mathematica 11, and the results
almost coincide with the PYTHON outcomes. For the
PYTHON code, we used several methods of numerical
integration, like LSODA, BDF, RK45 (fourth order
Runge Kutta with variable step and dynamically fifth
order), and also the Radau, and the numerical results
were similar in all cases. The numerical code along with
a pedagogical description of the code and the physics of
dark energy phenomenology can be found here [80].
Before presenting the results of the numerical analysis,

let us quote the functional forms of several quantities of
interest, as functions of the statefinder yHðzÞ. The curvature
as a function of yHðzÞ reads

RðzÞ ¼ 3m2
s

�
4yHðzÞ − ðzþ 1Þ dyHðzÞ

dz
þ ðzþ 1Þ3

�
: ð36Þ

The dark energy density parameter ΩDE reads

ΩDEðzÞ ¼
yHðzÞ

yHðzÞ þ ðzþ 1Þ3 þ χðzþ 1Þ4 ; ð37Þ

while the dark energy EOS parameter reads

ωDEðzÞ ¼ −1þ 1

3
ðzþ 1Þ 1

yHðzÞ
dyHðzÞ
dz

; ð38Þ

and the total EOS parameter is

ωtotðzÞ ¼
2ðzþ 1ÞH0ðzÞ

3HðzÞ − 1: ð39Þ

Finally, the deceleration parameter reads

q ¼ −1 −
_H
H2

¼ −1þ ðzþ 1ÞH
0ðzÞ

HðzÞ : ð40Þ

Also for ΛCDM model, the Hubble rate equals to

HΛðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMðzþ 1Þ3 þ Ωrð1þ zÞ4

q
; ð41Þ
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with H0 being the value of the Hubble rate at present
time, which according to the latest Planck data is H0 ≃
1.37187 × 10−33 eV according to the latest Planck data
[81]. Also ΩΛ ≃ 0.681369 and ΩM ∼ 0.3153 [81], while
Ωr=ΩM ≃ χ, with χ being presented below Eq. (32).
Also, for the numerical analysis, we shall choose δ ¼ 0.1,
λ ¼ 0.999, ζ ¼ 0.2, and γ ¼ 5.1 in Eq. (2).
Now, let us discuss the results of our numerical analysis

and we gather the most characteristic examples of the late-
time behavior for the model (2) in Fig. 1, where we plot the
statefinder yHðzÞ (left plot), the total EOS parameter (right
plot) and in Fig. 2 the deceleration parameter, as functions
of the redshift. Also, in Fig. 3, we plot the Hubble rate as a
function of the redshift. The behavior of the statefinder
yHðzÞ clearly shows that yHðzÞ is essentially negative for
the whole interval z ¼ ½0; 10�, and this has interesting
consequences in view of the observational data reported
in Ref. [87], so we comment on the yHðzÞ behavior in the
next section. The behavior of the deceleration parameter
can clearly indicate when the Universe is accelerating
and when the Universe is decelerating. In our case, the

Universe decelerates until z ∼ 2.5, then it enters an accel-
eration phase, until z ∼ 1.5, followed by a decelerating
epoch which lasts for nearly 4 billion years until z ∼ 0.5.
After z ∼ 0.5, the Universe enters the final acceleration era
which lasts until present day, nearly 5 billion years. In
Fig. 2, we also quote the ΛCDM behavior of the decel-
eration parameter (red), and as it can be seen, the FðRÞ
model is indistinguishable from the ΛCDM model only for
the last 2 billion years approximately, from z ∼ 0.2 to
z ¼ 0. The same conclusion applies in the behavior of the
total EOS parameter in the right plot of Fig. 1, where the
red curve represents the behavior of the ΛCDM model.
Thus, the FðRÞ gravity model clearly has two dark energy
epochs, one early and one late dark energy epoch, and in
between these two dark energy eras, the Universe is
decelerating. The same behavior can be verified by looking
the right plot of Fig. 1, that is, the total EOS parameter for
the FðRÞ gravity model (blue curve), while the red curve
corresponds to the ΛCDM model. An interesting behavior
in the Hubble rate which occurs for z ∼ 2.6 until z ∼ 2
is that the Hubble rate at z ∼ 2.2 has a local minimum,
followed by a local maximum at z ∼ 2 and then the Hubble
rate evolves normally to its present day value for the FðRÞ
gravity model. This intriguing behavior is presented in
Fig. 3, where we plot H=Hð0Þ as a function of the redshift.
The curious behavior is highlighted on the right plot, and it
seems that it is an inherent characteristic of the model; we
could not attribute this behavior to any other qualitative
reasoning. Also we should note that the fraction of the
present day value of the Hubble rate for the FðRÞ gravity
model, over the Planck value for the Hubble rate at present

day is Hð0Þ
H0

¼ 0.563636. Finally, let us discuss the viability
of the FðRÞ gravity model in a more quantitative way, so let
us give the values of the dark energy density parameterΩDE
and of the dark energy EOS parameter at present day, and
we compare these with the Planck 2018 constraints on these
quantities. The PYTHON code using the “LSODA” integra-
tion technique yields ωDEð0Þ ≃ −0.9961 which is within

FIG. 1. The statefinder function yH for geometric dark energy as a function of the redshift (left plot) and the total EOS parameter ωtot
(right plot).

FIG. 2. The deceleration parameter, as a function of the
redshift.
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the viability limits of the Planck constraint ωDE ¼
−1.018� 0.031, and accordingly the dark energy density
parameter is found equal to ΩDEð0Þ ≃ 0.6872, which is an
acceptable value when compared to the Planck constraint
ΩDE ¼ 0.6847� 0.0073. Also the deceleration parameter
value at present day for the FðRÞ gravity model is qð0Þ ≃
−0.5267while for theΛCDMmodel is q ¼ −0.527; hence,
the two values are nearly identical.
A feature of the present FðRÞ gravity model that is worth

mentioning is the fact that themodel is free from dark energy
oscillations which are known to plagueFðRÞ gravity models
for the redshift interval z ¼ ½5; 10�. This in an inherent
characteristic of the model as it proves, and thus we may
conclude that the occurrence of dark energy oscillations in
FðRÞ gravity models is a model-dependent feature.
In conclusion, the FðRÞ gravity model (2) in the presence

of a light axion field produces a unified phenomenological
picture for the inflationary era and the dark energy eras,
with the intriguing characteristic of producing actually two
distinct dark energy era, one early and one late dark energy
eras, with a brief deceleration epoch occurring between
these two deceleration eras. Finally, let us finally comment
that the inverse integration PYTHON code we used and the
Mathematica 11 results agree to a great extent.

A. The behavior at z ∼ 2.34

Before closing, let us briefly discuss another interesting
feature of the model, which is related to the measurement of
the Hubble rate at z ¼ 2.34 reported by [87]. Assuming that
the observation is correct, we shall discuss how such an
observation is supported by the FðRÞ gravity model (2).
Basically, the observation of [87] indicates that the Hubble
rate at redshift z ∼ 2.34 isHðz¼ 2.34Þ ¼ 222 km=Mpc=sec,
a result which is also discussed in [136–139]. An interesting
way to explain the result of [87] is to make the assumption
that ρDE < 0 in Eq. (32), since otherwise one would get
Ωmh2 ¼ 0.142 which obviously does not agree with the
cosmic microwave background related value of the Planck

Collaboration dataΩch2 ¼ 0.12� 0.001 [81]. Although that
a negative dark energy density sounds strange, this concept
has appeared in the literature [140,141]. In our case, negative
dark energy density would mean negative values for the
statefinder yHðzÞ, and obviously by looking the upper left plot
of Fig. 1, we can see that yHðzÞ is negative for nearly the
whole interval z ¼ ½0; 10�. In fact, it only becomes positive at
z ∼ 1.4, where it has the value yHð1.4Þ ¼ 0.227363 and has
the present day value yHð0Þ ¼ 2.19527. Let us also comment
that negative values of yHðzÞ in FðRÞ gravity models fre-
quently occur, since most fðRÞ gravity models are plagued
with dark energy oscillations for the interval z ¼ ½5; 10�
[15,17]. The present model is free from oscillations though;
however, yH is negative for nearly the whole interval
z ¼ ½0; 10�.

B. The ghost issue

Before closing, we need to discuss the important issue of
ghosts in the essentially fðR;ϕÞ theory we discussed in this
paper. The ghost instabilities may be developed in a
modified gravity theory if the wave speed of the cosmo-
logical perturbations, which we will denote as cA, is larger
than unity. As was shown in Ref. [88], however, for fðR;ϕÞ
theories, the wave speed of the scalar perturbations is unity;
thus, no ghost instabilities occur in the curvature perturba-
tions. In fact, for a flat spacetime, which is our case, the
sound speed is equal to the wave speed of the cosmological
perturbations (see the last table of Ref. [88]). Let us
elaborate on this issue a bit further in order to clarify this
important issue. We shall obtain the cosmological pertur-

bations by perturbing the flat FRW metric gð3Þαβ in the
following way [88]:

ds2 ¼ −a2ð1þ αÞdη2 − 2α2β;αdηdxα

þ a2ðgð3Þαβ þ 2φgð3Þαβ þ 2γ;αjβ þ 2CαβÞdxαdxβ; ð42Þ

with gð3Þαβ being

FIG. 3. HðzÞ
Hð0Þ as a function of the redshift. In the right plot, the intriguing behavior of the Hubble rate for redshifts z ∼ 2.6 until z ∼ 2 is

shown in a more transparent way. The green line in the right plot corresponds to the H=Hð0Þ value 2.56196.
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gð3Þαβ dx
αdxβ ¼ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð43Þ

In addition, η and a in Eq. (42) denote the conformal time
and the scale factor. Moreover α, β, γ, and φ in Eq. (42)
denote the scalar type order variables of the cosmological
perturbations, while the tensor Cαβ stands for the traceless
and transverse tensor perturbation. The dynamical evolu-
tion of the scalar type perturbation quantified by the
variable Φ ¼ φδϕ, and which is directly related to the

scalar type gauge invariant quantity δϕφ ¼ − _ϕ
H φδϕ, is

determined by the differential equation that follows:

ðHþ _FR
2FR

Þ2

a3ðω _ϕ2þ 3
ð _FRÞ2
2FR

Þ
d
dt

�a3ðω _ϕ2þ 3
ð _FRÞ2
2FR

Þ
ðHþ _FR

2FR
Þ2

_Φ
�
¼ Δ
a2

Φ; ð44Þ

with Δ being the Laplacian of the spatial section of the
FRW metric. It is apparent from the right-hand side of the
above evolution equation that the wave speed of the scalar
perturbations is equal to unity; thus, no ghost instabilities
are expected in the cosmological perturbations. But why
does the wave speed determine actually whether or not
ghost instabilities occur in the first place? Basically, by
looking at Eq. (44), the wave speed of the perturbation
Φ ¼ φδϕ is equal to unity, but apart from the perturbationΦ
for a general fðR;ϕÞ theory, there is another scalar pertur-
bation, denoted as Ψ, which is defined as follows:

Ψ ¼ φχ þ
_FR

2FR

δFχ

_F
; ð45Þ

the evolution of which is determined by the differential
equation that follows:

ω _ϕ2 þ 3
ð _FRÞ2
2F

ðH _FR
2FR

ÞðFRÞ
d
dt

� ðH þ _FR
2FR

Þ2

aðω _ϕ2 þ 3
ð _FRÞ2
2FR

Þ
_S
�

¼ Δ
a2

Ψ; ð46Þ

with the quantity S being defined below,

S ¼ aðFRÞ
H þ _FR

2FR

Ψ: ð47Þ

Hence, by looking at both Eqs. (44) and (46), which are
essentially wave equations, the propagation wave speed is
equal to unity, so the wave speed of the propagation of both
the fluctuating field and of the perturbed metric is equal to
unity. In fact, since the FRWmetric we use has a flat spatial
part, the sound wave speed defined as c2s ¼ _p

_ρ is identical to
the wave speed, which is equal to unity. In order to make
this more apparent, let us bring both Eqs. (44) and (46)
to the Mukhanov-Sasaki form. We define z̄ ¼ cAz, with
cA ¼ 1 in our case, and z is

z ¼ a _ϕ
H

ffiffiffiffiffiffi
E
FR

s
; ð48Þ

while E is

E ¼ FR

κ2

�
1þ 3ð _FRÞ2

2κ2 _ϕ2FR

�
: ð49Þ

In addition, we introduce v̄ ¼ zΦ and also u ¼ a
κ2H

1
z̄Ψ;

hence, the wave equations appearing in Eqs. (44) and (46),
respectively, can be brought in the well-known Mukhanov-
Sasaki forms

v̄00 −
�
c2AΔþ z00

z

�
v̄ ¼ 0; ð50Þ

u00 −
�
c2AΔþ ð1=z̄Þ00

1=z̄

�
u ¼ 0; ð51Þ

where in our case cA ¼ 1. Thus, the wave speed of the
fluctuating fluid and of the perturbed metric is equal to
unity; hence, no ghost instabilities occur in the theoretical
framework we used.

V. CONCLUDING REMARKS

In this work, we investigated the phenomenology of an
FðRÞ gravity model in the presence of a primordial light
axion scalar field with broken Uð1Þ Peccei-Quinn sym-
metry during the inflationary era. Due to the fact that
the axion scalar is frozen to its primordial vacuum expect-
ation values, it has a highly subdominant role during the
inflationary era, which is predominantly controlled by
the R2 term of the FðRÞ gravity. The resulting effective
Lagrangian during inflation has also a rescaled Einstein-
Hilbert R term at leading order during inflation. As we
demonstrated by performing an explicit calculation, the
resulting inflationary phenomenology is identical with that
corresponding to the R2 model; thus, surprisingly, the
rescaled R term does not affect the dynamical evolution
during inflation, at least at leading order. However, if the
axion was dynamically evolving during inflation, this result
would not be valid. Actually, the rescaled Einstein-Hilbert
gravity can significantly affect the inflationary phenom-
enology of a canonical scalar field as we will show in [131].
After the inflationary era, and specifically when the axion
massma becomes of the same order as the Hubble rate, and
for all cosmic times for whichma≽H, the axion field starts
to oscillate and its energy density evolves as ρa ∼ a−3, thus
behaves as a dark matter perfect fluid. Accordingly, we
examined the dark energy phenomenology of the FðRÞ
gravity model in the presence of the axion dark matter
perfect fluid and of the radiation perfect fluid. After
expressing the Friedmann equation as a function of the
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redshift and of a suitable statefinder function, we solved
numerically the resulting equation, using suitable physi-
cally motivated initial conditions corresponding to the late
stages of the matter domination era. For the numerical
analysis, we developed a PYTHON 3 numerical code which
is freely available here [80], along with a pedagogical
description of the FðRÞ gravity dark energy phenomenol-
ogy. The resulting picture is quite interesting phenomeno-
logically, since three novel features for FðRÞ gravity appear
in the theory. Firstly, the Universe experiences an early
dark energy era, starting at z ∼ 2.5 and ending at z ∼ 1.5,
followed by a decelerating epoch which lasts until z ∼ 0.5,
and for the approximately remaining 5 billion years, from
z ∼ 0.5 to z ¼ 0, the Universe accelerates again. We found
that the model is also viable and compatible with the 2018
Planck constraints on the cosmological parameters, at least
when the dark energy density parameter and the dark
energy EOS parameters are considered. Also the model
mimics the ΛCDM model significantly at the last stages of
the evolution prior to present day redshift z ¼ 0 and at least
qualitatively. Second, the model is free from dark energy

oscillations, which are known to plague the FðRÞ gravity
dark energy phenomenology. Thus, our result indicates that
the dark energy oscillations might be a model-dependent
feature of FðRÞ gravity dark energy phenomenology. Third,
the model also complies with the z ∼ 2.34 observation
of [87]. Finally, the model has also another interesting
characteristic occurring at z ∼ 2, where the Hubble rate has
a local minimum, followed by a local maximum, after
which evolves normally up to z ¼ 0. This however is
another model-dependent feature. An interesting phenom-
enological concept which emerged from the effective
Lagrangian of the present FðRÞ gravity model at early
times is the appearance of a rescaled Einstein-Hilbert term
αR. Although for the present work, this term played a
subdominant term during inflation, due to the presence of
the R2 term, in conjunction with the fact that the axion
scalar was frozen in its vacuum expectation value, it would
be interesting to consider the same FðRÞ gravity model
without the R2 term, and in the presence of a dynamically
evolving canonical scalar field. As we shall show in [131],
the results can be quite intriguing in some cases of interest.

APPENDIX: THE PYTHON CODE FOR FðRÞ GRAVITY DARK ENERGY PHENOMENOLOGY

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
from scipy.integrate import odeint
from scipy.misc import derivative

#Definition of Hubble rate at present time based on CMB Planck
#2018 data. It is in eV
H0p=(67.4)*(5.067*10**5*10**13*10**9)/(1.592*1.5637*10**24*10**38)
#Definition of Hubble rate at present time based on Cepheids data.
It is in eV
H0c=(74)*(5.067*10**5*10**13*10**9)/(1.592*1.5637*10**24*10**38)
#Mass scale (eV)
ms=1.87101*10**(-67)
#Cosmological constant (eV)
Lambda_s=7.93*1.5*10**(-67)
# the parameter χ, radiation over dark matter present day energy densities.
chi=3.1*10**(-4)
#The initial redshift value of the redefined redshift z’=0, which corresponds to the
final value of the original redshift z=10
zfin=0
#initial conditions #Notice that we used the redefined redshift z’=10-z, so the value
zfin=0 of the redefined redshift corresponds
# to zfin=10 of the initial redshift parameter.
r=Lambda_s/(3*ms)*(1+(11-zfin)/1000)
phi=-Lambda_s/(3*ms)*1/1000
#Model parameters
M=3.04375*10**22 # in (eV)
#lambda_s=0.01 #dimensionless lambda_s=0.9999 #dimensionless
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#t=z from now on in order for the solve_ivp function to work. #Now you can use fR in your
programm
def f(t,y):
yH=y[0]
Y=y[1]
#first definition of the curvature for the numerical integration.

This must be re-defined after the numerical integration
#in order to be expressed in terms of the new solution
a=1/(11-t)
rs=(chi)*a**(-4)
R=3*ms*((1/a)*Y+4*yH+a**(-3))
#The fR and fRR are taken from above
f=R**2/M**2+lambda_s*R*np.exp(-Lambda_s*5.1/R)+Lambda_s*5.1*lambda_s-
(Lambda_s/0.2)*(R/(ms))**0.1
fR=5.1*Lambda_s*lambda_s*np.exp(-5.1*Lambda_s/R)/R–0.5*Lambda_s*(R/ms)**0.1/R
+lambda_s*np.exp(-5.1*Lambda_s/R)+2*R/M**2
fRR=26.01*Lambda_s**2*lambda_s*np.exp(-5.1*Lambda_s/R)/R**3+0.45*Lambda_s*(R/
ms)**0.1/R**2+2/M**2
#The fR and fRR are taken from above
J1=a*(-3*fRR-(1/(yH+a**(-3)+rs))*(-fR/(6*ms)))
J2=(a**2)*(1/(yH+a**(-3)+rs))*(1–fR)/(3*ms)
J3=-3*a**(-1)*fRR-((a**2)*(-fR*(a**(-3)+2*rs)-f/(3*ms))/(yH+a**(-3)+rs))
*1/(6*ms)
#we denote the derivative of y_H with respect to the redefined
redshift z’ as dyHdzr. This is one of the two things
#that the f function will give us
dyHdz=Y
dYdz=-(1/fRR)*(-J1*Y+J2*yH+J3)
return np.array([dyHdz,dYdz])

# At this point we set the redefined redshift initial and final
#values: from z=0 to z=10. t_span=np.array([0,10])
#And at this point we choose all the intermediate redshift points
#from z=0 to z=10, using 1000 points. In principle, one #can choose
#more intermediate points or even less, it is up to the reader.
time_interval=np.linspace(t_span[0],t_span[1],1000)
# Now we set the initial condition. Since y the outcome of the
#solve_ivp that will follow, is an array, with y[0] being the
#function y_H and y[1] being the derivative yH’[z], the initial
#condition is an array fixing the initial value of yH to be r
#defined previously, and that of yH’[z] to be phi, also defined
#previously, below the definition of r.
y0=np.array([r,phi])
# Now we can the solve_ivp function of the scipy module:
soly=solve_ivp(f,t_span,y0,method=’LSODA’,t_eval=time_interval)
# The solution yH is y[0], so we assign the name yH to the
#solution y of the solve_ivp function which we named ”sol” #The
#same with yH’[z] # which we call dotyH
yH=soly.y[0] Y=soly.y[1]
#Now since the above are basically arrays, we switch the redshift
#to the initial definition by using the very own definition # of
#the initial redshift-in our case recall we had to identify z=t in
#order for the solve_ivp function to work.
t=10-soly.t
#Now the definition of the Hubble rate of the present model
#defined as a function of the function yH and of the redshift.
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#The outcome is an array, to be #plotted as a function of the
#initially defined redshift which in terms of the programming
#dynamical variable t is t=10-soly.t # look up above this comment.
def a(x):
return 1/(11-x)

# Now we need to define some functions of the scale factor and of
#the functions yH and dotyH. These must be evaluated for the
#initial time interval, not the redefined t, because the functions
#yH and dotyH were calculated in exactly this way. In the #plots,
#we shall make use of the initial redshift values, but in the
#plots we basically connect values of arrays, #a list plot
#basically, so t=10-soly.t is just an array of values. However,
#the functions that will be built depending on yH and #dotyH MUST
#be evaluated using the initial time interval, in our case the
#linspace time_interval
rs=(chi)*a(time_interval)**(-4)
H=np.sqrt(ms*(yH+a(time_interval)**(-3)+rs))
# The derivative of the Hubble rate
dHdz=(ms*(-3*(a(time_interval))**(-2)–
0.00124*a(time_interval)**(-3)+Y))/(2*np.sqrt(ms*(yH+
a(time_interval)**(-3)+rs)))
Omega_Lambda =0.6847
Omega_R=8*10**(-5)

Omega_M=0.3153–Omega_R
#Dark energy density parameter
Omega_DE=yH/(yH+a(time_interval)**(-3)+rs)
#Hubble Rate of LCDM
HLCDM=np.sqrt(H0p**2*(Omega_Lambda+Omega_M*
a(time_interval)**(-3)+Omega_R*a(time_interval)**(-4)))
#The derivative of the Hubble rate
dHLdz=-(H0p**2*(3*a(time_interval)**(-2)*Omega_M+
4*a(time_interval)**(-3)*Omega_R))/(2*np.sqrt(H0p**2*((a(time_interval))**(-3)
*Omega_M+
(a(time_interval))**(-4)*Omega_R+Omega_Lambda)))
#Total Effective Equation of State parameter (Total EoS Parameter)
# For the FðRÞ gravity model
weff=-1–2/3*a(time_interval)**(-1)*dHdz/H
#For the LCDM model
wefflcdm=-1 -2/3*a(time_interval)**(-1)*dHLdz/HLCDM;
#Dark Energy Equation of State Parameter:
wG=-1-(1/3)*a(time_interval)**(-1)*Y/yH
#DECELERATION Parameter for the F(Rs) Gravity Model
q=-(a(time_interval)**(-1)/H)*dHdz–1
#DECELERATION for the LCDM Model
qlcdm=-(a(time_interval)**(-1)/HLCDM)*dHLdz–1
# Now the plots and the results of the numerical analysis # The
#F(R) model corresponds to blue color, and dashed-dot ”-.”
#curve #The LCDM model corresponds to red color and double dashed
#’–’ curve.
#plt.style.use(’Solarize_Light2’)
plt.plot(time_interval,yH,marker=’.’,color=’g’,linestyle=’-.’,
label=’Programming Method’)
plt.plot(t,yH,marker=’.’,color=’b’,linestyle=’–’,label=’Correct Redshift Method’)
plt.title(’The statefinder yH vs Redshift’)
plt.xlabel(’z’) plt.ylabel(’yH’)
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plt.tight_layout()
plt.grid(True)
plt.legend()
#plt.savefig(’plot1.eps’)
#plt.savefig(’plot1.jpg’)
plt.show()
plt.plot(time_interval,-Y,marker=’.’,color=’g’,linestyle=’-.’,
label=’Programming Method’)
plt.plot(t,-Y,marker=’.’,color=’b’,linestyle=’–’,label=’Correct Redshift Method’)
plt.title(’The statefinder derivative yn’H vs Redshift’)
plt.xlabel(’z’) plt.ylabel(’yn’H’)
plt.tight_layout()
plt.grid(True)
plt.legend()
#plt.savefig(’dyHp.jpg’)
plt.show()
plt.plot(t,H/H0p,marker=’.’,color=’b’,linestyle=’-.’,label=’fðRÞ’)
plt.plot(t,HLCDM/H0p,marker=’.’,color=’r’,linestyle=’–’,label=’ΛCDM’)
plt.title(’H=H0 vs Redshift’)
plt.xlabel(’z’) plt.ylabel(’Hubble Rates’)
plt.tight_layout()
plt.grid(True)
plt.legend()
#plt.savefig(’Hubblep.jpg’)
plt.show()
Ht=1.996*10**(-33)/H0p*np.ones(1000)
plt.plot(t,H/H0p,marker=’.’,color=’b’,linestyle=’-.’,label=’fðRÞ’)
plt.plot(t,HLCDM/H0p,marker=’.’,color=’r’,linestyle=’–’,label=’ΛCDM’)
plt.plot(t,Ht,marker=’.’,color=’g’,label=’Ht ¼ 1.99610−33 eV’)
plt.title(’ H=H0 vs Redshift Close Up’)
plt.xlabel(’z’) plt.ylabel(’Hubble rates over H0: H=H0’)
plt.tight_layout()
plt.grid(True)
plt.legend()
#plt.savefig(’Hubblepc.jpg’)
plt.ylim(1, 2) plt.xlim(1.5,3)
plt.show()
plt.plot(t,Omega_DE,marker=’.’,color=’b’,linestyle=’-.’,label=’ΩDEðzÞ-z for the f
(R) Model’)
plt.title(’ΩDEðzÞ vs Redshift’)
plt.xlabel(’z’) plt.ylabel(’ΩDEðzÞ’)
plt.tight_layout()
plt.grid(True)
plt.legend()
#plt.savefig(’Omdep.jpg’)
plt.show()
plt.plot(t,weff,marker=’.’,color=’b’,linestyle=’-.’,label=’ωeffðzÞ-z for the f
(R) Model’)
plt.plot(t,wefflcdm,marker=’.’,color=’r’,linestyle=’–’,label=’ωeffðzÞ-z for the
ΛCDM Model’)
plt.title(’Total EoS vs Redshift’)
plt.xlabel(’z’) plt.ylabel(’EoS Parameters’)
plt.tight_layout()
plt.grid(True)
plt.legend()
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#plt.savefig(’plot2.eps’)
#plt.savefig(’totaleosp.jpg’)
plt.show()
plt.plot(t,wG,marker=’.’,color=’b’,linestyle=’-.’,label=’ωDEðzÞ-z for the f
(R) Model’)
plt.title(’Dark Energy EoS vs Redshift’)
plt.xlabel(’z’) plt.ylabel(’EoS Parameters’)
plt.tight_layout()
plt.grid(True)
plt.legend()
#plt.savefig(’odep.jpg’)
plt.show()
plt.plot(t,q,marker=’.’,color=’b’,linestyle=’-.’,label=’q-z for the fðRÞ Model’)
plt.plot(t,qlcdm,marker=’.’,color=’r’,linestyle=’-.’,label=’q-z for the
ΛCDM Model’)
plt.title(’Deceleration Parameter vs Redshift’)
plt.xlabel(’z’) plt.ylabel(’q’)
plt.tight_layout()
plt.grid(True)
plt.legend()
#plt.savefig(’plot3.eps’)
#plt.savefig(’decelerationp.jpg’)
plt.show()
print(“The dark energy density parameter ΩDEð0Þ for the fðRÞ Model at present time is:”+”
“+str(Omega_DE[999]))
print()

print()
print(“The dark energy EoS parameter for the fðRÞ Model at present time is:”+” “+str
(wG[999]))

print()
print()
print(“The Hubble rate for the fðRÞ Model at present time is:”+” “+str(H[999]))

print()
print()
print(“The fraction of the Hubble rate for the fðRÞ Model and of the ΛCDM model at present
time is:”+” “+str(H[999]/H0p))
print() print()
print(“The deceleration parameter for the fðRÞ Model at present time is:”+” “+str
(q[999]))
print()
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