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A vitally important requirement for detecting gravitational-wave (GW) signals from compact binary
coalescences (CBCs) with high significance is the reduction of the false-alarm rate of the matched-filter
statistic. The data from GW detectors contain transient noise artifacts, or glitches, which adversely affect
the performance of search algorithms, especially for finding short-lived astrophysical signals, by producing
false alarms, often with high signal-to-noise ratio (SNR). These noise transients particularly affect the CBC
searches, which are typically implemented by cross-correlating detector strain data with theoretically
modeled waveform templates, chosen from a template bank that is densely populated to cover the source
parameter ranges of interest. Owing to their large amplitudes, many of the glitches can produce detectably
large peaks in the SNR time series—termed “triggers”—in spite of their small overlap with the templates.
Such glitches contribute to the false alarms. Historically, the traditional χ2 test has proven quite useful in
distinguishing triggers arising from CBC signals and those caused by glitches. In a recent paper, a unified
origin for a large class of χ2 discriminators was formulated, along with a procedure to construct an optimal
χ2 discriminator, especially when the glitches can be modeled. A large variety of glitches that often occur in
GW detector data can be modeled as sine-Gaussians, with quality factor and central frequency, (Q; f0), as
parameters. An important feature of a sine-Gaussian glitch is that there is a lag between its time of
occurrence in the GW data and the time of the trigger it produces in a templated search. Therefore, this time
lag is the third parameter used in characterizing the glitch. The total number of sampled points in the glitch
parameter space is associated with the degrees of freedom (d.o.f.) of the χ2. We use singular value
decomposition to identify the most significant d.o.f., which helps keep the computational cost of our χ2

down. Finally, we utilize the above insights to construct a χ2 statistic that optimally discriminates between
sine-Gaussian glitches and CBC signals. We also use receiver-operating characteristics to quantify the
improvement in search sensitivity when it employs the optimal χ2 compared to the traditional χ2. The
improvement in detection probability is by a few to several percentage points, near a false-alarm probability
of a few times 10−3, and holds for binary black holes with component masses from several to a hundred
solar masses. Moreover, the glitches that are best discriminated against are those that are like sine-
Gaussians with Q ∈ ½25; 50� and f0 ∈ ½40; 80� Hz.
DOI: 10.1103/PhysRevD.103.044035

I. INTRODUCTION

Great strides have been taken by modern technology in
the past several decades, which has allowed building of
highly sensitive gravitational-wave (GW) laser interfero-
metric detectors. These are now capable of measuring GW

strain sensitivities of h ∼ 10−22 or 10−23, where h is the
metric perturbation of the GW. The heroic experimental
efforts undertaken by physicists all over the world have
finally culminated with the first direct observation of a GW
signal announced by the Laser Interferometer Gravita-
tional Wave Observatory (LIGO) project [1,2]. On
September 14, 2015, the two LIGO interferometers at
Hanford (Washington) and Livingston (Louisiana) simul-
taneously measured and recorded strain data that indicated
the presence of a GW signal emitted by a coalescing binary
system containing two black holes of masses of about
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36 M⊙ and 29 M⊙ at an average luminosity distance of
410 Mpc. Since the announcement of the first GW
observation, more detections have been made by both
LIGO and the Virgo detectors, and it is expected that soon
the KAGRA interferometer in Japan [3] will join the
network in making astronomical observations. We are
now just beginning to explore the observational capabilities
offered by GWs, which promise to unveil secrets of the
Universe inaccessible by any other means [4]. Future
efforts are planned to construct ever more sensitive GW
detectors which will probe even deeper into the cosmos and
complement the observations from electromagnetic
astronomy, thus giving us a more complete picture of
the Universe.
Detector data are neither Gaussian nor stationary. Non-

Gaussianity and nonstationarity can arise from various
components of the detector itself or the environment.
Detection of GW signals crucially depends on compre-
hensively addressing the non-Gaussianity and nonstatio-
narity of detector noise [5] and the implementation of
effective measures for discriminating noise artifacts from
true signals (see, e.g., Ref. [6]). In this work, we focus on
signals in ground-based detectors arising from compact
binary coalescences (CBCs) involving black holes or
neutron stars. These signals are transient, lasting between
a fraction of a second to several minutes, and can be
adequately modeled with the help of post-Newtonian
approximations and numerical relativity. While our primary
focus here is on nonspinning binary black holes (BBHs),
the basic ideas in this work can be extended to CBCs with
spins and a wider distribution of masses. For signals that
can be well modeled, matched filtering is the commonly
employed technique [7]—a method that has been success-
fully applied to identify CBC signals buried in detector
noise [8–10]. Since the signals depend on several param-
eters, a bank of templates densely covering the parameter
space is employed [11,12]. However, just matched filtering
by itself is not sufficient to identify a signal because the
data contain non-Gaussianities and transient noise artifacts,
also termed “glitches”. Even when the overlap of the
glitches with the templates in the bank is small, the glitches
themselves can be loud enough to produce triggers, which
then run the risk of being misinterpreted as signal based. To
remedy this situation, vetoes or χ2 discriminators have been
used. The traditional χ2 discriminator [13] tends to dis-
tinguish between a signal and a glitch by producing a high
(low) value of the χ2 statistic if the trigger arises from a
glitch (signal). The statistic is constructed based on the way
the power in the frequency domain is distributed in various
frequency bins by dividing the data into several frequency
bins and checking whether this power distribution is
consistent with that of the signal. Accordingly, a quanti-
tative measure is defined—a χ2 statistic—based on the
above considerations.
However, this is not the only χ2 that is possible. It has

been shown in Ref. [14] that a plethora—in fact, an infinity

—of such χ2 statistics can be constructed. The question
addressed in Ref. [14] is what is a χ2 (in this context). We
briefly summarize its main results here. Consider the
(function) space of all possible detector data trains D over
an observation time T, with the scalar product defined by
the power-spectral density (PSD) of the detector noise.D is
a Hilbert space. A GW signal, a noise realization, and a
specific data train are all vectors in D. So also is every
template in a template bank, with the additional property
that it has a unit norm. A χ2 statistic amounts to assigning a
relatively low-dimensional (say a few to 100) subspace S to
each template vector in D such that the subspace S is
orthogonal to that template vector. Then, the χ2 associated
with any data vector in D, and a given template, is just
the norm squared of the projection of that vector onto the
subspace S assigned to that template. Furthermore,
the number of degrees of freedom of the χ2 is just the
dimension of S. For a fixed dimension of S, each χ2

statistic amounts to constructing a vector bundle over the
signal manifold or the parameter space P. The traditional
χ2 is just one choice of the subspaces S resulting in one
such vector bundle. Since S can be chosen in a plethora of
ways, a large number of such χ2 are possible. We have then
a large freedom in our choice of discriminatory tests, and
this freedom can be utilized in a fruitful way to optimize
the signal search statistic. This can be certainly done for
glitches that can be modeled.
As remarked earlier, the detector data are glitchy.

However, if a subspace can be identified in D on which
the glitches have a significant projection, but not the
signals, then the question arises as to how this information
can be utilized to improve the performance of a χ2 test.
Here, we develop a mathematically rigorous formalism to
address this question. The main construction is general and
applicable to any family of glitches that can be modeled,
but for illustrating it, we use one that is populated by sine-
Gaussians. The reason for this choice is that empirically a
large subset of noise transients in gravitational-wave strain
data of LIGO and Virgo detectors has been found to project
strongly on sine-Gaussians, including the types that trigger
CBC templates [8,14–19]. A couple of these glitches from
the second observation run (O2) of the LIGO-Hanford
detector [20] are shown in Fig. 1. Most importantly, it is not
required that the transients project fully on that subspace.
The χ2 statistic that we design here is optimal for such
glitches. However, our algorithm can be straightforwardly
adapted to replace sine-Gaussians with any other relevant
glitch morphology.
How exactly can one make the χ2 optimal? It is clear that

we will get a high value of χ2 if we align the subspace S
along the glitches so that the glitches have maximum
projection on S. (We must also satisfy the requirement that
S must be orthogonal as well to the template, but this is
easily achieved because dimðSÞ ≪ dimðDÞ—there is
enough “room” to orient S.) However, a reasonable
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sampling of the glitches—giving at least a projection of, say,
90%—results in a large number of glitch vectors.We find this
number to be a few thousand, typically. This will make
dimðSÞ∼ few thousand, which is the number of degrees of
freedom for the χ2, which would push up the computational
cost. Our strategy is then to approximate the subspace
spanned by the glitch vectors by a lower-dimensional sub-
space of, say, less than 100. This is what wewill choose asS.
We must then find the best approximation to the subspace
spanned by the glitch vectors. This is achieved via theEckart-
Young-Mirsky theorem [21]. It uses the singular value
decomposition (SVD) [22–24] to find thebest approximation
to a subspace of dimension n with a subspace of dimension
m, wherem < n. There are several nontrivial steps involved
—ensuring that S is orthogonal to the trigger template,
dealing with a general scalar product because of the colored
PSD, etc. We describe these aspects in Sec. III.
We accordingly construct an optimal χ2 to discriminate

against sine-Gaussian glitches. We call it the optimal sine-
Gaussian χ2 and denote it by χ2SG. We perform simulations

of a large number of CBC signals and sine-Gaussian
glitches, as well as detector noise, and use them to construct
receiver-operating characteristics for quantifying the
improvement in search sensitivity when it employs the
optimal sine-Gaussian χ2 compared to the traditional χ2. As
we show below, the improvement in detection probability is
by a few to several percentage points, near a false-alarm
probability of a few times 10−3, and holds for binary black
holes with component masses from several to a hundred
solar masses. Moreover, the glitches that are best discrimi-
nated against are those that are like sine-Gaussians with
Q ∈ ½25; 50� and f0 ∈ ½40; 80� Hz. We also comment on
the practical issue of the computational cost involved and
how to mitigate it.
The paper is organised as follows. In Sec. II, we describe

earlier work pertinent to the problem we discuss here; we
give a brief review of matched filtering, the unified χ2, and
sine-Gaussians. In Sec. III, we describe in detail the steps
required to construct an optimal χ2 that will discriminate
against sine-Gaussian glitches. This involves sampling the

FIG. 1. The above plots show noise transients from the LIGO-Hanford detector during its second observation run [20]. These glitches
not only trigger BBH templates, with SNRs of 35–40, but also project on sine-Gaussians substantially (see Sec. IV below). The primary
sine-Gaussian that captures most of the projections for the above ones has f0 ¼ 120 Hz andQ ¼ 5, whereas the loudest BBH templates
triggered by them have a projection of approximately 1%. The new χ2 statistic introduced later in this work has an order-of-magnitude
larger value on these glitches compared to simulated BBH injections with the same parameters and SNRs as the loudest templates,
thereby affording a way to discriminate between them. The projections of the above glitches on the best-fit sine-Gaussian (overlaid in
red, for the first one) are 78% and 51%, respectively, while they are 8.0% and 9.4% for the clipped sine-Gaussians (see Sec. III B). Since
these glitches occur with high amplitudes, they nevertheless produce high χ2 values in spite of their seemingly small projections.
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parameter space of sine-Gaussians with a sufficient number
of points, whittling down this number with the help of the
SVD algorithm in order to obtain the best low-dimensional
approximation to the vector space spanned by the sampled
sine-Gaussians (Eckart-Young-Mirsky theorem), adapta-
tion of the SVD to colored noise, etc. In Sec. IV, we apply
the aforementioned construction to compute the optimal
sine-Gaussian χ2 on simulated CBC signals and sine-
Gaussian glitches. We compare the performance of detec-
tion statistics employing the new χ2 and the traditional χ2

on the same simulations. These comparisons are described
with the help of χ2 versus signal-to-noise (SNR) plots and
receiver-operating characteristics (ROC) curves. In Sec. V,
we conclude with a discussion on future applications,
especially in real data. While we apply the formalism
developed here on large sets of simulated glitches and
signals, we illustrate it on only a couple of real-data glitches
and a couple of simulated BBH injections in real-data
snippets. In our next work, we will expand it to much larger
numbers in real data that are typical of a full LIGO-Virgo
observation run [25].

II. UNDERLYING GEOMETRICAL STRUCTURE

A. Matched-filtering programme

Consider two data trains (or functions), xðtÞ and yðtÞ,
defined over a time interval ½0; T� of duration T. The data
trains form a vector space D. As vectors in D, they will be
denoted in boldface—x and y. Let nðtÞ be the noise in the
detector, which is a stochastic process defined over the data
segment, has ensemble mean of zero, and is stationary in the
wide sense. A specific noise realization is a vectorn ∈ D—n
is in fact a random vector. Its PSD is denoted by ShðfÞ. The
scalar product of x and y is written conveniently in the
Fourier domain. If x̃ðfÞ and ỹðfÞ are the Fourier representa-
tions of x and y, then the scalar product is given by

ðx; yÞ ¼ 4ℜ
Z

fupper

flower

df
x̃�ðfÞỹðfÞ
ShðfÞ

; ð2:1Þ

where integration is carried out over the bandwidth
½flower; fupper�. This construction makes the space of data
segments a Hilbert space—a L2 space with measure
dμ≡ df=ShðfÞ. We denote this space byD ¼ L2ð½0; T�; μÞ.
The most commonly used post-Newtonian (PN) approx-

imant is TaylorF2, which is computed in the Fourier
domain using the stationary phase approximation. We
choose this approximant for the signal in this work, which
can be straightforwardly generalized to other waveform
models. The general form of the signal, denoted by h, is

h̃ðfÞ ¼ Af−7=6e−iψðfÞ; ð2:2Þ

where the overall amplitude A depends on the binary
component masses, the source distance, sky position, and

the orientation of the binary orbit relative to the detector.
The phase ψðfÞ is computed to 3.5PN order explicitly [26]
and depends on the coalescence time and phase, tc and ϕc,
respectively, and the mass parameters. We will view these
waveforms as vectors in D and denote them by the
boldfaced letter h.
The Newtonian waveform, which is simple, even if

somewhat inaccurate, is nevertheless useful for illustrating
the key ideas in this work. The normalized Newtonian
inspiral binary waveform in the Fourier domain is given by

h̃ðf; tc; τ0;ϕcÞ ¼ N f−
7
6e−iψNðf;tc;τ0;ϕcÞ; ð2:3Þ

where N is a normalization constant determined by setting
ðh;hÞ ¼ 1. The phase ψNðfÞ is given by

ψNðf; tc; τ0;ϕcÞ ¼ 2πftc þ
6πfsτ0

5

�
f
fs

�
−5=3

− ϕc −
π

4
:

ð2:4Þ

Furthermore, we have expressed the phase in terms of a
parameter more suited to this work than the chirp mass
[11], namely, the chirp time τ0 [11,12]. Physically, τ0 is
approximately the time taken for the binary to coalesce
starting from some fiducial frequency fa. We take this
fiducial frequency to be near about the lower end of the
range of central frequencies f0 of the sine-Gaussians that
we will consider. Taking f0 ¼ 30 Hz, we obtain

τ0 ¼
5

256πf0
ðπMf0Þ−5=3

≃ 5.085

�
f0

30 Hz

�
−8=3

�
M

5 M⊙

�
−5=3

sec; ð2:5Þ

whereM ¼ μ3=5M2=5 is the chirp mass, μ andM being the
reduced and the total mass, respectively. Also, M⊙ denotes
the mass of the Sun. We have set G ¼ c ¼ 1.
The signal s in the data is just an amplitude A

multiplying the normalized waveform h; thus, s ¼ Ah.
The data vector, which we denote by x, is then x ¼ sþ n,
when a signal is present; in the absence of a signal, it is just
noise, i.e., x ¼ n. The match c (correlation) is the scalar
product between the data x and a (normalized) template h,
that is, c ¼ ðx;hÞ, which is then a function of the template
parameters. In the analysis of the data for searching signals,
the match is maximized over template parameters and
compared with a preset threshold. In practice, for the
parameters tc;ϕc, the templates need to be only defined
at ϕc ¼ 0 and ϕc ¼ π=2 and for tc ¼ 0. This is because the
search over these parameters can be done efficiently using
quadratures for ϕc and the fast fourier transform (FFT)
algorithm for tc in a continuous fashion. The search over
the mass parameters is carried out with a densely sampled
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discrete bank of templates so that the chance of missing out
a signal is low.

B. Unified χ 2

The χ2 discriminator is defined so that its value at the
signal is zero and for Gaussian noise it has a χ2 distribution
with a certain number of degrees of freedom. The χ2 test for
the trigger template h is defined by choosing a finite-
dimensional subspace S of dimension p such that for any
v ∈ S we must have ðv;hÞ ¼ 0, that is, S as a subspace is
orthogonal to h. Then, the χ2 pertaining to the template h is
just the square of the L2 norm of the data vector x projected
ontoS. Specifically, we decompose the data vector x ∈ D as

x ¼ xS þ xS⊥ ; ð2:6Þ

where S⊥ is the orthogonal complement of S in D. xS and
xS⊥ are projections of x into the subspaces S and S⊥,
respectively. We may write D as a direct sum of S and S⊥,
that is, D ¼ S ⊕ S⊥.
Then, the statistic χ2 is

χ2ðxÞ ¼ kxSk2: ð2:7Þ

Given any orthonormal basis in S, say, eα; α ¼ 1; 2;…; p
so that ðeα; eβÞ ¼ δαβ, where δαβ is the Kronecker delta, we
easily verify its properties:
(1) For a general data vector x ∈ D, we have

χ2ðxÞ ¼ kxSk2 ¼
Xp
α¼1

jðx; eαÞj2: ð2:8Þ

(2) Clearly, χ2ðhÞ ¼ 0 because the projection of h into
the subspace S is zero or hS ¼ 0.

(3) Now, let us take the noise n to be stationary and
Gaussian with PSD ShðfÞ and mean zero. Then, the
following is valid:

χ2ðnÞ ¼ knSk2 ¼
Xp
α¼1

jðn; eαÞj2: ð2:9Þ

Observe that the random variables ðn; eαÞ are inde-
pendent and Gaussian, with mean zero and variance
unity. This is because hðeα;nÞðn; eβÞi ¼ ðeα; eβÞ ¼
δαβ, where the angular brackets denote ensemble
average (see Ref. [27] for proof). Thus, χ2ðnÞ has a
χ2 distribution with p degrees of freedom.

For the ease of calculations, one is free to choose any
orthonormal basis of S. In an orthonormal basis, the
statistic is manifestly χ2 since it can be written as a sum
of squares of independent Gaussian random variables, with
mean zero and variance unity.
However, in the context of CBC searches, we are in a

more complex situation. We do not have just one waveform

but a family of waveforms that depend on several param-
eters, such as masses, spins, and other kinematical param-
eters. We denote these parameters by λa; a ¼
1; 2;…; m. As before, we may assume the waveforms to
be normalized, i.e., khðλaÞk ¼ 1. (We have excluded the
amplitude A, but it can be easily reinstated. This is in fact
the manifold traced out by the templates and is a sub-
manifold of the unit hypersphere in D.) Then, the wave-
forms trace out an m-dimensional manifold P—the signal
manifold—which is a submanifold of D. We now associate
a p-dimensional subspace S orthogonal to the waveform
hðλaÞ at each point of P—we have a p-dimensional vector-
space “attached” to each point of P. When done in a
smooth manner, this construction produces a fiber bundle
with a p-dimensional vector space attached to each point of
the m dimensional manifold P. The fiber bundle so
obtained is a vector bundle of dimension mþ p. We have,
therefore, found a very general mathematical structure for
the χ2 discriminator. Any given χ2 discriminator for a signal
waveform hðλaÞ is the L2 norm of a given data vector x
projected onto the fiber S at hðλaÞ.
It can be easily shown that the traditional χ2 falls under

the class of unified χ2. This is done by exhibiting the
subspaces S or by exhibiting the basis field for S over P;
the conditions mentioned above must be satisfied by S. In
Ref. [14], such a basis field has been given explicitly.

C. Sine-Gaussian glitches

Many transient bursts are represented suitably in the form
of sinusoids with a Gaussian envelope [28]. A couple of such
transients are shown in Fig. 1. They occur in the LIGO-
Hanford detector’s O2 data [20] and have significant pro-
jections on sine-Gaussians. The primary sine-Gaussian that
captures most of the projections of the glitches has the
parameters f0 ¼ 120 Hz andQ ¼ 5. We have found that the
χ2 statistic introduced later in this work cleanly distinguishes
between these glitches and simulated BBH injections with
the same SNRs.We canmodel these glitches by using a sine-
Gaussian model with central frequency f0, central time t0,
and a quality factor Q.
The time-domain expression for a sine-Gaussian with

central frequency f0, quality factor Q, and central time t0 is
given by

sðtÞ ¼ s0e−ðt−t0Þ
2=τ2 sin 2πf0ðt − t0Þ; ð2:10Þ

where s0 is the amplitude and τ is the decay time constant
related to the quality factor as Q ¼ 2πf0τ. The frequency-
domain expression can be obtained by Fourier transforming
sðtÞ and can be shown to be a Gaussian centered at f0,

s̃ðfÞ ¼ κ e
−ðf−f0Þ2Q2

4f2
0 : ð2:11Þ

where κ is a normalization constant. If we demand that
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4

Z
∞

0

dfjs̃ðfÞj2 ¼ 1; ð2:12Þ

then κ ¼ ðQ=2f0Þ1=2ð1=2πÞ1=4. Here, we have set the
central time t0 of the sine-Gaussian to be zero. However,
for a nonzero t0, the s̃ðfÞ in (2.11) will be merely multiplied
by the factor e−2πift0.
One can conceptualize the family of glitches, say, G, as a

manifold. In fact, it is a three-dimensional manifold with
coordinates ðt0; f0; QÞ. Indeed, it can even be equipped
with a metric, which is a map from coordinate differences
of neighboring unit-norm sine-Gaussians to the fractional
drop in their match [29,30]. It can be described by the line
element on that manifold,

ds2 ¼ 4πf20

�
1þ 1

Q2

�
dt20 þ

2þQ2

4f20
df20

þ 1

2Q2
dQ2 −

1

f0Q
df0dQ: ð2:13Þ

[Note that ds does not describe an infinitesimal change in s
of Eq. (2.10).] There is a cross-term in the metric in these
coordinates. A set of parameters that we find useful is f0 →
ω0 ¼ 2πf0 and ν ¼ 1=τ. Then, Q → ω0=ν. In these new
coordinates, we obtain the metric in a diagonal form as

ds2 ¼ ðν2 þ ω2
0Þdt20 þ

1

4ν2
dω2

0 þ
1

2ν2
dν2: ð2:14Þ

We will make use of these metric forms for uniformly
sampling the space G of sine-Gaussians so that they have
adequate projection on the subspaces S.
Two comments are in order. First, this metric is a little

different from the one in Ref. [28]. The metric here is
derived by taking the real part of an integral, as in Eq. (2.1);
whereas the one in Ref. [28] is derived from the modulus of
that integral. Accordingly, we have an extra ω2

0 term
multiplying dt20—otherwise, the metrics are identical.
The two metrics serve different purposes in their applica-
tion. Second, G is not a submanifold of D in the strict sense
because the metrics (2.13) and (2.14) are not induced from
the metric on D. The metric on D derived from the scalar
product Eq. (2.1) depends on the PSD ShðfÞ. However, ifD
had an Euclidean metric (or if the noise was white), then the
metric on G would be the induced metric, and G would be a
submanifold of D. However, since ultimately we only
require the sampling to be approximately uniform, these
metrics work for us.

III. OPTIMIZING THE χ 2 FOR SINE-GAUSSIAN
GLITCHES

In this section, we describe how to construct the sub-
space S that is optimal for discriminating against sine-
Gaussian glitches associated with a specific trigger

template h. The method operationally uses the SVD
algorithm in order to arrive at S. There are essentially
three steps involved:
(1) Sample the parameter space G of sine-Gaussians so

that any specific sine-Gaussian not in the sample has
adequate projection on the vector space spanned by
the sampled vectors. We call this space VG, which is
a subspace of D. When a reasonably high projection
is desired, G must be sampled densely. We will also
endeavor to do it uniformly for the sake of economy.

(2) Piece together a matrix consisting of the sampled
sine-Gaussian row vectors. These row vectors need
to be appropriately modified so that one gets the
desired S. There are several steps here which will be
described in the text that follows.

(3) Applying SVD to the space spanned by the appro-
priate row vectors will obtain for us the best possible
approximation of lower dimension. This will be our
subspace S. Since the scalar product on D is not
strictly in the Euclidean form (in Fourier space, it is
scaled by the inverse of the PSD), appropriate
modifications must be made to the input matrix
and also to the output matrix so that the SVD only
“sees” a Euclidean scalar product. Specifically, the
output matrix containing right singular vectors needs
to be unwhitened in order to obtain an orthonormal
basis of S. We are actually in the realm of the
weighted SVD.

A. Sampling the space of sine-Gaussians

It is observed that, when a CBC template is triggered by
a sine-Gaussian glitch, the trigger occurs with a time lag td
after the glitch [19,31,32]. Depending on how low f0 is,
this time lag can be as large as the length of the chirp
waveform. For aLIGO, if f0 is low, say, a few tens of Hz,
the time lag will be of the order of several minutes. This is
because the sine-Gaussian glitch is essentially narrow band
and matches with the template in the neighborhood of the
frequency f0. If f0 is low, then the chirp template takes
significant time to reach coalescence—which is in fact the
time lag. In-depth analysis has been performed on this
issue: as shown in Ref. [19], the time lag td is approx-
imately given by

td ≃ τ0

�
1 −

16

3Q2

�
ζ þ 2

3

��
; ð3:1Þ

where τ0 is the chirp time given by Eq. (2.5) and ζ is the
logarithmic derivative of the noise PSD ShðfÞ evaluated at
f0. Since we have taken Q > 5, the term involving 1=Q2 is
very small and may be ignored compared to unity.
Therefore, we may write

td ≃ τ0 ¼
5

256πf0
ðπMf0Þ−5=3: ð3:2Þ
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Here, the Newtonian approximation to the waveform has
been used to compute td. This is justified below.
Now, if the glitch occurs at t ¼ 0, the trigger will occur at

time td. Or, viewing the situation the other way, if the
trigger occurs at t ¼ 0 for a given template in the bank, the
glitch must have occurred at t ¼ −td, which is a function of
f0 and Q (and, of course, the template masses, mainly in
the combinationM). But since we do not know a priori the
parameters of the glitch, our strategy is to sample those
sine-Gaussians that would give rise to a trigger at t ¼ 0.
Thus, we only need to sample the two-dimensional surface
t0 ¼ −tdðf0; QÞ instead of the larger three-dimensional
manifold G. This is easily done by computing the induced
metric on this surface by substituting the expression for the
surface into the metric given in Eq. (2.14).
In our simulations which follow, we will employ the

IMRPhenomP waveform approximant [33]. (Although we
limit the simulated BBHs to the nonspinning variety here,
we plan to extend them to spinning BBHs in the future as
well as to study over waveform families (see, e.g.,
Ref. [34].) Because of post-Newtonian corrections and
other effects, the time lag td computed with the
IMRPhenomP waveform will differ from the Newtonian
chirp time τ0—Eq. (3.2)—by a small amount, say, Δt0.
However, since we are sampling the full Newtonian sur-
face, one may look for any sine-Gaussian in the surface
close to the sine-Gaussian at td þ Δt0. It turns out that the
sine-Gaussian in the surface with time lag td þ Δt0 is very
close to the one outside the surface, albeit with a slightly
different f0, say, f0 þ Δf0. We see that the distance
between these two sine-Gaussians is Δs ≃ Δω0=2ν, which
is very small for the parameters studied. We have numeri-
cally checked and found thatΔt0 ≲ 10milliseconds and the
projection is better than 99%. This shows that our analysis
is robust to small errors in td.
We choose the following ranges of the parameters:

40 Hz ≤ f0 ≤ 120 Hz and 5 ≤ Q ≤ 50. This choice is
based on the character of the detector data, the frequency
band in which the detector is most sensitive, the signal
power (∝ f−7=3), and also convenience. For these chosen
ranges of parameters, further simplifications of the metric
are possible, and they facilitate the sampling. First of all, in
Eq. (2.14), we can drop ν2 compared to ω2

0 in coefficient of
dt20. Also, writing z ¼ ðω0MÞ−5=3 and y ¼ lnðνÞ, we get

ds2 ¼ ω2
0dt

2
0 þ

1

4ν2
dω2

0 þ
1

2
dy2;

≃ 2−14=3dz2 þ 1

2
dy2: ð3:3Þ

For templates with M ∼ 10 M⊙ and for the values of f0
and Q considered, z ∼ 103 or 104, the dω2

0 term is equal to
9Q2dz2=100z2 and contributes by the amount approxi-
mately 10−4 to the coefficient of dz2, while the first term is
2−14=3 ∼ 0.04. We have therefore dropped this term in

arriving at Eq. (3.3). We have finally arrived at a metric
that is flat (i.e., the metric coefficients are independent of
the coordinates).
Instead of setting up a rectangular lattice of points, it is

more convenient to select points along curves
Q ¼ const.The other axis is given by z ¼ const. This grid
is chosen in this way because the boundaries of the region
of the parameter space are inconvenient curves in y − z
coordinates. The grid points satisfy the following criteria:
(1) The distance between the points is so adjusted that

any sine-Gaussian in the parameter space has at least
projection p on some grid vector. We generally
choose p ≥ 0.8 or 80%. The projection p translates
to the mismatch ϵ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − pÞp
. The choice of p

and the corresponding ϵ is summarized in Table I.
(2) The grid points satisfy the condition that the distance

between two adjacent points is the same, namely,ffiffiffi
2

p
ϵ. This distance has been so chosen that the

criterion 1 is satisfied. The metric given in Eq. (3.3)
is used to accomplish this. The grid, however, is
inclined.

(3) The distance between grid points is chosen large
enough that there is a minimum number of points in
the grid while at the same time ensuring that
criterion 1 is satisfied.

In y − z coordinates, the grid points are given by

yij ¼ −
3

5
ln zj − lnQi − lnM: ð3:4Þ

The distance between adjacent grid points is
ffiffiffi
2

p
ϵ. In Fig. 2,

we have shown the grid points in the f0 −Q plane,
40 ≤ f0 ≤ 120 Hz, 5 ≤ Q ≤ 50. The minimum projection
is 80%. The figure on the left is for individual masses of
7 M⊙ with the number of grid points being 1288. The
figure on the right is for individual masses of 25 M⊙ with
the number of grid points being 156. These numbers are
related to the area of the parameter space.
The area A of the parameter space is found easily from

the metric Eq. (3.3) and the boundaries from Eq. (3.4). The
result is

TABLE I. The choice of value of p and the corresponding value
of ϵ for templates with total mass lying in the corresponding
range.

MminðM⊙Þ MmaxðM⊙Þ p ϵ

10 70 0.80 0.632
70 90 0.85 0.548
90 100 0.90 0.447
100 120 0.95 0.316
120 130 0.975 0.224
130 160 0.99 0.141
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A ¼ 2−17=6ðzmax − zminÞ ln
�
Qmax

Qmin

�
: ð3:5Þ

Since z scales as M−5=3, so does the area A. Clearly, the
number of grid points is proportional to the area of the
parameter space. The area of the parameter space is 937.79
for 7 M⊙ and 112.38 for 25 M⊙.
We remark that this is not the optimal way to sample the

parameter space for a given projection p. We could have
obtained a smaller number of grid points by strictly choosing
a square lattice or even a hexagonal lattice; here, there are
about 10%more points than what wewould have had for the
square lattice of side

ffiffiffi
2

p
ϵ (there is also a slight excess from

boundary effects). However, our basic goal here was to
sample the parameter space adequately, and we have done
this in a convenient manner. In the text that follows, we use
the SVD algorithm [22,23] to arrive at the best low-
dimensional approximation to the subspace spanned by
the sampled vectors. The SVD algorithm has been employed
in CBC searches in the past, e.g., to reduce the number of
filters required in those searches [24]. TheSVD is expected to
whittle down the subspace to appropriate number of dimen-
sions and, thus, nullify the effects of oversampling.
Another important remark we would like to make is that,

although we have chosen f0 to lie between 40 and 120 Hz,
the analysis is valid for a broader range of f0, especially for
small values of Q, because the power in the sine-Gaussians
is widely distributed around the central frequency f0 for
low values of Q.

B. Preparing the input matrix for the SVD

The sampled sine-Gaussians of Sec. III A cannot be
directly used in the present form in the SVD algorithm.
This is because:

(i) The sine-Gaussians have central time t0 ¼ 0, and
they need to be appropriately time shifted with
respect to the time of occurrence of the trigger.
We will always take the trigger to occur at t ¼ 0, and
so the glitch must have occurred at time −td.

(ii) We need to find the components of the sine-
Gaussians orthogonal to the trigger template. This
is achieved by subtracting out from each sine-
Gaussian its component parallel to the template,
thereby yielding a clipped sine-Gaussian. The re-
sulting orthogonal components of the sine-
Gaussians need to be further time shifted appropri-
ately by an amount −td—these vectors span a
subspace V⊥ of D (we drop G to avoid clutter).
The desired subspace S is a subspace of V⊥.

We will start by preparing the input matrix G for the
SVD. We denote the sine-Gaussians by the vectors sk,
k ¼ 1; 2;…M; for example, for the parameters considered
here and for individual component masses of 7 M⊙, we
haveM ¼ 1288. Let a data segment of length T be sampled
uniformly with N number of points. We find it convenient
to work in the Fourier domain. Taking the discrete Fourier
transform, the samples s̃kðfnÞ in the frequency domain are
at the frequencies fn ¼ n=T, where n takes values between
−N=2 ≤ n ≤ N=2 − 1. The frequency-domain samples
s̃kðfnÞ are also N in number and placed Δf ¼ 1=T apart
in the Fourier space. Note each sk ∈ D. Thus, D is N
dimensional where N is a large number; we have taken
N ¼ 64 × 2048 ¼ 131072 time points—i.e., points in a
data segment of 64 sec sampled at 2048 Hz. Thus, D is
practically infinite dimensional (see Ref. [14] for discus-
sion on this point). We can therefore form a matrix G≡
Gkn ¼ s̃kðfnÞ with rows labeled by k and the columns
labeled by n; G is then aM × N matrix. The row vectors of
G are the sine-Gaussians.

FIG. 2. The figures show uniformly sampled points in the parameter space ðf0; QÞ in the range 40 ≤ f0 ≤ 120 Hz, 5 ≤ Q ≤ 50. The
minimum projection is 80%. The figure on the left is for component masses of 7 M⊙ each, and the total number of sampled points is
1288 (see the inset figures to note how closely spaced the neighboring points are). The figure on the right is for component masses of
25 M⊙ each, and the number of points sampled is 156.
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We need to time shift each row vector, namely, the sine-
Gaussian sk, by −td and also subtract out the components
of the sine-Gaussians parallel to the relevant template h. To
take care of arbitrary initial phase, we subtract components
parallel to both h0 and hπ=2. Assuming that the trigger
occurs at time zero, we take the match with the templates
denoted by h0ð0Þ and hπ=2ð0Þ. The glitch then must have
occurred at time −td. Then, the orthogonal component
which we denote by s⊥ at shifted time −td of the glitch s is
given by

s⊥ð−tdÞ ¼ sð−tdÞ − ðsð−tdÞ;h0ð0ÞÞh0ð0Þ
− ðsð−tdÞ;hπ=2ð0ÞÞhπ=2ð0Þ: ð3:6Þ

The sine-Gaussian at time −td is obtained by multiplying
the expression for the sine-Gaussian in the Fourier domain
by e2πiftd. We have also left out the index k from the row
vector in order to avoid clutter. The scalar product on D
[Eq. (2.1)] has been used. Since each row vector in the
matrix G indexed by k corresponds to a different point in
the ðf0; QÞ space, each row vector is time shifted by a
different amount. Also, the operations of time shifting and
taking the orthogonal component can be independently
carried out without one affecting the other. This can be
easily verified by an explicit computation; or from a deeper
perspective, the time translation operation can be looked
upon as a coordinate transformation. Then, the operation of
subtracting the parallel component of the glitch is coor-
dinate independent, since it essentially involves a scalar
product (the projection), which is invariant under coordi-
nate transformations. We can thus form a matrix with row
vectors s⊥k which are both time shifted and orthogonal to
the trigger template. For the SVD to give equal weight to
the sine-Gaussians, we perform one more operation of
normalizing the s⊥k so that ks⊥kk ¼ 1. We construct the
matrix G⊥ whose row vectors are s⊥k; k ¼ 1; 2;…;M. The
vector space spanned by the row vectors of G⊥ is precisely
V⊥, which we have defined above.
We further need to take cognisance of the scalar product

in Eq. (2.1) in order that the SVD yields the desired result
because the usual SVD algorithm [22,23] assumes a
Euclidean scalar product. We will take the necessary steps
in the next subsection where we obtain the best lower-
dimensional approximation to V⊥ by invoking the Eckart-
Young-Mirsky theorem.

C. Finding the best-fit low-dimensional
approximation to V⊥

We could, in principle, use V⊥ on which to project the
data vector and compute the χ2 statistic. But in practice, it
would involve too much computational effort and slow
down the search pipeline—the χ2 would involve too many
degrees of freedom, namely, the dimension of V⊥. We need
to compute the best p-dimensional approximation to V⊥,

where p is reasonably small. The SVD algorithm allows us
to achieve just this—this is the essence of the Eckart-
Young-Mirsky theorem [21].
Consider a set of M vectors in an N-dimensional space.

To seek out an optimal subspace of dimension p < M, we
have to find a subspace that minimizes the sum of the
squares of the perpendicular distances of theseM vectors to
itself. This is also known as best least-square-fit problem.
This problem is equivalent to maximizing the sum of the
squares of the lengths of projections onto the subspace. Let
s⊥0

k be the projection of s⊥k onto this p-dimensional
subspace. Then, we desire a p-dimensional subspace of
V⊥ such that

P
M
k¼1 ks⊥0

kk2 is maximum. The norm used
here pertains to the scalar product defined in Eq. (2.1).
Then, this is the subspace S we are seeking.
The input matrix for the SVD will be taken to be

essentially the matrix G⊥ but modified in a suitable way
in order to account for the weighted scalar product. The
SVD decomposition of A is written in the form

A ¼ UΣV†; ð3:7Þ

where A is an M × N matrix, U is the M × r matrix of left
singular vectors, Σ is an r × r square diagonal matrix of
singular values σ1; σ2;…; σr arranged in descending order
of magnitude, and V† is the r × N matrix of right singular
vectors. The superscript dagger on V denotes the Hermitian
conjugate of V. The left and right singular vectors are
normalized and are arranged as column vectors in the
matrices U and V, respectively. We now apply the Eckart-
Young-Mirsky theorem to obtain the best k dimensional
approximation to V⊥. The Eckart-Young-Mirsky theorem
[21] states:
Theorem LetA be aM × N matrix where v1; v2;…:; vr

are the singular vectors as defined above. For 1 ≤ k ≤ r, let
Vk be the subspace spanned by v1; v2;…:vk. Then, for each
k, Vk is the best-fit k-dimensional subspace to the vector
space spanned by the row vectors of A.
Therefore, the first k singular vectors span the best-fit k-

dimensional subspace ofA. We need to truncateV to obtain
the best-fit subspace S to the desired level, based on the
singular values σk. We now need to decide on k.
Accordingly, we invoke the Frobenius norm [23] of the
matrix A. It is defined by

kAk2F ¼
XM
i¼1

XN
j¼1

jaijj2 ≡
Xr
k¼1

σ2k: ð3:8Þ

Suppose we decide on 90% level of accuracy; we then
choose p such that

Pp
k¼1 σ

2
k ≳ 0.9kAk2F. We define S as the

span of the first p right singular vectors v1; v2;…; vp; in
fact, they constitute an orthonormal basis of S. This also
means that the sum of squares of projections of the row
vectors of A on S add up to more than 90% of the full
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value. If a glitch vector is close to any of these row vectors,
its square of the norm of its projection onto S will tend to be
large, which will result in a large χ2. This is, in fact, the goal
we started with.
We now turn to the final aspect of how theweighted scalar

product can be incorporated into the SVD machinery so that
it gives the desired results.Weonly give the prescriptionhere.
We start with the matrixG⊥. We go to the frequency domain
and divide each entry ofG⊥ corresponding to a frequency fn
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ShðjfnjÞ

p
. We have taken the modulus because the

frequency ranges fromnegative to positivevalues.Recall that
we are dealing with a one-sided PSD, which therefore obeys
Shð−fnÞ ¼ ShðfnÞ. Accordingly, we construct the “whit-
ened” sine-Gaussian matrix GW :

ðGWÞkn ¼
s̃⊥kðfnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ShðjfnjÞ

p ; 1 ≤ k ≤ M;

−N=2 ≤ n < N=2 − 1: ð3:9Þ

Next, we perform the SVD of GW by writing
GW ¼ UWΣWV

†
W , where the subscript W denotes the cor-

responding whitened matrices. We now consider V†
W and

unwhiten its rows. Denoting the entries of V†
W by v0nj, where

the index n runs over the frequency index from −N=2 to
N=2 − 1 and j ¼ 1; 2;…; r, we get the unwhitened matrix
V† by setting vnj ¼ v0nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ShðjfnjÞ

p
. The right singular

vectors are the columns of V. We just choose the first p
of these singular vectors so that they give the desired level of
accuracy. Then, thesep vectors form an orthonormal basis of
S and generateS. That we obtain the desiredS following the
above procedure can be verified directly or found in the
standard literature [23,35].

IV. RESULTS

We next apply the paradigm developed above to test if
the optimal sine-Gaussian χ2 statistic actually provides any
additional power in distinguishing CBC signals from
transient noise artifacts. To be able to interpret the results,
we continue to model the artifacts as sine-Gaussians, with
various values for their quality factor and central frequency.

We use the PyCBC Software [8,36–38] for searching for
simulated BBH signals.
All of our CBC signal and noise artifact injections are

made in simulated Gaussian data with aLIGO ZDHP [39]
as the noise PSD and a lower-frequency cutoff of 20 Hz. In
the realm of signals, we limit ourselves to injections of
simulated nonspinning CBC signals—all modeled with
the IMRPhenomP waveform approximant [33,40]—with
component masses m1;2 ∈ ½7; 100� M⊙ and total mass
M≡ ðm1 þm2Þ ∈ ½14; 160� M⊙. To search for signals in
these simulations, we employ two kinds of template banks:
(a) the full bank, which has templates that fully cover the
parameter space of the CBC injections chosen for our
study, and (b) the targeted banks, in which parallelly we
search for the same signals with multiple small banks, each
of which covers a subset of the full m1;2 space. These are
called targeted banks. They are designed so that they
overlap with each other in the m1;2 space so as not to lose
signals with parameter values at the boundaries of each of
those banks. For both kinds of banks, we require a minimal
match of 97% among neighboring templates with a lower-
frequency cutoff of 20 Hz. The parameter ranges of these
template banks are listed in Table II.
For assessing the effect of noise artifacts, and even plain

Gaussian noise (with aLIGO ZDHP noise PSD), in our
searches, we match filter simulated data with these features
against the same template banks and compute both the
SNRs and the χ2—both the traditional χ2 and our sine-
Gaussian χ2. These are shown for various cases in Fig. 3.
As expected, these plots show that CBC triggers and noise
triggers separate cleanly for large SNRs but not for small
SNRs, which is expected. This is true regardless of the type
of χ2 employed. In fact, even the two O2 glitches shown in
Fig. 1 have SNRs (35–40) and sine-Gaussian χ2 values
(75–170) that are consistent with those of the simulated
glitch triggers shown in Fig. 3. On the other hand,
simulated BBH injections made in O2 data with parameters
of the respective BBH templates that were triggered by
those glitches, and SNRs of 35–40, have sine-Gaussian χ2

values consistent with the signal triggers shown in Fig. 3.
We examine a much larger set of real glitches in a
subsequent work [25].

TABLE II. Template-bank parameters: The ranges of various source parameters that characterize the template
banks used in our studies. Above, mmin and mmax are the lower and upper bounds on the component masses of the
binary, respectively. On the other hand, Mmin and Mmax are the lower and upper bounds on the total mass of the
binary, respectively.

Bank mminðM⊙Þ mmaxðM⊙Þ MminðM⊙Þ MmaxðM⊙Þ Number of templates

Full bank 5 100 10 165 2222
Targeted bank 1 5 40 10 45 1603
Targeted bank 2 5 78 35 85 845
Targeted bank 3 5 100 75 125 297
Targeted bank 4 5 100 115 165 16
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Beyond the aforementioned separation of the glitch and
CBC triggers for both types of χ2 in Fig. 3, it also presents
evidence that the noise artifacts register higher sine-
Gaussian-χ2 values than traditional χ2 values, even if
slightly. This in itself is not proof that the former χ2 is a
better discriminator here. To establish that possibility, one
needs to assess what the χ2 values are (for both kinds of
statistics) for the CBC signals as well as the noise artifacts.
This comparison is best done, quantitatively, with ROC
curves, which we discuss below.
To construct an ROC curve, we first define a new

detection statistic that is derived from the SNR (ρ) and
χ2 as

ρOSG ¼ ρ; χ2r ≤ 1; ð4:1Þ

¼ ρ

�
1

2
ð1þ ðχ2rÞ3Þ

�
−1=9

; χ2r > 1; ð4:2Þ

where χ2r is just the χ2 per degree of freedom, for both the
traditional and optimal sine-Gaussian kind. The new
statistic above resembles the reweighted SNR [15,41],
except that in the latter the exponent of −1=9 in
Eq. (4.2) is replaced by −1=6. The detection probability
(DP) at any given value of ρOSG is the fraction of all triggers
associated with simulated BBH signals that are found with

FIG. 3. The traditional and optimal “SG” χ2 statistics (see the legend), per degree of freedom, are plotted vs SNR for various types of
triggers. These arise from injections of simulated (a) noise (Gaussian), (b) glitches (sine-Gaussians, of the high-Q-low-f0 type defined in
Table III), and (c) BBH signals, of the category-6 type defined in Table IV, when employing targeted template bank 3, as described in
Table II. The ROC curves for these triggers are shown in the left plot in Fig. 4.

TABLE III. The glitch injections used in our study are all sine-
Gaussians, and were grouped into the four categories described in
the rows above. They are all parametrized by Q and f0, with
varying ranges as tabulated here.

Glitch Category Qmin Qmax f0 min (Hz) f0 max (Hz)

High Q, low f0 25 50 40 80
High Q, high f0 25 50 80 120
Low Q, low f0 5 15 40 80
Low Q, high f0 5 15 80 120

TABLE IV. Parameters of the simulated signals used in our
injection studies are divided into above ranges. Above, mmin and
mmax are the lower and upper bounds on the component masses of
the binary, respectively. On the other hand,Mmin andMmax are the
lower and upper bounds on the total mass of the binary, respec-
tively. p is the dimension of the orthogonal subspace on which the
χ2 is defined. All masses are in the units of solar mass ðM⊙Þ.
Category mmin mmax Mmin Mmax Average p

1 7 21 14 28 28
2 7 35 28 42 18
3 7 53 42 60 15
4 7 73 60 80 14
5 7 93 80 100 13
6 7 100 100 120 12
7 7 100 120 140 13
8 7 100 140 160 13
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a new detection statistic value that is larger. On the other
hand, the false-alarm probability (FAP) corresponding to
that ρOSG value is the fraction of triggers from noise or
glitches that have a new detection statistic value greater that
reference. The contours of the so-computed constant FAP
of ρOSG are overlaid with dashed black lines in the χ2r vs
SNR plot in Fig. 3. The plot of DP vs FAP for any detection
statistic is its ROC curve. Such curves for ρOSG (with the
optimal sine-Gaussian χ2r) and the reweighted SNR (with
the traditional χ2r) are compared for various categories of
simulations in Figs. 4 and 5.
The main results brought forth by the ROC curves are as

follows. In essentially all cases, the performance of optimal
χ2 in recovering CBC signals at any SNR (or FAP) studied
is comparable to or better than that of the traditional χ2,
even if by a small degree. The improvement is often
by a few to several percent, especially, near a FAP of
10−3. Alternatively, at the same detection probability, the

false-alarm probability of a BBH signal is perceptively
lower for the new χ2 statistic. Recall that for the traditional
χ2 the detection statistic used in these comparisons was the
reweighted SNR, as is customary. If we use it with ρOSG,
then the optimal χ2 performs much better than the tradi-
tional one, sometimes by 10%-15% (not shown), near a
FAP of 10−3. With better tuning, the performance of the
new χ2 may show further improvement. We plan to pursue
this in real data.
An important practical consideration in designing a χ2

discriminator is the computational cost involved in imple-
menting the veto. We address this issue in a future work.
However, herewemake a few remarks: For theveto proposed
in this work the subspace S in principle needs to be
prescribed for each template that a glitch triggers. While
this may entail computation of SVD for each template in the
bank, fortunately it can be performed beforehand given a
template bank and the space of sine-Gaussians; thus the

FIG. 4. In the left plot, we show the ROC curves comparing performances of the same two χ2 statistics and triggers as in Fig. 3. The
right plot is a similar comparison, for the same Gaussian noise and sine-Gaussian glitch triggers but for BBH injections of category 5 of
Table IV, using targeted bank 3 of Table II.

FIG. 5. ROC curves comparing performances of the two χ2 statistics and triggers as in Fig. 3, except for the BBH injections, which are
of categories 3 (left) and 4 (right) of Table IV, both using targeted bank 2 of Table II. The sudden drop in the ROC for χ2trad around a FAP
of 10−3 most likely arises owing to the difficulty of producing enough loud triggers purely from noise and should be interpreted with
care when comparing with the other ROC curve.
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subspacesS can be precomputed.Asmentioned in Sec. III,S
is completely determined by its orthonormal basis. Thus, one
needs to prescribe a basis field over the parameter space.
Assuming that the basis field varies smoothly and slowly
over the parameter space, it can be computed in advance at
templates sparsely sampled over that space assuming, say,
90% projection. The basis at the trigger template in question
can then be obtained easily via interpolation. In the current
work, we have found p ≤ 14 adequate, and if the number of
sparsely sampled templates is say a few thousand, this
information can be easily computed beforehand and stored.

V. CONCLUSIONS

In this work, we have constructed a χ2 statistic that is
optimally effective in discriminating BBH signals from
sine-Gaussian glitches and, more broadly, glitches that have
strong overlap with sine-Gaussians. Past authors have
devised signal-based χ2 discriminators that have been quite
successful in identifying triggers arising from noise arti-
facts in the data (see, e.g., Refs. [13–15,41–46] and the
references therein). Lately, however, their weaknesses,
especially in high-mass BBH searches, has become more
evident. This realization has led to new proposals for
reducing their impact on BBH search sensitivities.
Reference [14] for the first time developed the proper

mathematical formalism for geometrically understanding
existing signal-based χ2 discriminators and constructing
new ones. It also showed how one can naturally and
unambiguously combine multiple signal-based χ2s. In
the context of the current paper, Ref. [14] provided a
formalism for exploiting the characteristics of noise arti-
facts to construct χ2 discriminators targeting them. Here,
we have followed up on this idea and gone further with the
construction of the optimal χ2 for sine-Gaussian glitches.
However, we find that there are several involved steps that
need to be taken before one arrives at that final goal. We
briefly outline those steps below. We first consider a family
of sine-Gaussian strain snippets in a given physical range of
parameters, which we have called G. We then sample G
uniformly by using a metric so that it is adequately
represented. Care has to be taken to time delay the sine-
Gaussians in the sampling process. However, it turns out
that the number of sampled glitch vectors for G is too large
and consequently the subspace VG spanned by them also
has high dimensionality. A low-dimensional approximation
to VG is sought in order that the computational costs for the
χ2 remain in control. The best possible low-dimensional
approximation to VG is obtained by invoking the Eckart-
Young-Mirsky theorem and is achieved with the help of the
SVD algorithm. Further, we ensure that the associated
subspace obtained for the χ2 is orthogonal to the trigger
template by appropriately projecting out the components of
the glitch vectors parallel to the trigger template. Carrying
out the above steps results in the required optimal χ2

discriminator for sine-Gaussians—the χ2SG. We remark that
this procedure may seem computationally expensive since
SSG is required at each template in the bank. However, it
may be noted that SSG at any given template is needed only
approximately. We may therefore envisage an interpolation
scheme by which SSG is precomputed only on a coarse grid
of the parameter space and it is obtained for any inter-
mediate template by interpolation techniques.
A recent paper [15] proposes a somewhat different way

of constructing a χ2 discriminator that targets a specific
type of glitch—namely “blips” [16]. Blip glitches are found
to have significant projections on a certain subset of sine-
Gaussians. A set of 20 sine-Gaussian basis vectors—all
with Q ¼ 20—was used to construct that subspace. In this
alternative method, one constructs a χ2-like statistic without
subtracting the BBH template or orthogonalizing the sine-
Gaussian basis vectors. For that reason, strictly speaking,
such a statistic does not have a χ2 distribution. Moreover, it
cannot be unambiguously combined with other χ2 statistics
to improve search sensitivity. The χ2 statistic proposed here
does not suffer from those problems and can be readily
implemented in real data.
As mentioned above, in an upcoming work [25] that

implements our optimal χ2 statistic in real data, we will
compare its performance on blip glitches as well. It is
conceivable that our statistic may need to be tuned to
optimize its performance on this particular kind of glitch,
e.g., by specifying how to select the subset of sine-
Gaussian basis vectors. Note, however, that our statistic
is more general in its applicability than just blips. It should
also work on other glitches that have good projections on
sine-Gaussians. We plan to test this prospect as well in real
data. Here, we have taken the first steps toward realizing
that goal by illustrating the implementation of our χ2SG on
simulated glitches, BBH signals, and Gaussian detector
noise (with aLIGO-ZDHP PSD). Through the construction
of χ2 vs SNR plots and ROC curve comparison, we find
that incorporating the χ2SG statistic in BBH searches
improves detection probability for several mass ranges
compared to the traditional χ2. The improvement is
manifest for BBH signals for various masses—listed in
Table IV—and is by a few to several percentage points.
That table also shows how the dimensionality of the sine-
Gaussian subspace utilized for the optimal sine-Gaussian
χ2 construction varies with the template masses. Note that
this dimensionality is not very large, which makes its
implementation computationally viable. This study pre-
pares us to make the case for utilizing prioritized comput-
ing resources for deploying this search statistic in real data.
It may be observed that there is no dramatic increase in

the value of the χ2 from the traditional to the optimal sine-
Gaussian. This is because we have focussed on a particular
type of glitch, namely, the sine-Gaussian glitch, which is
ubiquitous. Our selection of the sine-Gaussian glitch was
motivated from this physical reason. Our results, in fact,
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show that the traditional χ2 does pretty well on these types
of glitches; of course, our sine-Gaussian χ2 does better, as it
should, since it is by construction optimal for this type of
glitch. From the mathematical point of view, the glitches
have good projection on subspace Strad associated with the
traditional χ2 and best projection on an average on the sine-
Gaussian subspace SSG. However, one could conceive of
another type of glitch, say, glitch X, which is orthogonal (or
nearly so) to Strad. Then, the traditional χ2 would be small
and thus ineffective in ruling out the X glitch. But in the
unified χ2 formalism, one can always construct an optimal
χ2X with the associated subspace SX, by carrying out an
analogous procedure as was employed here for the sine-
Gaussians. Such a χ2 would optimally rule out the X
glitches. Our aim was to point out the generality of our
constructive procedure, which can be applied to a different
family of glitches for which the traditional χ2 was inef-
fective. Such glitches may well exist in the data or reveal
themselves as detectors are commissioned in the future.
We also remark that employing χ2SG does not preclude the

application of other χ2 s. In fact, in Ref. [14], it has been
argued that one can sensibly combine several χ2 s just by
adding their associated subspaces S—in the vector-space
sense—and construct a combined χ2. The resulting statistic
would discriminate against all the glitches for which each
χ2 was designed. For example, we may add the associated
subspaces Strad and SSG to form the new subspace
ðStrad þ SSGÞ, which results in a more powerful χ2 that
can discriminate against glitches for which the traditional

χ2 is optimal as well as those for which the sine-Gaussian
χ2 is optimal. Such a combined statistic will be very useful
in reducing false alarms and, thereby, improve the overall
significance of GW events.
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