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We present stationary solutions of magnetized, viscous thick accretion disks around a Schwarzschild
black hole. We assume that the tori are not self-gravitating, are endowed with a toroidal magnetic field and
obey a constant angular momentum law. Our study focuses on the role of the black hole curvature in the
shear viscosity tensor and in their potential combined effect on the stationary solutions. Those are built in
the framework of a causality-preserving, second-order gradient expansion scheme of relativistic hydro-
dynamics in the Eckart frame description which gives rise to hyperbolic equations of motion. The
stationary models are constructed by numerically solving the general relativistic momentum conservation
equation using the method of characteristics. We place constraints in the range of validity of the second-
order transport coefficients of the theory. Our results reveal that the effects of the shear viscosity and
curvature are particularly noticeable only close to the cusp of the disks. The surfaces of constant pressure
are affected by viscosity and curvature and the self-intersecting iscocontour—the cusp—moves to smaller
radii (i.e., toward the black hole horizon) as the effects become more significant. For highly magnetized
disks the shift in the cusp location is smaller. Our findings might have implications for the dynamical
stability of constant angular momentum tori which, in the inviscid case, are affected by the runaway
instability.
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I. INTRODUCTION

One of the outstanding predictions of general relativity is
the existence of black holes. By their very nature, black holes
can only be observed by the gravitational effects they
produce in their environment. An accretion disk embedded
in the geometry of a black hole provides a natural framework
for its indirect detection through the study of the gravita-
tional influence it exerts on the disk. As a result of the black
hole’s gravity, the mass of an orbiting disk is pulled inward
resulting in an inward flow of its matter and the outward
transport of angular momentum, a process accompanied by
the conversion of gravitational energy into radiation and
heat. This is one of the most efficient processes of energy
release in the cosmos and it operates in systems as diverse
as protoplanetary disks, x-ray binaries, gamma-ray bursts,
active galactic nuclei, and quasars [1].
Models of accretion disks around black holes are

abundant in the scientific literature (see [2] and references
therein). Among the various proposals, geometrically thick
disks or tori (also referred to as “Polish doughnuts”) are the
simplest, relativistic, stationary configurations describing

an ideal fluid orbiting around a rotating black hole under
the assumption that the specific angular momentum of the
disk is constant [3–5]. Extensions of the original model to
incorporate additional effects such as nonconstant distri-
butions of angular momentum, magnetic fields, or self-
gravity have also been put forward [6–16].
In all stationary models the accretion torus is assumed to

be composed of an ideal fluid and the effects of dissipation
are neglected. However, the contribution of dissipative
fluxes might not exactly vanish in an accretion disk,
especially if it undergoes differential rotation, thus giving
rise to shear viscous effects. It is well known that viscosity
and magnetic fields play a key role in accretion disks to
account for angular momentum transport, in particular
through the magnetorotational instability [17]. In this paper
we discuss stationary models of magnetized viscous tori,
assuming a toroidal distribution of the field and the
presence of shear stresses.
The conservation laws of relativistic hydrodynamics of a

nonideal fluid involving dissipative effects like viscosity,
developed by Landau-Lifschitz and Eckart, do not give rise
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to hyperbolic equations of motion [18]. Moreover, the
corresponding equilibrium states are unstable under linear
perturbations [19]. The pathological nature of the con-
servation laws is attributed to the existence of first-order
gradients of hydrodynamical variables in the dissipative
flux quantities. This limitation can be circumvented by
including second-order gradients, a formalism first devel-
oped by Muller [20] in the nonrelativistic setup and later
extended by Israel and Stewart [21] for relativistic nonideal
fluids. The resulting conservation laws are hyperbolic
and stable [22].
Assuming that the shear viscosity is small and instills

perturbative effects in the disk fluid, stationary solutions
of constant angular momentum unmagnetized tori in the
Schwarzschild geometry were first presented in [23]. This
work showed that stationary models of viscous thick disks
can only be constructed in the context of the general
relativistic causal approach by using the gradient expansion
scheme [24]. The imprints of the shear viscosity and of the
curvature of the Schwarzschild geometry are clearly present
on the isopressure surfaces of the tori. In particular, the
location of the cusps of such surfaces is different from those
predicted with an ideal fluid model [6]. In the present paper
the purely hydrodynamical solutions presented in [23] are
extended by incorporating toroidal magnetic fields in
the stationary solutions of the tori. Our new solutions
are built using the second-order gradient expansion scheme
in the Eckart frame description [24], which keeps the same
spirit of the Israel-Stewart formalism and gives rise to
hyperbolic equations of motion, hence preserving causality.
Furthermore, we also adopt the test-fluid approximation,
neglecting the self-gravity of the disk. As we show below,
in our formalism the general form of the shear viscosity
tensor contains additional curvature terms (as one of many
second-order gradients) and, as a result, the curvature of the
Schwarzschild geometry directly influences the isopressure
surfaces, as in the hydrodynamical case considered in [23].
The presence and strength of a toroidal magnetic field
brings forth some quantitative differences with respect to
the unmagnetized case, as we discuss below.
The paper is organized as follows: Sec. II presents the

mathematical framework of our approach introducing, in
particular, the perturbation equations that characterize
the stationary solutions. Those solutions are built fol-
lowing the procedure described in Sec. III. Our results
are discussed in Sec. IV. Finally Sec. V summarizes our
findings. Throughout the paper we use natural units where
c ¼ G ¼ 1. Greek indices in mathematical quantities run
from 0 to 4 and latin indices are purely spatial.

II. FRAMEWORK

A. Basic equations

Our framework assumes that the spacetime geometry is
that of a Schwarzschild black hole of mass M and that the

disk is not self-gravitating, it has a constant distribution of
specific angular momentum, and that the magnetic field
only has a toroidal component. We neglect possible effects
of heat flow and bulk viscosity and we further assume that
the shear viscosity is small enough so as to act as a
perturbation to the matter configuration. Therefore, the
radial velocity of the flow vanishes and the fluid particles
describe circular orbits.
The Schwarzschild spacetime is described by the metric

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2. Since the fluid particles
follow circular orbits their four-velocity uμ subject to the
normalization condition uαuα ¼ −1 is given by

uμ ¼ ðut; 0; 0; uϕÞ; ð2Þ

where uμ ≡ uμðr; θÞ, with μ ¼ t;ϕ. The specific angular
momentum l and the angular velocity Ω are given by

lðr; θÞ ¼ −
uϕ
ut

; Ωðr; θÞ ¼ uϕ

ut
; ð3Þ

so that the following relationship holds between both
quantities

lðr; θÞ ¼ −
gϕϕ
gtt

Ωðr; θÞ ¼ r sin θ
ð1 − 2M

r Þ
Ωðr; θÞ: ð4Þ

In our study we consider the Eckart frame for addressing
viscous hydrodynamics which is a common choice of
reference frame in relativistic astrophysics [18]. The
energy-momentum tensor of viscous matter in the presence
of a magnetic field is given by

Tμν ¼ ðwþ b2Þuμuν þ
�
pþ 1

2
b2
�
gμν − bμbν þ πμν: ð5Þ

In this expression, the enthalpy density is given by
w ¼ eþ p, where p is the fluid pressure and e is the total
energy, and πμν is the shear viscosity tensor. The dual of
the Faraday tensor relative to an observer with four-velocity
uμ is [25]

�Fμν ¼ bμuν − bνuμ; ð6Þ

where bμ is the magnetic field in that frame, which obeys
the relation b2 ¼ bαbα and yields to the conservation law
∇ν

�Fμν ¼ 0, where ∇ν is the covariant derivative. In the
fluid frame bμ ¼ ð0;BÞ where B denotes the three-vector
of the magnetic field which satisfies the condition
uαbα ¼ 0. Since the magnetic field distribution is purely
toroidal, it follows that
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br ¼ bθ ¼ 0; bμ ¼ ðbt; 0; 0; bϕÞ: ð7Þ

From the condition uαbα ¼ 0 we obtain

bt ¼ lbϕ; bt ¼ −Ωbϕ; ð8Þ

and

b2 ¼ ð1 −ΩlÞbϕbϕ ¼ 2pm; ð9Þ

where the magnetic pressure is defined as pm ≡ b2=2.
As mentioned before we consider a second-order theory

of viscous hydrodynamics constructed using the gradient
expansion scheme which ensures the causality of propa-
gation speeds in the Eckart frame. In this scheme the shear
viscosity tensor is expressed in terms of a causality-
preserving term and additional curvature terms which will
help investigate the influence of curvature contributions on
our system. As a result, the general form of the shear
viscosity tensor can be expressed as [24]

πμν ¼ −2ησμν − τh2Dð−2ησμνÞi þ κ1Rhμνi þ κ2uαuβRαhμνiβ;

ð10Þ

with the definition D≡ uα∇α. Here Rαβγδ and Rαβ are the
Riemann tensor and the Ricci tensor, respectively, η is the
shear viscosity coefficient and τ2, κ1 and κ2 are the second-
order transport coefficients. Moreover, the angular brackets
in the previous equation indicate traceless symmetric
combinations. The remaining quantities appearing in
Eq. (10) are defined as

σμν ¼ △μα△νβ

�∇αuβ þ∇βuα
2

�
−
1

3
△μν△αβ∇αuβ;

hDσμνi ¼ △μα△νβ

�
Dσαβ þDσβα

2

�
−
1

3
△μν△αβDσαβ;

Rhμνi ¼ △μα△νβ

�
Rαβ þ Rβα

2

�
−
1

3
△μν△αβRαβ;

Rαhμνiβ ¼
�
△μρ△νσ

�
Rα
ρσγ þ Rα

σργ

2

�
−
1

3
△μν△ρσRα

ρσγ

�
gβγ;

where the projection tensor is given by △μν ¼ gμν þ uμuν.
Using Eq. (5), the momentum conservation equation
△μν∇λTλν ¼ 0 can be written as

ðeþ pÞaμ þ△
ρ
μ∇ρpþ ∂μðLb2Þ

2L
þ gμρπρνaν

þ△μγ△κτ∇τπγκ ¼ 0; ð11Þ

which is the general form of the momentum conser-
vation equation in the presence of a magnetic field. The

four-acceleration is given by aμ ¼ uρ∇ρuμ ¼ Duμ and
L≡ −gttgϕϕ.

B. Perturbation of the magnetized torus

Since we consider disks with constant specific angular
momentum distributions we take lðrÞ≡ l0. We further
assume that the internal energy density ε is very small
and, therefore, the total energy is approximately equal to
the rest-mass density i.e., e ¼ ρð1þ εÞ ≈ ρ. For the
Schwarzschild black hole, the term Rhμνi ¼ 0 and therefore
it does not contribute to the shear viscosity tensor. We also
assume that the shear viscosity is small in the sense that the
coefficients η and κ2 can be considered as perturbations in
the disk fluid. These two coefficients will be assumed to be
constant and to act as perturbations with the perturbation
parameter λ as follows:

η ¼ λm1; κ2 ¼ λm2: ð12Þ

The shear viscosity perturbation in the disk fluid generates
linear perturbations in the energy density, pressure, and
magnetic field. Up to linear order, we can express each of
these quantities as follows:

eðr; θÞ ¼ eð0Þðr; θÞ þ λeð1Þðr; θÞ; ð13Þ

pðr; θÞ ¼ pð0Þðr; θÞ þ λpð1Þðr; θÞ; ð14Þ

btðr; θÞ ¼ btð0Þðr; θÞ þ λbtð1Þðr; θÞ; ð15Þ

bϕðr; θÞ ¼ bϕð0Þðr; θÞ þ λbϕð1Þðr; θÞ; ð16Þ

where, as usual, index (0) denotes background quantities
and index (1) quantities at linear perturbation order. By
using Eqs. (9) and (16) the magnetic pressure at both zeroth
order and first order reads

pð0Þ
m ¼ 1

2
ð1 −ΩlÞbϕð0Þbð0ÞðϕÞ; ð17Þ

pð1Þ
m ¼ 1

2

h
bϕð0Þ

�
lbð1Þt þ bð1Þϕ

�
þ bð0Þϕ

�
bϕð1Þ −Ωbtð1Þ

�i
: ð18Þ

Defining the magnetization parameter as βm ≡ p=pm, the
zeroth-order and first-order changes in this parameter can
be written as follows:

βð0Þm ¼ pð0Þ
pð0Þ
m

ð19Þ

and

βð1Þm ¼ pð1Þ
pð0Þ
m

− βð0Þm
pð1Þ
m

pð0Þ
m

: ð20Þ

STATIONARY MODELS OF MAGNETIZED VISCOUS TORI … PHYS. REV. D 103, 044034 (2021)

044034-3



From the momentum conservation equation (11) we see
that there are four unknown quantities to be determined,

namely, pð1Þ; eð1Þ; b
ð1Þ
t and bð1Þϕ . However, the variables pð1Þ

and eð1Þ are not independent under the assumption of a
barotropic equation of state. Following [9,14] we take the
same polytropic index γ for the equations of state corre-
sponding to both the fluid pressure p and the magnetic
pressure pm given by

p ¼ Keγ ð21Þ

and

pm ¼ KmLγ−1eγ: ð22Þ

Now, expanding up to linear order one can write the
equations of state at zeroth order and first order as

pð0Þ ¼ Keγð0Þ; pð1Þ ¼ γKeγ−1ð0Þ eð1Þ; ð23Þ

pð0Þ
m ¼ KmLγ−1eγð0Þ; pð1Þ

m ¼ γKmLγ−1eγ−1ð0Þ eð1Þ: ð24Þ

From the above relations, we find that pð0Þ, pð1Þ, p
ð0Þ
m and

pð1Þ
m are related by

pð1Þ ¼ pð0Þ
γeð1Þ
eð0Þ

; ð25Þ

pð1Þ
m ¼ pð0Þ

m
γeð1Þ
eð0Þ

: ð26Þ

Using the last two equations we obtain the following
condition

pð1Þ
pð1Þ
m

¼ pð0Þ
pð0Þ
m

: ð27Þ

Substituting Eqs. (25) and (26) in Eq. (20) leads to

βð1Þm ¼ γpð0Þeð1Þ
eð0Þp

ð0Þ
m

− βð0Þm
γeð1Þ
eð0Þ

¼ βð0Þm
γeð1Þ
eð0Þ

− βð0Þm
γeð1Þ
eð0Þ

¼ 0; ð28Þ

which shows that the linear corrections pð1Þ and p
ð1Þ
m do not

affect the value of the magnetization parameter in the disk.
Moreover, from the orthogonality relation uαbα ¼ 0 we

obtain

btð0Þ ¼ lbϕð0Þ; btð1Þ ¼ lbϕð1Þ; ð29Þ

which imply that bϕð1Þ and btð1Þ are not independent

variables. Using the relations b2 ¼ ð1 − lΩÞbϕbϕ and
b2 ¼ 2pm, the zeroth-order and first-order terms of the
magnetic field read

bϕð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2βm
pð0Þð1 − lΩÞgϕϕ

s
; ð30Þ

bϕð1Þ ¼
pð1Þ
βm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð0Þ

2βmð1 − ΩlÞgϕϕ

s
; ð31Þ

where we have also used Eq. (29). Hence, the variables

pð1Þ
m ; btð1Þ and bϕð1Þ are all related to pð1Þ. The pressure

correction pð1Þ is determined by solving the momentum
conservation law given by Eq. (11) with a constant angular
momentumdistribution l ¼ l0. UsingEq. (31) and expanding
Eq. (11) up to linear order in the variables pð1Þ, eð1Þ and bð1Þ,
the fluid pressure correction equation can be expressed as

ðeð1Þ þ pð1ÞÞaμ þ△
ρ
μ∇ρpð1Þ þ

∂μ½ Lβm pð1Þ�
L

þ gμρπρνaν þ△μγ△κτ∇τπγκ ¼ 0; ð32Þ

where eð1Þ is related to pð1Þ by Eq. (25). Once pð1Þ is
determined by solving the above equation, we can also
determine the impact of the shear viscosity on the magnetic

pressure pð1Þ
m through Eq. (26).

Let us now for simplicity take the black hole mass
M ¼ 1 in the rest of our calculations. Both the temporal and
azimuthal components of Eq. (32) lead to

2ηl0r½rðr − 3Þ sin4 θ − l20ð1 − 2=rÞ2ðr − 3 sin2 θÞ�
sin6 θ

ffiffiffiffiffiffiffiffiffiffi
r − 2

p ðr3 þ l20ð2 − rÞ csc2 θÞ5=2 ¼ 0:

For η ≠ 0, the above equation in the equatorial plane
reduces to

r3 − l20ðr − 2Þ2 ¼ 0: ð33Þ

Correspondingly, the radial and angular components of
(32) are, respectively,
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ðτ2m1Þl20ðr − 3Þ
2r2sin6θðr3 þ l20ð2 − rÞcsc2θÞ3 ½r

3 cos 4θð10r − 21Þ þ cos 2θf4r3ð2r2 − 14rþ 21Þ − 8l20ðr − 3Þðr − 2Þg

− r3ð2r − 7Þð4r − 9Þ − 8l20ðr − 2Þðr2 − 3rþ 3Þ�

þm2

3r6 þ r6 cos 4θ þ 2r3 cos 2θfl20ðr − 2Þð5r − 14Þ − 2r3g − 2r3l20ðr − 2Þð5r − 14Þ − 4l40ðr − 2Þ3
4r5sin4θðr3 þ l20ð2 − rÞcsc2θÞ2

þ
�
1þ 1

βm

� ðr − 2Þ
r

∂pð1Þ
∂r þ

�
2ðr − 1Þ
r2βm

þ
fr3 − l20ð2 − rÞ2csc2θgðγK þ e1−γð0Þ Þ

γKr2ðr3 þ l20ð2 − rÞcsc2θÞ
�
pð1Þ ¼ 0; ð34Þ

τ2m1

4l20 cot θfr3ð4r − 9Þsin2θ þ ðr − 2Þð2l20ð4r − 9Þ − rl20ðr − 2Þcsc2θ − 2r4Þg
r2sin4θðr3 þ l20ð2 − rÞcsc2θÞ3

þm2

2l20ðr − 2Þ cot θð2r3sin2θ þ l20ðr − 2ÞÞ
r3sin4θðr3 þ l20ð2 − rÞcsc2θÞ2 þ

�
1þ 1

βm

� ∂pð1Þ
∂θ þ

�
2 cot θ
βm

−
ðr − 2Þl20 cot θðγK þ e1−γð0Þ Þ

γKsin2θðr3 þ l20ð2 − rÞcsc2θÞ
�
pð1Þ ¼ 0:

ð35Þ

In the limit βm → ∞, Eqs. (34) and (35) reduce to the corresponding equations obtained in [23] for a purely hydrodynamical
viscous thick disk. Substituting pð1Þ from Eq. (35) in Eq. (34) we obtain the following equation:

2l20 cot θ

�
Ãþ B̃k1

C

�
ðτ2m1Þ þ

1

2
cot θ

�
f̃1 −

f̃2k1
C

�
m2

þ sin6θ½r3 þ l20ð2 − rÞcsc2θ�3 ð1þ βmÞ
βm

�
rðr − 2Þ cot θ ∂pð1Þ

∂r −
4k1
C

∂pð1Þ
∂θ

�
¼ 0; ð36Þ

with the definitions

Ã ¼ −2ðr − 3Þ½r3ð10r − 21Þ cos 4θ þ cos 2θf4r3ð2r2 − 14rþ 21Þ − 8l20ðr − 3Þðr − 2Þg
− r3ð2r − 7Þð4r − 9Þ − 8l20ðr − 2Þðr2 − 3rþ 3Þ�;

B̃ ¼ 4½2rl20ðr − 2Þ2 − sin2θfr3ð2r − 3Þ þ 4l20ð4r − 9Þðr − 2Þ − r3 cos 2θð4r − 9Þg�;
k1 ¼ ½−2βmsin2θðr3 þ l20ð2 − rÞcsc2θÞeð0Þ þ Kγeγð0Þf8l20ð1þ βmÞ

þ 2r2l20ðβm þ 2Þ − 2r4 − r3ðβm − 2Þ − 4l20rð3þ βmÞ þ r3 cos 2θð2rþ βm − 2Þg�;
C ¼ ðr − 2Þl20βmeð0Þ þ Kγeγð0Þ½l30ðr − 2Þð2þ βmÞ − 2r3sin2θ�;

f̃1 ¼
�
10r6 − 6r3l20ð5r − 12Þðr − 2Þ þ 32l40ðr − 3Þðr − 2Þ2 þ 16rl60

�
1 −

2

r

�
4

þ cos 2θf8ð5r − 12Þr3l20 − 15r6 − 32l40ðr − 3Þðr − 2Þ2g
�
;

f̃2 ¼ 4r3
�
1 −

2

r

�
½3r6 − 2r3l20ðr − 2Þ þ 4l40ðr − 2Þ2 þ 2r3 cos 2θð2r3 − ðr − 2Þl20Þ þ r6 cos 4θ�:

We must solve Eq. (36) once the values of the
parameters m1, τ2, l0 and βm are selected and using the
appropriate boundary conditions. Equation (28) shows

that βð1Þm ¼ 0. Therefore, the magnetization parameter
can be completely expressed in terms of the zeroth-order
magnetic pressure and fluid pressure, and is given by

βmðr; θÞ ¼ pð0Þ=p
ð0Þ
m . Using Eqs. (21) and (22) we can

further express

βmðr; θÞ ¼
K

KmLγ−1ðr; θÞ : ð37Þ

In addition, we can define the magnetization parameter at
the center of the disk as βm;c ≡ βmðrc; π=2Þ and write it as

βm;c ¼
K

KmLγ−1ðrc; π=2Þ
: ð38Þ
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Then, the magnetization parameter can be expressed as

βmðr; θÞ ¼ βm;c

�
Lðrc; π=2Þ
Lðr; θÞ

�
γ−1

; ð39Þ

which, for the Schwarzschild metric, reads

βmðr; θÞ ¼ βm;c

�
rcðrc − 2Þ

rðr − 2Þ sin2 θ
�

γ−1
; ð40Þ

where rc, βm;c and K are constant parameters. Let us
compute rc for a given angular momentum l0. This can be
determined by finding the extrema of the effective (gravi-
tational plus centrifugal) potential W, as the center of the
disk is located at a minimum of the potential (see, e.g., [6]
for details). In the Schwarzschild geometry, the total
potential Wðr; θÞ for constant angular momentum distri-
butions is defined as

Wðr; θÞ ¼ 1

2
ln

r2ðr − 2Þ sin2 θ
r3 sin2 θ − l20ðr − 2Þ : ð41Þ

At the equatorial plane, taking ∂rW ¼ 0 leads, after some
algebra, to

r3 − l20ðr − 2Þ2 ¼ 0: ð42Þ

The largest root of the above equation corresponds
to the disk center, rc. In the absence of dissipative terms,
the relativistic momentum conservation equation, with
our choices of equation of state, can be expressed as
follows [14]:

W −Ws þ
γ

γ − 1

�
pð0Þ
eð0Þ

þ pð0Þ
m

eð0Þ

�
¼ 0; ð43Þ

which can further be rewritten as

W −Ws þ
γKeγ−1ð0Þ
γ − 1

�
1þ 1

βmðr; θÞ
�

¼ 0; ð44Þ

whereWs is the potential at the surface of the disk, i.e., the

surface for which pð0Þ ¼ pð0Þ
m ¼ eð0Þ ¼ 0. From the above

expression, the zeroth-order energy density can be obtained
and it reads as

eð0Þ ¼
�
1

K

� 1
γ−1
�

γð1þ βmðr; θÞÞ
ð1 − γÞβmðr; θÞðW −WsÞ

� 1
1−γ
; ð45Þ

and the zeroth-order pressure, in terms of βm;c; rc and Ws,
becomes

pð0Þ ¼K
1

γ−1

0
B@ γð1þβm;cð rcðrc−2Þ

rðr−2Þsin2θÞ
γ−1Þ

ð1−γÞβm;cð rcðrc−2Þ
rðr−2Þsin2θÞ

γ−1ðW−WsÞ

1
CA

γ
1−γ

; ð46Þ

which corresponds to the fluid pressure of the magnetized
ideal fluid. From this equation it follows that for the
term inside the parentheses to be positive, we require that
W −Ws < 0. On the contrary, ifW −Ws > 0, the pressure
(and the energy density) should vanish, which indicates
regions outside the disk.

III. METHODOLOGY

A. Formalism

We solve Eq. (36) with the domain of definition set by
the conditions Wðr; θÞ ≤ Ws, rin ≤ r ≤ rout where rin and
rout are the inner and the outer boundary of the disk at
the equatorial plane. As in this work we are considering
disks slightly overflowing their Roche lobe [i.e., Ws ≳
Wðrcusp; π=2Þ where rcusp corresponds to the location of the
self-crossing point of the critical equipotential surface]
it is important to note that the disks do not possess an inner
edge (i.e., the outermost equipotential surface is attached to
the event horizon of the black hole) and thus our choice of
rin is arbitrary. Here, we choose the value of rin such that
rin ≲ rcusp so we can study the cusp region, and exclude the
region closest to the black hole, as it is irrelevant for our
study (the reason will become clear in Sec. IV). In addition,
we exclude the funnel region along the symmetry axis
(θ ¼ 0) by further restricting our domain by only consid-
ering the region containing equipotential surfaces that cross
the equatorial plane at least once. As our system has
axisymmetry and reflection symmetry with respect to the
equatorial plane, we can further restrict our domain
to 0 < θ < π=2.
Equation (36) can be rewritten in a more compact

form as

α⃗ðr; θÞ · ∇⃗ðr;θÞpð1Þ − c̃ðr; θÞ ¼ 0; ð47Þ

with the following definitions

αrðr;θÞ¼sin6θ½r3þl20ð2−rÞcsc2θ�3ð1þβmÞ
βm

ðrðr−2ÞcotθÞ;

αθðr;θÞ¼rsin6θ½r3þl20ð2−rÞcsc2θ�3ð1þβmÞ
βm

�
−
4k1
C

�
;

c̃ðr;θÞ¼−2l20cotθ
�
ÃþB̃k1

C

�
ðτ2m1Þ

−
m2

2
cotθ

�
f̃1−

f̃2k1
C

�
: ð48Þ

Close examination of the coefficients in Eq. (48) reveals
that, at the equatorial plane (θ ¼ π=2), Eq. (47) is simply
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∂pð1Þ
∂θ ¼ 0: ð49Þ

Equation (49) has two relevant consequences for our
solution. The first one is that surfaces of constant pð1Þ
are orthogonal to the equatorial plane (a consequence of the
reflection symmetry of the problem). The second one is that
one cannot extract information of the distribution of pð1Þ at
the equatorial plane directly from Eq. (47) at θ ¼ π=2.
To know the values of pð1Þ at the equatorial plane we must
look for the solution pð1Þðr; θÞ when θ → π=2 i.e., a point
that belongs to the domain of the θ coordinate. Thus, to
maximize the accuracy of the solution it is convenient to
solve Eq. (47) in Cartesian coordinates, as the distance
between the last point of our domain and the equatorial
plane will remain the same. Then, we can rewrite this
equation as

α⃗0ðx; yÞ · ∇⃗ðx;yÞpð1Þ − c0ðx; yÞ ¼ 0; ð50Þ

in which we used the change of coordinates defined by
x ¼ r sin θ, y ¼ r cos θ, and the new expressions for the
coefficients

α0xðxðr; θÞ; yðr; θÞÞ ¼ αrðr; θÞ sin θ þ αθðr; θÞ cos θ;
α0yðxðr; θÞ; yðr; θÞÞ ¼ αrðr; θÞ cos θ − αθðr; θÞ sin θ;
c0ðxðr; θÞ; yðr; θÞÞ ¼ c̃ðr; θÞ; ð51Þ

where α0x and α0y are the x and y components of the vector of
coefficients α⃗0ðx; yÞ. Taking into account that α0yðx; yÞ ≠ 0

in our domain, we can redefine all the coefficients as

aðx; yÞ ¼ α0xðx; yÞ=α0yðx; yÞ;
bðx; yÞ ¼ 1;

cðx; yÞ ¼ c0ðx; yÞ=α0yðx; yÞ: ð52Þ

Therefore, the final form of the partial differential equation
(PDE) we want to solve reads

aðx; yÞ ∂pð1Þ
∂x þ ∂pð1Þ

∂y − cðx; yÞ ¼ 0: ð53Þ

To solve Eq. (53) we use the so-called method of character-
istics, in which we can reduce a PDE to a set of ordinary
differential equations (ODEs), one for each initial value
defined at the boundary of the domain. The final form of the
characteristic equations is

dx
dt

¼ aðx; yÞ; ð54Þ

dy
dt

¼ 1; ð55Þ

dpð1Þ
dt

¼ cðx; yÞ: ð56Þ

To solve this system, we start from a point ðx0; y0Þ in the
boundary of the domain [i.e., fðx0; y0Þ=Wðx0; y0Þ ¼ Wsg].
Then, we can integrate the system of ODEs as follows:
First, the solution of Eq. (55) is trivially yðtÞ ¼ tþ y0.
Using this result, we can rewrite Eq. (54) as

dx
dy

¼ aðx; yÞ: ð57Þ

We can integrate numerically this equation starting from the
selected point ðx0; y0Þ. The solution of this equation [xðyÞ]
will give us a characteristic curve of the problem, i.e., a
curve along which the solution of our PDE coincides with
the solution of the ODE. To finish the procedure, we take
Eq. (56) and rewrite it in the same way as the previous one,

dpð1Þ
dy

¼ cðxðyÞ; yÞ: ð58Þ

Then, we can integrate pð1Þ,

pð1ÞðyÞ ¼
Z

y

y0

cðxðyÞ; yÞdyþ pð1Þ0 ; ð59Þ

where we have used that pð1Þðx0; y0Þ ¼ pð1Þ0 . It is easy to
see that we can recover pð1Þðx; yÞ by using both Eq. (59)
and the expression for the characteristic curve xðyÞ.
Repeating this three-step procedure over a sufficiently
large and well-chosen sample of initial points will give
us a mapping of the domain and hence, the solution of the
PDE for the whole domain.

B. Numerical implementation

The numerical implementation of the procedure we have
just described is as follows: First, we start by defining Nx
equally spaced points in the open interval (at the equatorial
plane) ðrin; routÞ, where rin ¼ 3.7 and rout is the only
solution of the equation Wðr; π=2Þ −Ws ¼ 0 and its value
is rout ¼ 17.76. In this work we fix Nx ¼ 703 which
corresponds to a distance between points Δx ¼ 0.02.
Starting from this set of points we integrate Eq. (57) using
the fourth-order Runge-Kutta method with Wðx; yÞ > Ws
as the terminating condition of the integration and an
integration step h ¼ 10−3. As a result of the previous step
we obtain a set of points belonging to the boundary of the
domain and a set of characteristic curves fxðyÞi=i ¼
½1; Nx�g that start at the boundary and end at the equatorial
plane. An example of the distribution of the characteristic
curves for the caseWs ¼ −0.039 is depicted in Fig. 1. Now,
we can integrate Eq. (59) along the characteristics, starting
from the boundary ðx0; y0Þi. To do this we use the same
fourth-order Runge-Kutta solver as before (which in this
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case reduces to Simpson’s rule) and the initial condi-
tion pð0Þ0 ¼ 0.

IV. RESULTS

The primary motivation of this paper is to determine
possible changes in the morphology of geometrically thick
magnetized disks in the presence of shear viscosity as
compared to the inviscid case. We use a simple setup where
stationary viscous disks with constant angular momentum
distributions are built around a Schwarzschild black hole.
The shear viscosity is assumed to only induce perturbative
effects on the fluid so that the fluid in the disk can still move
in circular orbits. The analysis of isopressure and isodensity

surfaces of our constrained system provides evidence
showing that the shear viscous and curvature effects in
the stationary disk models are only tractable using the
causal approach.
Stationary magnetized tori are constructed for a set of

values of the parameters τ2, m1, m2 and the magnetization
parameter at the center of the disk, βm;c. [Note that, to build
the solutions, we have to fix the polytropic exponent γ and
the value of the zeroth-order correction to the energy
density at the center eð0Þ;c ¼ eð0Þðrc; π=2Þ. In particular,
we have chosen γ ¼ 5=3 and eð0Þ;c ¼ 1.] For convenience,
we define a new parameter s1 ¼ τ2m1 and set τ2 ¼ 1
without loss of generality. We consider two values of the
magnetization parameter at the center of the disk, namely
βm;c ¼ 103 (low magnetization, almost a purely hydrody-
namical model) and βm;c ¼ 10−3 (high magnetization)
which are sufficient to bring out the effects of a toroidal
magnetic field on the viscous disk.
The corrections to the pressure pð1Þ and to the energy

density eð1Þ for a given choice of parameters are determined
by solving Eq. (36) numerically, using the method of
characteristics as described in the previous section. Our
results reveal that the effects of the shear viscosity are
particularly noticeable only fairly close to the cusp of the
disks. The large-scale morphology of the torus remains
essentially unaltered irrespective of the values of the
parameters s1 and m2. This can be immediately concluded
from Fig. 2 which displays the distribution of the pressure

FIG. 2. Comparison of the full disk structure for Ws ¼ −0.039. The top row shows inviscid solutions and the bottom row shows
viscous solutions for s1 ¼ 0.05 and m2 ¼ 0.01. The left panels correspond to nonmagnetized disks (βm;c ¼ 103) and the right panels to
highly magnetized disks (βm;c ¼ 10−3). In all figures the color gradient refers to the distributions of the total fluid pressure. Furthermore,
in the four cases the pressure has been normalized to the corresponding value of pð0Þ;max. The morphology of the disks remains
essentially the same for all cases; the only noticeable difference being a small decrease in size at the very low pressure region for the
viscous cases. Note that, for visualization purposes we have extended our original domain of integration (rin ¼ 2.1 instead of the original
rin ¼ 3.7) so that it is apparent that the inner region of the disk is attached to the event horizon of the black hole.

FIG. 1. Characteristic curves computed for Ws ¼ −0.039 [i.e.,
the solutions of Eq. (57)]. For visualization purposes we only show
a sample of 101 curves instead of the complete set of 703 curves
we have computed. The black circle represents the black hole.
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in the entire domain for a set of illustrative stationary
models. Note that the physical solution is attached to the
black hole, even though in the figure there is a gap between
the disk and the event horizon. This is due to the fact that
Eq. (53) is singular at the event horizon, so the solution
cannot be extended to it. Figures 3 and 4 display radial plots
at the equatorial plane showing the zeroth-order and first-
order corrections of the pressure and of the energy density,
corresponding to the low and high value of the magneti-
zation parameter, respectively. We note that, contrary to
purely hydrodynamical disks, for magnetized tori the
location of the center of the disk rc does not exactly
coincide with the location of the maximum of the pressure
but it is slightly shifted toward the black hole [14]. This can
be observed for the highly magnetized case in Fig. 4. For
both low and high values of βm;c the corrections pð1Þ and

eð1Þ near the cusp remain small in comparison to their
respective equilibrium values pð0Þ and eð0Þ. As one moves
away from the cusp and approaches the outer edge of the
disk, the difference between pð0Þ and pð1Þ diminishes. This
trend is most prominent for the low magnetized disk as
shown in Fig. 3. In addition, by increasing the value of m2,
i.e., the curvature effects (while keeping m1 fixed), the
difference between pð0Þ and pð1Þ also decreases near the
cusp, until a value is reached for which pð1Þ=pð0Þ ∼Oð1Þ
and eð1Þ=eð0Þ ∼Oð1Þ and neither m1 nor m2 can further
be increased. Under these conditions we are no longer in
the regime of validity of near-equilibrium hydrodynamics
where gradients are small. Since we are not addressing the
nonequilibrium sector, our analysis can set an upper limit
on the contributions of curvature and shear viscosity on

FIG. 3. Radial plots of logpð0Þ and log jpð1Þj (top row) and log eð0Þ and log jeð1Þj (bottom row) at the equatorial plane forWs ¼ −0.039,
s1 ¼ 0.05, βm;c ¼ 103 andm2 ¼ ð0; 0.001; 0.005; 0.01Þ. Each column corresponds to an increasing value ofm2. The vertical dashed line
represents the location of the self-crossing pressure isocontour rcusp and the vertical dotted line represents the location of the maximum
of the pressure rmax, which coincides with the center of the disk rc for nonmagnetized disks.

FIG. 4. Same as Fig. 3 but for βm;c ¼ 10−3.
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stationary solutions of magnetized viscous disks before far-
from-equilibrium effects set in.
The change in pressure△pcusp at the newly formed cusp

△rcusp of the magnetized disk in the presence of shear
viscosity, as compared to the inviscid case, is determined in
the following way,

△rcusp ¼
rcusp;new − rcusp

rcusp
; ð60Þ

△pcusp ¼
pt;cusp − pð0Þ;cusp

pð0Þ;cusp
; ð61Þ

where pt ¼ pð0Þ þ pð1Þ and rcusp;new is the new location of
the cusp due to shear viscosity effects. Both pt and rcusp;new
therefore contain all contributions from shear viscosity and

spacetime curvature for various choices of input parameters
m1,m2. The new position of the cusp at the equatorial plane
corresponds to the location of the minimum of the total
pressure ptðrÞ. We compute it by fitting the values of pt
using a third-order spline interpolation. The values of
rcusp;new and ptðrcusp;newÞ are obtained at the same time
using this technique. For completeness, the locations of
rcusp and pð0Þ;cusp for an inviscid magnetized disk are
reported in Table I.
The allowed values of parameters s1 and m2 are reported

in Table II for all of our magnetized disk models. The range
of variation of these parameters is s1 ¼ ð0.001; 0.005; 0.01;
0.05Þ and m2¼ð0; 0.001; 0.005;0.01; 0.05Þ. Forbidden
values of s1 and m2 appear when j△pcuspj≳Oð1Þ (marked
in boldface in Table II) implying pð1Þ=pð0Þ ∼Oð1Þ. As s1
(or m1) and m2 increase and the potential gap △Ws

TABLE I. Location of rcusp and the magnitudes of pressure pð0Þ;cusp at rcusp in an ideal fluid magnetized disk with
two different choices of magnetization parameter βm;c.

Ws ¼ −0.039 Ws ¼ −0.040 Ws ¼ −0.041

βm;c rcusp pð0Þ;cusp rcusp pð0Þ;cusp rcusp pð0Þ;cusp

103 4.576 1.041 × 10−4 4.576 3.556 × 10−5 4.576 3.700 × 10−6

10−3 4.644 1.229 × 10−6 4.617 4.252 × 10−7 4.591 4.480 × 10−8

TABLE II. Values of Δpcusp and Δrcusp corresponding to different choices of s1, m2 and βm;c. The considered values of Ws are
respectively −0.039, −0.040 and −0.041. Bold-faced values of Δpcusp are employed to indicate the regions when pð1Þ ≳ pð0Þ, such that
pð1Þ cannot be treated as a perturbation for a given value of Ws and βm;c.

Ws ¼ −0.039 Ws ¼ −0.040 Ws ¼ −0.041

s1 m2 βm;c Δrcusp Δpcusp Δrcusp Δpcusp Δrcusp Δpcusp

0.001 0 103 −9.71 × 10−5 −6.66 × 10−3 −1.10 × 10−4 −1.20 × 10−2 −1.05 × 10−4 −4.40 × 10−2

0.001 0 10−3 −2.45 × 10−5 −1.43 × 10−3 −2.95 × 10−5 −2.61 × 10−3 −4.38 × 10−5 −9.71 × 10−3

0.001 0.001 103 −3.27 × 10−4 −3.64 × 10−2 −3.95 × 10−4 −6.55 × 10−2 −2.33 × 10−4 −0.241
0.001 0.001 10−3 −8.55 × 10−5 −7.99 × 10−3 −1.10 × 10−4 −1.45 × 10−2 −1.68 × 10−4 −5.35 × 10−2

0.001 0.005 103 −1.35 × 10−3 −0.156 −1.97 × 10−3 −0.281 −7.03 × 10−4 −1.03
0.001 0.005 10−3 −3.27 × 10−4 −3.43 × 10−2 −4.72 × 10−4 −6.20 × 10−2 −6.97 × 10−4 −0.229
0.001 0.01 103 −2.65 × 10−3 −0.306 −3.62 × 10−3 −0.552 −1.32 × 10−2 −1.92
0.001 0.01 10−3 −6.19 × 10−4 −6.71 × 10−2 −9.97 × 10−4 −0.122 −1.35 × 10−3 −0.449
0.001 0.05 103 −2.48 × 10−2 −1.48 −4.72 × 10−2 −2.03 −7.06 × 10−2 −2.33
0.001 0.05 10−3 −2.58 × 10−3 −0.331 −3.74 × 10−3 −0.602 −1.66 × 10−2 −2.02

0.005 0 103 −5.00 × 10−4 −3.34 × 10−2 −5.99 × 10−4 −6.00 × 10−2 −5.10 × 10−4 −0.220
0.005 0 10−3 −1.22 × 10−4 −7.16 × 10−3 −1.51 × 10−4 −1.31 × 10−2 −2.23 × 10−4 −4.86 × 10−2

0.005 0.001 103 −7.46 × 10−4 −6.32 × 10−2 −9.51 × 10−4 −0.114 −6.29 × 10−4 −0.417
0.005 0.001 10−3 −1.83 × 10−4 −1.37 × 10−2 −2.36 × 10−4 −2.49 × 10−2 −3.51 × 10−4 −9.25 × 10−2

0.005 0.005 103 −1.80 × 10−3 −0.183 −2.56 × 10−3 −0.330 −4.66 × 10−3 −1.20
0.005 0.005 10−3 −4.23 × 10−4 −4.00 × 10−2 −6.15 × 10−4 −7.25 × 10−2 −8.86 × 10−4 −0.268
0.005 0.01 103 −3.03 × 10−3 −0.333 −3.98 × 10−3 −0.601 −1.71 × 10−2 −2.01
0.005 0.01 10−3 −7.12 × 10−4 −7.22 × 10−2 −1.15 × 10−3 −0.132 −1.51 × 10−3 −0.488
0.005 0.05 103 −2.52 × 10−2 −1.50 −4.77 × 10−2 −2.06 −7.12 × 10−2 −2.34
0.005 0.05 10−3 −2.66 × 10−3 −0.337 −3.79 × 10−3 −0.613 −1.75 × 10−2 −2.04

(Table continued)
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TABLE II. (Continued)

Ws ¼ −0.039 Ws ¼ −0.040 Ws ¼ −0.041

s1 m2 βm;c Δrcusp Δpcusp Δrcusp Δpcusp Δrcusp Δpcusp

0.01 0 103 −1.03 × 10−3 −6.69 × 10−2 −1.30 × 10−3 −0.120 −1.03 × 10−3 −0.441
0.01 0 10−3 −2.44 × 10−4 −1.43 × 10−2 −3.10 × 10−4 −2.61 × 10−2 −4.53 × 10−4 −9.73 × 10−2

0.01 0.001 103 −1.29 × 10−3 −9.68 × 10−2 −1.70 × 10−3 −0.174 −1.17 × 10−3 −0.638
0.01 0.001 10−3 −3.04 × 10−4 −2.09 × 10−2 −4.01 × 10−4 −3.80 × 10−2 −5.86 × 10−4 −0.141
0.01 0.005 103 −2.33 × 10−3 −0.217 −3.18 × 10−3 −0.391 −8.24 × 10−3 −1.41
0.01 0.005 10−3 −5.41 × 10−4 −4.72 × 10−2 −7.98 × 10−4 −8.57 × 10−2 −1.12 × 10−3 −0.317
0.01 0.01 103 −3.47 × 10−3 −0.367 −4.43 × 10−3 −0.662 −2.18 × 10−2 −2.07
0.01 0.01 10−3 −8.26 × 10−4 −8.01 × 10−2 −1.34 × 10−3 −0.145 −1.71 × 10−3 −0.538
0.01 0.05 103 −2.56 × 10−2 −1.53 −4.85 × 10−2 −2.09 −7.22 × 10−2 −2.33
0.01 0.05 10−3 −2.77 × 10−3 −0.344 −3.85 × 10−3 −0.626 −1.86 × 10−2 −2.05

0.05 0 103 −4.92 × 10−3 −0.340 −6.10 × 10−3 −0.613 −2.58 × 10−2 −1.87
0.05 0 10−3 −1.18 × 10−3 −7.19 × 10−2 −1.73 × 10−3 −0.132 −2.15 × 10−3 −0.491
0.05 0.001 103 −5.13 × 10−3 −0.370 −6.44 × 10−3 −0.668 −2.89 × 10−2 −1.91
0.05 0.001 10−3 −1.23 × 10−3 −7.85 × 10−2 −1.83 × 10−3 −0.144 −2.24 × 10−3 −0.535
0.05 0.005 103 −6.12 × 10−3 −0.491 −9.70 × 10−3 −0.887 −4.04 × 10−2 −1.95
0.05 0.005 10−3 −1.44 × 10−3 −0.105 −2.22 × 10−3 −0.192 −2.56 × 10−3 −0.711
0.05 0.01 103 −9.44 × 10−3 −0.645 −1.54 × 10−2 −1.15 −4.62 × 10−2 −2.16
0.05 0.01 10−3 −1.69 × 10−3 −0.138 −2.64 × 10−3 −0.252 −2.90 × 10−3 −0.931
0.05 0.05 103 −4.12 × 10−2 −1.68 −6.28 × 10−2 −2.01 −8.08 × 10−2 −2.20
0.05 0.05 10−3 −3.79 × 10−3 −0.403 −4.28 × 10−3 −0.733 −2.61 × 10−2 −2.13

FIG. 5. Two-dimensional plots for log10 jΔpcuspj. The first row corresponds to the models with βm;c ¼ 103 and the second row
corresponds to the models with βm;c ¼ 10−3. The columns correspond, from left to right, to the three different values of Ws we have
considered, namely −0.039, −0.040 and −0.041. The black contour appearing in some of the plots corresponds to log10 jΔpcuspj ¼ 0.
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decreases from △Ws > 0 to △Ws ≈ 0, the condition
pð1Þ=pð0Þ ∼Oð1Þ is more frequently satisfied.
A more concrete estimation of the allowed values of the

parameters s1 and m2 with βm;c can be obtained from the
2D plot of j△pcuspj shown in Fig. 5. The black contour
depicted in some of the plots in this figure indicates a cutoff
value of s1 and m2 corresponding to log10 jΔpcuspj ¼ 0.
For low magnetized viscous disks (βm;c ¼ 103, top panels),
we find that the allowed values of s1 and m2 are large for
ΔWs > 0 and that the permitted parameter space of (s1,m2)
appreciably decreases as the potential gap ΔWs → 0.

This indicates that stationary magnetized disks with
ΔWs ≈ 0 do not allow for large shear viscosity and
curvature effects in comparison to ΔWs > 0. On the other
hand, for highly magnetized disks (βm;c ¼ 10−3, bottom
panels), stationary viscous models can be constructed
over the entire choice of the parameter space and in the
considered regions of the potential gap i.e., ΔWs > 0 and
ΔWs ≈ 0. Therefore, in order not to be in conflict with the
adopted perturbative approach, our stationary models are
restricted up to maximum values of m1 ¼ s1 ¼ 0.05 and
m2 ¼ 0.05. Table II also shows that the changes in the

FIG. 6. Isocontours of pðtÞ ¼ pð0Þ þ pð1Þ in the cusp region for Ws ¼ −0.039 and βm;c ¼ 103. From top to bottom the rows
correspond to m2 ¼ ð0; 0.005; 0.01Þ. From left to right the columns correspond to s1 ¼ ð0.005; 0.01; 0.05Þ. Red isocontours
correspond to cusp-generating constant pressure surfaces without viscosity and blue isocontours depict newly formed self-
intersecting constant pressure surfaces when viscosity and curvature effects are present. The two black isocontours correspond to the
values pt ¼ 2p0;cusp=3 and pt ¼ p0;cusp=3.
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location of the cusp positions are small for small values of
s1 andm2. This behavior remains the same for both low and
high values of magnetization as well as for △Ws > 0

and △Ws ≈ 0.
Isocontours of the total pressure pt of our stationary

viscous tori are shown in Figs. 6 and 7 for low and high
values of the central magnetization parameter, respectively.
These figures concentrate on the regions close to the cusp
of the disks since it is in those regions where the effects of
the shear viscosity are most manifest. The self-intersecting
contours of pt possessing a cusp are depicted by the blue
dashed curves in the figures for the values of s1 and m2

indicated in the captions. The red isocontours correspond to
surfaces of constant pressure of magnetized ideal fluid

disks which would self-intersect, had there been no dis-
sipative effects in the disk. For a given value of s1 andWs we
observe that when m2 increases (from the top row to
the bottom panels) the location of the newly formed cusp
moves toward the black hole. At the same time the thickness
of the cusp region in the disk also diminishes. This can be
observed by looking at the change of location of the black
isocontours located above and below the cusp region in
Figs. 6 and 7. These two iscontours correspond to the values
of the total pressure pt ¼ 2p0;cusp=3 and pt ¼ p0;cusp=3.
In particular, in Fig. 6 it can be seen that, in the bottom row
and in the right column, the isocontour corresponding to
pt ¼ 2p0;cusp=3 changes its position (from above and below
the cusp, to the left and right of the cusp). This means that,

FIG. 7. Same as Fig. 6 but for βm;c ¼ 10−3. The three black isocontours in the left part of all plots represent values of the total pressure
equal to pti ¼ ðpð0Þ;maxi − pð0Þ;cuspÞ=4 for i ¼ 1, 2, 3, where pð0Þ;max is the value of pð0Þ at the maximum of the pressure.
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for these cases, pt;cusp < 2p0;cusp=3. In addition, the iso-
contour corresponding to pt ¼ p0;cusp=3 also moves signifi-
cantly closer to the self-crossing surface. Therefore, within
our framework based on causal relativistic hydrodynamics,
the role of shear viscosity triggered by the curvature of the
Schwarzschild black hole spacetime is apparent through a
noticeable rearrangement of the constant pressure surfaces of
magnetized viscous disks when compared to the purely
inviscid case [23]. In addition, the comparison of Figs. 6
and 7 shows that as the strength of the magnetic field
increases the shift of the location of the cusp toward the
black hole also increases. This might have implications
for the dynamical stability of constant angular momentum
thick disks, mitigating the development of the so-called
runaway instability that affects inviscid constant angular
momentum tori [6,26].

V. SUMMARY

We have discussed stationary solutions of magnetized,
viscous thick accretion disks around a Schwarzschild black
hole, neglecting the self-gravity of the tori and assuming that
they are endowed with a toroidal magnetic field and obey a
constant angular momentum law. Our study has focused on
the role of the spacetime curvature in the shear viscosity
tensor and in the effects viscosity may have on the stationary
solutions. This work is a generalization of a previous study
of purely hydrodynamical disks presented in [23].
Following [23] we have considered a simple framework to

encapsulate the quantitative effects of the shear viscosity
(neglecting any contributions of the heat flow) and the
curvature of the background geometry. In this setup, both
the shear viscosity and the curvature have perturbative
influences on the fluid, thereby allowing the fluid particles
in the disk to undergo circular orbits. In particular, the
magnetic field distribution, the fluid pressure and the energy
density (related to the pressure by a barotropic equation of
state) are perturbatively modified due to dissipative effects.
Our framework is based on causal relativistic hydrodynamics
and uses the gradient expansion scheme up to second order
such that the governing equations of motion of the fluid in
the Eckart frame are hyperbolic. Within this approach the
curvature of the background geometry, in which the accre-
tion disk is situated, naturally appears in the equations of
motion. In analogy with what was found in [23] for
unmagnetized tori, the present work has also shown that
the viscosity and the curvature of the Schwarzschild black
hole play some role on the morphology of magnetized tori.
The stationary models have been constructed by numeri-

cally solving the general relativistic momentum conservation
equation using the method of characteristics. By varying the
parameters m1 and m2 with two different choices of
magnetization, we have studied the radial profiles of pð0Þ
and pð1Þ to identify regions of the disk where shear viscosity
and curvature are mostly casting their effects. Our results

have revealed that the effects are most prominent near the
cusp of the disk, which helped us focus our analysis on two
regions of the potential gap, namely △Ws > 0 and
△Ws ≈ 0. Moreover, our study has allowed us to constrain
the range of validity of the second-order transport coef-
ficients m1 and m2 (after setting τ2 ¼ 1). The allowed
parameter space can be derived from Fig. 5 and from
Table II, where the boldface values of △pcusp for a given
value of Ws mark the breakdown of the perturbative
approach. Furthermore, the computations of△rcusp pinpoint
the exact modification in the position of the cusp due to the
shear viscosity and curvature effects.
The obtained isopressure contours of pt corresponding

to △Ws > 0 further divulge the cumulative effects of the
viscosity and curvature on the magnetized disk. The self-
intersection of these isopressure contours indicates new
locations of the cusp as well as the formation of a new
pcusp. We have found that for each magnetization and △Ws

considered, the location of cusps moves toward the black
hole as parameter m2 increases. Moreover, for higher
magnetized disks the shift is even larger. Therefore, the
combined effects of shear viscosity and spacetime curvature
might help mitigate, or even suppress, the development of
the runaway instability in constant angular momentum tori
[6,26], a conclusion that is on par with the assumptions of
our setup.
The present work is a small step toward constructing

stationary models of viscous magnetized tori based on a
causal approach for relativistic hydrodynamics. Despite our
simplistic approach we have shown here that the morphol-
ogy of geometrically thick accretion disks is nontrivially
affected by viscosity and curvature. These effects, though
small, should not be neglected. In particular, they could
potentially alter the radiation profiles of magnetized accre-
tion tori. As an example [27] discussed magnetized Polish
doughnuts using Kommissarov’s approach [9] including
radiation. However, they did not treat dissipation or shear
stresses from first principles as in the current work but used,
instead, an ad hoc parametrization to allow the gas to be
nonideal. It would be interesting to employ the second-order
gradient approximation scheme discussed here to determine
the temperature dependence in magnetized viscous tori from
first principles and then examine the associated radiation
spectra as the spectral properties are directly influenced by
hydrodynamic and thermodynamic structures of the disks.
Likewise, the intensity and emission lines of viscous
magnetized tori are expected to show imprints of shear
viscosity and curvature [27,28]. Similarly, another system
worth analyzing would be a thick disk with advection
dominated flows, as discussed by [29], since the viscous
heating rate might be modified when using the present form
of the shear viscosity tensor. Investigating these various
possibilities will be the target of future studies.
Finally, to actually observe the consequences of dissipa-

tive flux quantities in detail, a more realistic construction
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is required. That would involve taking into account the con-
tributions of the heat flux and of the radial velocity of the
fluid. Ultimately, considering dissipative flux quantities to
behave as perturbations is an assumption that should also
be relaxed.
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