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Black hole (BH) solution in the conformal Weyl gravity is a generalization of the Schwarzschild
spacetime which includes two additional constants appearing when integrating the third order differential
equations for gravitational field. One constant looks like the effective cosmological constant providing the
de Sitter asymptotic of the solution. The other constant allows one to describe flat rotation of galaxies
without introducing of the dark matter. Here we show that the effective “dark matter” term in the metric
function drastically changes the asymptotic behavior of the evolution of the wave function of a scalar field:
after the Schwarzschild-like ringing phase, the ringing at another, non-Schwarzschildian, longer-lived
frequency takes place before the beginning of the exponential asymptotic tail. Thus the evolution of the
scalar field consists of the three qualitatively different stages: the Schwarzschild-like ringing phase, the
effective dark matter ringing phase and the de Sitter phase characterized by exponential tails. The late-time
behavior of the electromagnetic field is qualitatively different as well: the exponential tails appear even in
the absence of the effective de Sitter term.
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I. INTRODUCTION

Evolution of perturbations around black holes can be
conditionally divided into the three stages: initial outburst,
quasinormal ringing, which is followed by power-law (for
asymptotically flat spacetimes) or exponential (for asymp-
totically de Sitter spacetimes) tails at late times. Although
the stage of quasinormal ringing [1–3] is the most impor-
tant for current observations of gravitational waves [4], the
asymptotic regime at late times, represented by tails, also
attracted considerable interest [5–22], because only by
achieving the asymptotic regime one can have the full
picture of the compact object’s response to perturbations
and judge about stability, duration of the ring-down phase
and echoes [23].
In a seminal work by R. Price [5] it was shown that

massless scalar and gravitational fields around the
Schwarzschild black hole decay according to the power law

jΨj ∼ t−ð2lþ3Þ: ð1Þ

For Schwarzschild-de Sitter solution the asymptotic decay
of the massless field is not power law anymore, but the
exponential one [10]

jΨsj ∼ e−lkct; l ¼ 1; 2;…; ð2Þ

jΨsj ∼ jΨ0j þ jΨ1je−2kct; l ¼ 0: ð3Þ

The electromagnetic field falls off in the Schwarzschild-de
Sitter background at asymptotically late times according to
the exponential law as well [24],

jΨelj ∼ e−lkelt; l ¼ 1; 2;…; ð4Þ

where kel is some constant.
An interesting model of gravity is the Weyl conformal

gravity [25], where the effective cosmological constant
appears in the background solution as an integration
constant [26], that is, without introduction of the cosmo-
logical constant into action. The latter has the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
CabcdCabcd; ð5Þ

where g is the determinant of the metric. Birkoff’s theorem
holds in the Weyl conformal gravity as well [27]. The static
and spherically symmetric vacuum solution describing a
black hole in this theory was obtained by Mannheim and
Kazanas [26]. This solution depends on the three para-
meters, β, γ and k, so that the metric function BðrÞ, used in
the line element*roman.konoplya@gmail.com
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ds2 ¼ −BðrÞdt2 þ B−1ðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð6Þ

can be written in the following form:

BðrÞ ¼ 1 − 3βγ −
2β − 3γβ2

r
þ γr − kr2: ð7Þ

Mannheim and Kazanas argued that the Weyl gravity can
explain the flat rotation of galaxies without introducing
dark matter, for which γ is of the order of the inverse of the
Hubble radius [26]. The astrophysical relevance of this
solution was further confirmed in a number of works
[28–30]. This black hole solution [26] has been recently
studied in a number of papers, with the emphasis to lensing
and particle motion [31–37], thermodynamics [38,39] and
quasinormal modes [40–43].
Quasinormal modes of the Mannheim-Kazanas black

hole have been recently studied in [40–42] with some flaws
and omissions. Thus, in [40] the wave equation for a test
scalar field was identified with the Pöshl-Teller equation for
the near extremal values of the cosmological constant and it
was stated that the stability of the scalar perturbations is
proved. However, as we will show here, the effective
potential at the lowest multipole number l ¼ 0 has a
negative gap which is deeper exactly for the near extremal
regime. Therefore, the fitting to the Pöshl-Teller potential is
not possible in this case and, moreover, the existence of
bound states with negative energy leading to possible
instability must be separately studied. Then, in [42] the
obtained master wave equation for gravitational perturba-
tions cannot be accepted, because the perturbations were
fulfilled not in the conformal Weyl theory, but in another
theory allowing for the same family of metrics.
However, the most interesting phenomenon which was

omitted in these studies is connected with the evolution of
perturbations at late times. Here wewill show that the decay
of a signal in the Mannheim-Kazanas background at late
times is qualitatively different from that in the
Schwarzschild or Schwarzschild-de Sitter cases. We will
show that once the effective cosmological term is zero, the
late-time tails of the massless scalar field are oscillatory
enveloped by the universal power-law decay. When the
effective cosmological constant is turned on, this oscilla-
tory tail becomes exponential and represents quasinormal
ringing dominated by a non-Schwarzschildian frequency.
On the contrary, electromagnetic perturbations decay
according to the exponential law even when the effective
cosmological term is zero.
The paper is organized as follows. In Sec. II we briefly

discusses the wave equations for the scalar and electro-
magnetic perturbations. Section III relates the Wentzel–
Kramers–Brillouin (WKB) and time-domain integration
methods we used as well as the main results on quasinormal
modes and late-time tails. In the conclusions we summarize
the obtained results and discuss the open questions.

II. THE WAVE EQUATIONS

The general covariant equation for a massless scalar field
has the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð8Þ

while for an electromagnetic field it can be written as
follows:

1ffiffiffiffiffiffi−gp ∂μðFρσgρνgσμ
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð9Þ

where μ, ν ¼ 0, 1, 2, 3 and Fρσ ¼ ∂ρAσ − ∂σAρ and Aμ is a
vector potential.
After some algebra one can separate the angular vari-

ables in Eqs. (8), (9) and rewrite the wave equations in the
following general master form:

d2Ψ
dr2�

þ ðω2 − VðrÞÞΨ ¼ 0; ð10Þ

in terms of the “tortoise coordinate” r� [1]:

dr� ¼
dr
fðrÞ : ð11Þ

The effective potentials for the scalar and electromagnetic
fields are:

VscalðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ 1

r
dfðrÞ
dr

�
; ð12Þ

VemðrÞ ¼ fðrÞlðlþ 1Þ
r2

: ð13Þ

Thus, r� → −∞ corresponds to the black hole event
horizon rþ.
The effective potentials have the form of a positive

definite potential barrier with a single maximum, except for
the case of l ¼ 0 scalar perturbations, for which the
effective potential has a negative gap (see Fig. 1). This
means that the stability for this case is not evident and we
will test it in the next section.
Quasinormal modes ωn correspond to solutions of the

master wave equation (10) with the requirement of the
purely outgoing waves at infinity and purely incoming
waves at the event horizon (see, for example, [1,2]):

Ψs ∼�e�iωr� ; r� → �∞: ð14Þ

When the solution is asymptotically de Sitter, purely
outgoing waves are required at the de Sitter horizon instead
of infinity.
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III. QUASINORMAL RINGING VIA THE WKB
AND TIME-DOMAIN INTEGRATION METHODS

In order to analyze evolution of perturbations in time-
domain we will use the method for integration of the wave
equation in time domain, that is, before introduction of the
stationary ansatz, at a given point in space [44]. We will
integrate the wavelike equation rewritten in terms of the
light-cone variables u ¼ t − r� and v ¼ tþ r�. The appro-
priate discretization scheme was suggested in [44]:

ΨðNÞ ¼ ΨðWÞ þ ΨðEÞ − ΨðSÞ

− Δ2
VðSÞðΨðWÞ þ ΨðEÞÞ

8
þOðΔ4Þ; ð15Þ

where the following notation for the points were used:
N ¼ ðuþ Δ; vþ ΔÞ, W ¼ ðuþ Δ; vÞ, E ¼ ðu; vþ ΔÞ
and S ¼ ðu; vÞ. The initial data are given on the null
surfaces u ¼ u0 and v ¼ v0. This method was used in a
great number of works and proved its efficiency (see for
example [45–48] and references therein).
In the frequency domain we will use the WKBmethod of

Will and Schutz [49], which was extended to higher orders
in [50–52] and made even more accurate by the usage of the
Padé approximants in [52,53]. The higher-order WKB
formula [54] has the form:

ω2 ¼ V0 þ A2ðK2Þ þ A4ðK2Þ þ A6ðK2Þ þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
ð1þ A3ðK2Þ þ A5ðK2Þ þ A7ðK2Þ…Þ;

whereK takes half-integer values. The correctionsAkðK2Þ of
order k to the eikonal formula are polynomials of K2 with
rational coefficients and depend on the values of higher
derivatives of the potential VðrÞ in its maximum. In order to
increase accuracy of the WKB formula, we will follow
Matyjasek and Opala [52] and use Padé approximants.
As both methods are very well known ([1,54]), we will

not describe them in this paper in more detail, but will

simply show that data obtained by both methods are in a
very good agreement.
First of all, the time-domain integration shows that once

the effective cosmological constant is zero, which corre-
sponds to k ¼ 0, we have the following decay law of a
scalar field at asymptotically late times (see an example in
Fig. 2 for l ¼ 0 perturbations):

jΨsj ∼ t−3=2 sinðAtÞ; l ¼ 0; 1; 2;…; k ¼ 0: ð16Þ

Here the constant A depends on the black hole parameters.
The enveloping decay law ∼t−3=2 is the same for all
multipole numbers l and black hole parameters γ and β.
The electromagnetic perturbations decay according to the
exponential law at asymptotic times even when the effec-
tive cosmological constant is zero:

jΨelj ∼ e−Ct; l ¼ 1; 2;…; k ¼ 0; ð17Þ

where the factor C depends on γ and l (see, as an example,
Fig. 3), for example,
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FIG. 1. Effective potentials for scalar perturbations γ ¼ 0.2, k ¼ 10−2 (left) and k ¼ 0.39 (right), l ¼ 0, rþ ¼ 1.
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FIG. 2. Logarithmic plot of the time-domain evolution of scalar
perturbations γ ¼ 0.5, k ¼ 0, l ¼ 0; rþ ¼ 1.
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C ≈ 1.1γ; l ¼ 1: ð18Þ

When k is not zero, we have the following asymptotic
decay law for a massless scalar field:

jΨsj ∼ jΨ0j þ jΨ1je−pst; l ¼ 0; 1;…; k ≠ 0; ð19Þ

where ps depends on the black hole parameters (see, for
instance, Fig. 4). The electromagnetic field decays in the
presence of the effective de Sitter term according to the
following law:

jΨelj ∼ e−Ct; l ¼ 1; 2;…; k ≠ 0; ð20Þ

where the constant C is the same as in the case k ¼ 0 above
at least for relatively small and moderate values of k.
When both k and γ are nonzero, the evolution of

perturbations of the scalar field consists of the three
stages:

(i) The quasinormal ringing with the perturbative
Schwarzschild frequency, that with the frequency
which slowly changes from its Schwarzschild value
when k and γ are turned on.

(ii) The second stage of quasinormal ringing with
another dominant frequency which is slower
damped than the Schwarzschild one (see Table I).
When γ goes to zero, this long-lived frequency goes
over into the purely imaginary “mode” representing
the asymptotic de Sitter tail [10]. When k vanishes,
these modes are reduced to oscillatory tails envel-
oped by the power law decay given by the universal
law (Eq. (16).

(iii) The asymptotic exponential tails. Here, unlike the
well-known de Sitter tails [10], the constant jΨ0j is
added to the exponentially decaying term not only
for zero multipole, but also for higher multipoles l.

Special attention must be paid to the case l ¼ 0 and the
near extremal values of k, because the effective potential
has a deep negative gap (see Fig. 1). There are a number of
examples when such negative gaps lead to the unbounded
growth of the perturbations, signifying the dynamical
instability [55–58]. Therefore, the stability must be checked
numerically for this case by the time-domain integration
which includes contribution of all the overtones. Any
numerical method in the frequency domain will not exclude
the possibility of missing the mode leading to instability. A
recent study of this near extremal case [40] simply ignores
the l ¼ 0 modes and claims the stability based on the
positiveness of the effective potential for l ¼ 1; 2;….
Time-domain profiles obtained here for near extremal cases
as well show that the scalar field is apparently stable even
for l ¼ 0, because the wave function decays in time.
It is worth mentioning that the dominant quasinormal

modes extracted from the time domain profiles by the
Prony method are in a very good agreement with those
obtained via the 7th order WKB method with further usage
of the Padé approximants as prescribed in [52]. This can be
seen in data presented in Tables I and II. The choice of the
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FIG. 3. Semilogarithmic plot of the time-domain evolution of
electromagnetic perturbations for γ ¼ 0.05 (left) and γ ¼ 0.1
(right); l ¼ 1, rþ ¼ 1, k ¼ 0. The straight lines represent the
exponential decays ∼e−0.055t (left) and ∼e−0.11t (right).
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FIG. 4. Semilogarithmic plot of the time-domain evolution of scalar perturbations γ ¼ 0.2, k ¼ 10−4, l ¼ 1; rþ ¼ 1.
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Padé approximants was such that the known accurate
quasinormal modes of Schwarzschild black hole is repro-
duced with the best accuracy, which corresponds to m̃ ¼ 7,
where m̃ is defined in [54].

IV. DISCUSSION

In the present paper we considered the evolution of scalar
and electromagnetic perturbations in the vicinity of the
Mannheim-Kazanas black hole solution [26] in the con-
formal Weyl gravity. We found a number of peculiarities,
which were omitted in previous studies of quasinormal
modes in this theory in the frequency domain [40–42]:

(i) We have shown that l ¼ 0 scalar field perturbations
of the nearly extremal black holes are governed by
the effective potential which has a deep negative
gap, and, that, nevertheless, time-domain profiles are
decaying, which points to the stability of the
scalar field.

(ii) When the effective de Sitter term vanishes (k ¼ 0),
the asymptotic tails of the massless scalar fields are
not power-law, as it happens for the Schwarzschild

case [5,6], but the oscillatory ones with a power-law
enveloping of oscillations, like it happens for mas-
sive fields in the background of asymptotically flat
black holes [9,20].

(iii) When the effective de Sitter term is turned on, this
oscillatory tail goes over into the exponential qua-
sinormal ringing dominated by an essentially non-
Schwarzschildian, longer-lived, frequency.

(iv) The asymptotic decay law at t → ∞ for the scalar
field is, then, exponential, so that the whole evolu-
tion of the signal consists of the three stages: the first
stage of quasinormal ringing at the Schwarzschild-
like frequency, the second stage of quasinormal
ringing at the long-lived non-Schwarzschild fre-
quency and the exponential tail.

(v) The asymptotic tails for electromagnetic field are
exponential even when the effective cosmological
term is tuned off (k ¼ 0).

Our work could be extended in a number of ways. First
of all, one could make an analytical derivation of the
asymptotic behavior via the analysis of the asymptotic
behavior of the wave equations in a similar fashion with [7].
Then the same analysis could be done for the Dirac
perturbations describing the neutrino field. In the latter
case we would face the stability problem as well [59,60].
A much more complicated problem would be the case of
gravitational quasinormal modes which has not been
performed in [42], because the Weyl equations were not
perturbed and, instead, perturbation of the same class
of metrics, but in an essentially different theory was
considered.
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TABLE I. Quasinormal modes for scalar s ¼ 0 perturbations for various values of γ; rþ ¼ 1;l ¼ 1, k ¼ 10−4. The second mode in the
time domain data represents the second stage of quasinormal ringing induced by the effective dark matter (DM) term.

γ Time-Domain WKB

0 0.585817 − 0.193680i, asymptotic tail 0.585691 − 0.195298i, 0.529608 − 0.612039i
0.1 0:626607 − 0.198156i, 0.1086120 − 0.0316408i 0.626432 − 0.199957i, 0.561854 − 0.630399i
0.2 0.666572 − 0.202136i, 0.244780 − 0.057896i 0.666554 − 0.202376i, 0.592440 − 0.642855i
0.4 0.745891 − 0.201371i, 0.447305 − 0.0651241i 0.745880 − 0.200337i, 0.650951 − 0.649154i
0.6 0.825988 − 0.181181i, 0.658562 − 0.0641326i 0.825624 − 0.188484i, 0.711067 − 0.624698i
0.8 0.906628 − 0.170434i, 0.862459 − 0.059459i 0.907968 − 0.165472i, 0.742103 − 0.570844i
1 1.05984 − 0.124847i, 1.05006 − 0.0556556i 0.994072 − 0.124870i, 0.767872 − 0.513711i

TABLE II. Fundamental (n ¼ 0) quasinormal modes for
electromagnetic s ¼ 1 perturbations for various values of γ;
rþ ¼ 1l ¼ 1, k ¼ 0.

γ Time-Domain WKB

0 0.496520 − 0.184975i 0.496520 − 0.184975i
0.1 0.520591 − 0.193820i 0.520538 − 0.193898i
0.2 0.543096 − 0.202234i 0.543098 − 0.202233i
0.4 0.584386 − 0.217545i 0.584385 − 0.217556i
0.6 0.620287 − 0.231584i 0.620243 − 0.231503i
0.8 0.648245 − 0.243741i 0.648244 − 0.243729i
1 0.661441 − 0.249998i 0.661437 − 0.250000i

CONFORMAL WEYL GRAVITY VIA TWO STAGES OF … PHYS. REV. D 103, 044033 (2021)

044033-5



[1] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793
(2011).

[2] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativity 2,
2 (1999).

[3] E. Berti, V. Cardoso, and A. O. Starinets, Classical Quantum
Gravity 26, 163001 (2009).

[4] B. P. Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).
[5] R. H. Price, Phys. Rev. D 5, 2419 (1972); 5, 2439 (1972).
[6] J. Bicak, Gen. Relativ. Gravit. 3, 331 (1972).
[7] E. S. C. Ching, P. T. Leung, W.M. Suen, and K. Young,

Phys. Rev. D 52, 2118 (1995).
[8] E. S. C. Ching, P. T. Leung, W.M. Suen, and K. Young,

Phys. Rev. Lett. 74, 2414 (1995).
[9] L. M. Burko and G. Khanna, Phys. Rev. D 70, 044018

(2004).
[10] P. R. Brady, C. M. Chambers, W. G. Laarakkers, and E.

Poisson, Phys. Rev. D 60, 064003 (1999).
[11] M. S. Churilova, R. A. Konoplya, and A. Zhidenko, Phys.

Lett. B 802, 135207 (2020).
[12] R. A. Konoplya, A. Zhidenko, and C. Molina, Phys. Rev. D

75, 084004 (2007).
[13] M. Rogatko and A. Szyplowska, Gen. Relativ. Gravit. 41,

1611 (2009).
[14] G.W. Gibbons, M. Rogatko, and A. Szyplowska, Phys. Rev.

D 77, 064024 (2008).
[15] G.W. Gibbons and M. Rogatko, Phys. Rev. D 77, 044034

(2008).
[16] M. Rogatko and A. Szyplowska, Phys. Rev. D 76, 044010

(2007).
[17] R. Moderski and M. Rogatko, Phys. Rev. D 63, 084014

(2001).
[18] J. Jing, Phys. Rev. D 72, 027501 (2005).
[19] P. R. Brady, C. M. Chambers, W. Krivan, and P. Laguna,

Phys. Rev. D 55, 7538 (1997).
[20] H. Koyama and A. Tomimatsu, Phys. Rev. D 63, 064032

(2001); 64, 044014 (2001); 65, 084031 (2002).
[21] R. A. Konoplya and C. Molina, Phys. Rev. D 71, 124009

(2005).
[22] R. A. Konoplya and A. Zhidenko, Phys. Rev. D 88, 024054

(2013).
[23] V. Cardoso and P. Pani, Nat. Astron. 1, 586 (2017).
[24] C. Molina, D. Giugno, E. Abdalla, and A. Saa, Phys. Rev. D

69, 104013 (2004).
[25] R. Bach, Math. Z. 9, 110 (1921).
[26] P. D. Mannheim and D. Kazanas, Astrophys. J. 342, 635

(1989).
[27] R. J. Riegert, Phys. Rev. Lett. 53, 315 (1984).
[28] T. Islam, Mon. Not. R. Astron. Soc. 488, 5390 (2019).
[29] K. Dutta and T. Islam, Phys. Rev. D 98, 124012 (2018).
[30] D. M. Christodoulou and D. Kazanas, Mon. Not. R. Astron.

Soc. 479, L143 (2018).

[31] K. Takizawa, T. Ono, and H. Asada, Phys. Rev. D 102,
064060 (2020).

[32] O. Kaşıkçı and C. Deliduman, Phys. Rev. D 100, 024019
(2019).

[33] M. Fathi, M. Kariminezhad, M. Olivares, and J. R.
Villanueva, Eur. Phys. J. C 80, 377 (2020).

[34] G. E. Turner and K. Horne, Classical Quantum Gravity 37,
095012 (2020).

[35] Z. Li, G. Zhang, and A. Övgün, Phys. Rev. D 101, 124058
(2020).

[36] M. Fathi, M. Olivares, and J. R. Villanueva, Eur. Phys. J. C
80, 51 (2020).

[37] M. Fathi, M. Olivares, and J. R. Villanueva, arXiv:
2009.03404.

[38] D. Lanteri, S. S. Wan, A. Iorio, and P. Castorina, arXiv:
2009.14087.

[39] H. Xu and M. H. Yung, Phys. Lett. B 793, 97 (2019).
[40] M. Momennia and S. H. Hendi, Phys. Rev. D 99, 124025

(2019).
[41] M. Momennia, S. H. Hendi, and F. S. Bidgoli, Phys. Lett. B

813, 136028 (2021).
[42] M. Momennia and S. H. Hendi, Eur. Phys. J. C 80, 505

(2020).
[43] M. Sharif and Z. Akhtar, Phys. Dark Universe 29, 100589

(2020).
[44] C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D 49,

883 (1994).
[45] R. A. Konoplya, A. F. Zinhailo, and Z. Stuchlik, Phys. Rev.

D 102, 044023 (2020).
[46] R. A. Konoplya and A. F. Zinhailo, Eur. Phys. J. C 80, 1049

(2020).
[47] R. A. Konoplya, A. F. Zinhailo, and Z. Stuchlík, Phys. Rev.

D 99, 124042 (2019).
[48] M. S. Churilova, Phys. Rev. D 102, 024076 (2020).
[49] B. F. Schutz and C. M. Will, Astrophys. J. 291, L33 (1985).
[50] S. Iyer and C. M. Will, Phys. Rev. D 35, 3621 (1987).
[51] R. A. Konoplya, Phys. Rev. D 68, 024018 (2003).
[52] J. Matyjasek andM. Opala, Phys. Rev. D 96, 024011 (2017).
[53] Y. Hatsuda, Phys. Rev. D 101, 024008 (2020).
[54] R. A. Konoplya, A. Zhidenko, and A. F. Zinhailo, Classical

Quantum Gravity 36, 155002 (2019).
[55] R. A. Konoplya and A. Zhidenko, Phys. Rev. D 90, 064048

(2014).
[56] Z. Zhu, S. J. Zhang, C. E. Pellicer, B. Wang, and E. Abdalla,

Phys. Rev. D 90, 044042 (2014); 90, A049904 (2014).
[57] R. A. Konoplya and A. Zhidenko, Phys. Rev. Lett. 103,

161101 (2009).
[58] R. A. Konoplya and A. Zhidenko, Phys. Rev. D 89, 024011

(2014).
[59] A. Lopez-Ortega, Int. J. Mod. Phys. D 21, 1250092 (2012).
[60] R. A. Konoplya and M. S. Churilova, arXiv:2004.05879.

R. A. KONOPLYA PHYS. REV. D 103, 044033 (2021)

044033-6

https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1103/PhysRevD.5.2439
https://doi.org/10.1007/BF00759172
https://doi.org/10.1103/PhysRevD.52.2118
https://doi.org/10.1103/PhysRevLett.74.2414
https://doi.org/10.1103/PhysRevD.70.044018
https://doi.org/10.1103/PhysRevD.70.044018
https://doi.org/10.1103/PhysRevD.60.064003
https://doi.org/10.1016/j.physletb.2020.135207
https://doi.org/10.1016/j.physletb.2020.135207
https://doi.org/10.1103/PhysRevD.75.084004
https://doi.org/10.1103/PhysRevD.75.084004
https://doi.org/10.1007/s10714-008-0732-3
https://doi.org/10.1007/s10714-008-0732-3
https://doi.org/10.1103/PhysRevD.77.064024
https://doi.org/10.1103/PhysRevD.77.064024
https://doi.org/10.1103/PhysRevD.77.044034
https://doi.org/10.1103/PhysRevD.77.044034
https://doi.org/10.1103/PhysRevD.76.044010
https://doi.org/10.1103/PhysRevD.76.044010
https://doi.org/10.1103/PhysRevD.63.084014
https://doi.org/10.1103/PhysRevD.63.084014
https://doi.org/10.1103/PhysRevD.72.027501
https://doi.org/10.1103/PhysRevD.55.7538
https://doi.org/10.1103/PhysRevD.63.064032
https://doi.org/10.1103/PhysRevD.63.064032
https://doi.org/10.1103/PhysRevD.64.044014
https://doi.org/10.1103/PhysRevD.65.084031
https://doi.org/10.1103/PhysRevD.71.124009
https://doi.org/10.1103/PhysRevD.71.124009
https://doi.org/10.1103/PhysRevD.88.024054
https://doi.org/10.1103/PhysRevD.88.024054
https://doi.org/10.1038/s41550-017-0225-y
https://doi.org/10.1103/PhysRevD.69.104013
https://doi.org/10.1103/PhysRevD.69.104013
https://doi.org/10.1007/BF01378338
https://doi.org/10.1086/167623
https://doi.org/10.1086/167623
https://doi.org/10.1103/PhysRevLett.53.315
https://doi.org/10.1093/mnras/stz2090
https://doi.org/10.1103/PhysRevD.98.124012
https://doi.org/10.1093/mnrasl/sly118
https://doi.org/10.1093/mnrasl/sly118
https://doi.org/10.1103/PhysRevD.102.064060
https://doi.org/10.1103/PhysRevD.102.064060
https://doi.org/10.1103/PhysRevD.100.024019
https://doi.org/10.1103/PhysRevD.100.024019
https://doi.org/10.1140/epjc/s10052-020-7945-3
https://doi.org/10.1088/1361-6382/ab7a5b
https://doi.org/10.1088/1361-6382/ab7a5b
https://doi.org/10.1103/PhysRevD.101.124058
https://doi.org/10.1103/PhysRevD.101.124058
https://doi.org/10.1140/epjc/s10052-020-7623-5
https://doi.org/10.1140/epjc/s10052-020-7623-5
https://arXiv.org/abs/2009.03404
https://arXiv.org/abs/2009.03404
https://arXiv.org/abs/2009.14087
https://arXiv.org/abs/2009.14087
https://doi.org/10.1016/j.physletb.2019.04.036
https://doi.org/10.1103/PhysRevD.99.124025
https://doi.org/10.1103/PhysRevD.99.124025
https://doi.org/10.1016/j.physletb.2020.136028
https://doi.org/10.1016/j.physletb.2020.136028
https://doi.org/10.1140/epjc/s10052-020-8051-2
https://doi.org/10.1140/epjc/s10052-020-8051-2
https://doi.org/10.1016/j.dark.2020.100589
https://doi.org/10.1016/j.dark.2020.100589
https://doi.org/10.1103/PhysRevD.49.883
https://doi.org/10.1103/PhysRevD.49.883
https://doi.org/10.1103/PhysRevD.102.044023
https://doi.org/10.1103/PhysRevD.102.044023
https://doi.org/10.1140/epjc/s10052-020-08639-8
https://doi.org/10.1140/epjc/s10052-020-08639-8
https://doi.org/10.1103/PhysRevD.99.124042
https://doi.org/10.1103/PhysRevD.99.124042
https://doi.org/10.1103/PhysRevD.102.024076
https://doi.org/10.1086/184453
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRevD.68.024018
https://doi.org/10.1103/PhysRevD.96.024011
https://doi.org/10.1103/PhysRevD.101.024008
https://doi.org/10.1088/1361-6382/ab2e25
https://doi.org/10.1088/1361-6382/ab2e25
https://doi.org/10.1103/PhysRevD.90.064048
https://doi.org/10.1103/PhysRevD.90.064048
https://doi.org/10.1103/PhysRevD.90.044042
https://doi.org/110.1103/PhysRevD.90.049904
https://doi.org/10.1103/PhysRevLett.103.161101
https://doi.org/10.1103/PhysRevLett.103.161101
https://doi.org/10.1103/PhysRevD.89.024011
https://doi.org/10.1103/PhysRevD.89.024011
https://doi.org/10.1142/S0218271812500927
https://arXiv.org/abs/2004.05879

