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46980, Paterna (València), Spain
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We show how gravitational-wave observations of binary black hole (BBH) mergers can constrain the
physical characteristics of a scalar field cloud parametrized by mass μ̃ and strength ϕ0 that may surround
them. We numerically study the inspiraling equal-mass, nonspinning BBH systems dressed in such clouds,
focusing especially on the gravitational-wave signals emitted by their merger-ringdown phase. These
waveforms clearly reveal that larger values of μ̃ or ϕ0 cause bigger changes in the amplitude and frequency
of the scalar-field-BBH ringdown signals. We show that the numerical waveforms of scalar-field-BBHs can
be modeled as chirping sine-Gaussians, with matches in excess of 95%. This observation enables one to
employ computationally expensive Bayesian studies for estimating the parameters of such binaries. Using
our chirping sine-Gaussian signal model, we establish that observations of BBH mergers at a distance of
450 Mpc will allow to distinguish BBHs without any scalar field from those with a field strength
ϕ0 ≳ 5.5 × 10−3, at any fixed value of μ̃ ∈ ½0.3; 0.8�, with 90% confidence or better, in single detectors with
Advanced LIGO/Virgo type sensitivities. This provides hope for the possibility of determining or
constraining the mass of ultralight bosons with gravitational-wave observations of BBH mergers.

DOI: 10.1103/PhysRevD.103.044032

I. INTRODUCTION

The gravitational-wave (GW) detector network compris-
ing the Advanced LIGO (aLIGO) and Advanced Virgo
(AdV) interferometers recently launched the era of GW
astronomy. The landmark observation in 2015 of a GW
signal from a binary black hole (BBH) merger and the
subsequent additional detections of binary mergers that
followed during the first two observational campaigns (O1
and O2), including a binary neutron star (BNS) system [1],
have put GW astronomy on a very firm footing. Moreover,
during O3 GW candidate events have been released as
public alerts to facilitate the rapid identification of electro-
magnetic or neutrino counterparts, expanding the capabil-
ities of multimessenger astronomy. A significant number of
candidates have been publicly announced on the GW
candidate event database [2] and some confirmed detec-
tions have already been published [3–7].
Accurate computations of the gravitational waveform of

a compact binary coalescence event, especially in the early

inspiraling stage, yield a plethora of information about the
binary and the physics of its components. While large
banks of waveforms are available for BBHs, BNS mergers,
and BH-NS systems, relatively less information is available
about possible departures from those waveforms if the
binary components were exotic (yet physically plausible)
compact objects, e.g., boson stars, Proca stars, gravastars,
fuzzballs, or wormholes. However, there are ongoing
theoretical efforts to investigate them [8–13]. In particular,
the merger of binary compact objects formed by funda-
mental bosonic fields has been explored in several works,
including head-on collisions and orbital mergers of boson
stars, oscillatons, and Proca stars [14–24]. The potential of
GW astronomy for new discoveries might eventually shed
light on the actual existence in nature of these theoretical
proposals.
Using GW observations as probes of new physics is

challenging, but they also provide a brand new experimental
channel to try and find answers to the biggest unsolved
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problems in fundamental physics (see, e.g., Ref. [25]).
Some of these are the nature of dark matter and dark energy,
the physics in the early Universe, and possible extensions of
the Standard Model. A well-known example for physics
beyond the StandardModel is provided by ultralight bosonic
particles. The masses of the ultralight bosons of the string
axiverse can range from 10−33 to 10−10 eV [26]. Even
though their masses can be smaller than those of known
particles, their existence is possible if the coupling to
ordinary matter is very weak.
In particular, scalar fields surrounding supermassive BHs

in galactic centers have been proposed as candidates for
dark matter [27–31]. This model assumes that dark matter
is composed of bosonic particles that may condense into
macroscopic objects around BHs. The justification for this
proposal requires long-lived scalar-field configurations.
Their dynamics and lifetime have been studied both in
the linear regime [32–36] and with nonlinear simulations in
general relativity [37–39], providing convincing support to
the proposal. Specifically, the early work in Ref. [34] in the
linearized regime showed that massive scalar fields sur-
rounding stationary and nonrotating BHs could indeed
form such quasibound states as a result of the presence of a
potential well due to the mass term. These states decay at
infinity and are characterized by a complex frequency
whose real part represents the actual oscillation frequency,
while the imaginary part gives (depending on the sign)
either their decay rate or the growth rate, if a mode is
superradiantly unstable.
The superradiant instability operates in rotating black

holes (but see Ref. [40] for an academic setup with a
Reissner-Nordström BH) where bosonic waves scattered off
the BH extract energy and angular momentum and increase
the energy of the field through the classical process of
superradiance [41,42] (see also Ref. [43] and references
therein). The nonlinear realization of superradiance in Kerr
BHs was recently shown in Refs. [44,45] by employing a
vector (Proca) bosonic field (see also Refs. [46,47]). The end
state of this process is the formation of hairy BHs, i.e., Kerr
BHs surrounded by either scalar or vector hair, in which the
bosonic field is in equilibrium (i.e., synchronized) with the
BH [48,49]. Recent works [50–59] have investigated pos-
sible observational signatures of the bosonic clouds through
the detection of the nearly monochromatic GWs they emit,
providing procedures to, e.g., constrain the QCD axion [50],
probe ultralight bosons in BBH inspirals through the analysis
of resonant transitions between growing and decaying
modes of the clouds [54], and estimate upper limits for
the detectability of ultralight bosons through direct GW
searches [51,53]. Recent attempts [59] promoted the use of
third-generation ground-based GW detectors combined with
the spaced-based LISA mission to increase the chances of
detection using a multiband technique. We also note that
the direct detection of bosonic fields in the form of bosonic
stars has been recently proposed in connection with

GW190521 [60]. Last, for its relevance to our setup and
results, we highlight thework of Ref. [52] which investigated
the joint evolution of intermediate-mass BBHs surrounded
by a shell of an axion-like scalar field of different strengths,
finding that the dynamics of the mergers can be modified by
the presence of the environmental scalar field cloud, which
also impacts the GW emission.
In this work we also investigate if GWmeasurements can

probe the existence of bosonic clouds around BHs but we
employ a different setup to that used inmost previousworks.
We study if the presence of a scalar field cloudmight actually
be established through its imprint on the GWs from BBH
mergers. Our goal is to show through a combination of
numerical-relativity simulations and Bayesian inference if
the actual network of GW interferometers can measure the
differences in the waveforms induced by the presence of
scalar field clouds around the coalescing BHs. To this aim
we parametrize the cloud by its mass μ̃ and strength ϕ0. Our
investigation reveals that it may actually be possible to
observationally distinguish BBHs without any scalar field
from those with a field strength of order ϕ0 ≳ 5.5 × 10−3, at
any fixed value of μ̃ ∈ ½0.3; 0.8�, with 90% confidence
or better, in single detectors with aLIGO or AdV type
sensitivity, up to distances of about 450 Mpc. At smaller
distances (∼100–200 Mpc) even weaker fields might be
distinguishable.
This paper is organized as follows. In Sec. II we briefly

summarize our basic framework to study the dynamics of
BBH mergers endowed with bosonic clouds. Section III
describes the numerical setup, initial data, and results of the
numerical simulations for varying scalar-field parameters.
The measurement and estimation of these parameters
through Bayesian inference are discussed in Sec. IV, and
we close with Sec. V which presents our conclusions.
Appendix B provides specific details on our numerical
waveforms. Throughout the paper we use natural units,
c ¼ G ¼ ℏ ¼ 1.

II. BASIC FRAMEWORK

Our approach to modeling BBH mergers surrounded by
a scalar field environment considers a massive complex
scalar field interacting through gravity with the BHs. The
system is governed by the Einstein-Klein-Gordon theory.
Details of the formulation have been given in Refs. [37,61],
which we briefly summarize here. We consider a complex
scalar field Φ minimally coupled to gravity described by
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
R −

1

2
gαβ∇αΦ�∇βΦ −

1

2
m2

sΦΦ�
�
;

ð1Þ

where R is the Ricci scalar associated with the metric gαβ
with determinant g and ms is the mass of the field.

SUNIL CHOUDHARY et al. PHYS. REV. D 103, 044032 (2021)

044032-2



The asterisk indicates the complex-conjugate operation and
∇α denotes the covariant derivative. Minimizing this action
with respect to the metric and scalar field yields the
Einstein-Klein-Gordon system:

Rαβ −
1

2
gαβR ¼ 8πTαβ ð2Þ

and

gαβ∇α∇βΦ ¼ m2
sΦ; ð3Þ

where Tαβ is the stress-energy tensor

Tαβ ¼
1

2
ð∇αΦ∇βΦ� þ∇αΦ�∇βΦÞ

−
1

2
gαβðgγσ∇γΦ∇σΦ� þm2

sΦΦ�Þ: ð4Þ
In this setup, the self-gravitating scalar field interacts with
the binary through gravity by means of the spacetime
metric described by the Einstein equations.
Given the total Arnowitt-Deser-Misner mass M of a

gravitational system,we define the dimensionless parameter

μ̃≡GMms

ℏc
ð5Þ

to characterize the scalar cloud. This parameter is the ratio of
the gravitational radius of the system Rg ¼ GM=c2 and the
Compton wavelength of the scalar field λc ¼ ℏ=ðmscÞ.
The linear dynamics of scalar fields propagating on a

single, nonrotating BH background has been described in
[62]. It was found that regular scalar field configurations in
the form of quasibound states around Schwarzschild BHs
may survive in the vicinity of the compact objects for a
certain range of values of the scalar field and BH masses. A
detailed analysis of the scalar field configurations including
the spectrum of quasibound states can be found in Ref. [63].
The description of the scalar field assumes a harmonic

time dependence, Φðt; r⃗Þ ¼ ϕðr⃗Þe−iωt, where ω is a com-
plex number whose real part indicates the oscillating
frequency and whose imaginary part determines the
decay rate of the field. For small values of the dimension-
less parameter μ̃ it was found that the decay rate of the
quasibound states decreases as a power law of μ̃. The mass
spectrum of axion-like particles that could be probed for a
given coupling μ̄ is continuous, and includes, among
others, the QCD axion and a large range of particles
beyond the Standard Model predicted in the string axiverse
scenario [26]. We highlight in particular two regimes with
astrophysical relevance for the combination of the scalar
field and BH masses for which the scalar field configura-
tions may live around the central object for longer times
than the age of the Universe. The first one occurs when the
scalar field mass is of the order of 1 eV and the BH has a
mass smaller than 10−17 M⊙. The second regime corre-
sponds to an ultralight scalar field with mass smaller than

10−22 eV and to a supermassive BH with mass smaller than
5 × 1010 M⊙. These scenarios correspond, respectively, to
axion distributions of a scalar field around primordial BHs
and dark matter halos around supermassive BHs in the
centers of galaxies [64]. For stellar-size BHs (like the ones
employed in this work) with mass ∼40 M⊙, the mass of the
particle corresponds to ∼10−12 eV.

III. NUMERICAL SIMULATIONS

In order to write Eqs. (2) and (3) as an evolution system
suitable for numerical integrationwe formulate the Einstein-
Klein-Gordon system using the BSSN formulation [65–67]
(see also Refs. [68,69]). Our numerical simulations are
performed using the open source EinsteinToolkit infra-
structure [70–72]. In addition, the Carpet package [73,74]
is used for mesh-refinement capabilities, BH apparent
horizons are found using AHFinderDirect [75,76], and
the left-hand side of the Einstein equations is solved using
theMacLachlan code [77]. The scalar-field evolution code is
our own modification of the publicly available Proca thorn
from the Canuda library [78,79] to evolve complex scalar
fields. This code has been recently employed to study the
stability of spinning bosonic stars [80,81]. The method of
lines with a fourth-order Runge-Kutta scheme is employed
to integrate the time-dependent differential equations.

A. Initial data

To set initial data suitable for numerical evolution using
the moving punctures technique we take advantage of the
Bowen-York construction for twoBHs invacuum [82]. Thus,
a nontrivial analytic solution of the momentum constraint
equation can be found [83] and the Hamiltonian constraint
equation can be solved using the puncture approach [84–86].
Once the Hamiltonian and momentum constraints are solved
we introduce a nonzero scalar field distribution. The addition
of the scalar field to the binary system introduces violations
of the constraints (see details in Appendix A). However, our
results regarding GWemission show that the initial violation
produces only a weak spurious GW signal as long as the
amplitude of the scalar field ϕ0 ≪ 1 for μ̃ ≈ 1.0.
In our study we mainly focus on the post-merger

characteristics of the gravitational waveforms. Therefore,
for simplicity we initiate our simulations when the two BHs
are in their last orbit prior to merger using initial data for a
quasicircular orbit [87,88]. The BHs are positioned at
ðx; y; zÞ ¼ ð−1.168M; 0; 0Þ and ð1.168M; 0; 0Þ, having lin-
earmomentumvectors ð0;−0.333M; 0Þ and ð0; 0.333M; 0Þ.
Our simulations are performed for a nonspinning, equal-

mass (m1 ¼ m2 ¼ 0.453M) BBH system which is sur-
rounded by a scalar field cloud initially shaped in the form
of a Gaussian distribution, Φ ¼ ϕ0e−ðr−r0Þ

2=λ2 , centered at
radius r0 ¼ 0, where ϕ0 is the initial amplitude and λ is its
half-width. We simulate a series of configurations by
varying the amplitude ϕ0 between 1.0 × 10−5 and
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1.0 × 10−2 and employing a dimensionless scalar field
mass parameter μ̃ < 1.0. We have observed that due to the
choice of constraint-violating conditions caused by the
presence of the cloud, numerical inaccuracies dominate the
evolution of the system for values of μ̃ of order 10−2.
Therefore, such values are not considered. On the other
hand, high-amplitude fields (ϕ0 ≈ 0.01) trigger their col-
lapse inside the horizon, while very low-amplitude fields
(ϕ0 < 5.0 × 10−4) lead to evolutions that are almost indis-
tinguishable from the pure vacuum BBH case. Keeping this
in mind, we simulate a fiducial number of 18 configura-
tions, setting the scalar field mass parameter μ̃ in the range
from 0.3 to 0.8 for three scalar field amplitudes, namely,
ϕ0 ¼ 3.5 × 10−3, 4.5 × 10−3, and 5.5 × 10−3. These sim-
ulations are compared with the vacuum BBH merger case
in the absence of any scalar field.
The mass of the cloud is kept sufficiently small com-

pared to the total BBH mass to ensure that the violation of
the constraints does not represent a major drawback of our
initial data. For rotating BHs there is a mechanism (super-
radiance) that allows the cloud to grow up to about 10% of
the mass of the BH. We take this value as an upper bound
for the mass of the cloud (which scales quadratically with
ϕ0) assuming there is no other mechanism to grow the
cloud. In addition, we choose λ ¼ 15which yields a size for
the scalar cloud comparable to the physical size of the BHs.
Much larger values of λ correspond to cloud masses that
would result in significant constraint violation in our
numerical evolution. Much smaller values (that are still
larger than the gravitational radius of the system) would
require large field amplitudes to leave any noticeable
imprint in the merger waveforms. The effect of varying
λ, along with the contribution of the inspiral part of the GW
signal in our results, will be explored in more detail in a
future work.
The numerical evolutions are performed on a Cartesian

grid with a domain size of ð−320M; 320MÞ for all three
dimensions. However, we apply reflection symmetry in the
z direction; thus, the computational domain in that direction
is ð0; 320MÞ. The numerical grid has nine refinement
levels, starting with two centers located at each puncture,
and with resolution fð320; 160; 80; 40; 20; 5; 2.5; 1.25;
0.625ÞM; ð8; 4; 2; 1; 0.5; 0.25; 0.125; 0.0625ÞMg. The first
set of numbers indicates the spatial domain of each level
and the second set indicates the resolution.

B. Results of the numerical evolutions

Our goal is to highlight possible imprints of the presence
of scalar field clouds in the gravitational waveforms
produced during a BBH merger. GW signals are obtained
from the simulations by computing the Newman-Penrose
scalar Ψ4 defined in terms of the Weyl tensor Cαβγδ [89] as

Ψ4 ¼ Cαβγδkαm̄βkγm̄δ; ð6Þ
where k and m̄ are two components of the null tetrad l, k,m,
m̄ that satisfy l · k ¼ −1 andm · m̄ ¼ 1, and all other inner
products are zero. At a given extraction radius rext we

FIG. 1. l ¼ m ¼ 2 mode of the real part of the GW strain hþ
extracted at rext ¼ 40M. Different curves correspond to varying
values of the scalar field mass parameter μ̃ for the field amplitudes
ϕ0 ¼ 3.5 × 10−3 (top panel), ϕ0 ¼ 4.5 × 10−3 (middle panel),
and ϕ0 ¼ 5.5 × 10−3 (bottom panel).
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perform a multipolar decomposition by projecting Ψ4 onto
a spherical harmonic basis of spin weight s ¼ −2 as

Ψ4ðt; r; θ;φÞ ¼
X
l;m

ψl;m
4 ðt; rÞ−2Yl;mðθ;φÞ; ð7Þ

whose relation with the second time derivative of the two
polarizations of the GW strain is given by

ψl;m
4 ðt; rÞ ¼ ḧþl;m − iḧ×l;m: ð8Þ

We use the post-processing Python package
pyGWAnalysis [90] to convert Ψ4 data to GW strain.
Figure 1 displays the real part of the dominant quadrupolar
(l ¼ m ¼ 2) mode of the GW strain (hþ) for varying values
of the mass of the scalar field and its initial amplitude. The
signal is extracted at rext ¼ 40M and tpeak refers to the
instant of time when the norm of the strain waveform jh2;2j
reaches its maximum. This figure shows that the presence
of the scalar field produces a shift in the signal compared to
the vacuum BBH case. This shift is most visible in the
ringdown part of the signal and becomes larger the larger
the values of μ̃ and ϕ0.
The stronger and faster damping observed during the

ringdown in the presence of high-amplitude scalar fields is
highlighted in Fig. 2. This figure compares the waveforms
for ϕ0 ¼ 3.5 × 10−3 and 5.5 × 10−3, both for μ̃ ¼ 0.5, with
a BBH merger with no scalar field content. In order to
quantify this effect and to study the distinguishability of ϕ0

in actual GWobservations, we carry out Bayesian inference
with our waveform models. This is discussed in the next
section.

IV. MEASURING SCALAR FIELD PARAMETERS
IN OBSERVATIONS OF BBH MERGERS

With multiple BBH merger detections in the past and
several tens to hundreds expected from ground-based
detectors in the coming years, it will likely become possible
to distinguish BBHs with sufficiently large scalar field
amplitudes from those without any such field, or at least
constrain the presence of such fields in BBH mergers. To
estimate how precisely one will be able to do so, we fitted
several models to the post-merger parts of our numerical-
relativity waveforms, out of which the chirp sine-Gaussian
waveform model came out to be the most suitable one,
partly motivated by the exponentially damped sinusoid
nature of the signal in the absence of a scalar field (see, e.g.,
Refs. [91,92] and references therein). This is due to both its
simple structure and the small number of parameters it
employs, as well as its very high match (≳95%) with the
numerical waveforms. The chirp sine-Gaussian form is
described by the GW strain

gðt; f0; Q; κÞ≡ Ae−4π
2f2

0
t2=Q2

cosð2πf0tþ κt2Þ; ð9Þ

whereQ is the quality factor that dictates the damping time,
f0 is the central frequency of the sinusoid, and κ is the
“chirp parameter” quantifying the rate of change of
frequency with time (see Ref. [93] for details).

A. Bayesian parameter estimation

To assess how well the analytical model of our ringdown
signals in Eq. (9) matches the numerical waveforms, and
the precision as well as accuracy with which one can
measure the BBH and scalar field parameters, we use
Bayesian inference. The code employed to implement it on
our simulated detector data and signals is Bilby [94], which
is primarily designed for inferring the parameters of
compact binary coalescence signals. It provides both nested
sampler and Markov chain Monte Carlo sampler options
for computing the parameter posteriors of modeled wave-
forms. In our study we use the nested sampler “Dynesty”
[95,96] since it is a more appropriate choice when only a
few parameters characterize a large set of waveforms.
To perform this Bayesian analysis, the numerical wave-

forms are scaled such that for each set of parameter error
estimates the source is always kept at a fixed distance,
namely, at 450 Mpc. Increasing the source distance leads to
an increase in parameter errors that can make it difficult to
distinguish the scalar-field values simulated here.
We use the IMRPhenomD waveform templates [97,98]

with the lower-frequency cutoff set high enough in our
analysis so as to utilize only the post-merger parts of the
signals for computing the signal-to-noise ratios (SNRs) and
parameter estimates. In particular, parameter estimation is
performed using the quadrupolar (l ¼ m ¼ 2) mode of
the GW strain waveform, as described in Sec. III B.

FIG. 2. Comparison of the ringdown quadrupolar GW strains
of BBHmergers with and without scalar field content. The former
corresponds to the μ̃ ¼ 0.5 case with ϕ0 ¼ 3.5 × 10−3 and
5.5 × 10−3. The labels here are the same as in Fig. 1.
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We truncate every waveform such that only the cycles
following the peak amplitude are retained. All waveforms
are injected in simulated zero-mean, colored Gaussian noise
using aLIGO’s zero-detuned-high-power noise power spec-
tral density [99]. The time axis of the numerical waveform is
scaled by setting up the component masses such that the
signal frequency lies in the aLIGO sensitivity band. The
component masses that we need for this purpose are of the
order of 40 M⊙ and the mass of the scalar particle is in the
range between 0.5 × 10−12 and 1.4 × 10−12 eV. Further
details about the procedure are provided in Appendix B.
The priors used for the parametersQ and f0 are uniform,

with Q ∈ ½6; 14� and f0 ∈ ½140; 190� Hz, and the like-
lihood used is Gaussian with sigma set equal to the standard
deviation of aLIGO noise. The posteriors thus calculated
give us the estimated values and the 1σ error bars. Some
illustrative corner plots of these posteriors are shown in
Fig. 3. As mentioned before, we consider three scalar-field
cases with μ̃ ranging from 0.3 to 0.8. In physical units this
corresponds to 0.7 × 10−12–1.8 × 10−12 eV for BBHs with
each component of the order of 30 M⊙ and to 3.4 ×
10−13–9 × 10−13 eV for BBHs with 60 M⊙ components.
The κ parameter is fixed to 13 000 Hz2 in all cases as we

observed that it does not vary much for different values of
ϕ0 and μ̃. It only shows a variation of 15%when set free but
does not have much of an effect on the match (which
changes by <1%). Lists of estimated parameters are shown
in Tables I and II for source distances of 100 and 450 Mpc,
respectively.
By studying injections at very high SNRs, we confirmed

that the systematic error in the estimated parameters—in
particular f0 as listed in Table I (where the source distance
is taken at 100 Mpc)—is no more than ∼0.1%. With these
estimated parameters our model gives a more than 99%
match with the post-merger part of the waveform, as
shown in Fig. 4 for the particular case ϕ0 ¼ 5.5 × 10−3 and
μ̃ ¼ 0.5.

To validate our parameter estimation method we perform
some tests by checking how accurately it estimates the
parameters f0, Q, and κ of simulated chirping sine-
Gaussian signals. For this purpose, we vary κ from

FIG. 3. Corner plots showing the posterior distributions of f0 and Q of our chirp sine-Gaussian waveform model for ϕ0 ¼ 3.5 × 10−3

(left), ϕ0 ¼ 4.5 × 10−3 (middle), and ϕ0 ¼ 5.5 × 10−3 (right). All three cases correspond to μ̃ ¼ 0.50.

TABLE I. Variation in medians and 90% errors in Q and f0
with ϕ0 and μ̃. Here μ̃ varies from 0.3 to 0.8 for three values of the
scalar field: ϕ0 ¼ 3.5 × 10−3, 4.5 × 10−3, and 5.5 × 10−3. The
error bars are for a source distance of 100 Mpc. These variations
are plotted in Figs. 6 (left panel) and 7.

Best parameter fits for 100 Mpc

ϕ0 and μ̃ Q f0 (Hz)

0; 0 (no scalar field) 9.89þ34
−32 173.54þ0.98

−0.94
Case ϕ0 ¼ 3.5 × 10−3

0.30 9.66þ0.32
−0.32 169.76þ0.96

−0.99
0.40 9.62þ0.31

−0.31 169.25þ0.93
−0.94

0.50 9.60þ0.31
−0.31 168.76þ0.99

−0.99
0.60 9.56þ0.30

−0.30 168.28þ0.96
−0.95

0.70 9.53þ0.30
−0.31 167.83þ0.94

−1.00
0.80 9.51þ0.30

−0.32 167.21þ0.96
−1.01

Case ϕ0 ¼ 4.5 × 10−3

0.30 9.51þ0.31
−0.30 167.39þ0.94

−0.95
0.40 9.47þ0.31

−0.31 166.52þ0.95
−0.92

0.50 9.40þ0.30
−0.30 165.87þ0.97

−0.94
0.60 9.34þ0.31

−0.30 165.06þ0.95
−0.96

0.70 9.28þ0.31
−0.29 164.24þ0.99

−0.96
0.80 9.22þ0.28

−0.29 163.35þ0.93
−0.98

Case ϕ0 ¼ 5.5 × 10−3

0.30 9.32þ0.29
−0.31 164.43þ0.92

−0.96
0.40 9.23þ0.28

−0.30 163.26þ0.96
−1.02

0.50 9.14þ0.29
−0.29 162.22þ0.99

−0.98
0.60 9.06þ0.28

−0.29 161.16þ0.96
−0.99

0.70 8.99þ0.28
−0.30 159.87þ0.97

−0.94
0.80 8.89þ0.28

−0.28 158.48þ0.96
−0.95
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12 000 to 14 700 Hz2 in steps of 300 Hz2. We do this for
two cases. In the first case we fix f0 ¼ 157.0 Hz, Q ¼ 9.2
and in the second case we fix f0 ¼ 145.0 Hz,Q ¼ 8.6. The
results, shown in Fig. 5, demonstrate the effectiveness of
our method in recovering the signal parameters.

B. Revealing scalar field properties by measuring f 0
The signal parameter f0 is an accurate tracker of the

strength of the scalar field ϕ0, so long as we allow for its
variation with the parameter μ̃. It is worth mentioning that

for a fixed value of μ̃, as the value of ϕ0 increases the mass
of the scalar field cloud grows. We use the chirping sine-
Gaussian templates in Bilby, as given by Eq. (9), to
measure the values of f0 and Q for the multiple numerical-
relativity waveforms simulated for various scalar field
configurations. Specifically, we perform parameter estima-
tion for our three values of ϕ0, namely, 3.5 × 10−3,
4.5 × 10−3, and 5.5 × 10−3, as well as for our six values
of μ̃ ranging from 0.3 to 0.8. This range of values of ϕ0

allows us to study scalar clouds having less than 10–15% of
the mass of the binary.
Figures 6 and 7 show the variation of the model

parameters f0 and Q, respectively, with the numerical
waveform parameter μ̃. The closer the source the better the
results. If the source is at 100 Mpc (left panels of Figs. 6
and 7), for which the match-filtering SNR value using the
post-merger part of template is ≈210, the error bars in the
measurements of Q overlap for our choices of scalar field
strengths. However, the error bars in f0 are separate and all
of the 18 cases considered can be distinguished from one
another, and from the no-scalar-field case (with error and
median values shown in Table I).
We note that even if the source is at a distance of

200 Mpc, one finds that the error bars for f0 remain
separable for much of the μ̃ range studied here. However, at
larger source distances the situation worsens and it is only
possible to distinguish stronger scalar fields from the no-
scalar-field BBH mergers. This is shown in the right panel
of Fig. 6 for a source located at 450 Mpc for which the
match-filtering SNR value using the post-merger part of

TABLE II. Variation in medians and 90% errors in f0 with ϕ0

and μ̃ for a source distance of 450 Mpc. These variations are
plotted in the right panel of Fig. 6. The values for the parameterQ
are not included in the table as their error bars overlap with the
no-scalar-field case.

Best parameter fits for 450 Mpc

ϕ0 and μ̃ f0 (Hz)

0; 0 (no scalar field) 174.00þ4.19
−4.34

Case ϕ0 ¼ 4.5 × 10−3

0.30 168.10þ4.44
−4.22

0.40 167.29þ4.45
−4.41

0.50 166.67þ4.60
−4.45

0.60 165.81þ4.49
−4.38

0.70 165.00þ4.52
−4.39

0.80 164.10þ4.70
−4.50

Case ϕ0 ¼ 5.5 × 10−3

0.30 165.29þ4.39
−4.31

0.40 164.08þ4.56
−4.42

0.50 163.14þ4.45
−4.48

0.60 162.14þ4.60
−4.61

0.70 160.95þ4.54
−4.58

0.80 159.65þ4.65
−4.72

FIG. 4. Comparison of the post-merger waveform against the
chirp sine-Gaussian fitted model for the case ϕ0 ¼ 5.5 × 10−3

and μ̃ ¼ 0.5. It yields more than a 99% match.

FIG. 5. Results of our validation study for f0 (top), Q (middle),
and κest (bottom) for varying values of κ.
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template is ≈45, a distance around or above the values at
which most GW signals from BBH coalescence events are
observed by the Advanced LIGO and Advanced Virgo
detector network.
With the previous results we can attempt to fit f0 as a

function of μ̃,

f0ðμ̃Þ ¼ aμ̃þ b: ð10Þ

The fits corresponding to the different values of ϕ0 for the
source at a distance of 100 Mpc are plotted in Fig. 8. Values

of the coefficients a and b are listed in Table III. As can be
seen from the fits (Table III) and Figs. 6 and 8, the
frequency f0 shows a clear dependence on ϕ0 and μ̃ and
its measurement can be used to put bounds on the
characteristics of the source.
To quantify it further, in Fig. 9 we plot isocontours of

f0ðμ̃;ϕ0Þ. An isocontour of f0 specifies the region of
the parameter space that is allowed by the measured value
of f0. For example, if an observed GW signal has a
frequency f0 ¼ 166 Hz, then this implies that in the
range μ̃ ∈ ½0.3; 0.8�ϕ0 must lie between ∼3.8 × 10−3 and
∼5.0 × 10−3. Since the measured f0 value will typically lie
in a confidence interval, the range of ϕ0 will also have a
corresponding spread. Furthermore, if the value ofQ can be
measured as well with some precision, then along with f0 it
will provide a measurement of the important quantity μ̃
characterizing the scalar field cloud. As suggested by
Fig. 7, this result might be elusive unless we detect a
golden binary with a large SNR.

FIG. 6. Left: medians and 1σ error regions (with interpolations) of the f0 posteriors plotted as functions of μ̃ for the three values of ϕ0

and for a source located at a distance of 100 Mpc. The filled circles denote the values of μ̃ where the posteriors were individually
computed. The value of f0 for the no-scalar-field case is 173.54

þ0.98
−0.94 Hz and is shown as a horizontal line in the plot for reference. Right:

f0 vs μ̃ for a source distance of 450 Mpc. The frequency estimate for the no-scalar-field case, f0 ¼ 174.04.194.34, cannot be distinguished
from the estimate for the ϕ0 ¼ 3.5 × 10−3 case for μ̃ < 0.7; it can, however, be distinguished from the ϕ0 ¼ 4.5 × 10−3 case for all μ̃
except those close to 0.3. The figure also shows that the ϕ0 ¼ 4.25 × 10−3 case is the limiting value of ϕ0 that can be distinguished from
the no-scalar-field case, close to μ̃ ¼ 0.8.

FIG. 7. Median and 1σ error regions of the Q posteriors as a
function of μ̃ for ϕ0 ¼ 5.5 × 10−3 and ϕ0 ¼ 4.5 × 10−3 and for a
source at a distance of 100 Mpc. The value ofQ for the no-scalar-
field case is 9.89þ34

−32 .

TABLE III. Coefficients of the fitting model f0, described by
Eq. (10), for the three values of the scalar field ϕ0 ¼ 3.5 × 10−3,
4.5 × 10−3, and 5.5 × 10−3 at 100 Mpc, are listed here.

Model coefficients

ϕ0 a (Hz) b (Hz)

0.0035 −5.0 171.3
0.0045 −8.0 169.8
0.0055 −11.7 168.0
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V. CONCLUSIONS

Massive scalar fields surrounding stationary and non-
rotating BHs can form long-lived, quasibound states, or
clouds, as a result of the presence of a potential well due to
the mass term [63]. For rotating BHs, the superradiant
instability [43] leads to the formation of hairy BHs—Kerr
BHs surrounded by bosonic (scalar or vector) hair in which
the frequency of the field is synchronized with the angular
velocity of the BH [48,49]. Using numerical-relativity
simulations, we have studied mergers of BBH systems
dressed in such scalar field clouds. Our aim has been to find
out whether GW observations of BBH mergers could
constrain the physical characteristics of a scalar field cloud
surrounding these compact binaries. We have considered
equal-mass BBH systems endowed with Gaussian

distributions of scalar field clouds parametrized by their
mass μ̃ and strength ϕ0, and analyzed the imprints on the
GWs generated during the mergers. We have numerically
simulated the last three quarters of the final orbit prior to
merger for a large set of initial models, restricting our
analysis to the post-merger phase.
The waveforms extracted from our simulations have

revealed that larger values of μ̃ or ϕ0 cause bigger changes
in the amplitude and frequency of the ringdown part of the
signals. The ringdown signals of our mergers can be
simulated analytically as chirping sine-Gaussians, charac-
terized by only three parameters, returning match values
with our numerical-relativity waveforms in excess of 95%.
This is not surprising since BBH ringdown signals in
general relativity are damped sinusoids that can be modeled
with only two parameters [100]. Using our chirping sine-
Gaussian signal model, we have carried out computation-
ally expensive Bayesian studies for estimating the param-
eters of BBH binaries endowed with scalar field clouds. We
have been able to establish that the central frequency of the
model, f0, has a strong dependence on the scalar-field
strength ϕ0 and a weak dependence on μ̃. Therefore, at a
fixed value of μ̃, a measurement of the signal parameter f0
leads to a measurement of ϕ0. In particular, we have shown
that it is possible to distinguish BBHs without any scalar
field from those with a field strength ϕ0 ¼ 5.5 × 10−3, at
any fixed value of μ̃ ∈ ½0.3; 0.8�, from observations of BBH
mergers at distances of 450 Mpc with 90% confidence or
better. We have shown that aLIGO may have the potential
to distinguish between (i) a GW signal produced by a BBH
with component masses of 40 M⊙ each in vacuum and
(ii) that produced by one with the same component masses
but immersed in a cloud of boson particles with masses in
the range [5 × 10−13, 1.4 × 10−12 ] eV.
We take these results as encouraging indications for the

prospect of constraining scalar field clouds in BBH
observations. However, to assess their utility for real
observations one must study the impact of a wider
parameter space of the binaries on how accurately and
precisely one will be able to measure the scalar-field
parameters from the waveforms, while also battling pos-
sible parameter degeneracies that can arise. For instance,
the same f0 and Q values can correspond to a variety of
BBH remnant masses and spins as well as scalar-field
parameters. (Arguably, some of these degeneracies may
break or be mitigated by measurements of source param-
eters in the inspiral part of the signals.) To address this
issue, one will need to simulate waveforms for a broader
range of astrophysically relevant BBH component masses
and spins and scalar-field parameters, and analyze the
parameter degeneracies that might arise as well as their
possible resolution. We leave this computationally expen-
sive study for the future.
While in this investigation we have limited ourselves to

single BBH observations, we note that by combining

FIG. 8. Linear fits for f0 as a function of μ̃, f0ðμ̃Þ ¼ aμ̃þ b, for
our three values of ϕ0.

FIG. 9. Isocontours of f0 in the ϕ0 − μ̃ plane for a source at
100 Mpc.
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multiple BBH detections one may be able to constrain the
scalar-field configurations in these mergers collectively for
populations. Such an exercise will be similar to stacking
ringdown signals from multiple BBH signals to, e.g., test
the no-hair theorem. In our case, however, a straightforward
extension to populations is complicated by the possibility
that the scalar field parameters may vary from one BBH
source to another. Similarly, it would be interesting to
explore if BBH observations can be used to determine or
constrain the mass of ultralight bosons. We plan to pursue
these prospects in a future work.
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APPENDIX A: CONSTRAINT VIOLATION
IN THE PRESENCE OF A SCALAR FIELD

As described in Sec. III A, the introduction of a scalar-
field distribution in an otherwise constraint-preserving
BBH initial setup leads to constraint violations. To make
sure that our numerical simulations are still valid for the
time evolution under consideration, we compute the
changes in the mass and area of the black hole and compare
these values with the no-scalar-field scenario.
Figure 10 shows the percentage change in mass (top) and

the corresponding change in area (bottom) for the largest
mass parameter considered, μ̃ ¼ 0.8, and for three values of
the field strength.
To compute the area, mass, and other physical quan-

tities on the horizon, we first find the horizon using
the AHFinderDirect thorn [75,76] and then apply the
QuasiLocalMeasures thorn, which implements the isolated
and dynamical horizon framework [101–103]. This frame-
work enables the computation of quasilocal quantities on
marginally trapped surfaces such as the apparent horizon.
Recently, the correlation between the shear of the horizon

and the news function in the wave zone was demonstrated
for quasicircular BBH mergers [104,105], and horizon
dynamics was studied in terms of the shear and multipole
moments for the head-on collision of two black holes [106].
These works could be important steps toward inferring finer
details of black hole horizon properties through gravita-
tional-wave observations. It might be interesting to pursue
similar studies in the presence of scalar field clouds, which
we aim to do in the future.
In Fig. 11 we show the evolution of the L2 norm of the

Hamiltonian constraint for the simulations of Fig. 10. We
find that the magnitude of the violation of the L2 norm of
the Hamiltonian constraint is comparable to the no-scalar-
field case for the range of field strengths ϕ0 and mass
parameter μ̃ considered. We note that since these results
correspond to the largest mass parameter of our study, the
impact of the constraint violation is in general much lower
for the ϕ0-μ̃ parameter space investigated.

FIG. 10. Percentage change in mass (top panel) and area
(bottom panel) with respect to the no-scalar-field case for the
largest mass parameter considered, μ̃ ¼ 0.8, and for the field
strengths ϕ0 ¼ 3.5 × 10−3, 4.5 × 10−3, and 5.5 × 10−3.
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APPENDIX B: PRE-PARAMETER ESTIMATION
TREATMENT OF NUMERICAL DATA

Since the numerical waveforms are computed here in
terms of ψ4 as functions of time in code units of the Einstein
Toolkit [71], it is necessary to convert the ψ4 data into GW
strain data and convert the code time units into seconds
(physical units) so that they are usable for GWobservations
and parameter measurement projections. Here we show how
such a conversion is done. The conversion from code units to
seconds depends on the total mass of the systemMtotal. This
fact can be used to adjust the BBH mass so as to bring the
frequency parameter of the numerical waveforms into
aLIGO’s most sensitive band, namely, 100–200 Hz.
Moreover, some care must be taken when computing the

match with numerical relativity (NR) waveforms, as we
explain below.

(1) The NR simulations produce ψ4 data for our various
scalar field configurations. Therefore, for GW data
analysis we first construct GW strain waveforms
from these data.

(2) To label the time points of the strain data in physical
units we use the following conversion:

tðin secÞ ¼ Mtotal ×
M⊙G
c3

� ðcctk timeÞ; ðB1Þ

where cctk time refers to the code time units in the
Einstein Toolkit [71].

(3) Each waveform strain time series is chopped, re-
sampled, and zero-padded to prepare it for our
analysis with only the post-merger piece (i.e., the
part of the NR waveform that starts at the time point
where the peak amplitude is attained in the time
domain); see Fig. 4.

(4) As we want our waveforms to be in the aLIGO
sensitivity band, we choose the masses such that the
frequency parameter falls in that region. To get the
approximate values of those masses we calculate
the match of numerical waveforms with the IM-
RPhenomD [97,98] template in the region (100,
200) Hz (the approximate aLIGO sensitivity band).
The match comes out to be very high in the mass
region of 30–60 M⊙. On this basis, we choose the
component masses to be 40 M⊙.

(5) We also calculate the frequency of the numerical
waveforms by measuring the half-cycle and con-
clude that we need BBHs with component masses
around 40–40 M⊙ each to get our frequency in the
aLIGO sensitivity band.

(6) In our study we analyze numerical waveforms at
different source distances. We do this by making the
peak amplitude of numerical waveforms equal to the
PyCBC-generated IMRPhenomD template for the
distance we want to study [107].
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