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In this article we analyze the post-Newtonian approximation of a generalization of the symmetric
teleparallel gravity with the help of the parametrized post-Newtonian (PPN) formalism. This class of
theories is based on a free function of the five independent quadratic contractions of the nonmetricity
tensor. By calculating the PPN metric of these theories, we can restrict the Taylor coefficients of the free
function with the help of the PPN parameters and their observational bounds. We find two families of
theories whose PPN parameters are identical to those of general relativity, and thus in full agreement with
observations. For three further families, we find that only the PPN parameters β and γ deviate, but can be
brought arbitrarily close to their general relativity values by an appropriate choice of the Lagrangian, so that
also these families contain candidate theories which agree with observations. The remaining theories either
possess no well-defined solution of the post-Newtonian field equations, or possess a post-Newtonian limit
which exceeds the form assumed in the PPN formalism.
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I. INTRODUCTION

During the last century the general theory of relativity,
which conventionally attributes the gravitational interaction
to the curvature of spacetime, encoded in the presence of
the Ricci scalar R in the action, has passed most of the tests
given by solar system and astrophysical observations [1–8].
Several observations in cosmology and the dynamics of
large scale structures, however, are unexplained within
general relativity itself, unless it is supplemented with
additional, “dark” components [9–19]. These open ques-
tions, as well as the quest for a quantum theory of gravity,
have motivated the construction and investigation of several
modifications and alternatives to general relativity [20–22].
While the aforementioned modifications retain the inter-

pretation of gravity as a manifestation of curvature, this
underlying geometrical interpretation of gravity is not
without alternatives. Recent developments shed light on
two different interpretations of the nature of gravity [23].
One alternative is teleparallel gravity, where gravity is a
manifestation of a connection on spacetime with vanishing
curvature and nonmetricity, but nonvanishing torsion [24].
The third possibility, next to curvature and torsion, is to
attribute gravity to a flat, torsion-free connection, thus
making nonmetricity the only non-vanishing tensorial

quantity [25–31]. Most remarkably, the Einstein-Hilbert
action of general relativity can be formulated equivalently
in either of these other geometries, by introducing suitable
scalars T and Q from the torsion and non-metricity,
respectively, which take the role of the Ricci tensor in
the action. This leads to the teleparallel equivalent of
general relativity (TEGR) [32] in the case of torsion,
and the symmetric teleparallel equivalent of general rela-
tivity (STEGR) [25] in the case of nonmetricity. Also a
more general equivalent, featuring both torsion and non-
metricity, has been proposed [33]. In these alternative
formulations, equivalence is to be understood as dynamical
equivalence in the sense that the field equations of all three
formulations impose the same dynamics for the metric,
which is present in all three geometries.
While general relativity can equivalently be formulated

in terms of each of the three quantities—curvature, torsion
or nonmetricity—generalizations of these three approaches
towards gravity are not equivalent anymore. For example,
the FðRÞ class of gravity theories [34,35] is not equivalent
to their corresponding FðTÞ gravity theories [36–38],
where F is a free function constituting the Lagrangian,
which determines a particular theory within this class. The
reason for this is, that the two scalars R and T differ by a
total derivative, which contributes to the gravitational field
equations, unless the Lagrangian function F is linear, in
which case it becomes a boundary term and the theories are
dynamically equivalent. For a general function F, however,
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this difference leads to different field equations, hence to
inequivalent dynamics. The same holds true for theories
which introduce scalar fields, which are nonminimally
coupled to the gravitational action [39–45]. Therefore it
is worth studying such kind of modifications, which are
based on torsion and nonmetricity, as they are essentially
different from the class of modifications based on
curvature.
The symmetric teleparallel formulation of gravity theo-

ries, in which nonmetricity is employed as the mediator of
gravity, is the least investigated so far, and only a few of its
generalizations have been discussed. One possibility is to
generalize the symmetric teleparallel gravity action by
replacing the nonmetricity scalar with an arbitrary function
FðQÞ, following the same line of thought as the afore-
mentioned FðRÞ and FðTÞ theories [46]. This class of
theories has been studied in particular in the context of
cosmology [47–51]. Another possibility is given by gen-
eralizing the nonmetricity scalar to other terms quadratic in
the nonmetricity tensor, known as newer general relativity
[46,52–54]. Yet another class of theories is obtained by
nonminimally coupling scalar fields to nonmetricity
[55,56]. Finally, even more general theories have been
proposed, such as [57–63].
The large number of gravity theories considered to

address the open questions in cosmology requires efficient
tools in order to be constrained by observations. One of the
most powerful tools to obtain observational bounds on
modified theories of gravity is the parametrized post-
Newtonian (PPN) formalism [6,7,64]. It has been widely
used to restrict several classes of gravity theories based on
curvature [65–72] and torsion [73–78], as well as to gravity
theories based on multiple metrics [79–81]. Recently, a
gauge-invariant approach to the PPN formalism has been
developed, which consolidates its mathematical foundation
as a tool to study gravity theories by the way how they
describe the geometry of spacetime [82].
The purpose of this article is to apply the PPN formalism

to a class of symmetric teleparallel gravity theories, thereby
opening the path of post-Newtonian calculations for the-
ories in which gravity is modeled by nonmetricity. Here we
consider a class of theories whose action is determined by a
free function of the five parity-even scalars which are
quadratic in the nonmetricity tensor [58–60]. This class of
theories is interesting since it encompasses various other
theories mentioned above, including newer general rela-
tivity and FðQÞ gravity [46].
The article is structured as follows. In Sec. II we review

the class of symmetric teleparallel gravity theories analyzed
in this article. We state its geometric foundations and
present the field equations emerging from an action which
consists of a free function of the five independent con-
tractions of the nonmetricity tensor. Then we state the
main assumptions we make in order to be able to apply
the PPN formalism in Sec. III. In Sec. IV we calculate the
post-Newtonian approximation of the field equations and

solve them order by order up to the fourth velocity order,
where we will be assuming the standard PPN gauge. With
the help of these perturbative solutions we calculate the
PPN parameters and fully classify the studied theories by
the Taylor coefficients of the free function of the
Lagrangian in Sec. V. We summarize our results and give
an outlook in Sec. VI.
In this article we use Greek letters α; β;… ¼ 0;…; 3 for

spacetime indices and Latin letters a; b;… ¼ 1;…; 3 for
spatial indices. The sign convention for the flat Minkowski
metric is chosen as ð−;þ;þ;þÞ.

II. FIELD VARIABLES AND THEIR DYNAMICS

In this section we review the action of the theory we
aim to analyze in this article. The dynamical fields of the
theory are given by a Lorentzian metric gμν and an affine
connection Γρ

μν. The latter is further restricted by the
conditions that it has vanishing curvature

Rρ
σμν ¼ ∂μΓρ

σν − ∂νΓρ
σμ þ Γρ

λμΓλ
σν − Γρ

λνΓλ
σμ ¼ 0; ð1Þ

and vanishing torsion

Tρ
μν ¼ Γρ

νμ − Γρ
μν ¼ 0: ð2Þ

Nevertheless, we allow for nonvanishing nonmetricity

Qρμν ¼ ∇ρgμν: ð3Þ

Combining the first two conditions, it follows the affine
connection has to be of the form

Γρ
μν ¼ ðΛ−1Þρλ∂νΛλ

μ; ð4Þ

with ∂ ½μΛλ
ν� ¼ 0. Later, we will use this form of the affine

connection for its post-Newtonian expansion. We assume
an action of the form

S½g;Γ; χ� ¼ Sg½g;Γ� þ Sm½g; χ�; ð5Þ

with the gravitational part of the action Sg being of the form

Sg½g;Γ� ¼
Z
M
F ðQ1;Q2;Q3;Q4;Q5Þ

ffiffiffiffiffiffi
−g

p
d4x: ð6Þ

Here the Lagrangian is given by a free function F of the
five nontrivial quadratic contractions of the nonmetricity
tensor Qρμν

Q1 ¼ QρμνQρμν; Q2 ¼ QμνρQρμν; Q3 ¼ Qρμ
μQρν

ν;

Q4 ¼ Qμ
μρQν

νρ; Q5 ¼ Qμ
μρQρν

ν: ð7Þ

The matter action Sm depends on the metric and an arbitrary
set of matter fields χ. With that knowledge we can obtain

KAI FLATHMANN and MANUEL HOHMANN PHYS. REV. D 103, 044030 (2021)

044030-2



the usual energy-momentum tensor Θμν by varying the
matter action Sm with respect to the metric gμν as

δSm½g; χ� ¼ −
1

2

Z
M
Θμνδgμν

ffiffiffiffiffiffi
−g

p
d4x; ð8Þ

where g denotes the metric determinant. Throughout this
article we will assume for the matter source a perfect fluid,

as usual. If we define the derivatives of the free function F
with respect to the five scalar quantities Qi as

F ;i ¼
∂F
∂Qi

; i ¼ 1;…; 5; ð9Þ

then we can write the field equations as Eμν ¼ 0, with

Eμν ¼ −2∇∘ ρðF ;1Qρ
μν þ F ;2QðμνÞρ þ F ;3Qρσ

σgμν þ F ;4Qσ
σðμδ

ρ
νÞÞ

−∇∘ ρ½F ;1ðQσ
σρgμν þ δρðμQνσÞσÞ� þ

1

2
Fgμν − F ;3Qμρ

ρQνσ
σ

þ F ;2ð2Qρσ
μQσρν −Qμ

ρσQνρσ − 2QρσðμQνÞρσÞ
þ F ;4½Qρ

ρσðQσμν − 2QðμνÞσÞ þQρ
ρμQσ

σν −Qρ
ρðμQνÞσσ�

þ 1

2
F ;5½Qρσ

σðQρμν − 2QðμνÞσÞ −QμρρQνσσ� − κ2Θμν: ð10Þ

Note that covariant derivatives ∇∘ with respect to the Levi-
Civita connection are denoted by a circle, to distinguish
them from the covariant derivative ∇ of the independent
connection Γμ

νρ.

III. POST-NEWTONIAN APPROXIMATION

In this article we make use of the parametrized post-
Newtonian (PPN) formalism [6,7,64]. Therefore, we
review the general assumptions of the formalism in this
section, and supplement them with further assumptions on
the independent connection Γμ

νρ, in order to apply the PPN
formalism to the symmetric teleparallel gravity theory we
study here. In the previous section we mentioned, that the
matter field will be assumed as a perfect fluid

Θμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν: ð11Þ

Here we denote the rest energy density, pressure, four-
velocity and specific internal energy by ρ, p, uμ and Π,
respectively. For the four-velocity we assume the normali-
zation uμuνgμν ¼ −1. Compared to the speed of light
c≡ 1, the velocity vi ¼ ui=u0 of the matter is assumed
to be small in a given reference frame. As usual we can
perturbatively expand the dynamical fields in orders of the
velocity OðnÞ ∝ jv⃗jn. We expand the metric around a flat
Minkowski background ημν ¼ diagð−1; 1; 1; 1Þ

gμν ¼ ημν þ hμν ¼ ημν þ h
2

μν þ h
3

μν þ h
4

μν þOð5Þ: ð12Þ

In order to approximate the coefficients Γρ
μν of the

symmetric teleparallel connection, we use the relation
(4), which follows from the condition (1) of vanishing
curvature. From the condition (2) of vanishing torsion

further follows that the transformation matrices Λμ
ν are

generated by a coordinate transformation,

Λα
β ¼

∂x0α
∂xβ ; ð13Þ

where the coordinates x0μ correspond to the so-called
coincident gauge [46]. This coordinate system is charac-
terized by the property that the connection coefficients
Γ0ρ

μν vanish. Indeed, from the usual coordinate trans-
formation of connection coefficients one finds the relation

Γρ
μν ¼ Γ0γ

αβ
∂xρ
∂x0γ

∂x0α
∂xμ

∂x0β
∂xν þ ∂xρ

∂x0γ
∂x0γ

∂xμ∂xν
¼ Γ0γ

αβðΛ−1ÞργΛα
μΛβ

ν þ ðΛ−1Þργ∂νΛγ
μ; ð14Þ

which reduces to the relation (4) for Γ0γ
αβ ¼ 0. In the next

step, we must assume a background around which we will
expand the connection, in analogy to the Minkowski
background ημν in the perturbative expansion (12) of the
metric. Here we assume that this background is simply
given by the coincident gauge, hence the connection
coefficients vanish. It follows that we can approximate
the coordinate transformation in the form

x0μ ¼ xμ þ ξμ þ 1

2
ξν∂νξ

μ ð15Þ

up to quadratic order in the coefficients ξμ, which are the
generators of a “knight diffeomorphism” [83–85]. The
coordinate transformation matrices thus take the form

Λα
β ¼ δαβ þ ∂βξ

α þ 1

2
∂βðξγ∂γξ

αÞ: ð16Þ
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Combining this relation with the form (4) of the connection
coefficients leads to their expression

Γρ
μν ¼ ∂μ∂νξ

ρ

þ 1

2
ðξσ∂μ∂ν∂σξ

ρ þ 2∂ðμξσ∂νÞ∂σξ
ρ − ∂μ∂νξ

σ∂σξ
ρÞ:
ð17Þ

Then we expand ξα similar to the metric as

ξα ¼ ξ
2
α þ ξ

3
α þ ξ

4
α þOð5Þ: ð18Þ

The nonvanishing components of the dynamical fields g
and ξ we have to calculate are

h
2

00; h
2

ij; h
3

i0; h
4

00; ξ
2
i; ξ

3
0; ξ

4
i: ð19Þ

In order to apply the post-Newtonian approximation to the
geometry part of the field equations (10), we have to
expand the free function F and its derivatives F ;i as a
Taylor series

F ¼ F0 þ
X5
k¼1

FkQk þOð5Þ;

F ;i ¼ Fi þ
X5
k¼1

FikQk þOð5Þ; ð20Þ

where the Taylor coefficients Fi and Fik are assumed to be
of velocity order Oð0Þ and are calculated at Qi ¼ 0. In the
following section we will see that the second order Taylor
coefficients Fik couple to terms that are of higher velocity
order than the post-Newtonian approximation and therefore
do not contribute to the perturbative equations we consider.
For later use, we introduce another parametrization for the
linear order Taylor coefficients given by

F1 ¼ 3C5; C1 ¼ F2 − F4; ð21aÞ

F2 ¼
1

2
ðC1 þ C2 þ C3 − 2C4 − 4C5Þ; C2 ¼

F1

3
þ F3;

ð21bÞ

F3 ¼ C2 − C5; C3 ¼ F1 þ F2 þ F3 þ F4 þ F5; ð21cÞ

F4 ¼
1

2
ð−C1 þ C2 þ C3 − 2C4 − 4C5Þ; C4 ¼ F3 þ

F5

2
;

ð21dÞ

F5 ¼ 2ð−C2 þ C4 þ C5Þ; C5 ¼
F1

3
: ð21eÞ

This reparametrization will simplify the field equations and
their solutions, and further be helpful for the classification
of theories in Sec. V.
Finally, we can expand the energy-momentum tensor as

Θ00 ¼ ρð1þ Πþ v2 − h
2

00Þ þOð6Þ; ð22aÞ

Θ0j ¼ −ρvj þOð5Þ; ð22bÞ

Θij ¼ ρvivj þ pδij þOð6Þ; ð22cÞ

using the standard assumption that the matter variables are
of the velocity orders ρ ∼ Π ∼Oð2Þ and p ∼Oð4Þ. Further,
time derivatives are weighted with ∂0 ∼Oð1Þ.

IV. SOLVING THE FIELD EQUATIONS

Now we can use all expressions calculated in the
preceding section to derive the post-Newtonian approxi-
mation of the field equations (10) and their solution. This
will be done in several steps. We start with the zeroth
velocity order Oð0Þ, which corresponds to the vacuum
equations, in Sec. IVA. Then we proceed with the second
velocity order Oð2Þ in Sec. IV B, the third velocity order
Oð3Þ in Sec. IV C, and finally the fourth velocity order
Oð4Þ in Sec. IV D.

A. Zeroth velocity order

The zeroth velocity order of the energy-momentum

tensor vanishes identically for all components Θ
0

μν ¼ 0

and the geometrical part of the field equations (10) can

be calculated at the background h
0

μν ¼ ημν and ξ
0
α ¼ 0

leading to

E
0

μν ¼
1

2
F0ημν ¼ 0: ð23Þ

Therefore the vacuum field equations can only be solved
with our post-Newtonian approximation if F0 ¼ 0. This
result is not surprising, since F0 should be related to a
cosmological constant. This would lead to a contradiction
to the assumption of an asymptotically flat post-Newtonian
metric. Hence, we restrict our discussion to this case
throughout the remainder of this article.

B. Second velocity order

The second velocity order of the field equations (10) are

given by E
2

00 ¼ 0, E
2

ij ¼ 0, with
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E
2

00 ¼ △½−ðC2 þ 2C5Þh
2

00:ðC2 − C5Þh
2
a
a þ 2C4∂aξ

2
a� − ðC2 − C4 − C5Þ∂b∂ah

2
ab − κ2ρ;

E
2

ij ¼ △½−ðC2 − C5Þδijh
2

00 − 3C5h
2

ij − ðC2 − C5Þδijh
2
a
a þ ðC2 þ C3 − 2C4Þ∂ðiξ

2
jÞ þ 2C4δij∂aξ

2
a�

þ ∂i∂j½ðC2 − C4Þh
2

00 þ ðC2 − C4Þh
2
a
a − ðC2 − C3Þ∂aξ

2
a� þ ðC2 − C5Þδij∂a∂bh

2
ab

− ðC2 þ C3 − 2C4Þ∂a∂ðih
2
a
jÞ ð24Þ

and △ ¼ ∂a∂a is the flat space Laplacian. These equations
can be solved by introducing the Newtonian potential and
the so-called superpotential, which are defined by

U ¼
Z

d3x0
ρ0

jx⃗ − x⃗0j ; χ ¼ −
Z

d3x0ρ0jx⃗ − x⃗0j: ð25Þ

First we make the ansatz

h
2

00 ¼ a1U; h
2

ij ¼ a2δijU; ξ
2
i ¼ a3∂iχ ð26Þ

to reformulate Eq. (24) as an algebraic equation for the
three coefficients ai. By making use of the identity △χ ¼
−2U and demanding that the coefficients in front of ∂i∂jU
and δij vanish, we can derive a linear system of equations
written as

Mijaj ¼ 0; ð27Þ

where the coefficients of the matrix M are linear in the
parameters Ci. The three coefficients ai cannot be

determined for all Ci unambiguously, but only in the cases
in which M is nondegenerate. To discuss this we make use
of the determinant of M

detM ∝ C5ðC2C3 − C2
4Þ: ð28Þ

In the case ofC5 ¼ 0, we can only find vacuum (i.e., ρ ¼ 0)

as a solution and h
2

cannot be determined unambiguously.
Hence, we will exclude this case from now on, and assume

C5 ≠ 0. If we assume C2C3 − C2
4 ¼ 0, ξ

2
i cannot be

determined uniquely. Keeping this assumption, we can
further distinguish the two cases C3 ¼ 0 and C3 ≠ 0. In the

first case we can determine h
2

independent from the tensor

field ξ
2
i. In the second case the metric components cannot

be determined uniquely. If detM ≠ 0 we can solve for all
ai. Thus, we have the following two relevant cases which
we will further discuss in detail:
(1) C5 ≠ 0 and C2C3 − C2

4 ≠ 0: We can solve the
second order equations for all perturbations and
obtain

a1 ¼
κ2

72π

2C2
4 −C3ð2C2 þC5Þ
C5ðC2C3 −C2

4Þ
; a2 ¼

κ2

72π

2C2
4 −C3ðC2 −C5Þ
C5ðC2C3 −C2

4Þ
; a3 ¼

κ2

288π

C2C3 −C3C5 −C2
4 þ 3C4C5

C5ðC2C3 −C2
4Þ

:

ð29Þ
(2) C5 ≠ 0 and C3 ¼ C4 ¼ 0: The equations degenerate, and we can solve only for the metric potentials, where we find

the solution

a1 ¼ −
κ2

72π

2C2 þ C5

C2C5

; a2 ¼
κ2

72π

C5 − C2

C2C5

: ð30Þ

Note that the result for a1 and a2 in the second case is obtained from the first case in the limit C4 → 0, in which C3 cancels.

C. Third velocity order

For the third velocity order the only nonvanishing components of the field equations (10) are E
3

0i ¼ E
3

i0 ¼ 0, which are
given by

E
3

0i ¼ Δ½−6C5h
3

0i þ ðC2 þ C3 − 2C4 þ 2C5Þð∂iξ
3
0 þ ∂tξ

2
iÞ�

þ ∂j∂t½−2ðC2 − C3 þ 2C5Þ∂aξ
2
a þ ðC2 − C3 þ 2C5Þh

2

00 þ 2ðC2 − C4 − C5Þh
2
a
a�

− ðC2 þ C3 − 2C4 − 4C5Þ∂a∂ih
3

0
a − ðC2 þ C3 − 2C4 − 4C5Þ∂a∂th

2
a
i þ 2κ2ρvi: ð31Þ
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We can solve this equation by introducing the PPN
potentials Vi and Wi with

Vi ¼
Z

d3x0
ρ0v0i

jx⃗ − x⃗0j ;

Wi ¼
Z

d3x0
ρ0v0jðxi − x0iÞðxj − x0jÞ

jx⃗ − x⃗0j : ð32Þ

Now we substitute the ansatz

h
3

i0 ¼ h
3

0i ¼ aVVi þ aWWi; ξ
3
0 ¼ a0∂0χ ð33Þ

into Eq. (31). Here aV , aW and a0 are real constants. The
solution is given up to a gauge constant a0, and can most
simply be expressed in the linear combination aV þ aW and
aV − aW . The nondegenerate case with C5 ≠ 0 and C2C3 −
C2
4 ≠ 0 reads

aV þ aW ¼ −
κ2

144π

�
6

C5

þ C3 þ 3C4

C2C3 − C2
4

�
;

aV − aW ¼ 2a0: ð34Þ

The case with C3 ¼ C4 ¼ 0 is tremendously simpler but

has an additional ambiguity due to the fact that ξ
2

cannot be
determined, hence leaving the undetermined constant a3 in
the solution

aV þ aW ¼ κ2

24πC5

; aV − aW ¼ 2ða0 − a3Þ: ð35Þ

The gauge constant a0 in Eq. (34), and correspondingly
a0 − a3 in Eq. (35), will be determined by demanding the
standard PPN gauge in the fourth velocity order solution in
the following section.

D. Fourth velocity order

In order to solve the fourth order equations

E
4

00 ¼ E
4

ij ¼ 0, which are obtained from the field equa-
tions (10) and which we omit here for brevity, we have to
decouple the spatial and time components of the fourth

order metric components h
4

00 and h
4

ij. We will perform this
decoupling as follows. In order to obtain independent
equations and separate the variables, we take the second

derivatives of the fourth order equations E
4

00 ¼ 0, E
4

ij ¼ 0,
so that we obtain the equations

△E
4

00 ¼ 0; △E
4
i
i ¼ 0; ∂i∂jE

4
ij ¼ 0: ð36Þ

We then have to eliminate the terms △△h
4
i
i, △∂i∂jh

4
ij and

△△∂iξ
4
i from these equations. In the remaining equation,

the only unknown we must solve for then appears in the

term △△h
4

00, and it can be solved using the general ansatz

△△h
4

00 ¼ a4△pþ a5△ðΠρÞ þ a6△ðρvavaÞ þ a7△χ△△△χ þ a8∂a∂bχ∂a∂b△△χ þ a9∂a△χ∂a△△χ

þ a10∂a∂b∂cχ∂a∂b∂c△χ þ a11△△χ△△χ þ a12∂a∂b△χ∂a∂b△χ þ a13∂a∂b∂c∂dχ∂a∂b∂c∂dχ

þ a14∂a∂bðρvavbÞ; ð37Þ

which depends on constants a4;…; a14 which are to be determined. Note that the terms entering with a4 to a12 and a14 can
be identified with the standard PPN potentials of the fourth order. The remaining terms may give rise to additional potentials
which do not occur in the standard PPN formalism, depending on their coefficients. In order to be able to solve the equations
with the standard PPN ansatz

h
4

00 ¼ b1Φ1 þ b2Φ2 þ b3Φ3 þ b4Φ4 þ b5ΦW þ b6U2 þ b7Aþ b8B; ð38Þ

with constant coefficients b1 to b8, and the PPN potentials defined in [64], the coefficients a4;…; a14 must be given by

a4 ¼−4πb4þ 8πb8; a6 ¼−4πb1− 4πb7; a7 ¼
1

4
b2 −

1

4
b5þ

1

2
b6; a8 ¼−b5; a9 ¼

1

2
b2−

5

2
b5þ 2b6þ

1

2
b8;

a5 ¼−4πb3; a10 ¼−2b5; a11 ¼
1

4
b2−

1

4
b5þ

1

2
b6þ

1

2
b8; a12 ¼−3b5þb6; a13 ¼ 0; a14 ¼ 8πb7; ð39Þ

and are thus linearly dependent. The final gauge freedom in the resulting equations is resolved by choosing the standard
PPN gauge b8 ¼ 0.
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We then must distinguish the two cases we found already
at the second velocity order. For C3 ¼ C4 ¼ 0, we find that

△△∂iξ
4
i does not appear in the resulting field equations,

and we can eliminate the spatial metric components by
considering the linear combination

ð2C2 þ C5Þ△E
4
i
i þ ðC2 − C5Þ△E

4

00 ¼ 0 ð40Þ

However, we find that the equation depends on the

undetermined term ξ
2

, unless one imposes the additional
condition

ðC2 þ 2C5ÞðC1 þ C2 þ 2C5Þ ¼ 0: ð41Þ

By doing so the coefficient in front of ξ
2

vanishes and the
fourth order equations can be solved independently of this
tensor field. We find that the solution can be fully expressed
in terms of the standard PPN ansatz (38) in this case.
In the generic case (i.e., C2C3 ≠ C2

4) the second order
tensor fields are defined unambiguously, and the fourth
order field equations form a nondegenerate linear system of

equations depending on the fields h
4

00, h
4

ij and ξ
4
i. To isolate

the component h
4

00 we are interested in, we calculate the
linear combination

ð2C2C3−2C2
4þC3C5Þ△E

4
i
iþðC2C3−C2

4−C3C5Þ∂i∂jE
4
ij

þð−C2C3þC2
4þC3C5þ3C4C5Þ△E

4

00 ¼ 0; ð42Þ

which does not depend on h
4

ij and ξ
4i
. The next step is to use

the ansatz (37) for the fourth order metric components and
solve for the constant coefficients a4 to a14. To be able to
calculate the PPN metric in the form (38) without defining
generalized potentials, these coefficients must take the form
(39). This is the case if and only if

ðC1 þ C2 þ C3 − 2C4 þ 2C5ÞðC2C3 − C2
4 þ 2C3C5Þ

× ð−C2C3 þ C2
4 þ C3C5 þ 3C4C5Þ ¼ 0: ð43Þ

If we do not impose one of these factors to vanish (e.g., for
arbitrary Ci), we have to define additional potentials, which
have already been used for the calculation of a superset of
the PPN parameters in multimetric gravity [80]. In this case
we cannot express the fourth order metric perturbation in
terms of the usual PPN parameters, which makes its
interpretation more difficult, and requires further studies
regarding the phenomenology of the new contributions.

V. PPN PARAMETERS AND CLASSIFICATION
OF THEORIES

Using the results from the previous section, we can now
determine the PPN parameters as follows. First, using the
second order metric perturbation (26), one determines the
PPN parameter γ as

γ ¼ a2
a1

: ð44Þ

One then continues with the third order solution. To
determine the PPN parameter α1, we use the gauge
invariant formulation of the PPN formalism [82]. Here a
different gauge is chosen, in which the third velocity order

of the metric component h
3

0i only depends on the combi-
nation Vi þWi and reads

h
3

0i ¼ −
�
1þ γ þ α1

4

�
ðVi þWiÞ: ð45Þ

Therefore we can calculate the PPN parameter α1 by using
the combination

α1 ¼ −2ð2þ 2γ þ aV þ aWÞ: ð46Þ
Finally, we can use the fourth velocity order to determine the
remaining PPN parameters from the metric ansatz (38), as
shown in full detail in [64]. Depending on the coefficients Ci
the PPN parameters are given in the following way.
(1) C5 ¼ 0 : The field equations at the second order

degenerate. Only one linear combination of the two
coefficients in the second order metric components

h
2

00 and h
2

ij enters the field equations, so that one
cannot solve for both components independently.
The metric is not sufficiently determined by the field
equations.

(2) C5 ≠ 0 : The coefficients of the second order metric

components h
2

00 and h
2

ij enter the field equations
independently.
(a) C2C3 ¼ C2

4 : The field equations at the second

order degenerate. ξ
2
i is not uniquely determined

by the field equations.
(i) C3 ≠ 0 : The metric components h

2

00 and h
2

ij

depend on the undetermined tensor field ξ
2i
.

The system cannot be solved uniquely for
these metric components.

(ii) C3 ¼ 0 : The metric components h
2

00 and h
2

ij
are independent of the undetermined tensor

field ξ
2
i and can be solved for separately.

The PPN parameter γ determined from this
solution reads

γ ¼ C2 − C5

2C2 þ C5

: ð47Þ
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At the third order, one obtains α1 ¼ 0.
C2 þ 2C5 ¼ 0 : The fourth order can be solved

independently of ξ
2
i. The PPN parameters are

β ¼ γ ¼ 1: ð48Þ

C1 þ C2 þ 2C5 ¼ 0 : The fourth order can be

solved independently of ξ
2
i. The PPN parame-

ters are

β ¼ 7C1 þ 12C5

8C1 þ 12C5

¼ 1 −
C1

8C1 þ 12C5

;

γ ¼ C1 þ 3C5

2C1 þ 3C5

¼ 1 −
C1

2C1 þ 3C5

: ð49Þ

Note that C1 ≠ 0, and hence β ≠ 1 and γ ≠ 1,
unless also the previous condition is satisfied.
otherwise : The fourth order cannot be solved
independently of the undetermined compo-

nent ξ
2
i.

(b) C2C3 ≠ C2
4 : The field equations at the second

order form a nondegenerate linear system and

can be solved independently for h
2

00, h
2

ij and ξ
2
i.

The PPN parameter γ determined from this
solution reads

γ ¼ C3ðC2 − C5Þ − C2
4

C3ð2C2 þ C5Þ − 2C2
4

¼ 1 −
C3ðC2 þ 2C5Þ − C2

4

C3ð2C2 þ C5Þ − 2C2
4

: ð50Þ

At the third order, one obtains α1 ¼ 0.
(i) C3ðC2 þ 2C5Þ ¼ C2

4 : The field equations at
the fourth order yield the PPN parameters

β ¼ γ ¼ 1: ð51Þ

(ii) C2C3 ¼ C2
4 þ C3C5 þ 3C4C5 : The field

equations at the fourth order yield the
PPN parameters

β ¼ 3C3 þ 7C4

4C3 þ 8C4

¼ 1 −
C3 þ C4

4C3 þ 8C4

;

γ ¼ C4

C3 þ 2C4

¼ 1 −
C3 þ C4

C3 þ 2C4

: ð52Þ

It further follows that β ≠ 1 and γ ≠ 1, since
C3 þ C4 ≠ 0, unless also the previous con-
dition is satisfied.

(iii) C1 þ C2 þ C3 − 2C4 þ 2C5 ¼ 0 : The field
equations at the fourth order yield the
remaining PPN parameter

β ¼ 7C2C3 − 7C2
4 þ 2C3C5

8C2C3 − 8C2
4 þ 4C3C5

¼ 1 −
C2C3 − C2

4 þ 2C3C5

8C2C3 − 8C2
4 þ 4C3C5

: ð53Þ

Also in this case β ≠ 1 and γ ≠ 1 unless a
previous condition is satisfied.

(iv) otherwise : The field equations at the fourth
order cannot be solved by the standard PPN
metric.

In all cases where the full set of PPN parameters can be
found, the theory is fully conservative, i.e., only β and γ
potentially deviate from the general relativity values
β ¼ γ ¼ 1, while all other PPN parameters vanish,

α1 ¼ α2 ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ ξ ¼ 0: ð54Þ

The complete classification is shown in Fig. 1. In summary,
we find the following cases:
(1) There are two families of theories whose PPN

parameters agree with those of general relativity:
a two-parameter family, satisfying

C3 ¼ C4 ¼ C2 þ 2C5 ¼ 0; C5 ≠ 0; ð55Þ

parametrized by C1 and C5, and a four-parameter
family

C2C3 þ 2C3C5 − C2
4 ¼ 0; C5 ≠ 0;

C2C3 − C2
4 ≠ 0; ð56Þ

parametrized by C1, C2, C3, C5. Note in particular
that STEGR, as well as the fðQÞ class of theories,
satisfy the condition (55), and thus fall into this
class. These theories can be further studied in the
framework of stronger gravitational effects for
which the PPN approximation is not sufficient.
Some examples are gravitational waves of compact
binaries (e.g., black holes, neutron stars) [86] or the
shadow of black holes.

(2) Further, we found three families of theories whose
PPN parameters (49), (52) as well as (50) and (53)
generically deviate from the general relativity val-
ues, but can be brought arbitrarily close to these
values by choosing the parameters C1;…; C5 such
that they become sufficiently close to the values for
the two aforementioned families, and are still com-
patible with observations. The current bounds of the
parameter γ and β are given by the Doppler tracking
of the Cassini spacecraft γ − 1 ¼ ð2.1� 2.3Þ × 10−5

[1] and by the perihelion advance of Mercury
β − 1 ¼ ð0.4� 2.4Þ × 10−4 [2]. The particular
bounds on the constants C1;2;3;4;5 then follow from
the respective formulas given above.
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(3) In the case that the theory does not have an
asymptotically flat Minkowski vacuum solution or
does not possess the form assumed by the PPN
formalism, the theory can be further investigated by
studying the effect of the generalized metric ansatz
[Eq. (37)] on the observables determining the PPN
parameters, such as to derive possible new observ-
able effects arising from the generalized potential.

(4) Finally, we found other classes of theories, whose
PPN limit is undetermined by the perturbative field
equations, and so we conclude that these theories are
pathological.

VI. CONCLUSION

We have calculated the parametrized post-Newtonian
limit of a general class of symmetric teleparallel gravity
theories, whose Lagrangian is a free function of the five
parity-even scalar invariants which are quadratic in the
nonmetricity tensor. As a result, we have obtained a full
classification of these theories into several classes, depend-
ing on the Taylor coefficients of the Lagrangian function.

Most notably, we found two families of theories whose
PPN parameters are identical to those of general relativity,
such that these theories are indistinguishable from the latter
by measurements of the PPN parameters. Further, we found
several classes of fully conservative theories, which means
that only the PPN parameters β and γ deviate from their
general relativity values. For these classes, the general
relativity values can be approximated to arbitrary precision
by an appropriate choice of the Lagrangian function, such
that certain theories within these classes are still compatible
with observations. Finally, we found other classes of
theories, whose PPN limit is either undetermined by the
perturbative field equations or does not possess the form
assumed by the PPN formalism.
Our work lays the foundation for applying the PPN

formalism to symmetric teleparallel gravity theories. Using
the post-Newtonian expansion of the nonmetricity tensor
which we presented here, one may now calculate the PPN
parameters for other theories, such as scalar-nonmetricity
theories [55,56] and generalizations. For torsional tele-
parallel theories, an analogous step has been undertaken in
[78] and [73,74]. Further, one may consider more general

FIG. 1. Full classification of generalized newer general relativity theories. The path highlighted by thick arrows corresponds to
STEGR. Theories with β ¼ γ ¼ 1 are in full agreement with observations. Theories with deviating PPN parameters receive bounds on
their parameters, and are still in agreement if these bounds are met. Other classes of theories are either degenerate, so that not all
components of the metric perturbation are determined by the perturbative field equations, or cannot be solved within the standard PPN
formalism.
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teleparallel gravity theories, which feature both torsion and
nonmetricity [33], or which include derivative couplings
between a scalar field and nonmetricity, in analogy of a
torsional extension to Horndeski gravity [87,88].
Another line of further research is by studying other

physical aspects of symmetric teleparallel theories of gravity,
such as the gravitational waves emitted from compact binary
systems [86] or perturbed compact objects [89,90], as well as
cosmological perturbations [91]. Correlating these results
obtained from these further studieswith other properties, such
as gravitational wave propagation [53,59] or a Hamiltonian
analysis [54], would provide an effective tool to constrain
the large class of symmetric teleparallel gravity theories.
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