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The first direct observations of gravitational waves by the LIGO collaboration have motivated different
tests of general relativity (GR), including the search for extra pulses following the GR waveform for the
coalescence of compact objects. The motivation for these searches comes from the alternative proposal that
the final compact object could differ from a black hole by the lack of an event horizon and a central
singularity. Such objects are expected in theories that, motivated by quantum gravity modifications, predict
horizonless objects as the final stage of gravitational collapse. In such a hypothetical case, this exotic
compact object (ECO) will present a (partially) reflective surface at rECO ¼ rþð1þ ϵÞ, instead of an event
horizon at rþ. For this class of objects, an in-falling wave will not be completely lost and will give rise to
secondary pulses, to which recent literature refers as echoes. However, the largely unknown ECO
reflectivity is determinant for the amplitude of the signal, and details also depend on the initial conditions of
the progenitor compact binary. Here, for the first time, we obtain estimates for the detectability of the first
echo, using a perturbative description for the inspiral-merger-ringdown waveform and a physically
motivated ECO reflectivity. Binaries with comparable masses will have a stronger first echo, improving the
chances of detection. For a case like GW150914, the detection of the first echo will require a minimum
ringdown signal-to-noise ratio (SNR) in the range ∼20–60. The most optimistic scenario for echo detection
could already be probed by LIGO in the next years. With the expected improvements in sensitivity we
estimate one or two events per year to have the required SNR for the first echo detection during O4.
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I. INTRODUCTION

Starting in 2016, the LIGO-Virgo collaboration has
announced 50 (and counting) gravitational wave (GW)
signals from the coalescence of compact binaries [1–12].
At least one independent group has claimed additional
detections in the LIGO data [13]. Therefore, we find
ourselves in a singular period in history: we can now

directly probe the structure and the existence of event
horizons for the first time. Far from being a trivial goal [14],
the proof of the (non)existence of black hole (BH) horizons,
which are predicted by general relativity (GR), may
exclusively rely on the search for non-GR signatures on
GW signals. Other probes (e.g., electromagnetic signa-
tures) can only test the spacetime geometry up to, approx-
imately, the light ring.
Recently, the GW astronomy community has been faced

with an important issue: does the observation of a BH
quasinormal mode (QNM) [15,16] spectrum unequivocally
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imply the existence of an event horizon? This question, first
proposed in [17], generated a prolific and ongoing debate
(see [18] for a recent work and [19] for a review).
One may speculate that the event horizon is replaced by a

(partially) reflective wall for BH mimickers, such as in
firewall and fuzzball models (even though their reflectivity
is also a subject of controversy [20,21]). The new boundary
can trap GWs between the angular momentum barrier and
the reflective wall, creating an effective acoustic cavity in
which the perturbation resonates. The presence of this
resonating chamber causes a unique signature in the GWs:
secondary pulses appear additionally to the QNM ringing
expected from a black hole [17,22–27]. In the recent
literature, such pulses have been called echoes.
We should understand this theoretical finding as more

than a mere academic exercise. If echoes are eventually
detected, indicating the nonexistence of event horizons, we
would be laying the observational foundations of quantum
gravity. Currently, and still in the near future, it is possible
that echo signals (if they exist) will be below the LIGO/
Virgo sensitivity curve. If that is the case we will be able to
impose upper limits on their amplitude, i.e., to constrain the
reflectivity of the wall.
The presence of echoes for sufficiently compact exotic

compact objetcs (ECOs) seems to be a general feature.1

If an ECO is not almost exactly as compact as a BH,
it is expected that its QNM spectrum differs from the BH’s
[29–31]. The analysis of the observed QNM ringing can
thus make the distinction between the two objects, as was
performed for the gravastar model [32]. During this work
we focus on ECOs that are sufficiently compact and
reflective to emit distinct echoes.
Further investigation of the physics underlying echo

waveforms is needed if one wishes to properly perform an
echo search. Our understanding of echoes has progressed in
different fronts. The scalar case served as a first toy model to
understand different phenomena related to echoes, as in
[24–26]. Some works made efforts to describe the effect of
the orbital motion on echo waveforms [24,25,33]. However,
their results are mostly restricted to the use of a plunging
orbit from the innermost stable circular orbit (ISCO).
Investigations about the influence of a nonzero rotation of
the ECO were performed, leading to the description of
phenomena as the ergoregion instability [34], mode mixing
[23] and beating of echoes [25,35].Most of the investigations
on the gravitational case were restricted to the use of
Gaussian-like packages as initial condition [23,35–38].
Although working with a more physically motivated initial
condition, the analysis performed in [27] does not compare
the effects of different orbital motions.

In this very exciting time for GW astronomy, some
groups have started to search for echoes on the LIGO-Virgo
available dataset. Most of these searches were based on a
matched-filtering method [39–45], which requires a priori
knowledge of an accurate template, whereas some used
morphology-independent methods [35,46–48]. To this day,
there are divergent claims about the existence of evidence
for echoes in the data. For example, evidence for an echo
detection with a significance of 4.2σ was reported in [46].
On the other hand, the authors of [42] and [45] claim to find
no evidence supporting such detection. For a more detailed
review of the search for echoes and the connection to
quantum gravity, we direct the reader to [18,19,49].
In [48], several tentative postmerger signals in LIGO-

Virgo data were reported with varying confidence levels. In
[49], some of these signals were considered as possible
echo observations, proposing a correlation between their
p-values and the mass ratio of the original binary: post-
merger signals from binaries with smaller mass ratios were
considered to be more statistically significant (smaller
p-value). These findings raise the question of whether
there is a physical correlation between the mass ratio of the
original binary and the echo amplitudes. It was discussed in
[49] that although these data may suggest that binaries with
more similar masses lead to smaller echo amplitudes, this
conclusion may be a consequence of the coherent wave
burst search pipeline used by Salemi et al. [48].
In this work, we present estimates for the detectability of

the first echo by putting together two ingredients needed to
model the echo excitation. First, we use a physically
motivated expression for the ECO reflectivity [20], within
a range that brackets our uncertainty [37] (see Sec. II).
Second, in Sec. III we include a more accurate prescription
of the inspiral orbital motion incorporating the backreaction
due to GWemission, based on [50]. Our results for the echo
properties and detectability are presented in Secs. IV
and V respectively, and we state our final conclusions in
Sec. VI. Throughout this work, we use units such that
c ¼ G ¼ ℏ ¼ kB ¼ M ¼ 1.

II. SETUP

We model ECOs by approximating their surrounding
spacetime with the Kerr metric. This approximation is
justified, for example, by the results found in [51],
according to which the mass quadrupole moment of a
slowly uniform density rotating star and its normalized
moment of inertia approach the values for the Kerr metric as
its compactness increases. Therefore the spacetime sur-
rounding an ECO of spin a and mass M is assumed to be
well described by the following line element:

ds2¼−
Δ
Σ
ðdt−asinðθÞdϕÞ2þsin2ðθÞ

Σ
ððr2þa2Þdϕ−adtÞ2

þΣ
Δ
dr2þΣdθ2; ð1Þ

1An exception is the analysis presented in [28], where the inner
boundary condition for the scattering of axial gravitational waves
in an ultracompact Schwarzschild star spacetime is placed at a
null surface and no echoes are observed.
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where we use the definitions Δ≡ r2 − 2Mrþ a2, Σ≡
r2 þ a2 cos2ðθÞ and the usual Boyer-Lindquist coordinate
system. In our case of study, we consider that the space-
time is modified at the near-horizon region by the intro-
duction of an effective reflective wall at r0 ¼ rþð1þ ϵÞ
with ϵ ≪ 1, where rþ ≡M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the expected

position for the Kerr BH event horizon. It has been
conjectured that ϵ is related to the Planck length lPlanck.
This simplified model has been extensively used in other
studies [23–25,34,35].

A. Teukolsky formalism

Given this approximate description of an ECO space-
time, it is reasonable to assume that the Kerr perturbation
equations also describe the perturbations around ECOs.
This argument means that we are allowed to work with the
Teukolsky equation [52–54], which for a given mode ðl; mÞ
of frequency ω reads

�
K2 − 2isðr −MÞK

Δ
þ 4isωr − sλlmc

�
sRlmωðrÞ

þ Δ−s d
dr

�
Δsþ1

dsRlmωðrÞ
dr

�
¼ TlmωðrÞ; ð2Þ

where we use the following definitions:

c≡ aω; K ≡ ðr2 þ a2Þω − am;

sλlmc is the eigenvalue of the spin-weighted spheroidal
harmonic equation and sSlmc is the corresponding eigen-
function [55].2 Here, Tlmω is the energy-momentum tensor
that acts as the source for the Teukolsky equation. All of our
numerical results are for the mode l ¼ m ¼ 2.
We restrict our study to the gravitational case (s ¼ −2),

in which the Teukolsky equation (2) dictates the radial
behavior (−2Rlmω) of the Newman-Penrose scalar ψ4

[57,58]. For r → ∞ it relates to the amplitudes of the plus
hþ and the cross h× polarization modes of the GW as [59]

ψ4 ¼
1

2
ðḧþ − iḧ×Þ; ð3Þ

and from now on we refer to the quantity

hðtÞ ¼ 1

2
ðhþ − ih×Þ; ð4Þ

as the strain of the GW.
To solve the differential equation (2), we use the Green’s

function technique. Therefore, two linearly independent
homogeneous solutions are needed. The chosen solutions

are the usual ingoing and upgoing solutions (see Fig. 1).
Their asymptotic behavior reads

Rin
lmωðrÞ ∼

�Btrans
lmωΔ2e−ikr� ; for r → rþ;

Bref
lmωr

3eiωr� þ Binc
lmω

e−iωr�
r ; for r → ∞;

ð5Þ

where Btrans=ref=inc
lmω are the transmited/reflected/incident

amplitudes of the ingoing mode and

Rup
lmωðrÞ ∼

�
Cref
lmωΔ2e−ikr� þ Cinc

lmωe
ikr� ; for r → rþ;

Ctrans
lmω r

3eiωr� ; for r → ∞;
ð6Þ

where Ctrans=ref=inc
lmω are the transmitted/reflected/incident

amplitudes of the upgoing mode, k≡ ω −mΩH is the wave
frequency at the horizon andΩH ≡ a=ð2MrþÞ is the angular
velocity of the BH horizon. We also take the usual definition
of the tortoise coordinate r�,dr�=dr ¼ r2 þ a2=Δ, wherewe
choose the integration constant such that

r� ¼ rþ 2Mrþ
rþ − r−

ln

�
r − rþ
2M

�
−

2Mr−
rþ − r−

ln

�
r − r−
2M

�
: ð7Þ

We follow the methodology described in [59] to con-
struct the asymptotic amplitudes at the horizon and at
infinity of the inhomogeneous solution of the Teukolsky
equation as

ZBH;∞
lmω ≡ 1

2iωBinc
lmω

Z
∞

rþ
drRin

lmωðrÞ
TlmωðrÞ
ΔðrÞ2 ; ð8Þ

ZBH;H
lmω ≡ Btrans

lmω

2iωBinc
lmωC

trans
lmω

Z
∞

rþ
drRup

lmωðrÞ
TlmωðrÞ
ΔðrÞ2 ; ð9Þ

where Tlmω is the mode decomposition of the stress-energy
tensor. As the expressions for Tlmω are standard in the
literature we choose not to show them here for the sake of
brevity. We direct the reader to [59] for a detailed
presentation of the equations. The inhomogenous solution
of the Teukolsky equation for a BH is given by

FIG. 1. Representation of the boundary conditions of the in and
up-mode solutions of the radial Teukolsky equation, given by
Eqs. (5) and (6), respectively, in a Penrose diagram.

2To compute the spin-weighted spheroidal harmonic eigen-
value we use the code available at [56].
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Rinhomo
lmω ðrÞ ∼

�
ZBH;H
lmω Δ2e−ikr� ; for r → rþ;

ZBH;∞
lmω r3eiωr� ; for r → ∞:

We find that the integral appearing in Eq. (9) has poor
numerical convergence in the near horizon regime (but see
also [33]). For this reason it is useful to employ the
inhomogeneous solution of the Teukolsky equation at
infinity (8) as an intermediate step to obtain the inhomo-
geneous solution of the Sasaki-Nakamura (SN) equation at
the horizon (see [Eq. (4.5) in [60] ]. Then we can obtain the
horizon wave via an approximative scheme.

B. Transforming to the Sasaki-Nakamura formalism

For the SN equation [60], the two homogeneous sol-
utions with the same boundary condition as in (5) and (6)
are given by

Xin
lmωðrÞ ∼

8>><
>>:

SNB
trans
lmω e

−ikr� ; for r → rþ;

SNB
ref
lmωe

iωr�

þSNB
inc
lmωe

−iωr� ; for r → ∞;

ð10Þ

Xup
lmωðrÞ ∼

8>><
>>:

SNC
ref
lmωe

−ikr�

þSNC
inc
lmωe

ikr� ; for r → rþ;

SNC
trans
lmω e

iωr� ; for r → ∞:

ð11Þ

For later convenience, we choose to normalize these
solutions in the following way:

X̄up
lmωðrÞ ¼

Xup
lmωðrÞ

SNC
trans
lmω

; ð12Þ

X̄in
lmωðrÞ ¼

Xin
lmωðrÞ

SNB
trans
lmω

: ð13Þ

For the inhomogeneous solution of the SN with a
reflective boundary condition near the horizon, one can
make a different choice of independent homogeneous
solutions. We choose to use X̄up

lmω and construct X̄ECO
lmω as

X̄ECO
lmω ðrÞ ¼ X̄in

lmωðrÞ þ KlmωX̄
up
lmωðrÞ: ð14Þ

We refer to Klmω as the transfer function. For the
construction of Klmω, we require that the ingoing and
the outgoing fluxes of X̄ECO

lmω are proportional to each other.
From this flux consideration, we impose that

1

jb0j
Klmω

SNC
inc

SNC
trans

¼ Re−2ikr
0�
1

jCj
�
1þ Klmω

SNC
ref

SNC
trans
lm

�
: ð15Þ

The definitions of b0 and C and more details about the
energy fluxes can be found in the Appendix A 2, and R is
defined as the reflectivity of the ECO surface. The above
condition allows us to determine3 Klmω as

Klmω ¼ jb0j
jCj

SNC
trans
lmω

SNC
inc
lmω

Re−2ikr
0�

1 − jb0j
jCj

SNC
ref
lmω

SNC
inc
lmω

Re−2ikr
0�

¼ −
jb0j
jCj

c0Ctrans
lmω

4ω2gCinc
lmω

Re−2ikr
0�

1 − jb0j
jCj

dCref
lmω

gCinc
lmω

Re−2ikr
0�
: ð16Þ

In the previous equation, we use the quantities c0, d, g,
which are defined in the Appendix. In our numerical
analysis, all physical quantities are obtained through the
MST method4 [25,59,63], i.e., in the Teukolsky formalism.
They are later transformed to the SN formalism by means
of standard relations [35,59,60], also summarized in
Appendix A. Once the transfer function is found, we
can construct the ECO Green’s function as

GECOðrjr0Þ ¼ GBHðrjr0Þ þ Klmω
X̄up
lmωðrÞX̄up

lmωðr0Þ
Wlmω

; ð17Þ

where

GBH
lmωðrjr0Þ ¼

X̄up
lmωðrÞX̄in

lmωðr0Þ
Wlmω

Θðr − r0Þ

þ X̄up
lmωðr0ÞX̄in

lmωðrÞ
Wlmω

Θðr0 − rÞ ð18Þ

is the usual BH Green’s function and Wlmω is the
Wronskian between X̄up

lmω and X̄in
lmω.

Integrating against the source term, one can easily show
that, for the BH case, the perturbative response has as
general form:

XBH
lmωðrÞ ∼

�
XBH;H
lmω e−ikr� ; for r → rþ;

XBH;∞
lmω eiωr� ; for r → ∞:

On the other hand, for the ECO case, the general solution
in the asymptotic regime r → ∞ will be given by

XECO
lmω ðrÞ ∼ ðXBH;∞

lmω ðrÞ þ KlmωX
BH;H
lmω ðrÞÞeiωr� ; ð19Þ

meaning that the ECO’s perturbative response can be
modeled if one knows the BH’s response both near and
far from the horizon (XBH;H

lmω and XBH;∞
lmω , respectively).

3Given the same choice of reflectivity, our transfer function
would have the same pole structure as the one described in
[35,36]. In this case we expect that both models present the same
QNM spectrum for the ECO.

4Our implementation of the MST method uses the code
available at [61,62].
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In [60] it was shown that, although the general trans-
formation of the inhomogeneous solution is not the same as
for the homogeneous case, the relation between XBH;∞, and
ZBH;∞, is the same as in (A1b) [see Eqs. (2.19) and (4.5)
in [60] ]. This means that for the BH case the perturbative
response at infinity, in the SN formalism, will be given by

XBH;∞
lmω ¼ −

c0
4ω2

ZBH;∞
lmω ; ð20Þ

where ZBH;∞
lmω , is given in the Teukolsky formalism by

Eq. (8). Even if we were able to find a transformation
between XBH;H

lmω and ZBH;H
lmω similar to the one in (20), the

integral appearing in (9) is (numerically) poorly convergent
near the horizon. For this reason, we choose to use an
approximation for calculating XBH;H

lmω in terms of XBH;∞
lmω ,

such as described in Appendix B of [23] [see Eq. (B7) in
[23] ] which for our case can be translated as

XBH;H
lmω ≈ SNB

trans
lmω

SNB
ref
lmω

XBH;∞
lmω

¼
�
4ω2dBtrans

lmω

c0Bref
lmω

�
c0
4ω2

ZBH;∞
lmω : ð21Þ

Two points should be made about the use of this approxi-
mation. First, (21) is a good approximation for frequencies
close to the BH fundamental QNM frequency. We note that,
for the particular model investigated here, most of the
frequencies expected to be excited are close to the QNM
frequency due to our choice of reflectivityR (see Sec. II C).
Second, in [23] this relation was derived for the
Chandrasekhar-Detweiler equation. However, similar con-
siderations apply to our case, because both equations have
homogeneous solutions that behave as plane waves at
r → rþ and r → ∞. Therefore, it is straightforward to
show that the coefficient relating the waves at the horizon
and at infinity is the ratio between the asymptotic ampli-
tudes. This is the same reason why it is not possible to find
a similar approximation in the Teukolsky formalism [see
Eqs. (5) and (6)].
Therefore the final ECO response, at r → ∞, will be

given by

XECO
lmω ðrÞ ∼ −

c0
4ω2

×

�
1 − Klmω

�
4ω2dBtrans

lmω

c0Bref
lmω

��
ZBH;∞
lmω eiωr� : ð22Þ

In order to obtain the strain hðtÞ (4) from Eq. (22) we need
only drop the overall factor −c0=4 and perform an inverse
Fourier transform [60], taking into account the inclination
angle of the binary (assumed here to be face-on) and the
distance to the source as needed.

C. Surface reflectivity

While most of the works in the literature have been
restricted to the constant reflectivity case (e.g., [23,25,35]),
we focus on the case of Boltzmann reflectivity, described
for the first time in this context in [20]. This reflectivity is
given by the following expression:

RB ¼ e−
jkj

2αTH ; ð23Þ

where

TH ¼ 1

4Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=MÞ2

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=MÞ2

p ð24Þ

is the BH Hawking temperature. One of the reasons for
choosing this prescription for the reflectivity is that it
provides a natural cutoff for frequencies that deviate from
the BH fundamental QNM, providing a relatively safe
regime for using the approximation (21). Arguments based
on the assumptions of CP symmetry, fluctuation-dissipa-
tion theorem, or detailed balance in Rindler geometry each
independently lead to the same law of Boltzmann energy
reflectivity (23) with α ¼ 1 [20]. However, since near-
horizon Rindler geometry may be modified by quantum
effects, it was later suggested that a quantum BH may have
a temperature higher than the classical BH by an overall
factor of α≲ 2 [37] (to avoid the ergoregion instability).
For this reason, we use two sample values of α ¼ 1
(classical Boltzmann reflectivity) and α ¼ 2 (the maximum
value without ergoregion instability). The latter value
should also maximize the echo reflectivity and echo
amplitudes.
Using this choice of reflectivity, we construct the transfer

function and the results can be found in Fig. 2. The most
striking feature of Fig. 2 is that the absolute value of Klmω

goes to 0 at the superradiant bound frequency,ωSR ≡mΩH.
This is due to the fact that the ωSR is a totally reflected
frequency.5 We can also see that the superradiant frequen-
cies (ω < ωSR) are (in general) harder to excite when
compared with ω > ωSR.
For the rapidly spinning ECO (shown in the bottom

panels of Fig. 2), the value of Klmω decays faster as
jω − ωSRj → ∞, but it also has higher values. These two
competing features are in agreement with the results in
[20], where it was shown that the amplitude of echoes does
not increase monotonically for increasing ECO spin. This
behavior is caused by the competing effects of the enhance-
ment due to superradiance and the decrease due to TH → 0
as a → M.

5By definition ωSR is the frequency at which the reflectivity of
the BH angular momentum barrier is equal to 1. Lower (higher)
frequencies have reflectivity larger (smaller) than 1 due to the
superradiance phenomenon [64].
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III. TRAJECTORIES

In order to evaluate the detectability of the echoes from
ECOs in a reasonably realistic model, in addition to the
reflectivity (23) we need an approximate description of the
binary inspiral, which provides the initial conditions for
the excitationof the echoes.To do soand take into account the
effect from different binary mass ratios, we slightly modify
the prescription for extreme-mass-ratio orbits described in
[50]. The prescription for the orbital motion consists of three
different stages: (1) an adiabatic inspiral; (2) a transition
phase; and (3) a geodesic plunge when the innermost stable
circular orbit (ISCO) is crossed. In this section,wegive a brief
overview of the method used to obtain these orbits.
All quantities marked with an upper tilde are scaled by the

central object’s mass, i.e., ã≡ a=M and ω̃≡Mω. It is
important to note that, as seen in [25], we expect differences
between corotating and counterrotating orbits. In [25], these
differences resulted from the asymmetry of the transfer
function with respect to the ω ¼ 0 axis. This asymmetry
also exists here, but negative frequencies are strongly sup-
pressed due to our choice of Boltzmann reflectivity
[Eq. (23)]. Therefore, we expect the echoes to be orders
of magnitude smaller for counterrotating orbits. For this
reason we choose to focus only on the corotating orbits.

A. Inspiral phase

For the inspiral phase of the orbital motion, we use an
adiabatic evolution between circular orbits at the equatorial

plane. In this approximation, a smaller body of mass μ ¼
qM (0 < q < 1) at a distance r̃ from the central body of
mass M has orbital energy E given by

E ¼ qM
1 − 2=r̃þ ã=r̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2ã=r̃3=2

p : ð25Þ

Due to the radiation reaction, the particle will lose orbital
energy in a rate equal to the energy emitted in GW:

_EGW ¼ − _E ¼ 32

5
q2Ω̃10=3 _E; ð26Þ

where Ω̃ is the orbital velocity of the motion and _E is a
parameter motivated by corrections to the Newtonian quad-
rupole formula, which accounts for the energy flux due to the
orbital motion and depends only on the central body’s mass
and spin. The values of _E used here were obtained by
interpolating the entries found on Table I of [50].
Furthermore, the angular velocity of the orbital motion is

approximated by the circular orbit equation [50,65]:

Ω̃≡MΩ ¼ dϕ
dt̃

¼ 1

r̃3=2 þ ã
: ð27Þ

With the orbital energy loss (26), the evolution of the radial
coordinate satisfies the differential equation:

FIG. 2. Transfer functions for the l ¼ m ¼ 2 mode. In the top row the position of the reflective wall is r0� ¼ −150M and a ¼ 0.67M,
while for the bottom row is r0� ¼ −210.5M and a ¼ 0.9M (see Sec. IV C for the discussion of this choice of parameters). The different
columns represent different choices of α. The vertical lines mark the position of the superradiant bound frequency and the fundamental
BH QNM (from left to right). The transfer function goes to zero at ωSR and the superradiant frequencies (ω < ωSR) are in general
disfavored in comparison with nonsuperradiant ones (ω > ωSR).
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dr
dt

¼ − _EGW

dE=dr
; ð28Þ

and the evolution of the time coordinate follows the circular
geodesic approximation:

dt̃
dτ̃

¼ 1þ ã=r3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3=r̃þ 2ã=r3=2

p : ð29Þ

B. Transition regime

The adiabatic evolution between circular geodesics des-
cribed in the previous section is no longer valid near the ISCO.
From r¼ rISCOþq2=5R0, where R0≡ ðβκÞ2=5γ−3=5, we
describe the radial evolution with the inclusion of non-
dissipative self-force effects as in [50]:

d2r̃
dτ̃2

¼ −γðr̃ − r̃ISCOÞ2 − βqκτ̃; ð30Þ

where we use the definitions

γ ¼ 3

r̃6ISCO
ðr̃2 þ 2ðã2ðẼ2 − 1Þ − L̃2Þr̃

þ 10ðL̃ − ã ẼÞ2ÞISCO; ð31Þ

β ¼ 2

r̃4ISCO
ððL̃ − ã2Ẽ Ω̃Þr̃

− 3ðL̃ − ã ẼÞð1 − ã Ω̃ÞÞISCO; ð32Þ

κ ¼ 32

5
Ω̃7=3

ISCO
1þ ã=r̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3=r̃ISCO þ 2ã=r̃3=2ISCO

q _E; ð33Þ

Ẽ ¼ E
qM

¼ 1 − 2=r̃þ a=r̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3=r̃þ 2ã=r̃3=2

p ; ð34Þ

and

L̃ ¼ L
qM2

¼ 2ffiffiffiffiffi
3r̃

p ð3 ffiffiffi
r

p
− 2ãÞ: ð35Þ

However, unlike [50], in our prescription for this transition
period we keep the angular and time evolution of the orbit as
given by Eqs. (27) and (29). This avoids nonphysical
oscillations in the waveform found in the original Ori-
Thorne prescription due to discontinuous velocities [66].

C. Geodesics: Plunge phase

After crossing the ISCO, we assume that the energy
radiated away due to the particle motion has a negligible
effect on the evolution of the orbit. Therefore we can
approximate the plunge by a geodesic motion starting at

r ¼ rISCO. The energy E and angular momentum L are
fixed by requiring that the evolution of the particle’s
coordinates ðr; t;ϕÞ and their derivatives be continuous.
In practice we only require the continuity of ðr;ϕÞ and their
derivatives, as there are only two variables to fix ðE; LÞ and
three equations to guarantee smoothness [the derivatives of
the three coordinates ðr; t;ϕÞ]. We verified that imposing
the smoothness condition to r and ϕ leads to values of E
and L which guarantee that the derivative of t is discon-
tinuous by less than one percent.
In Fig. 3 we show three examples of orbital motions

obtained with the prescription outlined in this section.
These orbits are, as required, smooth when crossing the
ISCO. Even though geodesic motions are independent of
the mass ratio, they are highly dependent on the initial
conditions. In our case, the initial conditions for the free
fall are set by the first stages of the motion, which do
depend on the mass ratio. As a result, we find that orbits
with smaller mass ratio evolve more slowly, even after
crossing the ISCO.

IV. ECHO PROPERTIES

As discussed in Sec. I, there seems to be evidence
supporting a correlation between the amplitude of the
echoes and the mass ratio of the progenitor binary
[48,49]. To analyze this possible q-dependence, we fix
the central object spin at a ¼ 0.67M, the position of
the wall at r0� ¼ −150M and choose the Boltzmann
reflectivity (23) to be used in our transfer function (16).
We select five different values for the mass ratio, namely
q ¼ 1=100, 1=50, 1=20, 1=10, 1=5. With this setup, we
evolve the waveforms for the same time before the plunge
(Δt ∼ 800M).

FIG. 3. Three examples of orbital motion. For all cases a ¼
0.67M and the colors represent different mass ratios q ¼ 1=5
(green), 1=20 (red) and 1=100 (blue). BH horizon and ISCO are
shown in solid and dotted black lines, respectively. Orbits with
smaller mass ratio evolve more slowly, even after crossing
the ISCO.
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We choose these values of q for three main reasons. First,
had we chosen smaller mass ratios the plunge would take
longer to evolve with no particular gain of insight. Second,
most of the current observations are for binaries of similar
masses [1,7–12], with the notable exception of GW190412
[3]. Third, it has been recently shown that, although not
strictly in its regime of validity, the perturbative extreme
mass ratio approximation performs surprisingly well for
binaries of comparable masses [66].
In [66], it was shown that waveforms emitted by the

coalescence of nonspinning objects obtained within the
linear regime for 3≦q−1≦10 can be adjusted to match
results from numerical relativity (NR). The proposed
rescaling is given by

hNRðt; qÞ ≈ ξðηÞhPTðξðηÞt; qÞ; ð36Þ

with η≡ q
ð1þ qÞ2 ; ð37Þ

where hNRðt; qÞ and hPTðt; qÞ are the waveforms as
obtained by NR and perturbation theory, respectively,
and ξðηÞ is a scaling function that depends only on the
symmetric mass ratio η. In the limit of η → 0, the scaling
factor should be ξ ¼ 1þ q [66]. However, away from the
extreme mass ratio regime this factor can be approximated
as a fourth order polynomial function of η, which is
monotonically decreasing in the interval 0 < q < 1. The
results obtained for nonspinning binaries in [66] should not
hold quantitatively in our case. However, we expect a
similar trend between our model and a (not yet available)
NR simulation of echoes. As it is clear from Eq. (36), the
rescaling in amplitude is a global factor, as one expects
from a change of an overall normalization. Therefore we do

not expect any qualitative modification in the behavior of
the echo trends discussed in the following subsections.

A. Amplitude and peak time dependence
on mass ratio

In Fig. 4 we show our inspiral-merger-ringdown wave-
forms. The inspiral phase has twice the orbital frequency
displaying the characteristic chirp structure followed by the
BH QNM ringdown. In agreement with Fig. 3, the phase
and amplitude evolutions are faster for cases with a more
massive secondary object.
We analyze the first echoes in Fig. 5, which shows the

absolute value of the first three echoes normalized by the
maximum amplitude of the waveform for different choices
of α. The normalized amplitudes increase with increasing
values of q, independent of the choice of α. This result for
the normalized amplitude is nontrivial and, coupled with
the increase of the overall waveform amplitude for binaries
closer to equal masses, could enhance the chances of
detection. (The reversed trend for the third echo is
discussed in Sec. IV B below.)
It can also be seen in Fig. 5 that the first echoes for

binaries of larger mass ratios tend to peak earlier, when we
set t ¼ 0 as the time at which the inspiral-merger-ringdown
waveforms shown in Fig. 4 have their maximum absolute
value. This effect is also related to the orbital evolution
shown in Fig. 3. As a heavier infalling particle plunges
faster, the position where the particle emits most of the
radiation is reached earlier. Therefore, the echoes are
expected to peak earlier, as we observe in our waveforms.
This trend is reinforced if we suppose that our waveforms
would need to go through a rescaling similar to Eq. (36)
in order to match future more accurate models from NR.
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FIG. 4. Real part of the strain of the GW for different mass ratios q, normalized by the peak of its absolute value (at t ¼ 0). These
waveforms were extracted at r ¼ 150M. The faster evolution of phase and amplitude found for larger q is due to a faster orbital
evolution, see Fig. 3. The echoes appear at later times with smaller amplitudes, as shown in Fig. 5.
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In the rescaled time coordinate ξt, the peak time will appear
even earlier for a binary of comparable masses, as ξ
decreases with increasing q [66].
To quantify these trends for the first echo peak amplitude

and peak time with respect to the (symmetric) mass ratio,
we show the linear fits in Fig. 6, with coefficients provided
in Table I. Qualitatively similar results hold for the second
and third echoes. The peak amplitudes are strongly depen-
dent on α: larger reflectivity leads to higher amplitudes, as
expected. In contrast, the slope of the fits for the peak time
is nearly independent of α. Therefore we can conclude that
this time delay is not an effect due to the surface reflectivity,
but solely caused by different orbital motions.
The peak time of the first echo is expected to be a good

approximation to the time between consecutive echoes,
Δtecho. This time interval can be estimated naively as
Δtecho ≈ 2jr0�j and it appears to coincide with the BH
scrambling time (which, in the context of quantum infor-
mation, is understood as the time it takes to recover
information previously thrown into a BH [67,68]).
However, our results for tn¼1 support that Δtecho ≈ 2jr0�j þ
OðqÞ is a better approximation. Neglecting this q depend-
ence would lead to an error in the position of the ECO
wall r0�. Assuming that the underlying quantum gravity

corrections in the ECO spacetime appear at the Planck
length above the horizon [39], we have

Z
rþð1þϵÞ

rþ

ffiffiffiffiffiffi
grr

p
dr ∼ lPlanck: ð38Þ

Therefore, returning to SI units, we have

δr≡ rþϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p
l2
Planckc

2

4GMð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p
Þ
; ð39Þ

which for a ¼ 0.67M and M ¼ 30M⊙ is δr ≈ 6 × 10−76

meters and, according to Eq. (7), gives r0� ≈ −434M.
Figure 6 shows that the variation of the first echo’s peak
time can be as large as 4M. This could result in an error of
2M in the determination of r0�. Therefore r0� could be either
determined as −434M or −432M, for example. Translating
to the usual r coordinate, the difference between these
positions would be jδr − δrnaivej ≈ 8 × 10−76 meters (where
δrnaive is the estimate for δr when not including the effects
discussed in this work). This implies that ignoring the time-
delay dependence on the progenitor properties can lead to
130% error in inferring the position of the reflective
wall (jδr − δrnaivej ≈ δr).

FIG. 5. Absolute value of the strain of the first three echoes, normalized by the maximum amplitude of the inspiral wave, for α ¼ 1 and
α ¼ 2 in the top and bottom row, respectively. We also note a later peak time and smaller amplitudes of the first pulse for smaller mass
ratios. Each pulse is smaller than the previous one indicating the stability of our model. The vertical dashed lines mark the peak time for
q ¼ 1=5 and q ¼ 1=100.
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B. Frequency dependence

Figure 7 shows the amplitude of the echoes in the
frequency domain for different mass ratios, q. The peak
frequency of the echoes matches that of the BH funda-
mental quasinormal mode solid vertical lines, independent
of q. However, at lower frequencies, and especially below
the superradiance frequency 2MΩH, the resonance struc-
ture due to the quasiperiodicity of the echoes becomes more
prominent. The resonance peaks can be identified with the
ð2; 2; nÞ QNM overtone frequencies of the BH potential
and of the ECO in our model. Being characteristic
frequencies, their detection would provide information to
rule out or support different ECO models.
Moreover, even though larger q leads to more power at

high frequencies, the trend reverses at lower frequencies,
where we have louder echoes for smaller mass ratios.

This also influences later echoes, which have lower
frequencies. This is the reason why the third echo in
Fig. 5 shows larger amplitudes for smaller mass ratios.

C. Echo dependence on BH spin

It was argued in [69] that ECOs motivated by quantum
deviations from a Kerr BH should have their reflective
surface located at the same proper distance (of order
lPlanck) from the “would be” horizon for all objects.
This means that, within the same theory, ECOs of different
masses and spins will have surfaces at a different posi-
tions r0�.
In [69] it was proposed that the following relation

should be satisfied for two ECOs with spin parameters
a1 and a2:

ðTHr0�Þja1 ≈ ðTHr0�Þja2 ; ð40Þ

where the BH temperature TH, given by (24), and the
position of the wall r0� are functions of the spin parameter a.
Therefore we expect a larger time delay between consecu-
tive echoes for highly spinning ECOs. Given our previous
choice of r0� ¼ −150M for a ¼ 0.67M, the corresponding
position for the reflective wall of an a ¼ 0.9M ECO is
found to be r0� ≈ −210.5M.

FIG. 6. Linear trends for the first echo’s peak amplitude normalized by the maximum amplitude of the inspiral wave (left) and peak
time (right) as a function of the symmetric mass ratio η for α ¼ 1 (top) and α ¼ 2 (bottom). The peak amplitude depends strongly on the
reflectivity parameter α and increases with η, whereas the peak time is nearly independent of α and decreases with η (see main text). The
fit parameters are given in Table I.

TABLE I. Best fits for the normalized peak amplitude of the
first echo (An¼1) and the peak time (tn¼1) for ã ¼ 0.67 for
different values of α. Note the weak (strong) dependence of the
slope of the peak time (relative amplitude) on α.

α ¼ 1 α ¼ 2

An¼1 0.0412þ 0.0164η 0.164þ 0.0922η
tn¼1

2M
161 − 16.4η 160 − 16.6η
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We now apply our method for the choice of parameters:
a ¼ 0.9M, q ¼ 1=20, r0� ¼ −210.5M, and compare the
results with the a ¼ 0.67M case (see Fig. 8). Two main
differences can be noticed between the two cases. First,
consecutive echoes take longer to appear for larger spins, as
previously expected and in agreement with [20,23].
Second, the amplitude of the echoes is enhanced for
a ¼ 0.9M. Since TH → 0 in the extremal limit (i.e.,
a → M), the Boltzmann reflectivity becomes sharper and
a smaller range of frequencies (therefore less energy)
should be reflected; in contrast, the superradiant amplifi-
cation grows in the extremal limit [70]. Therefore, the effect
of increasing spin on the echo amplitudes is not monotonic.
For a ¼ 0.9M, the superradiant amplification appears to
dominate over the Boltzmann suppression, leading to larger
echoes.
We can also notice a double peak structure for later

echoes in the a ¼ 0.9M case. As seen in [25],6 we attribute

this characteristic to the double hump structure of the
transfer function, which leads to an echo structure
described by two different sine-Gaussian wave packets.
This effect is stronger in the larger spin case because the
superradiant contribution becomes more prominent, see
Fig. 2. The double peak structure reinforces the proposal
made in [25] of a generalization of the echo template found
in [71] to a train of double sine-Gaussian packages.

D. Resonances

We also investigate whether the orbital phase of the
waveform could be modified by resonances of the QNMs
of the ECO. Therefore, we look for relative differences
between the orbital phase of the ECO waveform, as
obtained by Eq. (22), and the expected BH waveform,
given by the first term of (22).
We report that we do not find any measurable modifi-

cation of the waveform in the inspiral phase. This result
agrees with the analytical work performed in [72] where it
was found that the resonances are crossed very quickly
during the inspiral phase of the motion; therefore their
impact on this stage of the GW emission is negligible.
Analyzing Fig. 7, one could have anticipated that this effect

FIG. 7. Absolute value of the strain of the full echo waveform in
the frequency space (h̃echoesðωÞ ) as extracted at r ¼ 150M and
normalized by the peak of the inspiral waveform. The two
vertical lines represent ωSR and the fundamental BH QNM (from
left to right). The insets zoom in on the q-dependence at low
frequencies. We see that the amplitude slightly increases (de-
creases) with q at high (low) frequencies.

FIG. 8. Real part of the strain of the ringdown after the merger
and up to the first few echoes for different spins (and corre-
sponding positions of the reflective wall) and fixed mass
ratio (q ¼ 1=20), for two values of α. The rapidly rotating
ECO shows echoes with larger amplitude and with a double peak
(see main text).

6In [25], the observed double peak structure comes from
contributions with positive and negative frequencies, and the
contribution from superradiant frequencies is negligible in the
scalar case. Here the negative frequency contribution is elimi-
nated by our choice of reflectivity, whereas the superradiant
contribution is much stronger in the gravitational case.
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would be negligible: small frequencies (ω < ωSR), emitted
during the orbital phase, are highly suppressed due to the
small reflectivity.
In [73], it was found that the orbital phase of the inspiral

waveform emitted by an ECO would have a different
evolution from the one emitted by a BH. While this effect
could significantly impact the inspiral phase over several
orbits, we do not expect it to have a large effect on the echo
waveforms in our study.

V. DETECTABILITY

We are now able to assess the detectability of the echoes
from ECOs with current and future gravitational wave
observatories. The expected signal-to-noise ratio (SNR) of
an event is defined as

�
S
N

�
2

¼ 4

Z
∞

0

df
jhðfÞj2
SnðfÞ

; ð41Þ

where SnðfÞ is the single-sided noise spectral density of the
detector and has units of Hz−1, and f ¼ ω=2π as usual [74].
Additionally, we take the average over the sky of the
detector response function (see Table 7.1 in [74]).
In Fig. 9 we fix the final mass of the merger and the

distance to the source to those of GW150914 as a
representative example (with the parameters given in
[75]) and we use the LIGO Hanford detector noise curve
during O1 [76,77]. On the top left panel we show the single

detector SNR of the full inspiral-merger-ringdown predited
by GR (SNRGR) obtained with our setup for mass ratios
from 1:100 to 1:5 (see Fig. 4). The dotted lines indicate the
observed mass ratio and single detector SNR for
GW150914, in good agreement with the linear extrapola-
tion of our results. The top right panel presents similar
results, this time restricted for the ringdown SNR (SNRRD),
assumed to start 3 ms after the peak of the gravitational
wave at merger. In the bottom left panel we have the
expected range for the single detector SNR for the first
echo (SNR1st ), normalized by the corresponding SNRRD.
In the bottom right panel we show some examples of
the characteristic strain together with the detector noise
curve [78].
Assuming SNR1st > 8 for detection of the first echo

would require SNRRD ≳ 19 (in the most optimistic case
with α ¼ 2) and SNRRD ≳ 66 (in the most pessimistic case
with α ¼ 1). These values are ∼2–8 times stronger than the
observation of GW150914 during O1. So, what are our
realistic chances of detecting echoes?
If GW150914 had been detected during O3, its SNR

would almost be twice as large as it was in O1. This
threshold should be crossed in O4, currently scheduled to
start in the Fall of 2021 [79]. The rate of observations
(triggers) during O3 was approximately one event per
week. During O4 (scheduled to have 18 months of
observations), the currently expected improvements in
sensitivity should provide a total of approximately 260
events. As SNR ∝ ðdistanceÞ−1 and the expected number of
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FIG. 9. Top: single detector (LIGO Hanford–O1) SNR of the inspiral-merger-ringdown wave predicted by GR (left) and the
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detections n is proportional to ðdistanceÞ3, we can estimate
the number of events detected with an SNR higher than a
certain threshold to be

n ∼ 260

�
SNRthresh

SNRmin

�
−3
; ð42Þ

where SNRmin is the minimum SNR for the detection of the
event, which we set to 8. This estimate yields approx-
imately 1–2 events/year during O4 with SNRthresh ∼ 40
(twice as loud as was observed for GW150914), which is
the required SNR for the detection of the first echo in the
most optimistic case with α ¼ 2. In the most pessimistic
case with α ¼ 1, we obtain an estimate of 0.03 events/year.
Since our SNR estimates depend on the linear extrapolation
from q ≪ 1 to q ∼ 1, they could be off by a factor of 2–3.
However, we expect an improvement by 1 or 2 orders
of magnitude in sensitivity for future 3G detectors (such as
the Einstein Telescope and the Cosmic Explorer) [80].
Therefore, our qualitative conclusions about the detect-
ability of echoes should not be overly sensitive to the nature
of the extrapolation.

VI. CONCLUSIONS

Here we investigate, for the first time, the detectability of
echoes from ECOs as predicted by a realistic model of
orbital excitation and ECO reflectivity. Going beyond the
pure geodesic plunge description for the inspiral, we were
able to determine the effects of the mass ratio on the echoes.
The first effect is the enhancement of the amplitude of

the first echo (normalized by the peak of the inspiral
waveform) with increasing mass ratio. The second effect is
a shift of the peak time of the first echo. If echoes do exist,
the first echo detections will most likely be able to
reconstruct only the first echo. In this scenario, the
compactness of the ECO will be determined by peak time
of the first echo alone. The noninclusion of mass ratio
corrections can lead to a wrong estimate for the reflective
wall’s position.
Our model predicts a range for the reflectivity of the

ECO, rather than simply setting an upper limit. Therefore
this model is directly testable by observations. We expect to
start probing the most optimistic projections for the
detection of the first echo in the next LIGO observing
run (O4), currently scheduled to start in the Fall of 2022. It
is also possible that the stacking of LIGO events could
improve the chances for an early detection. The most
pessimistic scenarios will be easily probed in the 2030s
with 3G ground based detectors and, of course, with LISA.
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APPENDIX A: SASAKI-NAKAMURA
FORMALISM

1. SN-Teukolsky transformations

In Sec. II we extensively use the relations between the
SN asymptotic amplitudes [given in (10) and (11)], and the
corresponding Teukolsky asymptotic amplitudes [given in
(5) and (6)]. Here we summarize these relations.
In our notation, the SN-Teukolsky relations can be

written as

SNB
trans
lmω ¼ dBtrans

lmω ; ðA1aÞ

SNB
ref
lmω ¼ −

c0
4ω2

Bref
lmω; ðA1bÞ

SNB
inc
lmω ¼ −4ω2Binc

lmω; ðA1cÞ

for the in-mode, whereas for the up-mode we have

SNC
trans
lmω ¼ −

c0
4ω2

Ctrans
lmω ; ðA2aÞ

SNC
ref
lmω ¼ dCref

lmω; ðA2bÞ

SNC
inc
lmω ¼ gCinc

lmω: ðA2cÞ

In Eqs. (A1) and (A2), the following definitions are used:

c0 ¼ −2λlmcð2þ −2λlmcÞ
− 12ωð−amþMiþ a2ωÞ; ðA3aÞ

d ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffi
2Mrþ

p ð2amþ iðr− − rþÞ − 4MωrþÞ
× ðamþ iðr− − rþÞ − 2MωrþÞ; ðA3bÞ
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b0 ¼ −2λ
2
lmω þ 2−2λlmω − 96k2M2 þ 72kMrþω

− 12r2þω2 − ið16kMð−2λlmω þ 3 − 3Mr−1þ Þ
− 12Mω − 8−2λlmωrþωÞ; ðA3cÞ

g ¼ −b0
4kð2MrþÞ3=2ðkþ 2iðrþ −MÞð4MrþÞ−1Þ

: ðA3dÞ

The quantities c0 and d can be found in earlier works
[59,60], but g was first derived in [35]. We independently
derived an equivalent expression for g, which is however
much more involved and we do not reproduce it here.
Therefore we use g as given in Eq. (A3d) in the flux
formulas found in the next section.

2. Fluxes

In Sec. II, we discuss the boundary condition for the
Green’s function. In our model, we impose that the ingoing
and outgoing fluxes at the reflective wall of the homo-
geneous solution XECO

lmω should be proportional. In order to
construct the necessary fluxes from the asymptotic behav-
ior of XECO

lmω , we use expressions found in [35,64,81].
A general solution RðrÞ of the s ¼ −2 radial Teukolsky

equation behaves, near r → rþ, as

R ∼ AinΔ2e−ikr� þ Aouteikr� ; ðA4Þ

which is equivalent, via the transformations (A1) and (A2),
to a solution of the SN equation of the form

X ∼ SNA
ine−ikr� þ SNA

outeikr� : ðA5Þ

It can be proven that the ingoing and outgoing fluxes at the
horizon are [54,64,81]

Fin
H ¼ 128ωkð2MrþÞ5ðk2 þ 4ϵ̄2Þðk2 þ 16ϵ̄2Þ

jCj2 jAinj2

¼ 8ωk
jCj2 jSNA

inj2; ðA6Þ

Fout
H ¼ ω

2kð2MrþÞ3ðk2 þ ϵ̄2Þ jA
outj2

¼ 8ωk
jb0j2

jSNAoutj2; ðA7Þ

where the definitions

ϵ̄ ¼ rþ −M
4Mrþ

; ðA8Þ

jCj2 ¼ ðð−2λlmc þ 2Þ2 þ 4amω − 4ðaωÞ2Þ
× ð−2λ2lmc þ 36maω − 36ðaωÞ2Þ
þ ð2−2λlmc þ 3Þð96ðaωÞ2 − 48maωÞ
þ 144ω2ðM2 − a2Þ ðA9Þ

are used. The constant C first appeared in the context of
solving the Teukolsky equation [54].
Comparing Eq. (A5) to (14), it is straightforward to see

that the fluxes for our ECO model are given by

Fin
H ¼ 8ωk

jCj2
����1þ Klmω

SNC
ref

SNC
trans
lm

����
2

; ðA10Þ

Fout
H ¼ 8ωk

jb0j2
����Klmω

SNC
inc

SNC
trans

����
2

; ðA11Þ

therefore justifying our requirement (15).
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