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A covariant, scalar-tensor gravity is constructed such that the static, spherically symmetric Rezzolla-
Zhidenko metric is an exact solution to the theory. The equations describing gravitational perturbations of
this spacetime, which represents a generic black hole possessing an arbitrary number of hairs, can then be
derived. This allows for a self-consistent study of the associated quasinormal modes. It is shown that mode
spectra are tied to not only the non-Einstein parameters in the metric but also to those that appear at the level
of the action, and that different branches of the exact theory can, in some cases, predict significantly
different oscillation frequencies and damping times. For choices which make the theory appear more like
general relativity in some precise sense, we find that a nontrivial Rezzolla-Zhidenko parameter space is
permissible under current constraints on fundamental ringdown modes observed by Advanced LIGO.
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I. INTRODUCTION

The recent release of data by Advanced LIGO and Virgo
concerning the first half of their third observing run saw the
observed binary black-hole (BH) merger count increase by
39 [1]. The character of gravitational waves (GWs) from
these and previous coalescence events, which are broadly
categorised into inspiral, merger, and ringdown phases, can
be used to place tight constraints on theoretical departures
from the theory of general relativity (GR) [2–4], among
other physics [5]. The ringdown phase is especially suited
to the experimental validation of the classical no-hair
theorems, which state that the postmerger object must be
a (astrophysically disturbed) Kerr BH [6–8]. In particular, a
breakdown of GR in the strong-field regime, as anticipated
from various theoretical considerations (such as nonrenor-
malizability [9]), would be signaled by the appearance of
non-Kerr features in the quasinormal mode (QNM) spec-
trum of the newborn, ringing object [10–12].
A theoretical classification of possible non-Kerr features

is, however, quite challenging. If one is interested in
studying tensorial GWs associated with ringdown in some
particular, non-GR theory, it suffices to first determine the
metric structure of permitted black holes1 within that

theory, and then derive equations describing their response
to gravitational perturbations [14,15]. The eigenvalues of
the relevant perturbation operator can be tied to the QNM
spectrum, with real parts denoting the oscillation frequen-
cies and imaginary parts denoting the inverse of the
damping times due to radiation reaction [12]. This process
is far from trivial to carry out in many cases, and often even
the first step provides a computational hurdle since finding
exact solutions, especially for realistic and rotating objects,
is notoriously difficult. One way to circumvent these issues
is to instead consider a parametrized spacetime metric,
which arises from some theory-agnostic considerations
about what might be expected of astrophysical BHs
regardless of the particulars of the gravitational action
[16–18]. While parametrized approaches have been largely
successful in placing tight constraints on departures from
GR from GW data [19–21], they are inherently limited
because radiation reaction (especially relevant for the
imaginary components of the QNMs) cannot be accounted
for self-consistently: without a governing set of field
equations, backreaction can only be studied approximately.
A particular solution to this inverse problemwas recently

proposed in Ref. [22], where it was found that a covariant,
scalar-tensor theory of gravity can be designed around a
particular spacetime (see also Refs. [23–25]). More spe-
cifically, there are a class of mixed scalar-fðRÞ theories that
possess the special property that for any given metric g,
there exists a function f such that g becomes an exact
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1Some theories even predict the existence of disjoint families

of black holes, which complicates this procedure; see, e.g.,
Ref. [13].
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solution in that theory if the scalar field satisfies a particular
constraint equation. In this way an explicit theory can be
reverse-engineered around any given parametrized BH
metric, such as those considered in Refs. [16–18], and
gravitational disturbances can be studied self-consistently.
It is the purpose of this work to exemplify the inverse
mechanism developed in Ref. [22] by deriving relevant
perturbation equations and studying the QNMs, via
Wentzel-Kramers-Brillouin (WKB) methods, of a repre-
sentative class of parametrized BH metrics.
While realistic BHs are expected to rotate, we consider

static metrics in this work to provide a first step toward the
building of exact and self-consistent ringdown waveforms
for parametrized, non-Kerr objects (see also Ref. [26]). We
additionally focus on axial perturbations, as these are
numerically easier to handle. For demonstration purposes,
we consider the Rezzolla-Zhidenko (RZ) [18] class of BH
metrics, which represent parametrized departures from a
Schwarzschild, and thus vacuum GR due to Birkhoff’s
theorem, description. The metric coefficients in the RZ
family of metrics are built from continued fraction expan-
sions, so as to be able to efficiently represent a large class
of non-Schwarzschild BHs with only a few terms [27,28].
Moreover, while the RZ family is very general, free
parameters appearing within the metric are chosen to abide
by certain recurrence relations so that the spacetime
possesses a number of algebraically-desirable properties
and can withstand existing observational constraints. We
show precisely how the RZ parameters enter into the self-
consistent perturbation equations, associated with some
particular branch of an exact theory, and influence the
QNM spectrum of a hypothetical, non-Schwarzschild BH.
This paper is organized as follows. Section II reviews the

particulars of a mixed scalar-fðRÞ theory, and shows how it
can be used to find solutions to the gravitational inverse
problem. Section III presents a derivation for the potential
functions associated with a Regge-Wheeler-like perturba-
tion scheme. Some specific QNM calculations are then
given in Sec. IV, with emphasis placed on their relationship
to the associated Schwarzschild and RZ values obtained
from well-motivated approximation schemes. Some dis-
cussion is given in Sec. V.

II. MIXED SCALAR-f ðRÞ GRAVITY

The vacuum action for the mixed scalar-fðRÞ theory
considered in this work reads

A¼ κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðFðϕÞRþVðϕÞ− χðϕÞ∇αϕ∇αϕÞ; ð1Þ

where κ ¼ ð16πGÞ−1, G is the (bare) Newton constant
(which, together with the speed of light, is set to unity
throughout for ease of presentation), R≡ Rμνgμν denotes
the scalar curvature for the metric tensor g, and F, V, and χ
are functions of the scalar field ϕ. The theory described

by (1) is a particular case of a very general class first
introduced by Hwang and Noh [29,30], which can be
ghost-free for various choices of f [25]; necessary con-
ditions for the health of Friedman-Robertson-Walker uni-
verses in the theory described by (1), for example, can be
deduced from Eqs. (75) and (76) in Ref. [31] (see also
Sec. IV). When the function f is linear in its argument X,
where we define

X ≡ FðϕÞRþ VðϕÞ − χðϕÞ∇αϕ∇αϕ; ð2Þ

the action (1) reduces to the standard scalar-tensor one
in the Jordan frame [32,33]. Similarly, the fðRÞ theory of
gravity is recovered for constant scalar field and vanishing
potential V [34]. For linear f and constant scalar field, the
action (1) therefore reduces to the Einstein-Hilbert one.
The equations of motion (EOM) for the metric and scalar

fields read [22,29,30]

0 ¼ FðϕÞf0ðXÞRμν −
fðXÞ
2

gμν þ gμν□½FðϕÞf0ðXÞ�
−∇μ∇ν½FðϕÞf0ðXÞ� − χðϕÞf0ðXÞ∇μϕ∇νϕ ð3Þ

and

0 ¼ f0ðXÞ
�
2χðϕÞ□ϕþ dχðϕÞ

dϕ
∇αϕ∇αϕ

þ R
dFðϕÞ
dϕ

þ dVðϕÞ
dϕ

�
þ 2χðϕÞ∇αϕ∇αf0ðXÞ; ð4Þ

respectively. Equations (3) and (4) define the vacuum field
equations for the theory, though matter can be introduced in
the usual way via the stress-energy tensor.

A. Solving the inverse problem

As demonstrated in Ref. [22], the configuration space
of the theory defined by (1) is so large that practically any
given metric (spherically symmetric or otherwise) can be
admitted as an exact solution for some choice of the
functions f, F, V, and χ. In particular, given a metric,
the dynamics of the scalar field can be constrained in such a
way that particular g and ϕ pair form an exact solution to
equations (3) and (4) provided that f belongs to some
particular class of functions.
Specifically, given some metric g, if there exists a scalar-

field solution ϕ to the kinematic constraint equation

X0 ¼ FðϕÞRþ VðϕÞ − χðϕÞ∇αϕ∇αϕ; ð5Þ

for some constant X0, then, for any f such that fðX0Þ ¼
f0ðX0Þ ¼ 0, that particular g is an exact solution to (3)
and (4). In general, equation (5) must be solved
numerically.
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As a concrete example, if ϕ is chosen such that X0 ¼ 0,
then g is a solution to the field equations for

fðXÞ ¼ X1þσ; ð6Þ

for any σ > 0. Theories of the form (6) represent a
potentially infinitesimal deviation from standard scalar-
tensor gravity at the level of the action, and generalize
the fðRÞ ¼ R1þσ theories considered by Buchdahl [35] and
others. These latter theories are of potential astrophysical
relevance since they have been successful in explaining the
flatness of galactic rotation curves for σ ∼ 10−6 without the
invocation of dark matter [36,37]. Such values for σ are also
consistent with cosmological constraints coming from
primordial nucleosynthesis [38] (see also Ref. [39]). For
σ ≲ 10−4, stellar structure is largely unchanged relative to
GR [40], and thus the theory is capable of accommodating
massive neutron stars, such as J0740þ 6620 (with mass
M ∼ 2.17 M⊙ [41]), for stiff equations of state. For weakly
varying scalar fields, these features are likely to persist
since the theory (6) reduces to the Buchdahl one exactly for
∇μϕ ¼ 0 and V ¼ 0. A curious feature of theories with
σ ≪ 1 is that the function f is not analytic, which means
that one cannot employ Taylor expansions about small
scalar curvatures to investigate the Newtonian limit of the
theory. Strong-field tests (coming from QNMs, for in-
stance) are therefore especially germane to theories such
as (6). Note, however, that analytic models can also be
constructed; for example, the theory with fðXÞ ¼ X þ
αX2 þ α2X3=4 for any α ≠ 0 admits exact solutions
with X0 ¼ −2α−1.
In any case, we emphasise here that we are not

necessarily advocating for this particular theory as a
realistic description for gravitational phenomena, espe-
cially since higher-order theories such as (1) are generally
susceptible to the Ostrogradsky instability (though see
Ref. [42]). The techniques presented in this work are only
meant to illustrate that self-consistent studies of QNMs
for parametrized spacetimes are possible, and that their
properties are sensitive to the particulars of the gravita-
tional action, be it (1) or otherwise. In particular, the
scalar field solution to equation (5) depends on the
functional forms of the potential ðF;VÞ and kinetic (χ)
terms, and therefore behaves differently in different
branches of the general theory (1). The QNMs are thus
sensitive to the particulars of the dynamics in the scalar
sector (see Sec. III B).

III. GRAVITATIONAL PERTURBATIONS

In general, the geometric response of a background2

spacetime metric g
0
to gravitational disturbances is studied,

at the linear level, by introducing a perturbation term h

through gμν ¼ g
0

μν þ δhμν, where δ ≪ 1 is a formal expan-
sion parameter. We focus on vacuum perturbations in this
work, so that h is “sourced” only by the background metric.
In general, one may decompose h as a sum of harmonics,
viz. hμν ¼

P
lm hμν;lm, where each of the terms hμν;lm

are chosen such that they respect the angular symmetries
of the spacetime (see below). A further decomposition of
hμν;lm into axial and polar sectors possible, hμν;lm ¼
haxialμν;lm þ hpolarμν;lm, where the two pieces are defined by
how they transform under parity [43,44]. A separation of
this sort is particularly useful for static spacetimes, because
the axial and polar sectors decouple [45] (see also
Ref. [46]). While a derivation of the (generalized)
Teukolsky equations relevant for rotating solutions in the
theory (1) is achievable in principle using the Newman-
Penrose formalism or its extensions (see Refs. [47,48] for
the fðRÞ gravity case), solving the resulting equations is
computationally challenging [45]. We therefore restrict our
attention to nonrotating solutions.

A. Axial modes

To give a concrete example of how the QNMs of a
black hole can be self-consistently studied and compared
between different theories, we focus on axial perturba-
tions. Axial perturbations have the benefit that scalar
degrees of freedom do not couple to the tensor sector
[49], which further simplifies the analysis. The back-
ground scalar field still plays a role in the behavior of the
perturbations however [49,50] and modifies the form of
the Regge-Wheeler potential [43]. Additionally, we note
that even if the perturbed scalar field δϕ does not couple
to the metric, Eq. (4) predicts the existence of scalar
GWs, the amplitudes of which may be non-negligible in
some cases [51].
Given some astrophysical measurements of axial

QNMs, it has been shown that it is possible to reconstruct
the spacetime metric using statistical techniques (e.g., the
Bayesian methods detailed in Ref. [20]) if one assumes
some fixed set of EOM. However, metric and action
parameters may be intertwined in the sense that the
functional structure of the EOM may itself be dependent
on the non-Schwarzschild parameters, which complicates
this procedure. The full track of the inverse problem is
therefore a nonlinear one: one attempts to astrophysically
reconstruct the metric by matching QNM measurements
to eigenvalues that arise from a metric-dependent oper-
ator. As a first step toward a general solution of this
difficult problem, we show how one can build a theory
around a given spacetime and study its axial perturbations
self consistently. This could be then be combined with
statistical approaches, such as those detailed in [20], in a
future study.

2Throughout this work, an overhead zero denotes a back-
ground term, i.e., an Oðδ0Þ quantity.
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As mentioned earlier, we work with static and
spherically3 symmetric spacetimes in this work for sim-
plicity. The background line element, in Boyer-Lindquist
coordinates ðt; r; θ;φÞ, is taken to be

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dθ2 þ r2 sin2 θdφ2: ð7Þ

Making use of the Regge-Wheeler gauge [43], a generic
axial perturbation can be written as

haxialμν;lm ¼

0
BBB@

0 0 h0ðt; rÞSlmθ ðθ;φÞ h0ðt; rÞSlmφ ðθ;φÞ
0 0 h1ðt; rÞSlmθ ðθ;φÞ h1ðt; rÞSlmφ ðθ;φÞ
� � 0 0

� � 0 0

1
CCCA;

ð8Þ

where Slmθ ðθ;φÞ ¼ − csc θ∂φYlmðθ;φÞ and Slmφ ðθ;φÞ ¼
sin θ∂θYlmðθ;φÞ for spherical harmonic Ylm, and the
asterisk denotes a symmetric entry. The (in general com-
plex) QNM frequency ω is introduced by taking a Fourier
transform of the components h0 and h1 through

h0;1ðt; rÞ ¼
1

2π

Z
∞

−∞
dωe−iωth̃0;1ðω; rÞ: ð9Þ

The explicit dependence on ω and the tildes will henceforth
be dropped for ease of presentation.
The methodology used to derive the EOM for h0 and h1

in the mixed scalar-fðRÞ theory is remarkably similar to
that of GR. In particular, the θφ-component of the OðδÞ-
field equations (3) allows for a direct expression of h0 in

terms of h1, viz. [f0ðX
0 Þ ≠ 0]

h0ðrÞ ¼
i

2ωB

2
64h1A0 þ 2Ah01 −

Ah1B0

B

þ 2Ah1F0ðϕ
0

Þϕ00

Fðϕ
0

Þ
þ 2Ah1X00 f00ðX0 Þ

f0ðX0 Þ

3
75; ð10Þ

where we note that X
0

is a function of radius only for
the spacetime described by (7). For the special case of

f0ðX0 Þ ¼ 0, a similar expression to that of (10) can be
imposed, though without the final term on the second line.
We note, however, that both expressions for h0ðrÞ agree for

X00 ðrÞ ¼ 0 (relevant for the inverse problem discussed in
Sec. II A), i.e., when the constraint equation (5) is satisfied.
Moving forward, we introduce the tortoise coordinate

r⋆ðrÞ≡ R
dr

ffiffiffiffiffiffiffi
BðrÞ
AðrÞ

q
, and a new variable Z through

h1ðrÞ ¼ rZðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BðrÞ
AðrÞf0ðX0 ÞFðϕ

0

ðrÞÞ

vuut ð11Þ

for f0ðX0 Þ ≠ 0 and X00 ðrÞ ≠ 0, and

h1ðrÞ ¼ rZðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BðrÞ
AðrÞFðϕ

0

ðrÞÞ

vuut ð12Þ

otherwise, which allows us to rewrite the rφ-component
of the field equations (3) as a Schrödinger-like equation.
Algebraic manipulations eventually lead to the generalized
Regge-Wheeler [43] equation in mixed scalar-fðRÞ theory,
which takes the familiar form

0 ¼ d2

dr⋆2
Z þ ½ω2 − VlðrÞ�Z: ð13Þ

In the general case where f0ðX0 Þ ≠ 0, the potential Vl has
the lengthy but simple form

VlðrÞ ¼ V0;lðrÞ −
fA
Ff0

þ 3f00X00

Bf0

�
4AX00 þ rA0

4r
−
AB0

4B

þ 3AF0ϕ00

2F
þ AX000

2X00
þ AX00 f00

4f0

�
þ 3f000AðX00 Þ2

2Bf0
: ð14Þ

The term V0;lðrÞ, which reads

V0;lðrÞ ¼
lðlþ 1ÞA

r2
þ 3ðAB0 − BA0Þ

2rB2

þ 3F0ϕ00

BF

�
4Aþ rA0

4r
−
AB0

4B
þ AF0ϕ00

4F

�

þ 3Aϕ02
0

F00

2BF
þ 3AF0ϕ000

2BF
; ð15Þ

is the piece that can be considered to “survive” for

fðX0 Þ ¼ f0ðX0 Þ ¼ 0 and X00 ðrÞ ¼ 0 [cf. equations (11) and
(12)]. The latter term (15) in particular is the one most
relevant for solutions of the inverse problem. In this case,
given some background metric, the scalar field is chosen
such that the constraint equation (5) is satisfied, and (15)
differs from the GR form explicitly through the presence of

3Theories of the form (1) generally allow for BHs with
topological horizon structures also [52], though such objects
are likely ruled out by electromagnetic observations of reflection
spectra in accreting black holes [53].
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ϕ
0

and F and implicitly through A and B. It is worth pointing
out that the only l-dependent part within VlðrÞ comes from
the lðlþ 1ÞA=r2 term, as expected of theories which
predict that (helicity-2) gravitational waves travel at the
speed of light; in the geometric-optics limit l → ∞, the
perturbation equation (13) reduces to the null geodesic
equation (see Ref. [20] for a discussion).
Note that we have considered background spacetimes

that are vacuum in this work. This is important to mention
since, strictly speaking, any given spacetime can also arise
as a solution to the Einstein equations exactly if one
allows for arbitrary stress-energy tensors. Perturbations
can be studied self-consistently in this approach also.
However, in this latter instance, it is unlikely that the
matter sector will be associated with a physical
Lagrangian (e.g., arising from a fluid) or abide by well-
motivated energy restrictions (e.g., dominant energy
condition) for a generic background [54]. Such an
approach is therefore not entirely physical in the study
of disturbed BHs, since it would be difficult to explain the
presence of exotic matter following a vacuum merger
event, for example. Nevertheless, a self-consistent
approach to the study of perturbations of arbitrary space-
times within GR is formally possible and the EOM are
simply given by δRμν ¼ 0 if one assumes that the matter
sector is unperturbed by the ringing.
This latter scheme, which we refer to as a “GR-like”

approximation throughout, could also be used to study the
perturbations of a given spacetime (7). In the case of
constant scalar field, the GR-like Regge-Wheeler equation
(see, e.g., Eqs. (14)–(16) in Ref. [20]) is recovered exactly
from (14) for either linear f or for those f with the property

that f0ðX0 Þ ¼ 0 [expression (15)]. In many cases of interest
therefore, one might expect that this and similar schemes
provide a fair representation for the QNMs, even if they are
inexact (see the discussion in Ref. [20] and below). One of
the aims of this present work is to provide a quantification
for its accuracy, at least in the simple case of a truncated RZ
metric (see Sec. IV).

B. Dependence of QNMs on the underlying theory

Expressions (14) and (15) imply that QNMs are, in
general, sensitive to the particular choices of f, F, V, and χ.
As a demonstration, consider (6) for the Brans-Dicke choices
with vanishing potential, FðϕÞ¼ϕ and χðϕÞ¼ χ0=ϕ, where
the quantity χ0 is akin to the Brans-Dicke coupling constant.
The χ0 → ∞ limit therefore corresponds to a more GR-like
theory; when f is linear, the theory reduces to Brans-Dicke
and therefore to GR in this limit. In any case, the constraint
equation (5) depends on the value of χ0, and therefore the
scalar field does too when considering a solution to the

inverse problem. Since the axial potentials Vl depend on ϕ
0

they also implicitly depend on χ0, and the QNMs shift

depending on the branch of the general theory (1) under
consideration.
This result is familiar from the study of Kerr or

Schwarzschild BHs, which are known to ringdown differ-
ently in different theories of gravity [47,48,55], sometimes
so dramatically that the same BH may be unstable in one
theory and not another [56,57] (see below). For the present
case in the study of the inverse problem, this implies that
ringdown analyses place constraints on the metric behavior
and on the theory simultaneously; the QNMs for any given
quantum numbers depend on χ0 and the free parameters
within the metric in a nontrivial way. This adds a layer of
complication from a data analysis perspective, since there
may be a degeneracy between the physical BH parameters
and those parameters that appear within the action func-
tional (see, e.g., Ref. [58]).
The dependence of the QNMs on χ0 implies that stability

can be theory-dependent. Specifically, the appearance of a
deep enough turning point for Vl < 0 (in a “negative gap”)
implies the existence of bound states (i.e., ω2 < 0 modes)
that lead to (linear) instability [59,60] (see also Ref. [61]).
On the other hand, if the potential Vl is positive-definite,
then it is well known that the Schrödinger equation (13)
admits no bound states. This condition is not necessary
however: using the so-called S-deformation technique [62],
Kimura [63] has presented evidence that if there exists a
continuous and bounded function S such that

0 ¼ VlðrÞ þ S0ðrÞ − SðrÞ2; ð16Þ

then stability is also assured. These techniques are not
necessary for our analysis, since we consider cases with
sufficiently small deformation parameters and large enough
χ0 (i.e., more GR-like values) so that the negative gap is
never too deep to allow for bound states. In general though,
a given BH may be stable for χ0 values above some
threshold value χc that depends on the deformation
parameters, and unstable for theories with χ0 < χc. A
thorough investigation of the (in)stability of BHs in differ-
ent branches of the general theory (1) will be conducted
elsewhere, since the WKB method used here is not well-
suited for identifying bound states.

IV. QUASINORMAL MODES FOR THE
REZZOLLA-ZHIDENKO METRIC

The key difference between this work and others which
have studied the QNMs of parametrized, bottom-up met-
rics, is that we build an exact theory around the spacetime
using the method detailed in Sec. II. A so that vacuum
perturbations can be modeled self-consistently. In addition
to being of theoretical interest in its own right, this allows,
in principle, for a quantification of the accuracy of various
widely-used approximations involving test fields [64–66]
or mild deviations at the level of the EOM [14,15,20].
Where appropriate, we keep track of the relative difference
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between QNMs computed using the approach presented
here and that of the GR-like approximation discussed in
Sec. III. A, where only the first two terms within (15) are
kept. We focus on the case of the RZ metric described in
Ref. [18] due its algebraic simplicity, though the methods
detailed here can be readily applied to more complicated
examples.
For our application we consider a subset of the most

general RZ metric with non-vanishing parameters M, ϵ, a1,
and b1, because it provides a good balance of flexibility to
approximate non-GR black holes [27,28], but at the same
time carries a numerically-manageable number of terms.
This choice implies that the BHs we study match
Schwarzschild exactly at first post-Newtonian order, because
we set a0 ¼ b0 ¼ 0, which can be motivated from Solar
system tests [67]. We note however that such constraints can
be bypassed in some alternative theories of gravity, and these
extra parameters could be straightforwardly included as well.
For this truncated RZ metric, the coefficients A and B
defining the line element (7) take the form

AðrÞ ¼ 1 −
rHð1þ ϵÞ

r
þ r3Hðϵþ a1Þ

r3
−
r4Ha1
r4

ð17Þ

and

BðrÞ ¼ ð1þ r2Hb1
r2 Þ2

AðrÞ ; ð18Þ

respectively. In expression (17), rH ≡ 2M=ð1þ ϵÞ defines
the location of the event horizon for black hole mass M,
where ϵ, a1, and b1 are generic (dimensionless) deformation
parameters that are, in principle, to be constrained by
observations [18]. The metric reduces to the Schwarzschild
metric in the limit ϵ ¼ a1 ¼ b1 ¼ 0.We emphasise again that
the absence of r−2 terms in the coefficient A ensures that the
spacetime automatically respects many post-Newtonian con-
straints [67].
For the RZ metric defined by expressions (17) and (18),

it is straightforward to solve the constraint equation (5)
(even when rotation is included; see Fig. 1 in Ref. [22])
for the Brans-Dicke choices discussed in Sec. III B; i.e.,
F ¼ ϕ, V ¼ 0, and χ ¼ χ0=ϕ for some positive χ0. Solving
for the scalar field in the constraint equation (5) with the
property that X0 ¼ 0, i.e.,

0 ¼ ϕ
0

R
0

−χ0
ϕ00 ðrÞ2

ϕ
0

BðrÞ
; ð19Þ

leads to an exact solution in the mixed scalar-tensor
theory (1) with fðXÞ ¼ X1þσ for any σ > 0, as discussed
in Sec. II A. In general, one should impose the boundary
condition

lim
r→∞

ϕ
0

ðrÞ ¼ 1; ð20Þ

so that the scalar field approaches the Newtonian value, viz.
FðϕÞ → 1. Equation (19) informs us that not all arbitrary
combinations of the deformation parameters (ϵ; a1; b1) are
permitted within the aforementioned theory. Some combi-
nations can lead to ghost-like instabilities where ϕ ≤ 0 (i.e.,
nonpositive rest energy) or ϕ0ðrÞ2 < 0 (i.e., negative kinetic
energy), and care must be taken to ensure that such
undesirable features do not emerge [25,31]. For all param-
eter combinations considered here, the scalar fields are
positive, smooth, and have non-negative kinetic energy.
Figure 1 shows a sample of radial scalar field profiles as

solutions to Eq. (19) for a variety of χ0 values and a
representative set of RZ parameters (henceforth, we set
M ¼ 1 throughout the rest of the work): ϵ¼0.1, a1 ¼ 0.15,
and b1 ¼ −0.4. We see that the amplitude of the scalar field
is directly proportional to the reciprocal of χ0 and fur-
thermore monotonically decreases as a function of radius,
with maxima and minima attained at the horizon and
infinity, respectively. For instance, the χ0 ¼ 0.3 (red curve)
scalar field solution is ≳10 times larger than the χ0 ¼ 6
(green curve) case near the horizon, though at r ∼ 50 the
two agree to within a few percent. The scalar hair is short-
ranged in all cases therefore, and would be virtually
invisible at large distances from the horizon even for
relatively small values of χ0. Given a solution to equa-
tion (19), one can now proceed to evaluate the axial
potentials Vl, as necessary to compute QNMs.

A. Numerical methods

In general, the Schrödinger-like equation (13) is subject
to some set of boundary conditions. These are chosen such
that we have pure outgoing radiation at infinity and purely

FIG. 1. Radial scalar field profiles as solutions to equation (19)
for a variety of χ0 values (see plot legends), where we take
M ¼ 1, ϵ ¼ 0.1, a1 ¼ 0.15, and b1 ¼ −0.4. The horizon, occur-
ring at r ¼ rH ¼ 20=11, is shown by a vertical dashed line.
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ingoing radiation at the horizon, i.e., that as r⋆ → �∞,
we have [68]

Zðω; rÞ ∼ e�iωr⋆ : ð21Þ

Equation (13), subject to the boundary conditions (21),
constitutes an eigenvalue problem for the QNMs. However,
since we are mostly interested in the frequencies of the
QNMs and not so much the functional form of Z itself, it is
not necessary to solve Eq. (13) formally (see Refs. [10–12]
for some classical reviews on the topic).
Although there are a number of semi-analytic and

numerical methods available, we operate with the WKB
method [69–71] because it is especially suited for problems
in which other standard approaches may require significant
adjustments or extensions [72]. Other techniques involving
continued fractions (e.g., Leaver’s method [73]), phase-
integrals (e.g., [74]), or time-dependent integration (e.g.,
[75]) typically require an analytic understanding of the
asymptotic properties of the potential, which may be
absent when one only has numerical potentials defined
up to some finite radius at their disposal, as in our case. In
the order-j WKB method, the QNM frequency is deter-
mined through

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

p −
X
j¼2

ΛjðnÞ ¼ nþ 1

2
; ð22Þ

for overtone number4 n, where Qðr⋆Þ≡ ω2
n − Vlðr⋆Þ is

evaluated at the maximum of the potential and primes
denote derivatives with respect to the tortoise coordinate r⋆.
The Λj in equation (22) depend on 2jth-order derivatives of
Vl and have lengthy forms that we will not write out here;
see, e.g., Ref. [71].
While the WKB method has been extended up to 13th

order using Padé approximants [thereby requiring 26th-
order derivatives of VlðrÞ] [77], numerical stability and
implementation considerations limit us to the 4th-order
scheme. The relative errors of our results have been
checked using both 3rd and 4th order approximations
and are, at worst, at the percent level for a few cases
(imaginary parts). For most cases however the errors are
significantly smaller. An additional numerical check has
been performed using the Pöschl-Teller approximation
[78,79] to verify the robustness of the WKB method.
Note that for a few parameter combinations the l ¼ 2
potentials develop a small negative gap left of the

maximum (see Sec. III B), which is likely responsible
for the percent-level errors mentioned previously. In any
case, the various numerical checks performed in this work
make us confident that the numerical routines for finding
the potential [checking that the right-hand side of (19)
vanishes to machine precision] and computing the QNMs
(checking agreement between 3rd and 4th orders and the
Pöschl-Teller approximation) give reliable results.
We graph the l ¼ 2 potential profiles V0;2ðrÞ (solid

curves) for two illustrative cases with a1 ¼ b1 ¼ 0 and
M ¼ χ0 ¼ 1 but ϵ ¼ −0.1 (red) and ϵ ¼ −0.3 (blue) in
Fig. 2. For contrast, the corresponding potentials computed

using the GR-like scheme ½ϕ00 ðrÞ ¼ 0� are represented by
dashed curves. The respective domains of the potential
functions vary with ϵ, because the horizon location rH
(shown by vertical dashed lines) is sensitive to this quantity.
In the case of low jϵj (i.e., more Schwarzschild-like), we see
that the GR-RZ and exact potential functions overlap
almost exactly: the greatest difference between the two
curves is ∼1.5% near the respective peaks (shown by solid
diamonds). However, since the properties of the QNMs are
directly tied to the location and value of the peak [cf. equa-
tion (22)], even a small difference can lead to a non-trivial
disparity in the real and imaginary components (see
Sec. IV B). For the ϵ ¼ −0.3 case, the difference between
the exact and approximate potentials is more noticeable,
and the relative difference reaches ∼7% near the respective
peaks. Note that a negative gap develops near the horizon in
the exact potential for the large jϵj case, though is not deep
enough to produce bound states for the chosen kinetic value
χ0 ¼ 1. For χ0 ≪ 1 or ϵ ≪ −0.3, bound states may exist in
principle. More generally, the disagreement between the

FIG. 2. Comparison between the l ¼ 2 exact [V0;2 from
Eq. (15); solid curves] and GR-like (dashed curve) potential
profiles for a1 ¼ b1 ¼ 0 and M ¼ χ0 ¼ 1 but ϵ ¼ −0.1 (red
curves) and ϵ ¼ −0.3 (blue curves). The location of the respective
horizons are shown by vertical dashed lines. The location of the
maxima for the peaks, relevant for the computation of QNMs, are
shown by solid diamonds. A negative gap forms in the exact
potential for ϵ≲ −0.3.

4Throughout this work we only work with the least-damped
(and therefore most relevant for astrophysical observation) modes
for brevity, which have n ¼ 0 by definition. However, overtones
are generally expected to be active for a newborn BH and may be
important when reconstructing BH parameters from astrophysical
data; see Ref. [76] for a discussion.
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GR and exact schemes scales inversely with χ0 and directly
with jϵj (see Figs. 3 and 4 below, respectively).

B. Results

In this section we present computations of QNMs using
the numerical methods detailed in the previous section for a
variety of representative cases.
Figure 3 shows the l ¼ 2 (blue circles) and l ¼ 3

(orange squares) QNM frequencies as functions of χ0 for
the RZ parameters relevant to the scalar field solutions
shown in Fig. 1 (i.e., ϵ ¼ 0.1, a1 ¼ 0.15, and b1 ¼ −0.4).
For small values of χ0 in the range 0.1 ≤ χ0 ≲ 1.5, we see a
substantial and monotonic variation in both the real (≈33%)
and imaginary (≈15%) components of the l ¼ 2 QNMs.
Variations on a similar scale are likewise observed in the
l ¼ 3 case. Turning points occur in the graphs once a
critical value of χ0 ≈ 1.5 is reached, and the real (imagi-
nary) frequencies begin to increase (decrease) rather than
decrease (increase). In the large χ0 limit, both sets of
frequencies asymptote towards particular GR-like values
(see below). In any case, we find that a continuous (with
respect to χ0) spectrum of frequencies within some

bounded range can be achieved for a fixed set of RZ
parameters. This result has the interesting implication
that, given only a single measurement of the fundamental
frequency of a newborn object (as in the case of
GW150914 [2]), many RZ parameter sets can be accom-
modated within some5 branch of the general theory (1).
This stresses the necessity of having multiple QNM
measurements in placing constraints on BH behavior and
strong gravity simultaneously (see also Refs. [14,15,64]).
Overplotted in Fig. 3 are the GR-like QNMs (black dots),

which of course do not vary as a function of χ0. For small of
values of χ0, the two schemes predict distinct behavior, as
noted previously. In the limit χ0 → ∞ however, the scalar
dynamics are heavily suppressed (cf. Fig. 1) and the curves
match as the theory approaches the Buchdahl one [35],
much in the same way that the Brans-Dicke theory (i.e.,
linear f) approaches GR in this limit. In practice, values
χ0 ≳ 104 lead to numerical indistinguishability between
the real and imaginary components for the GR-like and
exact schemes for this particular set of RZ parameters.

FIG. 3. Fundamental (n ¼ 0) QNM frequencies ω0 as functions
of χ0 for l ¼ 2 (blue circles) and l ¼ 3 (orange squares), where
we fix ϵ ¼ 0.1, a1 ¼ 0.15, and b1 ¼ −0.4. The upper panel
displays the real part of ω0, and the lower panel the imaginary
part. Overplotted (black dots) are the frequencies obtained when
using the GR-like approximation scheme detailed in the text.

FIG. 4. Similar to Fig. 3 though displaying ω0 as a function of ϵ
for fixed values a1 ¼ b1 ¼ 0 and χ0 ¼ 1.

5Note, however, it may be the case that particular branch is
Ostrogradsky-unstable [42] or does not respect independent
constraints coming from cosmology [36,37], neutron-star astro-
physics [40], or solar system dynamics [67].
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Note though that this does not mean that the frequencies
approach the Schwarzschild values: the l ¼ 2 fundamental
mode in the Schwarzschild case (not shown) has real value
ReðωGRÞ ¼ 0.374 [75], for instance, and is still ∼8%
different from the RZ value in this particular case even
when χ0 → ∞. Such a disparity does not, however, exceed
the limits imposed by observations of GW150914, where
constraints on the fundamental frequency were placed at
roughly the ∼10% level relative to the GR (Kerr) values at
90% confidence [2].
As another example, we consider the case of a1¼b1¼0

with fixed χ0 ¼ 1 but varying ϵ. This case is illustrated in
Fig. 4 in a similar style to Fig. 3. In this instance, the GR-
like scheme is approached as ϵ → 0, where in fact the
Schwarzschild QNMs are recovered exactly [75] in both
schemes, as expected. Overall, we see that the GR-like
approximation is a robust one: disagreements, relative to
the exact case, in the real and imaginary parts of the QNM
frequencies are at most ∼3% for jϵj ≲ 0.3 and l ¼ 2. For
larger values of χ0 and l, the disagreements fall even
further. This adds strength to the claims made in Ref. [20],
who made use of the GR-like approximation within a
Bayesian scheme to show how QNM data can be used to
reconstruct a spacetime metric to a high degree of accuracy.
In either scheme, however, we see that between the ϵ ¼ 0
(Schwarzschild value) and ϵ ¼ −0.3 cases, the real parts of
the QNM frequencies change by ≈20%, which exceeds the
limits imposed by GW150914 [2]. Demanding that the
frequencies match to the Schwarzschild values within
≲10% leads to the constraint jϵj≲ 0.16 for χ0 ¼ 1, though
we note that such a direct comparison with GW data is
imprecise at this stage because we do not model rotation.
Although the parameter space of RZ-QNMs is very large

(different quantum numbers, RZ parameters, and theory
variables) and an exhaustive study is impractical, it is
instructive to consider a few additional cases. The l ≤ 5
QNM frequencies for a few cases with scattered values of ϵ,
a1, and b1 are shown in Table I (II) for χ0 ¼ 1 (χ0 ¼ 0.5).
For example, the second and third columns list the
frequencies for cases where all RZ parameters vanish
except for b1. The real parts of the frequencies are largely
similar to the Schwarzschild values in these cases for
b1 ¼ −0.38, where we find ReðωÞ ¼ 0.38 for χ0 ¼ 1 while
ReðωÞ ¼ 0.368 for χ0 ¼ 0.5, which are marginally larger
and smaller than the Schwarzschild value ReðωGRÞ ¼
0.374, respectively. The imaginary components are sub-
stantially greater in either case (≳40% difference) though,
implying that the modes would be damped out faster [since
the damping time ∝ −ImðωÞ−1] than the corresponding GR
case. For more negative values of b1, however, even the real
values diverge significantly from the Schwarzschild values,
and are thus likely ruled-out from GW observations [3].
The damping times for the cases shown in the final two
columns, which have ϵ¼0.1 and b1¼−0.19 but a1 ¼ 0.15
and a1 ¼ 0.3, respectively, are very similar to each other,

and only weakly depend on l. This implies that even
high-l modes may be important in the early character-
isation of BH ringdown for some non-Schwarzschild
metrics, since they may not necessarily be damped out
faster than their low-l counterparts.

V. DISCUSSION

Recently, a solution to the gravitational inverse problem
was presented in Ref. [22]: given some metric g, a
covariant, scalar-tensor theory of gravity [with action (1)]
can be designed such that particular g is an exact to
the vacuum field equations (3) and (4) (see Sec. II A).
A practical application of this result is that bottom-up BH
metrics can be assigned to an exact theory of gravity, which
allows for a self-consistent study of their perturbations. In
this work, we derive the EOM describing axial perturba-
tions of static, spherically symmetric spacetimes in this
theory (Sec. III). As a demonstration of the mathematical
machinery, we compute the QNMs for the RZ metric for a
variety of non-GR parameters using WKB methods
(Sec. IV). The approach presented here is not unique to
the RZ metric, and the method described here can be
readily adapted to practically any class of static, para-
metrized BH metrics.
While realistic BHs rotate in reality, understanding the

QNM spectrum of static objects is still useful in character-
ising hypothetical signatures of modified gravity in the
strong-field regime. In particular, Völkel and Barausse [20]
have shown how ringdown data can be used to reconstruct
the local spacetime metric given a theory of gravity (see
also Refs. [14,15,64]). In that work, however, a solution to
the inverse problem was not available, and so various
approximations for the EOM describing QNMs had to be
used. This work may therefore help to maximise the
information gleaned from future GW measurements when
combined with statistical analyses along the lines presented
in Ref. [20]. For large values of the Brans-Dicke parameter
χ0, however, this extra step may not be necessary since we
found that the exact results are well-approximated by the
GR-like scheme.
At present, constraints on departures from the GR

fundamental frequency are at roughly the ∼10% level at
90% confidence [2]. For the RZ metric specifically, we find
that this corresponds to a constraint jϵj≲ 0.16 for χ0 ¼ 1
when a1 ¼ b1 ¼ 0, as can be seen from Fig. 4. There is of
course additional uncertainty since the QNM frequencies
scale with χ0 and the other RZ parameters too; see Fig. 3
and Tables I and II. Overall, we validate the results of
Ref. [20] where GR-like perturbation equations were used,
and find that a non-trivial RZ parameter space is consistent
with current ringdown bounds.
There are several directions in which extensions of this

work would be worthwhile. One of these is to include
rotation, as mentioned previously: the difficulty in this is
largely computational in nature, since the perturbation

EXACT THEORY FOR THE REZZOLLA-ZHIDENKO METRIC AND … PHYS. REV. D 103, 044027 (2021)

044027-9



equations are in general coupled and solving the associated
eigenvalue problem requires more involved techniques,
such as generalizations of Leaver’s method [73] or direct
time domain computations. In particular, the inverse
problem as presented here is still relatively straightforward
to handle for stationary spacetimes (see the example given
in Ref. [22]), and so this aspect of the work is not difficult to
extend. In a similar way, we have only looked at axial
QNMs here, though polar perturbations are expected to
carry ∼50% of the GW energy away from a newborn BH
due to Regge-Wheeler-Zerilli isospectrality (though
cf. Refs. [80,81]), and are therefore astrophysically impor-
tant. Further investigation of the existence of bound states
for non-RZ BHs using the S-deformation technique asso-
ciated with Eq. (16) is also interesting, since it is known
that even Kerr black holes can be unstable in some theories
[56,57]. Using the methods presented here, one could
attempt to map out the space of stable BH solutions in a

theory-dependent manner (e.g., by considering stability as a
function of χ0). Finally, the scalar-tensor class of theories (1)
is not the only type of theory that can be designed to solve the
inverse problem. Mixed vector-fðRÞ theories (e.g., general-
ized Proca theories [82]) also provide examples of solutions
to the inverse problem; see Ref. [22] for a discussion. It
would be worthwhile to study the QNM spectrum of RZ or
other black holes in these theories in the future.
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