
 

Asymptotic flatness and Hawking quasilocal mass
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We point out an association between anomalies in the Hawking quasilocal mass (or, in spherical
symmetry, in its better known version, the Misner-Sharp-Hernandez mass) and unphysical properties of the
spacetime geometry. While anomalous behaviors show up in certain quantum-corrected black holes, they
are not unique to this context and signal serious physical pathologies of isolated gravitating systems in
general.
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I. INTRODUCTION

According to the equivalence principle, which consti-
tutes the foundation of general relativity (GR) and of metric
theories of gravity [1,2], the gravitational field can be
eliminated locally and it is impossible to assign a local
energy density to the gravitational field. For isolated
systems, one can consider the notion of mass at spatial
infinity, which is embodied by the Arnowitt-Deser-Misner
(ADM) construct. This concept, however, is not defined
for nonisolated systems (for example, massive objects
embedded in cosmological spacetimes), and it is only
defined asymptotically. It is, however, possible to define
the mass energy of a gravitating system in a quasilocal way.
In the presence of spherical symmetry, the Misner-Sharp-
Hernandez mass [3,4] has been used for a long time,
especially in the context of the gravitational collapse of
fluids. The Misner-Sharp-Hernandez mass finds a gener-
alization to nonspherically symmetric spacetimes in the
Hawking quasilocal mass [5,6], and several other defini-
tions of quasilocal energy have been proposed (see Ref. [7]
for a review).
The Hawking quasilocal mass is not normally associated

with asymptotic flatness, however one can associate certain
“anomalies” in the behavior of the Hawking mass when the
gravitational field exhibits pathologies. The purpose of this
work is to illustrate this association and to discuss how the
Hawking/Misner-Sharp-Hernandezmass can signal unphys-
ical properties of spacetime.
The first occurrence of this association is in the context of

regular black holes. In the quest to avoid spacetime singu-
larities, proposals have been made to quantize the full GR
theory or, from more phenomenological points of view, at

least its black holes to remove the timelike singularities
hiding inside them. Naturally, much attention has focused on
removing the singularity of the prototypical Schwarzschild
black hole and the quantum-corrected black holes proposed
in the literature are usually static and spherically symmetric
geometries. Often, these quantum-corrected black holes do
not describe isolated systems in vacuo and, sometimes, they
are not even asymptotically flat. The Bardeen regular black
hole [8] can be construed as a solution of the Einstein
equations coupled to nonlinear electrodynamics, thus it is not
a vacuum solution [9].Many other examples of regular black
holes have been provided over the years, including the more
recent Planck star proposal ([10], see [11] for a review) and
the subject is a mature one with a relatively large literature
devoted to it. Quantum correcting the Schwarzschild black
hole according to loop quantum gravity produces a geometry
[12–14] that fails to be truly asymptotically flat [15,16]. This
fact causes the black hole geometry to exhibit unexpected
unphysical properties, due to the fact that the small quantum
gravity corrections actually dominate in regions in which
gravity is weak, as well as in strong gravity regions near the
singularity that they are designed to eliminate [15,16]. This
fact is responsible for unphysical properties, which include a
vanishing quasilocal mass as seen from spatial infinity,
instead of the positive Schwarzschild mass that one expects
to recover far away from the black hole [16]. In addition, no
initially outgoing timelike geodesic can reach r ¼ þ∞,
where r is the areal radius [16].
Motivated by the example of quantum corrected and

regular black holes, we consider the more general question
of whether possible variations in the definition of asymp-
totic flatness (i.e., in the falloff rate of the fields) can be
physically meaningful. We use the ADM mass at infinity
and the Hawking quasilocal mass as tools to discuss
physical properties of the gravitating systems described.
The result is that the falloff rates of the physical fields
required in the definition of asymptotic flatness are strictly
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necessary and relaxing them causes physical pathologies,
which will be discussed.
In Sec. II we recall the definition of ADM mass and

discuss the physical implications of relaxing the falloff
rates of the fields in it. Since the ADMmass is only defined
at infinity, in Sec. III we seek further physical insight by
using the Hawking quasilocal mass [5,6], which is defined
at any finite distance from a self-gravitating body but
reduces to the ADM mass at spatial infinity. It is also
defined in nonasymptotically flat geometries, which allows
us to explore easily geometries that relax the requirements
of asymptotic flatness.
We first consider spherical symmetry, in which case

the Hawking mass reduces to the better known Misner-
Sharp-Hernandez mass used in fluid mechanics and in
gravitational collapse [3,4]. Then, in Sec. IV, we relax the
assumption of spherical symmetry. Predictably, it is much
more difficult to prove precise statements in this general
situation, but we provide an argument in general (i.e.,
nonspherically symmetric) geometries pointing again to the
fact that the conditions in the definition of asymptotic
flatness cannot be relaxed without introducing physical
pathologies. These pathologies are reflected in anomalies in
the Hawking mass, such as its vanishing or divergence at
spatial infinity, or the fact that it receives a contribution
from matter but not from the gravitational field.
Throughout this work, we follow the notation of Ref. [1].

Units are such that the speed of light and Newton’s constant
are unity.

II. ASYMPTOTIC FLATNESS AND ADM MASS

Let us consider the 3þ 1 foliation of a general spacetime
ðM; gÞ, with g denoting the metric tensor, in terms of three-
dimensional spacelike hypersurfaces Σt ¼ fxμjtðxμÞ ¼
constg, with t denoting a time function. The time evolution
of the system is, therefore, generated by the vector field
∂=∂t that can be split into a component tangent to Σt and a
normal to the hypersurface, i.e.,

� ∂
∂t
�

a
¼ Nna þ Na; ð2:1Þ

with N the lapse function, Na the shift vector, and na the
normal to Σt (in the coordinate representation nα ∼ ∂αt).
The pullback of g onto Σt defines the induced metric

γab ¼ φ�gab, with φ denoting the embedding of ðΣt; γÞ into
ðM; gÞ. γab, adapted to the coordinates on ðM; gÞ, reads

γμν ¼ gμν þ nμnν; ð2:2Þ

in fact γμν acts as a tangential projector onto Σt, i.e., if
Va ∈ TM, then γμνVν belongs to TΣt. In a similar way, the
Levi-Civita connection ∇ defined on ðM; gÞ induces the
Levi-Civita connection D on ðΣt; γÞ. Furthermore, if
ϵ ¼ ffiffiffiffiffiffi−gp

dx0 ∧ dx1 ∧ dx2 ∧ dx3 denotes the volume form

on ðM; gÞ, then ϵ̄ ¼ ffiffiffi
γ

p
dy1 ∧ dy2 ∧ dy3. If we adapt our

chart on Σt so that yi ¼ xi for i ¼ 1, 2, 3, then
ϵ̄αβγ ¼ nμϵμαβγ .
Finally, the extrinsic curvature of ðΣt; γÞ in ðM; gÞ is

defined as

Kab ≔
1

2
Lnγab: ð2:3Þ

In a coordinate chart of ðM; gÞ, this reads

Kμν ¼ γμ
α∇αnν ¼ γμ

αγν
β∇αnβ: ð2:4Þ

Similarly to the case of spacelike three surfaces Σ, one
can embed closed two surfaces S into Σ. The normal bundle
T⊥S of S can be spanned by a timelike vector field na and a
spacelike vector field sa. Usually, one also conventionally
chooses these two vectors to be orthogonal, i.e., nasa ¼ 0.
Thus, if Σ is a spacelike three surface embedded in the
spacetime ðM; gÞ, one can identify na with the (timelike)
normal to Σ, whereas sa will be the normal to S tangent to
Σ, i.e., sa ∈ TΣ and na ∈ T⊥Σ. (Alternatively, T⊥S can be
split at each p ∈ S in terms of two null normal vectors
tangent to ingoing and outgoing null geodesics.) Hence,
ðS; qÞ is an embedded closed two surface in ðΣt; γÞ, with q
being the pullback of γ to S that, in a coordinate chart of
ðM; gÞ adapted to the 3þ 1 splitting, reads

qμν ¼ gμν þ nμnν − sμsν ¼ γμν − sμsν: ð2:5Þ

The induced Levi-Civita connection on ðS; qÞ is denoted by
2D, while the surface two form is 2ϵ ¼ ffiffiffi

q
p

dz1 ∧ dz2. If one
considers a coordinate chart of ðM; gÞ adapted to the 3þ 1

splitting, it yields 2ϵμν ¼ nαsβϵαβμν. Then, we denote the

deformation tensor ΘðvÞ
ab associated with the vector field va

normal to S as

ΘðvÞ
μν ¼ qαμqβν∇αvβ; ð2:6Þ

in the usual coordinate chart of ðM; gÞ adapted to the 3þ 1
splitting. In particular, we denote by

kab ≡ ΘðsÞ
ab ; ð2:7Þ

the extrinsic curvature of ðS; qÞ inside the three slice ðΣt; γÞ
corresponding to the spacelike normal sa.
Let us now move on to the notion of asymptotic flatness

and the 3þ 1 decomposition using a coordinate-based
approach (see [17] for further details). Let Σ be a three-
dimensional spacelike slice of ðM; gÞ with induced metric
γab. Σ is an asymptotically flat slice if there exists a
Riemannian background metric fij such that

(i) fij is flat, except on a compact domain D ⊂ Σ.
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(ii) ∃ a Cartesian-like chart fxi∶M → R3g such that,
outside D, one has fij ¼ diagð1; 1; 1Þ and r≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
can take arbitrary large value;

(iii) as r → ∞, one has

γij ¼ fij þOð1=rÞ; ð2:8Þ

∂kγij ¼ Oð1=r2Þ; ð2:9Þ

Kij ¼ Oð1=r2Þ; ð2:10Þ

∂kKij ¼ Oð1=r3Þ: ð2:11Þ

Given an asymptotically flat spacetime foliated by asymp-
totically flat (or Euclidean) slices Σt, one defines spatial
infinity as r → ∞ and denotes it by i0.
Let V ⊂ M be a four-dimensional spacetime region with

boundary ∂V such that

∂V ¼ Σt1 ∪ ð−Σt2Þ ∪ T ; ð2:12Þ

with t1 < t2, Σt1 ;Σt2 two spacelike three slices (as above)
with metric and extrinsic curvature ðγab; KabÞ, T an outer
timelike tube, and let the boundary condition be
δgabj∂V ¼ 0. Note that St ≡ Σt2 ∩ T forms a closed space-
like two surface with induced metric and extrinsic curva-
ture ðqab; kabÞ.
The Einstein-Hilbert action, including also the Gibbons-

Hawking-York boundary term, reads

S ¼ 1

16π

Z
V
ϵRþ 1

8π

Z
∂V

ϵ̄ðK − K0Þ; ð2:13Þ

with K0 denoting the extrinsic curvature of the boundary
embedded in flat spacetime. This action then reduces to

S ¼ 1

16π

Z
t2

t1

dt

�Z
Σt

Nð3Rþ KijKij − K2Þ ffiffiffi
γ

p
d3x

þ2

I
St

ðk − k0ÞN ffiffiffi
q

p
d2x

�
; ð2:14Þ

with k and k0 being the trace of the extrinsic curvature of St
embedded in ðΣt; γÞ and ðΣt; fÞ, respectively.
Moving to the Hamiltonian formalism, one finds the total

Hamiltonian

H ¼ −
1

16π

�Z
Σt

ðNHþ 2NiHiÞ
ffiffiffi
γ

p
d3x

þ2

I
St

½Nðk − k0Þ − NiðKij − KγijÞsj�
ffiffiffi
q

p
d2x

�
;

ð2:15Þ

with H ¼ 3R − KijKij þ K2 and Hi ¼ DjK
j
i −DiK.

In vacuo, it is H ¼ Hi ¼ 0 (Hamiltonian and momen-
tum constraints) on solutions of the Einstein equation.
Hence, on shell, one has

Hon shell ¼ −
1

8π

I
St

½Nðk − k0Þ − NiðKij − KγijÞsj� ffiffiffi
q

p
d2x:

ð2:16Þ

Choosing ∂=∂t so that it is associated with some asymp-
totically inertial observer, i.e., N ¼ 1 and Ni ¼ 0 when
r → ∞, yields the ADM mass

M ¼ −
1

8π
lim

Stðr→∞Þ

I
St

ðk − k0Þ ffiffiffi
q

p
d2x; ð2:17Þ

and then using the asymptotically flat slicing one finds

M ¼ 1

16π
lim

Stðr→∞Þ

I
St

ð∂jγ
j
i − ∂iγ

j
jÞsi

ffiffiffi
q

p
d2x ð2:18Þ

(see Ref. [18] for an explicit derivation). The asymptotic
flatness conditions guarantee the convergence of this
integral.
To appreciate the effect of metric components decaying

slower than 1=r, it is useful to contemplate the analogous
situation in Newtonian gravity. In vacuo, the Newtonian
potential ϕ solves the Laplace equation ∇2ϕ ¼ 0 and can
be expressed as the sum of a monopole term, a dipole term,
etc., which makes the first integral in Eq. (2.15) converge.
The fact that ϕ decays slower than 1=r signals the presence
of matter (or, possibly, effective matter1) in space, in which
case the Laplace equation turns into the Poisson equation
∇2ϕ ¼ 4πρ. A similar property holds in GR: in vacuo and
for a stationary self-gravitating and isolated source, the
general metric is necessarily given by a multipole expan-
sion with the first term scaling as 1=r and no terms scaling
as r−ð1−ϵÞ (with ϵ > 0) are possible [19]. The curvature
tensor coincides with the Weyl tensor Ca

bcd, which exhibits
the peeling property along null geodesics [20,21]. The
failure to satisfy this property for a stationary spacetime
signals the presence of matter (or effective matter) and a
nonvanishing Ricci tensor Rab (see Sec. IV).

1This is the case, for example, if a cosmological constant is
introduced into the Laplace equation.
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In the presence of matter fields, H ∝ ρ and Hi ∝ Ji

(where ρ and Ji are the energy density and energy current
density, respectively) and the first integral in the right-hand
side of Eq. (2.15) converges only if the matter fields decay
sufficiently fast. This is the case, for example, for exact
solutions of the Einstein equations describing relativistic
stars with energy density that is not a function with compact
support but decays very fast as r → ∞ (see [22] for a
review). If this integral diverges, there cannot be asymptotic
flatness and the ADM mass is not defined. What is more,
any pathologies in the energy density or effective density
(for example, a negative sign, as in certain quantum-
corrected black holes) will leave an imprint in the ADM
mass (when the latter is well defined).

III. QUASILOCAL MASS—SPHERICAL
SYMMETRY

Let us turn now to a different concept of mass, the
Hawking quasilocal mass, which has the potential to
provide extra information with respect to the ADM mass.
In fact, the quasilocal mass is defined using topological two
spheres of finite size, while the ADM mass is necessarily
defined only at spatial infinity. For simplicity, we restrict to
spherically symmetric and static geometries gab. The line
element can be written as

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dΩ2
ð2Þ ð3:1Þ

without loss of generality, where r is the areal radius
defined by the two spheres of symmetry and dΩ2

ð2Þ ≡
dϑ2 þ sin2ϑdφ2 is the line element on the unit two sphere.
In spherical symmetry, the Hawking quasilocal mass

[5,6] reduces [23] to the better known Misner-Sharp-
Hernandez mass MMSH defined by [3,4]

MMSH ¼ r
2
ð1 −∇cr∇crÞ; ð3:2Þ

which, in the gauge (3.1), assumes the form

MMSH ¼ r
2

�
1 −

1

B

�
: ð3:3Þ

The loop quantum gravity black hole of [12–14] fails to
be asymptotically flat [15,16] and this feature is reflected in
a vanishing quasilocal mass at large (areal) radii [16]. Other
quantum-corrected black holes have the correct asymptotic
flatness. For example, the Kehagias-Sfetsos geometry is a
solution of Hořava-Lifschitz gravity [24] in the presence of
plasma, with line element [25]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ð2Þ; ð3:4Þ

where

fðrÞ ¼ 1þ ωKSr2
�
1 −

�
1þ 4m

ωKSr3

�
1=2

�
: ð3:5Þ

By expanding for m=r ≪ 1, one obtains fðrÞ ≃ 1–2m=rþ
Oð1=r2Þ, which is the correct asymptotics for asymptotic
flatness.
Let us discuss the relation between Misner-Sharp-

Hernandez mass and asymptotic flatness more in general.
In asymptotically flat spacetimes, the metric component grr
has the asymptotics

grr ¼ 1þO
�
1

r

�
; ð3:6Þ

which implies that also grr ¼ 1þOð1=rÞ; then the qua-
silocal mass (3.3) is finite since the prefactor r cancels the
only remaining term in the round brackets, which is of
order 1=r. This situation is physical and occurs, for
example, in the Schwarzschild geometry

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ dr2

1 − 2m=r
þ r2dΩ2

ð2Þ; ð3:7Þ

for which MMSH does not depend on the position r and
coincides with the Schwarzschild mass m everywhere
outside the horizon r ¼ 2m, and with the ADM and the
Newtonian mass as r → þ∞.
If the metric is not asymptotically flat, say

grr ¼ 1þO
�

1

r1þϵ

�
; ð3:8Þ

with ϵ > 0, then MMSHðrÞ → 0 as r → ∞. This is the
situation, e.g., for the quantum-corrected Schwarzschild
black hole of [12–14], for which grr ¼ ½1 − ð2m=rÞ1þϵ�−1,
where ϵ is a small positive number (dependent on the black
hole mass) that, for a solar mass black hole, assumes the
value ∼10−26 [14]. In this case the mass MMSH (which is
always defined in spherical symmetry) vanishes as
r → þ∞. In this limit, the Newtonian potential ϕN is
given by

1þ 2ϕN ¼ 1 −
�
2m
r

�
1þϵ ≡ 1 −

2MðrÞ
r

; ð3:9Þ

and one obtains the position-dependent Newtonian mass

MðrÞ ¼
�
2m
r

�
ϵ

m; ð3:10Þ

which does not coincide with the mass obtained from the
monopole term of the expansion of the metric in multipoles,
as it should.
If instead grr ¼ 1þOð1=r1−ϵÞ (again, with ϵ > 0), then

the quasilocal mass MMSHðrÞ is again position-dependent
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and diverges as r → þ∞, another unphysical situation for
an isolated object.
What is more, if the asymptotics required by the

definition of asymptotic flatness is not satisfied, the
Newtonian limit is jeopardized. In an asymptotically flat
system, at large spatial distances from the source of gravity
one ought to recover the post-Newtonian approximation [2]
in which the line element reduces to

ds2 ¼ −ð1þ ϕNÞdt2 þ ð1 − ϕNÞðdr2 þ r2dΩ2
ð2ÞÞ: ð3:11Þ

The dominant term in the Newtonian potential ϕN must be a
monopole, and this term must be present. Contrary to
electrostatics, in which electric charge can have positive or
negative sign and one could have a dipole with zero total
charge, mass cannot be negative and the first term in a
multipole expansion of ϕN must necessarily be the monop-
ole term scaling as 1=r. The failure to obtain such a term
means that the geometry does not admit a Newtonian limit.
While this possibility is fine for, e.g., gravitational waves
that do not have a counterpart in Newtonian gravity, it is
unacceptable for an isolated black hole.
Another example is given by a Reissner-Nordstrom

naked singularity with electric charge and vanishing mass
parameter,

ds2 ¼ −
�
1þQ2

r2

�
dt2 þ dr2

1þQ2=r2
þ r2dΩ2

ð2Þ; ð3:12Þ

which has Misner-Sharp-Hernandez quasilocal mass

MMSHðrÞ ¼ −
Q2

2r
: ð3:13Þ

A silly object like an electric charge without mass violates
the positivity of the quasilocal energy everywhere and
should not exist. Although, superficially, the metric reduces
to theMinkowski one away from the central object, it does so
with the wrong asymptotics grr ¼ 1þOð1=r2Þ, which
creates a negative Misner-Sharp-Hernandez mass every-
where. AlthoughMMSH is defined independent of the energy
conditions, a deviation from the correct asymptotics signals
the presence of a distribution of mass-energy incompatible
with an isolated object and true asymptotic flatness, or some
physical pathology. If the energy density and stresses of the
latter do not fall off sufficiently rapidly, then the notion of
asymptotic flatness as referring to isolated energy distribu-
tions fails. What is more, if this energy distribution corre-
sponds to negative energies, it leaves an imprint on the
quasilocal mass and may make it negative. Of course, this is
not the only way to violate the positivity of the MSH mass:
for example, the Schwarzschild solution with negative mass
(another naked singularity) does that, but it has the correct
asymptotics required by asymptotic flatness.

The spherically symmetric Bardeen regular black hole
[8] is asymptotically flat and the MSH mass is well
behaved, and so are the Hayward regular black hole [26]
and its modification describing a Planck star [27], the
Peltola-Kunstatter black hole arising in polymer quantiza-
tion of the Schwarzschild geometry [28], and the Gambini-
Olmedo-Pullin regular black hole [29]. Therefore, quantum
corrections do not necessarily spoil asymptotic flatness or
introduce physical pathologies or mass anomalies.
We can add some insight by recasting the spherical line

element in a particular gauge exhibiting explicitly the
Misner-Sharp-Hernandez mass. Any spherically symmetric
metric can be rewritten in the Abreu-Visser gauge

ds2¼−e−2Φ
�
1−

2M
r

�
dt2þ dr2

1−2M=r
þr2dΩ2

ð2Þ; ð3:14Þ

where Φ ¼ Φðt; rÞ, M ¼ Mðt; rÞ and, a posteriori, M is
shown to be the Misner-Sharp-Hernandez mass [30]. It
follows immediately from this line element that, as
r → þ∞, the asymptotic flatness conditions (2.8)–(2.11)
require that2 2M=r ¼ Oð1=rÞ and M tends to a finite limit
M∞, or M ¼ Oð1Þ.
Let us consider now the stress energy tensor Tab

associated with this geometry, which is given by

G00 ¼ 8πT00 ¼
2M0

r2
; ð3:15Þ

G01 ¼
2 _MeΦ

r2ð1 − 2M=rÞ ; ð3:16Þ

G11 ¼ −
2M0

r2
−
2Φ0

r

�
1 −

2M
r

�
; ð3:17Þ

G22 ¼ G33 ¼
M00

r
−
e−Φ

r
∂
∂t

�
_MeΦ

ð1 − 2M=rÞ2
�

−
eΦ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p ∂
∂r

�
r

�
1 −

2M
r

�
3=2

e−ΦΦ0
�
;

ð3:18Þ

where a prime and an overdot denote differentiation with
respect to radius and time, respectively. Although these
expressions are too cumbersome to draw general conclu-
sions, we can restrict to static ( _M ¼ 0) geometries for
which Φ≡ 0. Almost all the quantum-corrected black
holes proposed in the literature (but not Planck stars
[27]) have this form. Then, the energy density of matter
is simply

2This conclusion agrees with the recent Ref. [31].
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ρ ¼ M0

4πr2
ð3:19Þ

and we conclude immediately that vacuum corresponds to
constantM (as in the case of the Schwarzschild black hole)
and, in the presence of matter, ρ > 0 if and only if the
Misner-Sharp-Hernandez mass increases with radius,
M0 > 0. Furthermore, the fact that M decreases with r,
i.e., M0 < 0, signals the presence of a negative energy
density, which decreases the value due to a central object
that would be constant in the absence of this energy
distribution in its exterior (this is exactly the case of the
quantum-corrected Schwarzschild black hole of [12–14]).
Therefore, pathologies in the behavior of the Misner-Sharp-
Hernandez mass signal physically pathological behavior of
the geometry.

IV. QUASILOCAL MASS—GENERAL
SPACETIMES

Let us remove now the assumption that the spacetime is
spherically symmetric or stationary. The Misner-Sharp-
Hernandez mass is then generalized by the Hawking
quasilocal mass [5,6], defined as follows.
Let S be a spacelike, compact, and orientable two

surface; denote with R the induced Ricci scalar on S,

and let θð�Þ and σ
ð�Þ
ab be the expansions and shear tensors of

a pair of null geodesic congruences (outgoing and ingoing
from the surface S). Let hab be the two metric induced on S
by gab, let μ be the volume two form on the surface S, while
A is the area of S; then [5]

MH ≡ 1

8π

ffiffiffiffiffiffiffiffi
A
16π

r Z
S
μ

�
Rþ θðþÞθð−Þ −

1

2
σðþÞ
ab σabð−Þ

�
: ð4:1Þ

As a consequence of the Riemann tensor splitting into Ricci
and Weyl parts [1]

Rabcd ¼ Cabcd þ ga½cRd�b − gb½cRd�a −
R
3
ga½cgd�b ð4:2Þ

(where Rab and Cabcd are the Ricci and Weyl tensors,
respectively, and R≡ Rc

c is the Ricci scalar), the Hawking
mass splits into two contributions, one coming from matter
and one from the vacuum gravitational field, respectively.
We recall this decomposition, performed in Ref. [32]. We
use the contracted Gauss equation [6]

RðhÞ þ θðþÞθð−Þ −
1

2
σðþÞ
ab σabð−Þ ¼ hachbdRabcd ð4:3Þ

to compute the integral defining the Hawking mass. Using
then the Einstein equations

Rab ¼ 8πG

�
Tab −

1

2
gabT

�
ð4:4Þ

and R ¼ −8πGT (where T ≡ Tc
c), one obtains

hachbdRabcd ¼ hachbdCabcd þ 8πGhachbd
�
ga½cTd�b

− gb½cTd�a −
T
2
ðga½cgd�b − gb½cgd�aÞ

�
: ð4:5Þ

Then,

hachbdðga½cgd�b − gb½cgd�aÞ ¼ 2; ð4:6Þ

hachbdðga½cTd�b − gb½cTd�aÞ ¼ habTab ð4:7Þ

give the Hawking mass as3 [32]

MH ¼
ffiffiffiffiffiffiffiffi
A
16π

r Z
S
μ

�
habTab −

2T
3

�

þ 1

8πG

ffiffiffiffiffiffiffiffi
A
16π

r Z
S
μhachbdCabcd; ð4:8Þ

where the first integral on the right hand side is the matter
contribution and the second integral is the Weyl free field
contribution, and the only one present in vacuo. Since we
have used the Einstein equations, the rest of this discussion
applies only to geometries that solve these equations.
If the matter content of spacetime consists of a single

perfect fluid with stress-energy tensor

Tab ¼ ðPþ ρÞuaub þ Pgab; ð4:9Þ

energy density ρ, pressure P, and four velocity uc, then one
can choose the two surface S comoving with the fluid (i.e.,
the unit normal na to S pointing outside of Σt is parallel to
the timelike fluid four velocity ua), hacuc vanishes, and

habTab −
2T
3

¼ 2ρ

3
: ð4:10Þ

In the case of an imperfect fluid, the stress-energy tensor
is instead

Tab ¼ ρuaub þ Pγab þ qaub þ qbua þ Πab; ð4:11Þ

where γab is the three metric on the three space orthogonal
to ua, as in

gab ¼ −uaub þ γab; ð4:12Þ

qa is a purely spatial heat current vector (qcuc ¼ 0), and
Πab is the symmetric, trace-free, shear tensor. The trace is
T ¼ −ρþ 3P and now [32]

3This splitting and the corresponding equation (4.8) occur also
in scalar-tensor gravity [33].
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habTab −
2T
3

¼ 2

3
ρþ habΠab

¼ 2

3
ρþ Π2

2 þ Π3
3 ¼

2

3
ρ − Π1

1 ð4:13Þ

[where ðx2; x3Þ are coordinates on S].
Let us consider vacuum, in which case MH given by

Eq. (4.8) coincides with the Weyl contribution. In asymp-
totically flat spacetimes according to the definition of
Sec. II, the Weyl tensor enjoys the well-known peeling
property [20,21]. Let γ denote null geodesics going from a
finite point to null infinity, λ be an affine parameter along
such a geodesic, and ka its four tangent. Then, the Weyl
tensor splits according to

Ca
bcd ¼

ðCa
bcdÞðIÞ
λ

þ ðCa
bcdÞðIIÞ
λ2

þ ðCa
bcdÞðIIIÞ
λ3

þ ðCa
bcdÞðIVÞ
λ4

þO
�
1

λ5

�
; ð4:14Þ

where, in the algebraic classification of Ref. [1], ðCa
bcdÞðIÞ is

of type IV, ðCa
bcdÞðIIÞ of type III, ðCa

bcdÞðIIIÞ of type II or
II-II, andka is the repeated principal null vector. ðCa

bcdÞðIVÞ is
of type I and ka is one of the principal null directions ofCa

bcd.
This asymptotics in terms of an affine null geodesic

parameter may not seem illuminating in general, but there
is a situation in which it is, and which includes most of the
regular black holes proposed in the literature. Let the space-
time be stationary and spherically symmetric, with the extra
requirement that gttgrr ¼ −1; that is, the line element assumes
the form (3.4). As shown in Ref. [34], this extra requirement is
equivalent to the areal radius r being an affine parameter along
radial null geodesics. Now consider the surface S to be a two
sphere orbit of the spherical symmetry, and γ to be radial
outgoing null geodesics emanating from S. Then, the peeling
property (4.14) of the Weyl tensor can be rewritten using r
insteadof λ. This equation then shows that no termsdecreasing
slower than 1=r are possible in the integrand ofMH in vacuo.
Such termsmay be created when a form ofmatter (or effective
matter) with Tab ≠ 0, responsible for the first integral in the
right hand side of Eq. (2.15), produces a nonvanishing Ricci
tensorRab. Similarly, no fractional powers of 1=r are possible
in the Weyl tensor in vacuo.
In general (i.e., nonspherically symmetric) geometries,

the affine parameter λ along null geodesics does not
coincide with the radial coordinate (assuming that polar
coordinates are used). However, in asymptotically flat
spacetimes, the dominant term as r → ∞ is the monopole
one [19] and the property gttgrr ¼ −1 is satisfied with
better and better accuracy further and further away from the
source. Since the metric components gϑϑ; gφφ in polar
coordinates scale as r2 and r2 sin2 ϑ, respectively, we have

C2323 ∼ r2C2
323 ∼ rðC2

323ÞðIÞ ð4:15Þ

and

hachbdCabcd ≃
2C2323

r4sin2ϑ
∼
ðC2

323ÞðIÞ
r3

: ð4:16Þ

Then, in vacuo,

MH ¼ 1

8π

ffiffiffiffiffiffiffiffi
A
16π

r Z
S
μhachbdCabcd ≃

r
16π

ðC2
323ÞðIÞ
r

∼
ðC2

323ÞðIÞ
16π

: ð4:17Þ

If the system is not asymptotically flat, there will be the
contribution toMH from the matter stress-energy tensor Tab
and the peeling property of the Weyl tensor will not be
satisfied. Then, the dominant term will not be of order
Oð1=rÞ and the Weyl contribution to MH will diverge or
vanish. The latter situation corresponds to zero contribution
toMH from the gravitational field, withMH reducing solely
to the matter contribution. Both cases are unphysical.

V. CONCLUSIONS

Physical anomalies in the general-relativistic gravita-
tional field can be signaled by anomalies of the Hawking
quasilocal mass MH [5,6] or, in spherical symmetry, of its
better known version, the Misner-Sharp-Hernandez mass
[3,4]. These anomalies include situations in which the
quasilocal mass becomes negative, zero, or diverges. While
this association is brought about by certain quantum-
corrected black holes, the association between anomalies
in MH and physical pathologies is more general, as shown
by the examples discussed in this work. In particular, a
monopole term scaling as 1=r is a necessity for isolated
gravitating systems and for their Newtonian counterparts
(GR solutions which do not have Newtonian counterparts,
or nonasymptotically flat analytical solutions that are not
realized in nature, such as infinitely long cylindrical
solutions, or pp-waves, escape this requirement).
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