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Born-Infeld AdS black hole exhibits a reentrant phase transition for certain values of the Born-Infeld
parameter b. This behavior is an additional feature compared to the van der Waals like phase transition
observed in charged AdS black holes. Therefore, it is worth observing the underlying microscopic origin of
this reentrant phase transition. Depending on the value of the parameter b, the black hole system has four
different cases: no phase transition, a reentrant phase transition with two scenarios, or a van der Waals-like
(standard) phase transition. In this article, by employing a novel Ruppeiner geometry method in the
parameter space of temperature and volume, we investigate the microstructure of Born-Infeld AdS black
hole via the phase transition study, which includes standard and reentrant phase transitions. We find that the
microstructures of the black hole that lead to standard and reentrant phase transitions are distinct in nature.
The standard phase transition is characterized by the typical RN-AdS microstructure. In this case, the small
black hole phase has a dominant repulsive interaction for the low temperature case. Interestingly, during the
reentrant phase transition, displayed by the system in a range of pressures for specific b values, the
dominant attractive nature of interaction in the microstructure is preserved. Our results suggest that in the
reentrant phase transition case, the intermediate black holes behave like a bosonic gas, and in the standard
phase transition case the small black holes behave like a quantum anyon gas. In both cases, the large black
hole phase displays an interaction similar to the bosonic gas. The critical phenomenon is observed from the
curvature scalar, including the signature of the reentrant phase transition.
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I. INTRODUCTION

In physics, thermodynamics is a general and powerful
tool to understand the physical properties of a system and a
wide range of phenomena. The simplicity of thermody-
namics lies in its inherent property that, the microscopic
details are not necessary to explore the macroscopic
physics. This property is particularly useful in dealing
with the systems for which the microscopic details are not
well understood, such as, quantum gravity. Therefore the
lack of full knowledge of quantum aspects of black hole
offers a perfect scenario for the application of thermody-
namics to probe its microscopic details.
Black holes being thermodynamic systems [1–4], exhibit

a rich class of phase transitions, which are the key tools in
probing their properties in black hole chemistry. The quite
interesting facet of black hole thermodynamics is the phase

transition and related phenomenon in AdS spaces. In recent
times the interest on AdS black hole thermodynamics
aroused among the researchers, after the identification of
the cosmological constant with the thermodynamic pres-
sure and the modification in the first law by including the
corresponding variations [5,6]. With this association, it was
demonstrated that the phase transition features of AdS
black holes can be seen as van der Waals like and/or
reentrant phase transitions (RPT) [7–9].
A reentrant phase transition (RPT) occurs when the

system undergoes more than one phase transition when
there is a monotonic change in the thermodynamic variable,
such that, the initial and final macrostates of the system
are the same. In conventional thermodynamic systems,
this phenomenon was first observed in the nicotine/water
mixture, in a process with a fixed percentage of nicotine
and an increase in the temperature, the system exhibited
a reentrant phase transition from initial homogeneous
mixed state to an intermediate distinct nicotine/water
phases and finally to the homogeneous state [10]. This
kind of reentrant phase transition is observed in a variety of
physical systems, more commonly in multicomponent fluid

*naviphysics@gmail.com
†ahmedrizwancl@gmail.com
‡hegde.kartheek@gmail.com
§ajith@nitk.ac.in∥alimd.sabir3@gmail.com

PHYSICAL REVIEW D 103, 044025 (2021)

2470-0010=2021=103(4)=044025(18) 044025-1 © 2021 American Physical Society

https://orcid.org/0000-0001-7636-8870
https://orcid.org/0000-0002-1569-9999
https://orcid.org/0000-0001-8327-9518
https://orcid.org/0000-0002-7187-6881
https://orcid.org/0000-0001-6670-7955
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.044025&domain=pdf&date_stamp=2021-02-12
https://doi.org/10.1103/PhysRevD.103.044025
https://doi.org/10.1103/PhysRevD.103.044025
https://doi.org/10.1103/PhysRevD.103.044025
https://doi.org/10.1103/PhysRevD.103.044025


systems, gels, ferroelectrics, liquid crystals, binary gases
etc. [11]. This phenomenon is not limited to condensed
matter physics, for example, a (2þ 1) dimensional Dirac
oscillator in noncommutative spacetime and magnetic field
shows a similar phase transition [12].
In black hole physics, reentrant phase transition was first

observed in four-dimensional Born-Infeld AdS black holes
[8], where the initial and final phases are large black holes
and the intermediate phase is an intermediate black hole.
For this case, LBH/IBH/LBH reentrant phase transition
takes place when the temperature is decreased monoton-
ically in a certain range of pressure. However, higher
dimensional Born-Infeld black holes do not show reentrant
phase transitions [13]. Interestingly, rotating black holes in
dimensions d ≥ 6 show reentrant phase transitions [14]. In
subsequent studies, the RPT in higher dimensional single
spinning and multispinning Kerr black holes in anti–de
Sitter and de Sitter spacetime were investigated [15–17].
Reentrant phase transitions were also observed in gravity
theories consisting of higher-curvature corrections [18–22].
The reentrant phase transition of Born-Infeld black hole
was also analyzed with a different perspective, wherein the
charge of the system was varied, and the cosmological
constant (pressure) was kept fixed [23]. Furthermore, the
relationship between the RPT and the photon sphere of
Born-Infeld AdS spacetime has been studied [24]. With a
motivation from the famous saying by Boltzmann, “If you
can heat it, it has microstructure,” it is reasonable to ask,
what is the underlying microstructure that leads to a
reentrant phase transition in a black hole?
It is a well-established notion that the geometrical

methods can serve as a tool to understand microscopic
interactions in a thermal system. It was Weinhold who
constructed the first thermodynamic geometry method, by
considering internal energy as the thermodynamic potential
[25]. Later, by choosing entropy as the thermodynamic
potential, another nifty geometrical method was introduced
by Ruppeiner, starting from Boltzmann entropy formula
[26]. Essentially, the geometrical methods were developed
from Gaussian thermodynamic fluctuation theory, in which
a metric is constructed by choosing a suitable thermody-
namic potential in a phase space which constitutes other
thermodynamic variables, the corresponding curvature
scalar encodes details about phase transitions and critical
points. This method was used in analyzing the conventional
thermal systems like ideal fluids, van der Waals (vdW)
systems, Ising models, quantum gases etc. [27–34]. The
results so obtained give a very clear picture of the
applicability of the geometrical methods in understanding
microscopic details. The two main aspects of Ruppeiner
geometry is the revelation of correlation and the interaction
type of the microstructure. The sign of the curvature scalar
is an indicator of the nature of the interaction, positive/
negative for repulsive/attractive interaction and zero for no
interaction. On the other hand, the magnitude of the

curvature scalar is the measure of correlation length of
the system. As the correlation length diverges near the
critical point of the system, so does the curvature scalar.
As the entropy is taken to be the thermodynamic

potential in Ruppeiner geometry, the application of it to
black hole system is straightforward and interesting (see
Ref. [35] for a recent review on this). An early accomplish-
ment of this method is to the BTZ black holes [36]. Later,
the nature of microstructure of Reissner-Nordstrom (RN)
black hole was sought for using this method [37], where the
curvature scalar R vanishes and no interaction was found.
However, a nonvanishing R was expected as the spacetime
is curved. This problem was reexamined by considering a
complete set of thermodynamic variables to begin with,
including the angular momentum and cosmological con-
stant, and taking appropriate limit for RN black hole [38],
which lead to a nonvanishing R. In subsequent develop-
ments, the vdW like behavior of the black hole and the
underlying microscopic details were investigated using the
geometrical methods [39–42]. In this so-called R-crossing
method, the coordinates of the parameter space are taken as
temperature and fluid density, and the diverging behavior of
R can be observed. However mismatch in the divergence of
curvature scalar and specific heat in some cases using this
method, lead to the proposal of several other geometrical
methods [43–56].
Combining the idea of the dynamic cosmological con-

stant in black hole chemistry with the thermodynamic
geometry, a new method of investigating the black hole
microstructure was proposed by Wei et al. [57]. In this
method, mass and pressure were taken as the coordinates
of the parameter space, and a new concept of number
density of black hole molecules was introduced. The
most spectacular outcome of this construction was the
existence of a repulsive interaction in the microstructure of
a charged AdS black hole. Soon, this method was adopted
to investigate various aspects of black hole microstructure
by several researchers [58–69]. Despite the substantial
generalizations and applications of this method, the scalar
curvature thus constructed was lacking the characteristic
divergence behavior near the critical point. This imperfec-
tion compared to the earlier geometrical methods called for
a reanalysis of the basic setting of the methodology.
Recently, a new revised method to rectify the above

shortcoming was proposed by Wei et al. within the
framework of Ruppeiner geometry [70,71]. The key issue
lurking in the previous attempts were the nonindependence
of the thermodynamic variables entropy and volume for a
spherically symmetric AdS black hole. This leads to a
vanishing specific heat, and hence a singularity in line
element and a divergent curvature scalar. In the new
approach, treating the specific heat as a tiny constant close
to zero, and employing the temperature and volume as
fluctuation coordinates, a normalized curvature scalar was
defined to probe the black hole microstructure. The new
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curvature scalar aptly features the critical phenomena and
microstructure interactions of the black hole with universal
properties. Therefore this novel method promptly captured
much attention [72–80]. In this article, we aim to under-
stand the properties of the underlying microstructure that
leads to reentrant phase transition in a Born-Infeld AdS
black hole using this novel method.
It is worth noting that the investigation of the

microstructure of the black hole system has been one
of the major challenges in black hole physics for the
past few decades. Even though string theory and loop
quantum gravity provide tools to understand quantum
gravity, there is no complete theoretical description for
it. Therefore the microscopic physics of black holes is
confined to some phenomenological approaches. The
success of black hole thermodynamics in understanding
various aspects of the black hole prompts us to formu-
late some relation between microdynamics and thermo-
dynamics. However, the process is in a reverse sense
compared to statistical physics, where the microscopic
knowledge is sought from macroscopic details. How-
ever, when we seek the nature of microstructure, we do
not have a clear picture of the black hole constituents,
we take an abstract concept that black holes are
constituted of black hole molecules.
This article is organized as follows. In the next section,

we discuss the thermodynamics and the phase structure of
the black hole. We will consider the van der Waals case
(which will be called SPT throughout the article which
stands for standard phase transition) and RPT case sepa-
rately. Then the microstructure study is carried out by
constructing the Ruppeiner geometry using the fluctuation
coordinates as temperature and volume (Sec. III). In the
final section (IV) we present our results.

II. THERMODYNAMICS AND PHASE
STRUCTURE OF THE BLACK HOLE

In this section we present thermodynamics and phase
structure of the Born-Infeld AdS (BI-AdS) black hole. The
action for Einstein gravity in the presence of Born-Infeld
field has the following form [8,81],

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
"
R− 2Λþ 4b2

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þFμνFμν

2b2

r !#
:

ð1Þ

Here R and Λ are the Ricci scalar and cosmological
constant, respectively. The Born-Infeld parameter b with
dimension of mass represents the maximal electromag-
netic field strength, and is related to the string tension
(the identification is motivated from string theory [82]),
and Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field tensor,
where Aμ is the vector potential. We study the extended
thermodynamics of the black hole, where the cosmological

constant serves the role of thermodynamic pressure. Their
relation to the AdS radius l are given by,

Λ ¼ −
3

l2
; and P ¼ 3

8πl2
: ð2Þ

The solution to the Einstein field equations in the static
and spherically symmetric spacetime background yields
[83–85],

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ ð3Þ

F ¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þQ2=b2

p dt ∧ dr; ð4Þ

with the metric function of the form,

fðrÞ ¼ 1þ r2

l2
−
2M
r

þ 2b2

r

Z
∞

r

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þQ2

b2
− r2

s !
dr

ð5Þ
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−
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r

þ 2b2r2

3

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

s !

þ 4Q2

3r2 2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4

�
: ð6Þ

Where, 2F1 is the hypergeometric function, the parameters
M and Q are the ADM mass and the asymptotic charge of
the solution, respectively. We obtain mass of the black hole
by setting fðrþÞ ¼ 0,

M ¼ rþ
2
þ r3þ
2l2

þ b2r3þ
3

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4þ

s !

þ 2Q2

3r2þ
2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4þ

�
: ð7Þ

The Hawking temperature and the corresponding entropy
are given by,

T ¼ 1

4πrþ

 
1þ 3rþ

l2
þ 2b2r2þ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4þ

s !!
; ð8Þ

S ¼ A
4
¼ πr2þ: ð9Þ

The electric potential Φ and the electric polarization B,
which is conjugate to b and is referred to as BI vacuum
polarization, measured at infinity with respect to the event
horizon they are calculated to be,
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Φ ¼ Q
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B ¼ 2

3
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ Q2

3brþ

!
2F1

×

�
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4
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1
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4
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Q2
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�
: ð11Þ

Interpreting the massM, as enthalpy rather than the internal
energy of the black hole, we obtain the first law of
thermodynamics as,

dM ¼ TdSþ VdPþΦdQþ Bdb; ð12Þ

where V ¼ 4πr3þ
3

is the thermodynamic volume of the
system. In addition to the first law of thermodynamics,
the thermodynamic quantities of BI-AdS black hole
satisfy the Smarr formula, which is obtained by scaling
argument as,

M ¼ 2ðTS − VPÞ þΦQ − Bb: ð13Þ

The equation of state of the black hole system is,

P ¼ T
2rþ

−
1

8πr2þ
−
b2

4π

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4þ

s !
: ð14Þ

The black hole shows a van der Waals like phase transition,
which depends on the value of the Born-Infeld coupling
coefficient b. The critical values corresponding to this
phase transition is obtained by employing the conditions,

ð∂rþPÞT ¼ ð∂rþ;rþPÞT ¼ 0: ð15Þ

The critical values are [8,24],

Pc ¼
1 − 16xQ2

8πr2þc
−
b2

4π

�
1 −

1

4xr2þc

�
; ð16Þ

Tc ¼
1 − 8xQ2

2πrþc
; ð17Þ

rcþ ¼ 1

2

�
1

x2k
−
16Q2

b2

�1
4

; ð18Þ

where

xk ¼ 2

ffiffiffiffiffiffiffiffi
−
p
3

r
cos

 
1

3
arccos

 
3q
2p

ffiffiffiffiffiffi
−3
p

s !
−
2πk
3

!
;

k ¼ 0; 1; 3; ð19Þ

and

p ¼ −
3b2

32Q2
; q ¼ b2

256Q4
: ð20Þ

Since, the critical point corresponding to x2 is always a
complex number, effectively we have only two critical
points. Based on these two values we can classify the
system into four different cases which depend on the value
of b.

(i) Case 1 (no PT), b < b0: For this condition, the
system behaves like a Schwarzschild AdS black
hole. The large black hole phase is stable and the
small black hole phase is unstable. Therefore there is
no van der Waals like phase transition in this case.

(ii) Case 2 (RPT), b0 < b < b1: In this condition, the
system is characterized by two critical points c0 and
c1. However c0 is an unstable point as it has a higher
Gibbs free energy. In this scenario, the system
exhibits a zeroth-order phase transition and a van
der Waals like first-order phase transition, between a
large black hole phase and an intermediate black
hole phase. These successive transitions are together
termed as a reentrant phase transition.

(iii) Case 3 (RPT), b1 < b < b2: This is another case of
reentrant phase transition displayed by the black
hole. However, here the critical point c0 lies in the
negative pressure region.

(iv) Case 4 (SPT), b2 < b: Here the black hole exhibits
the typical van der Waals like phase transition with
one critical point.

The values of the parameter b where the phase transition
behavior changes, are given by,

b0 ¼
1ffiffiffi
8

p
Q
≈
0.3536
Q

; b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
6Q

≈
0.4237
Q

;

b2 ¼
1

2Q
¼ 0.5

Q
: ð21Þ

For SPT situation, we introduce the reduced parameters,
which are defined as,

Pr ¼
P
Pc

Tr ¼
T
Tc

Vr ¼
V
Vc

: ð22Þ

Since there are two critical points in the RPT case, there
is no unique way of defining the reduced parameters.
However, there is only one critical point which appears in
the phase transition scenario of the black hole, the point
where the first-order transition terminates. We define
reduced parameters considering that critical point as,

Pr ¼
P
Pc1

Tr ¼
T
Tc1

Vr ¼
V
Vc1

: ð23Þ
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A clear picture of phase transition of BI-AdS black hole
can be understood from the behavior of the thermodynamic
potential, as it determines the globally stable states of
equilibrium thermodynamics. The thermodynamic poten-
tial for the system with fixed temperature T, pressure P and
chargeQ is the Gibbs free energy, which is calculated from
the Euclidean action [7,8]. The stable state of the system
then corresponds to the lowest Gibbs free energy. The
expression for the Gibbs free energy is given by,

GðT; PÞ ¼ 1

4

"
rþ −

8π

3
Pr3þ −

2b2r2þ
3

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4þ

s !

þ 8Q2

3rþ
2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4þ

�#
: ð24Þ

A. Standard phase transition case

First, we study the Gibbs free energy for the SPT case by
choosingQ ¼ 1 and b ¼ 0.45, the result is shown in Fig. 1.
In these plots, a simple measure used for thermodynamic
stability is the positivity of the specific heat. The negativity
of specific heat stands for thermodynamic instability.
As we are working in the canonical ensemble in an
extended space the specific heat under consideration is
the specific heat at constant pressure CP. In this case (SPT),
the Gibbs free energy exhibits a typical swallowtail
behavior, which is the signature of a first-order phase
transition. This behavior is seen for P < Pc, which dis-
appears at P ¼ Pc, shown in Fig. 1(a), which is a second-
order phase transition point. The system always prefers a
state with a low Gibbs free energy. From Fig. 1(b) it is clear
that initially in low-temperature region, the system chooses
a SBH phase as it has a lower Gibbs free energy. As the

temperature increases, it follows the LBH phase branch at
T0, as it has a lower Gibbs free energy. At this point, the
system undergoes a first-order transition from SBH to LBH
phase. This transition is similar to the liquid-gas phase
transition of a vdW fluid.
The phase structure of the black hole for the SPT case is

presented in Fig. 2 using the coexistence and spinodal
curves in the reduced parameter space. There exists no
analytical expression for the coexistence curve of the
system, therefore we obtain it via a numerical method
by observing the swallowtail behavior of Gibbs free energy.
The coexistence curves so obtained in the Pr − Tr plane are
inverted for Tr − Vr plane. In the Pr − Tr plane, Fig. 2(a),
the coexistence curve separates the SBH and LBH phases
of the black hole. The coexistence region of SBH and LBH
can be understood from Tr − Vr plane, Fig. 2(b), which is
the region under the coexistence curve. In the coexistence
region, the equation of state is not applicable. To identify
the metastable phases of the black hole, we find the
spinodal curves, blue dashed lines in Fig. 2, which are
defined by,

ð∂VPÞT ¼ 0 and ð∂VTÞP ¼ 0: ð25Þ

The spinodal curves meet the coexistence curve at the
critical point. The region between the spinodal curve and
coexistence curve corresponds to metastable phases. The
region adjacent to the LBH/SBH phase is the metastable
LBH/SBH phase. Beyond the critical point c, the distinc-
tion between the phases is not possible, which is termed as
supercritical black hole region. In the Pr − Tr plane the
upper spinodal curve begins from zero, whereas lower one
starts from Tr ¼ 0.716953. The latter one is slightly higher
than that of RN-AdS black hole, where it is Tr ¼

ffiffiffi
2

p
=2≈

0.707107, and little less than 27=32 ≈ 0.84375 of vdW

(a) (b)

FIG. 1. The behavior of the Gibbs free energy G for the SPT case. Here, we take Q ¼ 1 and b ¼ 1. In Fig. 1(a), the blue and red solid
lines stand for stable states, whereas black dashed line for unstable states. In Fig. 1(b) the direction of evolution of the system with
increasing temperature T is depicted. The solid red and blue lines correspond to SBH and LBH phase of the black hole, respectively.
The dot-dashed lines are the stable states not followed by the system.
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fluid [71]. In the Tr − Vr plane, the curve intercepts the
x-axis at Vr ¼ 0.163239 for Tr ¼ 0, which is comparable
to Vr ¼ 1=3

ffiffiffi
3

p
≈ 0.19245 of RN-AdS case [71]. However

it is not the exact numerical value which is of interest,
but the nonzero value compared to zero value for the vdW
fluid. This nonzero value is related to the repulsive
interactions in the microstructure, which we will study
in the next section. For completeness, we mention that the
spinodal curve adjacent to the LBH phase in Tr − Vr plane
approaches infinity. Before concluding the SPT case, we
list the critical values of pressure and temperature for
different values of b in Table I, which we will be using to
investigate the microstructure in Sec. III.

B. Reentrant phase transition case

Now we focus on the reentrant phase transition exhibited
by the BI-AdS black hole. Among the two cases of
reentrant phase transition (case 2 and case 3), we chose
case 3 ðb1 < b < b2Þ in this article to demonstrate the
associated properties. The results obtained are applicable
for the case 2 of b0 < b < b1 also. The reentrant phase
transition can be better understood from Gibbs free energy
study, as shown in Fig. 3. In the G − T plots, for pressure
P ¼ Pc1, which corresponds to the second-order phase
transition point, there is no swallow tail behavior, as seen
from Fig. 3(a). The solid blue line represents a stable phase
of the system (LBH) with positive specific heat at constant

pressure CP, while the dashed black line stands for unstable
phase (SBH) of the system with negativeCP. We emphasise
the fact that SBH phase in RPT case is always unstable.
There is no phase transition above the critical pressure Pc1.
For pressures P < Pc1, we begin to observe a first-order
phase transition, the indication being the swallowtail,
Fig. 3(b). Here, we identify three temperatures, designated
as T0, T1, and T2. The points in the curve corresponding
to T1 and T2 correspondingly connect the stable LBH
(blue line) and stable IBH (red line) branches to unstable
branches (dashed black). The temperature T0, which is the
intersection of the stable IBH and LBH branches, is
the point where a vdW like IBH-LBH first-order phase
transition occurs. As we decrease the pressure, the mere
first-order phase transition situation continues till P ¼ Pz,
where we have T1 ¼ T2 ≡ Tz, which is depicted in
Fig 3(c). Further decreasing the pressure, P < Pz, leads
to a scenario where an additional zeroth-order phase
transition is also exhibited by the system, Fig 3(d). This
happens for a range of pressures Pt < P < Pz, with
T1 < T2 < T0. For a fixed pressure in this range, if the
system is at some temperature T1 initially, then it stays in
LBH phase as the temperature increases, till T ¼ T2. At
temperature T2, the system finds a stable branch with lower
Gibbs energy and jumps into the IBH phase. Unlike a first-
order phase transition, there is a finite change in Gibbs free
energy during this transition. Further, the system undergoes
a secondary phase transition at T ¼ T0 from IBH to LBH
phase, which is a first-order transition. In effect, the system
undergoes LBH/IBH/LBH phase transition, the initial and
final phases being the same. This is termed as a reentrant
phase transition. This phenomenon disappears at P ¼ Pt,
with T0 ¼ T2 ≡ Tt, where the system has only LBH phase,
Fig 3(e). There is no zeroth order or vdW like first-order
phase transitions possible for the pressures P < Pt,
Fig. 3(f), wherein only the LBH phase exists. In short,

(a) (b)

FIG. 2. The coexistence curve (red solid line) and the spinodal curve (blue dashed line) for the SPT of the black hole. The coexistence
curve separates SBH and LBH phases. The region between the coexistence curve and spinodal curves are the metastable SBH and LBH
phases in respective regions. The black dot c denotes the critical point. Here we have taken Q ¼ 1 and b ¼ 1.

TABLE I. The critical values Pc and Tc for different values of
b, with Q ¼ 1, corresponding to the SPT of the black hole.

b 0.6 0.7 0.8 0.9 1

Pc 0.003486 0.003436 0.003405 0.003385 0.003371
Tc 0.044251 0.043981 0.043815 0.043705 0.043628
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the system exhibits both first order and zeroth-order phase
transition for the range of pressures P ∈ ðPt; PzÞ and
temperatures T ∈ ðTt; TzÞ, whereas only first-order phase
transition for P ∈ ðPz; Pc1Þ and T ∈ ðTz; Tc1Þ.
The phase diagrams of the black hole corresponding

to the reentrant phase transition case is presented in Fig. 4.

As in SPT case, here also the results are obtained numeri-
cally by observing the behavior of Gibbs free energy.
Interestingly, for all values of pressure, we find that there is
a lowest temperature below which there is no existence of
black hole. The line which separates the black hole
solutions from no black hole region is obtained by noting

(a) (b)

(d)(c)

(e) (f)

FIG. 3. The behavior of the Gibbs free energyG for the RPT case. We takeQ ¼ 1 and b ¼ 0.45. The black dashed lines corresponds to
negative CP, whereas blue and red lines correspond to positive CP. The solid red and blue lines are states preferred by the system over
the dot-dashed red and blue lines.
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the temperature T2 for pressures P > Pz and T1 for P < Pz
from the Gibbs free energy plots (Fig. 3). The result is
shown in 4(a), where the separation line (black solid curve)
has a discontinuity at ðPz; TzÞ. In the same plot, the
transition lines of zeroth-order and first-order phase tran-
sition are also given. As T2 is the zeroth-order phase
transition point in the pressure range P ∈ ðPt; PzÞ, the
corresponding transition line (solid magenta line) matches
with the extension of no black hole line from Pz to Pt. The
first order coexistence line (red solid line) is also obtained
from the Gibbs free energy behavior. The first order
coexistence curve and zeroth-order transition line meet
at ðPt; TtÞ, which is the triple point. The zeroth order
transition line terminates at ðPz; TzÞ, and the other at the
critical point ðPc1;Tc1

Þ.
Here too we obtain the spinodal curves using the

definition Eq. (25), which are shown in Fig. 4(b) along
with the transition lines. The spinodal curve, the extremal
points of the isothermal and isobaric curves by definition,

have two turning points in the reentrant case, which are
marked as c0 and c1. As mentioned earlier, in case 3, which
we have chosen, the point c0 lies in the negative pressure
region. The region between ðPt; TtÞ and ðPz; TzÞ is
enlarged in Fig. 4(c). Note that, for fP < Pz; T < Tzg
the spinodal curve and no black hole line are the same.
The regions separated by first-order coexistence line and
zeroth-order transition line are clearly seen here. As both
zeroth-order and first-order transitions are between IBH
and LBH both lines separate these two phases in their
respective domains. In Fig. 4(d), the phase structure for the
reentrant case is given in Tr − Vr plane, where the
coexistence region of IBH and LBH is clearly shown.
The IBH region is on the left, and the LBH is on the right
side of the coexistence curve. As in Pr − Tr plane here also
the spinodal curve has two turning points, at the critical
points c0 and c1. In contrast to the case of SPT, here, the
spinodal curve does not intersect the Vr axis near the origin,
instead shoots to infinity. On the other side, near the LBH

(a)

(c) (d)

(b)

FIG. 4. Phase diagrams for reentrant case. (a) Black line separates no black hole region from black hole region. First order coexistence
curve (solid red) and zeroth order phase transition line (solid magenta) are also shown. (b) The transition lines and the spinodal curves
for the RPT of the black hole. c0 and c1 are the two critical points. At c1 spinodal curve meets first order coexistence curve. (c) The
enlarged reentrant phase transition region. The points t and z correspond to ðPt; TtÞ and ðPz; TzÞ, respectively. (d) Phase structure in the
Tr ¼ Vr plane. Here, the near origin behavior is shown in the inset. In all these plots we have taken Q ¼ 1 and b ¼ 0.45.
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phase, there is no change in the behavior. The region near
the origin is enlarged in the inset, where it can be seen that
the IBH branch terminates when it meets the spinodal
curve. Before concluding this section we list the values of
ðPc0; Tc0Þ, ðPc1; Tc1Þ, ðPt; TtÞ, and ðPz; TzÞ for different b
values for the reentrant case in Table II.

III. RUPPEINER GEOMETRY AND
MICROSTRUCTURE OF THE BLACK HOLE

In this section, we investigate the microstructure of
four-dimensional Born-Infeld AdS black hole using
Ruppeiner geometry, constructed in the parameter space
with fluctuation coordinates as temperature and volume.
Particularly, we are interested in the microstructure that
leads to the reentrant phase transition. As we will see,
the underlying microstructure for the SPT has similarity
with the RN-AdS black hole phase transition, whereas the
RPT emerges due to a different nature of the black hole
microstructure.
To set up the Ruppeiner geometry, we consider two

subsystems of an isolated thermodynamic system having a
total entropy S. The smaller subsystem is assigned with an
entropy SB and the larger subsystem with entropy SE.
Viewing the larger subsystem as a thermal bath, we can take
SB ≪ SE ≈ S. Therefore, if the system is described by a set
of independent variables x0 and x1,

Sðx0; x1Þ ¼ SBðx0; x1Þ þ SEðx0; x1Þ: ð26Þ

When the system is in thermal equilibrium, the entropy S is
in its local maximum S0. Taylor expanding the entropy in
the neighborhood of the local maximum xμ ¼ xμ0, we obtain

S ¼ S0 þ
∂SB
∂xμ
����
xμ
0

ΔxμB þ ∂SE
∂xμ
����
xμ
0

ΔxμE þ 1

2

∂2SB
∂xμ∂xν

����
xμ
0

ΔxμBΔxνB

þ 1

2

∂2SE
∂xμ∂xν

����
xμ
0

ΔxμEΔxνE þ… ð27Þ

Since the first derivatives vanish for the equilibrium
condition, we have

ΔS ¼ S − S0 ¼
1

2

∂2SB
∂xμ∂xν

����
xμ
0

ΔxμBΔxνB

þ 1

2

∂2SE
∂xμ∂xν

����
xμ
0

ΔxμEΔxνE þ…

≈
1

2

∂2SB
∂xμ∂xν

����
xμ
0

ΔxμBΔxνB; ð28Þ

where we have truncated the higher order terms and the
second term. The second term is negligible compared to the
first term, as the entropy SE of the thermal bath is close to
that of the whole system, and its second derivative with
respect to the intensive variables xμ are smaller than those
of SB.
In Ruppeiner geometry, the entropy S is taken as the

thermodynamical potential and its fluctuation ΔS is related
to the line element Δl2, which is the measure of the dis-
tance between two neighboring fluctuation states of the
thermodynamic system [26]. The Ruppeiner line element is
given by,

Δl2 ¼ 1

kB
gRμνΔxμΔxν; ð29Þ

where kB is the Boltzmann constant and the metric gRμν is,

gRμν ¼ −
∂2SB
∂xμ∂xν : ð30Þ

Since the line element is related to the distance between
the neighboring fluctuation states, the metric gRμν must be
encoded with the microscopic details of the system. Taking
the fluctuation coordinates xμ as temperature and volume,
and Helmholtz free energy of the system as the thermo-
dynamic potential, the line element Δl2 can be shown to
have the following form [70],

Δl2 ¼ CV

T2
ΔT2 −

ð∂VPÞT
T

ΔV2 ð31Þ

where CV is the heat capacity at constant volume,

TABLE II. The values of ðPc0; Tc0Þ, ðPc1; Tc1Þ, ðPt; TtÞ and ðPz; TzÞ for different b values, with Q ¼ 1, corresponding to the RPT of
the black hole.

b 0.43 0.44 0.45 0.46 0.47 0.48 0.49

Pc0 −0.000663 −0.00186 −0.003253 −0.004888 −0.006838 −0.009242 −0.012447
Tc0 0.033189 0.030199 0.026885 0.023198 0.019061 0.014328 0.008676

Pc1 0.003711 0.003686 0.003663 0.003643 0.003625 0.003609 0.003594
Tc1 0.045414 0.045289 0.045176 0.045074 0.044981 0.044895 0.044817

Pt 0.002225 0.001922 0.001612 0.001294 0.000971 0.000644 0.000318
Tt 0.037435 0.035249 0.032722 0.029762 0.026208 0.021759 0.015646

Pz 0.002395 0.002101 0.00179 0.001464 0.001122 0.000747 0.000357
Tz 0.037658 0.035457 0.032906 0.029914 0.026322 0.021821 0.015663
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CV ¼ T

�∂S
∂T
�

V
: ð32Þ

The Ruppeiner curvature scalar can be obtained directly
from Eq. (31) by using the conventional definitions of
Riemannian geometry. The curvature scalar so calculated is
encoded with the interaction details of the microstructure
of the system. The positive sign R > 0 and negative sign
R < 0 are associated with repulsive and attractive inter-
action, respectively. If the Ruppeiner curvature vanishes, it
implies that there is no effective interaction between the
microscopic molecules. Moreover, the idea is that the
Ruppeiner scalar diverges at the critical point. However,
the Ruppeiner scalar obtained from the line element (31)
has pathologies as the heat capacity CV vanishes for a
spherically symmetric AdS black hole system. This in turn
arises from the interdependence of the thermodynamic
variables, namely entropy and volume. To overcome this
issue, a normalized Ruppeiner scalar is defined as [70],

RN ¼ CVR ð33Þ

where R is the curvature scalar calculated from Eq. (31).
The normalized curvature scalar diverges at the critical
point of phase transition. Before proceeding further, we
reiterate the following.

(i) The sign of RN reveals the nature of dominant
interaction in the black hole microstructure. Pos-
itive/negative for repulsive/attractive and zero for no
interaction.

(ii) The absolute value of RN is the measure of the
average number of correlated constituents, in gen-
eral. For a black hole system, this could be the
average number of correlated black hole molecules.

A. Standard phase transition case

We obtained the normalized curvature scalar RN for the
four-dimensional Born-Infeld AdS black hole using the
above definitions. The SPT and RPT cases are analyzed
separately. The curvature scalar RN is expressed in terms
of reduced parameters using Eqs. (22) and (23) in the
respective cases. First, we will analyse the SPT case. It is
found that the behavior of RN for SPT case is similar to that
of RN-AdS black hole. The functional behavior of RN
against thermodynamic volume Vr for a fixed tempera-
ture of Tr is studied in Fig. 5. For Tr < 1, below critical
temperature, RN has two negative divergences. These two
divergences gradually come closer as temperature increases
and merge at Tr ¼ 1. The divergence at critical temperature
occurs at Vr ¼ 1. For temperatures above the critical value,
both divergences disappear. The divergences of RN are
related to the spinodal curve. In fact, RN diverges along
the spinodal curve. Since Vr is doubly degenerate in the
Tr − Vr spinodal curve [Fig. 2(b)], below critical point, it
leads to two divergences for Tr < 1. For low temperatures,

we notice that RN takes positive values in a very small
domain (shown in the insets of Fig. 8(a), near the origin) as
Vr → 0, which is the small black hole phase. We observe
positiveRN on both sides of the near origin divergence. The
left side corresponds to the SBH phase (shaded yellow) and
the right side corresponds to the coexistence phase (shaded
green). The shaded yellow region exists for all temperatures
Tr, whereas the shaded green region disappears after a
particular Tr. This can be understood clearly using the sign-
changing curve later [Fig. 6(a)]. The yellow region implies
that the SBH phase has a dominant repulsive interaction.
On the other hand, the LBH phase is always characterized
by the dominant attractive interaction. To check whether
the repulsive interaction regions are thermodynamically
stable, we present the regions of RN with different sign in
Tr − Vr plane along with the coexistence and the spinodal
curves [Fig. 6(a)]. The sign-changing curve of RN is
obtained by setting RN ¼ 0. The solution satisfy the con-
dition Tsr ¼ Tspr=2, where T0r is the sign-changing temper-
ature and Tspr temperature along the spinodal curve. In
Fig. 6(a), the shaded region corresponds to the negative
sign of RN . Region 1 is the coexistence region of SBH and
LBH. Region 2 lies in the metastable phase, which is
not interesting from the thermodynamic perspective.
Region 3 includes part of SBH phase of the black hole,
implying repulsive interactions among the small black hole
constituents.
We now examine the behavior of RN along the coexist-

ence curve and study the critical phenomena 6(b). The
nature of interaction can be better understood from the
behavior of RN along the coexistence curve. From Fig. 6(b)
it is clear that LBH phase always has dominant attractive
interaction (RN always negative), whereas, the SBH phase
switches to dominant repulsive interaction (RN positive)
from dominant attractive interaction (RN negative) for low
temperature values. The analysis for different values of
Born-Infeld parameter b in the SPT range was performed
numerically. In the reduced coordinates, when the type
of interaction in SBH switches between attractive and
repulsive interaction, for b ¼ ð0.6; 0.7; 0.8; 0.9; 1Þ the cor-
responding temperatures are (0.67063, 0.708075, 0.724286,
0.733273, 0.738949). For temperatures above these, the
absolute value of the curvature scalar of the LBH is greater
than that of the SBH. This implies that the attractive inter-
action in the LBH is stronger than SBH. Both the SBH and
LBH branches diverge to negative infinity at the critical point.
This can be seen as being due to the divergence of correlation
length at the critical point. This is a universal behavior
observed in other black hole systems in AdS spacetime.
We obtain the critical exponent of the normalized scalar
curvature RN at the critical point. Since the analytical
expansion is not feasible, we assume that the scalar curvature
has the following form near the critical point,

RN ∼ ð1 − TrÞ−α: ð34Þ

A. NAVEENA KUMARA et al. PHYS. REV. D 103, 044025 (2021)

044025-10



(a) (b)

FIG. 6. 6(a): The sign changing curve of RN (brown dot-dashed line), spinodal curve (brown dashed line) and the coexistence curve
(red solid line) for SPT. The shaded region (grey) corresponds to positive RN , otherwise RN is negative. Region 1 and (2,3) respectively
correspond to green and yellow shaded regions in Fig. 5(a). The black dot at (1,1) represents the critical point. 6(b): The behavior of
normalized Ruppeiner curvature scalar RN along the coexistence curve. The red (solid) line and blue (dashed) line correspond to large
black hole and small black hole, respectively. The change in nature of interaction of SBH is shown in inset, where RN flips its sign. Here,
the blue dot corresponds to sign changing temperature.

(a)

(c) (d)

(b)

FIG. 5. The behavior of the normalized Ruppeiner curvature scalar RN with the reduced volume Vr at a constant temperature for SPT.
The insets show the enlarged portion near the origin. (Note that inset plot is in log scale). RN has positive values for small values of Vr,
which is depicted by shaded regions. The yellow and green shaded regions correspond to SBH and coexistence phases, respectively.
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Taking logarithm on both sides,

ln jRN j ¼ −α lnð1 − TrÞ þ β: ð35Þ

Along the coexistence curve, for Q ¼ 1 and b ¼ 1 we
obtained,

ln jRN j ¼ −2.07629 lnð1 − TrÞ − 2.67658; ð36Þ

for the SBH branch and,

ln jRN j ¼ −1.91868 lnð1 − TrÞ − 1.44762; ð37Þ

for the LBH branch. These are shown in Fig. 7. Considering
the numerical errors we have the critical exponent α ¼ 2.
Averaging the β values, we have,

RNð1 − TrÞ2 ¼ e−ð2.67658þ1.44762Þ=2 ¼ −0.127187 ≈ −
1

8
:

ð38Þ

From the numerical results given in Table III, we have,

RNð1 − TrÞ2 ¼ −ð0.130298; 0.128815; 0.128012;
0.127517; 0.127187Þ; ð39Þ

for b ¼ ð0.6; 0.7; 0.8; 0.9; 1Þ, respectively. These values are
slightlymore negative than−1=8 ¼ −0.125.Our results are in
agreement with that of both the charged AdS black hole and
vdW fluid, which have a RN with a critical exponent of 2 and
constant value of −1=8 for RNð1 − TrÞ2, near the critical
point, which is a universal behavior.
To summarize the nature of interaction in the underlying

microstructure of SPT, the LBH phase is always charac-
terized by attractive interaction (like a bosonic gas),
whereas, the SBH phase can have both attractive and
repulsive interaction (like a quantum anyon gas).

B. Reentrant phase transition case

We analyse the underlying microstructure of the black
hole that results in RPT using the same method as before.
The normalized Ruppeiner curvature scalar is plotted
against the volume for constant temperatures in Fig. 8.
Compared to the SPT case, here we observe an additional
divergence for all temperatures T > Tc0, and only one
divergence for T < Tc0. This is because, the spinodal curve
has a different structure in the RPT case [Fig. 2(b)]
compared to SPT case [Fig. 4(d)]. For phase transition
temperatures, which lie in the range T ∈ ðTt; Tc1Þ, there
exist three divergences as shown in Figs. 8(a) and 8(b).
Most general conclusions on the appearance of these
divergences can be learned from the spinodal curve.
Here, the left-most divergence, say d1, corresponds to
the spinodal curve branch that shoots to infinity after
turning from c0 in Fig. 4(d), which exists for temperatures
T > Tc0. The middle divergence, say d2, corresponds to the
spinodal curve between c0 and c1, appearing in the
temperature range T ∈ ðTc0; Tc1Þ. And the rightmost

(a) (b)

FIG. 7. The fitting curves of lnRN vs lnð1 − TrÞ near the critical point. The red dots are numerical data and blue solid lines are
obtained from fitting formulas. We have varied Tr from 0.99 to 0.9999 to obtain numerical data. (a) The coexistence saturated SBH
branch (b) The coexistence saturated LBH branch.

TABLE III. The values of α and β obtained by numerical fit for
coexistence saturated small black holes (CSSBH) and coexist-
ence saturated large black hole (CSLBH) for different values of b,
with Q ¼ 1, for the SPT case.

b 0.6 0.7 0.8 0.9 1

α (CSSBH) 2.06414 2.06982 2.073 2.07496 2.07629
−β (CSSBH) 2.57849 2.6243 2.64994 2.66583 2.67658

α (CSLBH) 1.9239 1.9215 1.92011 1.91926 1.91868
−β (CSLBH) 1.49737 1.47446 1.46131 1.45317 1.44762
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divergence, say d3, is on the spinodal curve on the LBH
side after c1, which present for all temperatures T < Tc1. At
T ¼ Tc1 divergences d2 and d3 merge together at Vr ¼ 1,
leaving only in total two divergences, Fig. 8(c). For
completeness we mention that, at Tc0 divergences d1
and d2 merge together, which is not relevant and hence
not shown here. Interestingly, one divergence remains even
for temperatures T > Tc1, Fig. 8(d). These divergences
separate different phases of the black hole from each other
in the RN − Vr plane, which enables us to search for the
kind of interaction in each phase. The region between d1
and d2 corresponds to IBH phase and right side of d3 to
LBH phase. Left side of d1, and between d2 and d3 are
coexistence regions. Contrary to the SPT case, RN always
takes negative values, implying only a dominant attractive
interaction in all of the phases in RPT case. We search for a
possible repulsive interaction at low Vr values, shown in
the inset of Fig. 8(a), which is a null result. This result is
true for all phase transition temperatures. In short, for RPT
case the black hole microstructure has only attractive
interactions.

We confirm the above result by looking at the region
covered by the sign-changing curve [Fig. 9(a)]. The
positive RN values, shaded region, do not overlap with
any stable state of the system. Note that the transition line
of the zeroth-order phase transition (solid magenta line)
also lies outside the shaded region. Near origin domain is
enlarged in the inset for clarity. The behavior of RN along
the transition curve is analyzed in Fig. 9(b). We consider
the first-order phase transition coexistence curve and the
zeroth-order transition curve. As the zeroth-order transition
line is not a coexistence curve, it gives only one branch.
We consider only the region of temperature where the phase
transition takes place, Tt < T < Tc1, as below the temper-
ature Tt there is no phase transition. Once again, the
positive sign of RN asserts that, both IBH and LBH phases
have dominant attractive interaction (like a bosonic gas).
That is, during a reentrant phase transition in BI-AdS
black hole, both the zeroth-order and first-order transi-
tion preserve the nature of the interaction between the
microstructures. However, we notice that the correlation
between the constituents changes at different temperatures.

(a)

(c) (d)

(b)

FIG. 8. The behavior of the normalized curvature scalar RN against the volume Vr at constant temperature Tr for the RPT case. For
T < Tc1 there are three divergences, of which two are near the origin shown in insets of (a). For temperature T ¼ Tc1 one divergence
disappears. Unlike SPT case, for temperatures T > Tc1 we still have one divergence (d). Here, we take Q ¼ 1 and b ¼ 0.45.
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The flipping temperatures are clearly shown in Fig. 9(b) in
blue dots. For zeroth-order transition (jumping from blue
dashed line to magenta dot-dashed line and vice versa),
IBH phase has higher correlation strength than LBH in the
temperature range T ∈ ðTt; T⋆Þ. This property is reversed
in the region T ∈ ðT⋆; TzÞ. On the other hand, for the first-
order phase transition (jumping from blue dashed line to
red solid line and vice versa), IBH phase exhibits higher
correlation among the constituents than LBH for temper-
atures T ∈ ðTt; T⋆⋆Þ, which is flipped for T ∈ ðT⋆⋆; Tc1Þ.
In fact, the change in the strength of the interaction is also
present in SPT case. Interestingly, near the triple point, IBH
phase shows a huge surge in correlation, whereas the
correlation in LBH phase here, is very weak. Also, the red
and magenta line merge near Tt, signifying the meeting and
termination of zeroth-order and first-order transition line at
that point. As in SPT case near the critical point the
diverging correlation length leads to diverging RN . For
magenta line it happens at Tz, in a sense ðPz; TzÞ acts as a
critical point (see for example [14]). During a RPT, the

initial and final phases are the same from the macroscopic
point of view. Microscopically, this is almost true for
T < T⋆, where red and magenta line (initial and final
states in RPT) are close together. However, for T > T⋆
there is a difference in strength of interaction, which
becomes considerable near T⋆.
The critical phenomena of RN is studied for different

values of b numerically using Eq. (34). From the numerical
results given in Table IV, we have,

RNð1 − TrÞ2 ¼ −ð0.143275; 0.137424; 0.131053; 0.13098;
0.13403; 0.13352; 0.133004Þ; ð40Þ

for b ¼ ð0.43; 0.44; 0.45; 0.46; 0.47; 0.48; 0.49Þ, respec-
tively. As in the case of SPT, these values are slightly
more negative than −1=8. Within the numerical errors we
have obtained the universal constant RNð1 − TrÞ2 as −1=8
and the critical exponent 2 in RPT case too. To cut a long
story short, we observe the existence of only homogeneous

(a) (b)

FIG. 9. 9(a): The sign changing curve (brown dot-dashed line) of RN , spinodal curve (blue dashed line) and the coexistence curve (red
solid line) for the RPT case. The shaded region (grey) corresponds to positive RN , elsewhere RN is negative. All the stable phases,
including near the zeroth order transition line (solid magenta line), lie outside the shaded region. The region near the origin is enlarged
and shown in inset. 9(b): The behavior of normalized curvature scalar RN along the transition line of first-order and zeroth-order phase
transition. The red (solid) line and blue (dashed) lines correspond to LBH and IBH phases, respectively. Both diverge at the critical point.
The IBH branch suffers a discontinuity near the triple point Tt. The dot-dashed magenta line between Ttr and Tzr (clearly shown in the
inset) corresponds to the LBH phase of zeroth-order phase transition, which is a miniature version of the other LBH branch with a
divergence at Tz, which corresponds to the termination point of the transition. In the plot, the temperatures corresponding to the blue
dots t⋆ and t⋆⋆ are T⋆

r ¼ 0.72803 and T⋆⋆
r ¼ 0.780668. We take Q ¼ 1 and b ¼ 0.45, respectively.

TABLE IV. The values of α and β obtained by numerical fit for coexistence saturated intermediate black holes
(CSIBH) and coexistence saturated large black hole (CSLBH) for different values of b, with Q ¼ 1, for the RPT
case.

b 0.43 0.44 0.45 0.46 0.47 0.48 0.49

α (CSIBH) 1.91582 2.01262 2.07636 1.99898 2.02411 2.03111 2.03868
−β (CSIBH) 1.68789 2.2181 2.56921 2.17032 2.31204 2.357 2.40382

α (CSLBH) 2.04466 1.9619 1.91492 1.99174 1.95724 1.9511 1.94448
−β (CSLBH) 2.19809 1.75127 1.49509 1.8951 1.70734 1.67 1.63093
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dominant attractive interaction in the black hole for RPT
case, and both repulsive and attractive interaction in SPT
case. This difference in the microstructure interaction for
SPT and RPT in BI-AdS black hole tells that the micro-
structure is determined by the coupling parameter b.

IV. DISCUSSIONS

In this article, we have studied the microstructure of
four-dimensional Born-Infeld AdS black hole employing a
novel Ruppeiner geometry method. As the entropy and
volume are interdependent in a spherically symmetric AdS
black hole, the application of Ruppeiner geometry for such
a system must be carried out with utmost care. Keeping this
in mind, we have constructed the Ruppeiner curvature
scalar in the parametric space where the temperature and
volume are the fluctuation coordinates. We investigated the
phase structure and the corresponding microscopic inter-
actions for both the standard van der Waals (SPT) and the
reentrant phase transitions (RPT), where a first-order phase
transition is accompanied by a zeroth-order transition. We
found that the microstructure that leads to RPT is distinct
from that of SPT. Our study shows that the Born-Infeld
coupling coefficient b determines the microscopic inter-
action of the black hole. Since the analytical investigation is
not possible due to the complexity of the spacetime, we
have carried out the study numerically.
In the first part of the article, we investigated the phase

structure of the black hole using the spinodal and transition
curves in SPT and RPT cases. The black hole has four
different cases depending on the value of b, and shows the
distinct RPT for certain pressure range. There are two RPT
cases with two critical points in each. It is found that the
phase structure associated with SPT and RPT are distinct.
The phase diagrams are presented in pressure-temperature
(P − T) and temperature-volume (T − V) planes, where,
stable, metastable and coexistence phases are studied. In
both SPT and RPT cases, we conveniently define the
reduced parameters and all analyses were carried out in
terms of them.
The second half of the article is devoted to the study of

microstructure, which reveal distinct microstructure for
SPT and RPT cases. Two important features, the nature
of interaction and strength of correlation are sought for in

this study. The microstructure that corresponds to SPT is
analogous to that of RN-AdS black hole. The small black
hole phase shows a dominant repulsive interaction in a
certain range of parameters. As the interaction in this phase
is attractive in other domains of parameter space, the
interaction type resembles that of a quantum anyon gas.
The large black hole phase is always characterized by the
dominant attractive interaction, like a bosonic gas. These are
inferred from the sign of the Ruppeiner curvature scalar RN.
For both small black hole and large black hole branches, it
diverges near the critical point. The RPT case has a different
microstructure compared to the SPT case, wherein no
repulsive interaction is present for both the intermediate
and large black hole phases. The nature of microstructure
does not change during the zeroth-order and first-order
phase transition in RPT, which is a dominant attractive
interaction. This suggests that the nature of interaction in
RPT case is always like that of a bosonic gas. Both,
intermediate and large black hole branches diverge near
the physically meaningful critical point. The signature of
RPT is reflected in the behavior of curvature scalar, through
its anomalies near the termination points of the zeroth-order
phase transition. The strength of interaction depends on
temperature, which is inferred from the magnitude of the
curvature scalar, the high correlation phases are flipped at
certain temperatures for both zeroth-order and first-order
transition. In fact, this reversal of correlation strength is
true for SPT case too. The critical phenomenon of the
system is investigated via curvature scalar. The universal
properties, critical exponent ¼ 2 and the constant
RNð1 − TrÞ2 ¼ −1=8, are obtained for SPT and RPT cases
over a range of b values. We believe that this study will help
us shed more light on the black hole microstructure in
general.
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