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Gravitational wave observations of compact binary mergers are already providing stringent tests of
general relativity and constraints on modified gravity. Ground-based interferometric detectors will soon
reach design sensitivity, and they will be followed by third-generation upgrades, possibly operating in
conjunction with space-based detectors. How will these improvements affect our ability to investigate
fundamental physics with gravitational waves? The answer depends on the timeline for the sensitivity
upgrades of the instruments, but also on astrophysical compact binary population uncertainties, which
determine the number and signal-to-noise ratio of the observed sources. We consider several scenarios for
the proposed timeline of detector upgrades and various astrophysical population models. Using a stacked
Fisher matrix analysis of binary black hole merger observations, we thoroughly investigate future theory-
agnostic bounds on modifications of general relativity as well as bounds on specific theories. For theory-
agnostic bounds, we find that ground-based observations of stellar-mass black holes and LISA observations
of massive black holes can each lead to improvements of 2–4 orders of magnitude with respect to present
gravitational wave constraints, while multiband observations can yield improvements of 1–6 orders of
magnitude. We also clarify how the relation between theory-agnostic and theory-specific bounds depends
on the source properties.
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I. INTRODUCTION

Einstein’s general relativity (GR) has been wildly suc-
cessful. The agreement with the observed perihelion
precession of Mercury and the 1919 eclipse expedition
to verify the prediction of relativistic light-bending around
the Sun were the beginning of a century of thorough vetting
[1]. The theory has passed every experimental test so far,
and it was recently validated in the strong-field regime,
most notably through the imaging of a black hole (BH)
shadow in the electromagnetic spectrum by the Event
Horizon Telescope [2] and through the observation of
coalescing binary black holes (BBHs) by the LIGO/
Virgo Collaboration [3,4].
One century of experimental triumphs did not deter

theoretical work on observationally viable extensions of
GR for mainly two sets of reasons [5]. The first is
observational: some of the most outstanding open questions
in physics might be explained by modifying the gravita-
tional sector. For example, one could introduce an addi-
tional scalar field to the gravitational action [6,7] or allow
the graviton to be massive [8–10] to explain the late-time

acceleration of the Universe [11,12] without invoking the
cosmological constant or dark energy. The second set of
reasons is theoretical: string theory and other ultraviolet
completions of the Standard Model usually add higher-
order curvature corrections to the Einstein-Hilbert action,
implying deviations from GR at high energies and large
curvatures [13–15]. Therefore it is important to systemati-
cally test the assumptions underlying GR, which are often
summarized in terms of Lovelock’s theorem [5,16]. More
specifically, GR assumes that the gravitational interaction is
mediated by the metric tensor alone; the metric tensor is
massless; spacetime is four-dimensional; the theory of
gravity is position-invariant and Lorentz-invariant; and
the gravitational action is parity-invariant. There is no
a priori reason why these assumptions should be true, and
therefore it is reasonable to explore alternatives to GR by
systematically questioning each of them [5,17]. Our study
is motivated by a combination of these two reasons: we will
focus on theories that may address long-standing problems
in physics, while questioning the validity of the main
assumptions behind GR.
The LIGO-Virgo-KAGRA network of Earth-based

detectors just completed their third observing run (O3).
A fourth observing run (O4) is planned in 2022, and future
observations will combine data from LIGO Hanford [18],
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LIGO Livingston [18], Virgo [19], KAGRA [20], LIGO
India [21], and third-generation (3g) detectors such as
Cosmic Explorer (CE) [22] and the Einstein Telescope
[23]. The space-based observatory LISA [24], scheduled
for launch in 2034, will extend these observations to the
low-frequency window. As existing ground-based detectors
are improved, new ones are built and space-based detectors
are deployed, our ability to test GR will be greatly
enhanced, but to what level?
The main goal of this study is to combine the anticipated

timeline of technological development for Earth- and
space-based gravitational-wave (GW) detectors with astro-
physical models of binary merger populations to determine
what theories will be potentially ruled out (or validated)
over the next three decades. We estimated parameters by
running ∼108 Fisher matrix calculations using waveform
models including the effects of precession [25–27]. Our
null hypothesis is that GR correctly describes our Universe,
and that all modifications must reduce to GR in some limit
for the coupling constants of the modified theory [17].
Under this assumption, we employ the parametrized post-
Einsteinian (ppE) framework [28–31] to place upper limits
on the magnitudes of any modification, assuming future
GW observations to be consistent with GR. As our GW
observatories are most sensitive to changes in the GW
phase, we ignore modifications to the GW amplitude, an
approximation that has been shown to be very good [32].

A. Executive summary

For the reader’s convenience, herewe provide an executive
summary of the main results of this lengthy study.
(i) We use public catalogs of BBH populations observ-

able by LISA and by different combinations of terrestrial
networks over the next thirty years, and extract merger rates
and detection-weighted source parameter distributions.
While this was not the main goal of this work, we did

require astrophysical population models to realistically
model GW science over the next three decades. In the
pursuit of constructing forecasts of constraints on GR, we
developed useful statistics concerning the distribution of
intrinsic parameters for detectable merging BBHs for a
variety of population models and detectors.
Useful quantities calculated here and related to BBH

mergers are the expected detection rates for a large
selection of population models and detector networks.
These rates are listed in Table VI, and discussed in
Secs. III A and III B. Detection rates depend not only on
the population model, but also on the detector network. For
LISA, we follow the method outlined in Ref. [33] to
compute detection rates for multiband and massive black
hole (MBH) sources.
We constructed synthetic catalogs by filtering the data-

sets coming from the full population models based on their
signal-to-noise ratio (SNR). This yields a detection-
weighted distribution of source parameters (discussed in

Sec. IV C) which is useful to understand detection bias and
to understand the typical sources accessible by different
networks over the next three decades. In Figs. 4 and 5 we
show these distributions for a large selection of detection
network/population model combinations, considering both
stellar-origin black holes (SOBHs) and MBHs.
The main conclusions of this analysis are summarized in

Fig. 6, which shows the typical detection rates and SNR
distributions for different source models and networks. This
plot contains key information on the relative constraining
performance of different population model/detector net-
work combinations, which will be important for the
following discussion of tests of GR.
(ii) We find that improvements over existing GW

constraints on theory-agnostic modifications to GR range
from 2 to 4 orders of magnitude for ground-based obser-
vations, from 2 to 4 orders of magnitude for LISA
observations of MBHs, and from 1 to 6 orders of magnitude
for multiband observations, depending on what terrestrial
network upgrades will be possible, on LISA’s mission
lifetime, and on the astrophysical distribution of merging
BBHs in the Universe.
The main issue addressed in this work is the scientific

return on investment of future detector upgrades in terms of
future explorations of strong gravity theories beyond GR.
What future detectors and network upgrades are most
efficient at constraining beyond-GR physics? Our models
use astrophysical populations of SOBHs and MBHs and
three reasonable development scenarios for ground-based
detectors (ranging from optimistic to pessimistic) to try and
answer this question. We first consider generic (theory-
agnostic) modifications of GR and then focus on specific
classes of theories that test key assumptions underlying
Einstein’s theory.
Our primary conclusions for generic modifications to

GR are summarized in Fig. 7 and in Sec. VI A, where we
show bounds on generic deviations from GR at a variety of
post-Newtonian (PN) orders, separated by the class of
source and marginalized over the detector configurations
and population models. A term in the GW phase that is
proportional to ðπMfÞb=3, where M is the chirp mass of
the binary and f is the GW frequency, is said to be of
ðbþ 5Þ=2 PN order. While the range in constraints between
the different models and scenarios is large, we have plotted
constraints from current pulsar and GW tests of GR for
comparison, where available and competitive. There are
several trends present in this figure, most notably:
(1) SOBH multiband sources observed by both LISA

and terrestrial networks are the most effective at
setting bounds on negative PN effects, outperform-
ing all other classes of sources by at least an order of
magnitude. This observation must be tempered,
however, because no multiband sources are observed
at all in some of the scenarios we have analyzed. The
detection rate of multiband sources is an open
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question [33,34]. We hope that their importance for
tests of GR, outlined here and elsewhere [35–41],
will stimulate further work on this class of sources.

(2) The MBH mergers observed by LISA outperform
SOBH sources observed only in the terrestrial band
for negative PN orders in the more pessimistic
ground-based detector scenarios. For most negative
PN orders, LISA MBH observations perform at least
comparably to the most optimistic terrestrial net-
work scenario and greatly outperform the other two
terrestrial scenarios analyzed in this work.

(3) Terrestrially observed SOBH sources are most
effective at constraining positive PN effects, out-
performing MBHs and multiband sources. Further-
more, for positive PN effects, the difference between
the different terrestrial network scenarios closes
dramatically. The constraining power between the
different terrestrial networks shrinks, spanning a
range of 4 orders of magnitude at negative PN
orders but showing significant overlap for positive
PN orders. This suggests that highly sensitive
detectors are less important for constraining devia-
tions that first enter at positive PN order, as opposed
to negative PN order.

In terms of what detectors would have the highest return
on investment, LISA’s contribution to constraints on
negative PN effects is quite high. Multiband sources are,
by far, themost effective test beds for fundamental physics in
the early inspiral of GW signals, but even in the absence of
multiband sources (a realistic concern), MBH sources
perform as well or better than even the most optimistic
terrestrial network scenario we examined. The difference in
terrestrial network scenarios is fairly drastic for negative PN
effects, and so ground-based detector upgrades would play
an important role if LISAwere not available. The strongest
improvement occurs in our most optimistic scenario (includ-
ing CE and ET), but there is also a clear separation between
the “pessimistic” and “realistic” scenarios.
Terrestrial networks perform the best for positive PN

effects, but not by orders of magnitude. Even at positive PN
orders, LISA MBH sources are still as effective as the more
pessimistic terrestrial network scenarios. Furthermore,
while constraining positive PN effects, no single terrestrial
network scenario drastically outperforms the others: there
is a clear hierarchy between the three scenarios, but with
significant overlap.
These conclusions are also summarized in Table I, where

we show a concise overview of current constraints on
generic ppE parameters coming from observations of
pulsars [42] and GWs [3], and we compare them against
forecasts from our simulations.
(iii) LISA and future terrestrial network constraints on

theory-agnostic modifications to GR follow trends which
depend on the PN order, the underlying population of
sources, and the detector network.

Using suitable approximations, we derive analytical
expressions that help to elucidate the reason for the
hierarchy of constraining power observed in our simula-
tions. We first examine single observations and show how
different source properties influence the constraints. We
then attempt to quantify the importance of stacking
multiple observations to develop a cumulative constraint
from an entire catalog of observations.
In Sec. VI A 1 [Eqs. (32) and (33)] we show that, to

leading order, the relative constraining power of one class
of sources over another depends on the binary masses and
on the initial frequency of observation, raised to a power
which depends on the PN order in question. As this power
changes sign going from negative to positive PN orders,
this scaling explains why multiband and MBH sources are
more competitive at negative PN orders, while terrestrial
networks are more effective at positive PN orders. This
trend is succinctly summarized in Fig. 8.

TABLE I. Summary of the constraints we predict on the theory-
agnostic ppE modification parameter β as a function of the PN
order parameter b, as defined in Eqs. (25) and (26) below. We
compare these constraints against current constraints from pulsar
tests [42] and GWobservations from the LVC [3], denoted by ð �Þ.
The LVC analysis used a slightly different formalism, so we
mapped their results to the ppE framework for four specific
sources (GW150914, GW170104, GW170608, and GW170814),
we computed the standard deviation of the Markov Chain
Monte Carlo (MCMC) samples and then combined the posteriors
assuming a normal distribution to obtain a rough order-of-
magnitude estimate of current ppE bounds from the LVC results.
The columns list, from left to right: the PN order of each
particular modification, the current constraint (if one exists),
the best and worst constraints from our simulations, and the class
of astrophysical sources those constraints come from. All the
constraints are 1σ bounds, and we only show worst-case con-
straints that still improve on existing bounds. The source class
acronyms are as follows: MB stands for multiband observations
of SOBHs, T stands for terrestrial-only observations of SOBHs,
and MBH stands for space-based detection of MBHs.

PN order
(ppE b)

Current
constraint

Best (worst)
constraint

Best (worst)
source class

−4ð−13Þ � � � 10−25 (10−14) MB (T)
−3.5ð−12Þ � � � 10−23 (10−14) MB (T)
−3ð−11Þ � � � 10−21 (10−12) MB (T)
−2.5ð−10Þ � � � 10−19 (10−11) MB (T)
−2ð−9Þ � � � 10−17 (10−10) MB (T)
−1.5ð−8Þ � � � 10−15 (10−9) MB (T)
−1ð−7Þ 2 × 10−11 10−13 (10−11) MB (MBH)
−0.5ð−6Þ 1.4 × 10−8 10−11 (10−8) MB (T)
0 (−5 1.0 × 10−5 10−7 (10−5) MBH (T)
.5 (−4) 4.4 × 10−3� 10−7 (10−5) MB (T)
1 (−3) 2.5 × 10−2� 10−6 (10−4) MB/T (T)
1.5 (−2) 0.15� 10−5 (10−3) T (MB)
2 (−1) 0.041� 10−4 (10−2) T (MB)
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Besides single-source trends, in Sec. VI A 2 we quantify
the effect of stacking observations and the benefit of large
catalogs. In Fig. 9 we show that, as the PN order of the
modification goes from negative to positive, the number of
single observations meaningfully contributing to the cumu-
lative bound from a catalog rises exponentially. This helps
to further explain the improvement of terrestrial-only
catalogs over LISA catalogs for higher PN orders: the
very large catalogs coming from third-generation detectors
are effectively leveraged to produce much stronger bounds,
but only for positive PN orders. As shown in Fig. 10, this
depends on the relation between the three parameters of
primary concern (the SNR, the chirp mass, and the
constraint), and on how their relation evolves as a function
of the PN order.
These considerations help us understand the behavior

observed in our simulations. The single-source scaling
implies that MBHs and multiband sources should be more
efficient at negative PNorders, because of the typicalmasses
and initial frequencies of the observations. At positive PN
orders the balance shifts in favor of terrestrial-only catalogs,
further enhanced by the fact that large catalogs bear much
more weight for positive PN effects.
The considerations made above also explain the signifi-

cant overlap of different terrestrial detection scenarios at
positive PN orders, and their separation at negative PN
orders: negative PN effects are well constrained by single,
loud events (favoring the most optimistic detector scenar-
ios), while positive PN effects benefit from large catalogs.
As detection rates are comparable for all three terrestrial
scenarios, they perform comparably for positive PN effects.
(iv) We quantify the expected improvement over current

constraints on theory-specific coupling parameters. We
derive trends for theory-specific scalings and find that
some conclusions following from generic modifications
must be reversed.

The analysis of generic deviations from GR is a good
theory-agnostic diagnostic tool for estimating the efficacy
of future efforts to constrain fundamental physics. This is
useful to perform null tests of GR, but at the end of the day,
tests of GR focused on specific contending candidates
provide the most meaningful physical insights [43]. Many
of the trends observed for generic modifications remain
valid when considering specific theories, but the scaling
relations we observe in our simulations can change sig-
nificantly for some of our target theories.
A bird’s eye summary of our conclusions can be found in

Table II. There we identify the current bound on theory-
specific parameters, our predicted bounds after thirty years,
and the class of sources which is most effective at
improving the bounds. In this table we only include
constraints obtained from actual data with a robust stat-
istical analysis, in an effort to limit our comparisons to
reliable experimental limits (as opposed to forecasts,
simulations, etcetera). In-depth results by source class
and trend derivations are presented in Sec. VI B. We refer
the reader to that section for a detailed discussion of
individual theories. In broad terms, the process of mapping
generic constraints to theory-specific parameters can
impose significant modifications to the trends observed
in the analysis of generic constraints. These modifications
can be significant enough to completely reverse the con-
clusions derived from generic deviations. This should
temper any interpretation of our conclusions from general
modifications. We also remark that our analysis for specific
theories is far from comprehensive: there is, in principle, a
very large number of GR modifications that have different
mappings to ppE parameters, and therefore different trends
in connection with source distributions.
Our conclusions on the best return of investment from

GW detector development from the generic modification
analysis generally hold also for specific theories. EdGB

TABLE II. Summary of forecasted constraints on specific modifications of GR. The source class acronyms are the same as in Table I.
A ( �) symbol denotes constraints coming from previous BBH observations, as opposed to other experimental evidence. When
necessary, we have mapped all existing constraints to 1σ constraints by assuming the posterior to be normally distributed. We only show
worst-case constraints that improve on existing GW bounds. For consistency with previous work, _M is given in units of M⊙=yr, while
we use geometrical units (so that δ _E is dimensionless) for the generic dipole radiation bound. Note that the necessary factor for
transforming between the two is c3=G ¼ 6.41 × 1012 M⊙=yr. The time derivative of the gravitational constant, _G, is normalized to the
current value of G, and it does indeed have units of yr−1 in geometrical units (where G ¼ c ¼ 1).

Theory Parameter Current bound
Most (least) stringent
forecasted bound

Most (least)
constraining class

Generic dipole δ _E 1.1 × 10−3 [44,45] � 10−11 (10−6) MB (T)
Einstein-dilaton-Gauss-Bonnet

ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
1 km [46] 3.4 km [47] � 10−3 km (1 km) T (MBH)

Black hole evaporation _M � � � 10−8 M⊙=yr (102) M⊙=yr MB (T)
Time varying G _G 10−13–10−12 yr−1 [48–52] 10−9 yr−1 (10 yr−1) MB (T)
Massive graviton mg 10−29 eV [53–56] 10−23 eV [3,57] � 10−26 eV (10−24 eV) MBH (MB)
dynamic Chern Simons

ffiffiffiffiffiffiffiffiffi
αdCS

p
5.2 km [58] 10−2 km (10 km) T (MB)

Noncommutative gravity
ffiffiffiffi
Λ

p
2.1 lp [59] � 10−3 lp ð10−1Þ lp T (MB)
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gravity (Sec. VI B 5) and massive graviton theories
(Sec. VI B 7) are two notable exceptions: in these cases,
the dependence of the theory-agnostic parameters on
source mass, spin and distance implies that the generic
modifications predictions (at −1PN and 1PN orders,
respectively) must be reversed.
The remainder of the paper presents the calculations

summarized above in much more detail. The plan of the
paper is as follows. In Sec. II we give details on the detector
networks implemented in this work. This section includes
information about the proposed timelines of detector
development, as well as the specific sensitivity curves
we have implemented at each stage. In Sec. III we discuss
the statistics with which this network is used to filter
astrophysical populations, including the calculation of
detection probabilities for both terrestrial and space-based
detectors. In Sec. IV we describe the population models
then discuss the calculation of detection rates and the
creation of our synthetic catalog. In Sec. V we outline the
statistics of parameter estimation procedures and waveform
models, including a brief overview of Fisher analysis and
the modified-GR waveforms implemented in this study. In
Sec. VI we present the results of our numerical inves-
tigation, as well as an analytical analysis to break down
certain trends that have appeared in our findings. Finally, in
Sec. VII we discuss limitations of this study and directions
for future work. To improve readability, some technicalities
about Bayesian inference and Fisher matrix calculations,

the mapping of the ppE formalism to specific theories and
our waveform models are relegated to Appendixes A, B
and C, respectively. Throughout this paper we will use
geometrical units (G ¼ c ¼ 1), and we assume a flat
Universe with the cosmological parameters inferred by
the Planck Collaboration [60].

II. DETECTOR NETWORKS

The construction and enhancement of GWdetectors across
theworld and in space is expected to proceed steadily over the
next thirty years. Tests of GR using GW observations are
fundamentally tied to this global timeline of detector develop-
ment, so it is important to have a realistic range of models for
detector networks that spans the inevitable uncertainties
intrinsic in planning experiments over such a long time. In
this section we describe potential timelines for upgrades and
deployment of newdetectors, our assumptions on the location
of the detectors, and their expected sensitivities.

A. Estimated timeline

Three plausible scenarios for the GW detector roadmap
as of the writing of this paper are schematically presented in
Fig. 1, with more details in Table III. The timeline starts
with the fourth observing run (O4) of the LIGO-Virgo-
KAGRA detectors, which are scheduled to take data at their
design sensitivities for one year starting in 2022. After this
run, the instruments would be taken off-line to be upgraded

FIG. 1. Graphical representation of Table III. The shaded regions in the figure represent periods of active observation, and the colors/
hatching corresponds to the noise curve being implemented, as shown in Fig. 2.
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TABLE III. The above timeline tabulates the exact terrestrial detector evolution utilized by this study. There is a single timeline of
detectors until 2035, when we model three separate scenarios that could play out in the next three decades: Scenario 1, 2, and 3. A
graphical representation is shown in Fig. 1. The various sensitivity curves in column 3 are shown in Fig. 2.

Year Detectors Noise curves Moniker(s)

2022–2023 [62] LIGO Hanford Advanced LIGO design [63] HLVKO4
LIGO Livingston Advanced LIGO design

Virgo Advanced Virgo+ phase 1 [63]
KAGRA KAGRA 80 Mpc or 128 Mpc [63]

2025–2030 [62] (one year observations
in alternating years)

LIGO Hanford Advanced LIGO A+ [63]
LIGO Livingston Advanced LIGO A+ HLVKIO5

Virgo Advanced Virgo+ phase 2 high or low [63] HLVKIO6
KAGRA KAGRA 80 Mpc or 128 Mpc HLVKIO7

LIGO India Advanced LIGO A+
2032–2035 (one year observations
in alternating years)

LIGO Hanford Advanced LIGO Voyager [64]
LIGO Livingston Advanced LIGO Voyager HLVKIO8

Virgo Advanced Virgo+ phase 2 high or low HLVKIO9
KAGRA KAGRA 80 Mpc or 128 Mpc

LIGO India Advanced LIGO Voyager

Scenario 1
2035–2039 [61,65] Cosmic Explorer CE phase 1 [66] CEKL

Einstein Telescope ET-D [67]
KAGRA KAGRA 128 Mpc
LISA LISA [68,69]

2039–2045 [61,65] Cosmic Explorer CE phase 1 CEKLext
Einstein Telescope ET-D

KAGRA KAGRA 128 Mpc
LISA LISA

2045–2050 [61,65] Cosmic Explorer CE phase 2 [66] CEK
Einstein Telescope ET-D

KAGRA KAGRA 128 Mpc

Scenario 2
2035–2039 Cosmic Explorer CE phase 1 CVKL

Virgo Advanced Virgo+ phase 2 high
KAGRA KAGRA 128 Mpc
LISA LISA

2039–2045 Cosmic Explorer CE phase 1 CVKLext
Virgo Advanced Virgo+ phase 2 high

KAGRA KAGRA 128 Mpc
LISA LISA

2045–2050 Cosmic Explorer CE phase 2 CVK
Virgo Advanced Virgo+ phase 2 high

KAGRA KAGRA 128 Mpc

Scenario 3
2035–2039 LIGO Hanford Advanced LIGO Voyager HLVKIL

LIGO Livingston Advanced LIGO Voyager
Virgo Advanced Virgo+ phase 2 high or low

KAGRA KAGRA 80 Mpc or 128 Mpc
LIGO India Advanced LIGO Voyager

LISA LISA
2039–2045 LIGO Hanford Advanced LIGO Voyager HLVKILext

LIGO Livingston Advanced LIGO Voyager
Virgo Advanced Virgo+ phase 2 high or low

KAGRA KAGRA 80 Mpc or 128 Mpc
LIGO India Advanced LIGO Voyager

LISA LISA

(Table continued)
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to higher sensitivity, with the next set of one-year-long
observing runs starting in 2025. At this point, the network
would also be joined by LIGO-India. Subsequent upgrades
for the LIGO detectors to LIGOVoyager are planned for the
early 2030’s. The plans for 3g detectors are understandably
more uncertain, with CE and ET potentially joining the
network in 2035. After a 5–10 year observing run, CE is
expected to be taken off-line for upgrades, with a second set
of runs expected in 2045. Meanwhile, LISA is scheduled to
fly in 2034, with a minimum mission lifetime of four years
and a possible extension by six additional years, for a total
of ten years of observation [61].
Given the timeline described above, one can identify

several distinct periods of observations in which a different
combination of detectors would be simultaneously on-line.
During the O4 run, LIGO Hanford (H), LIGO Livingston
(L), Virgo (V) and KAGRA (K) are expected to collect data
simultaneously, creating the HLVKO4 network. LIGO
India is expected to join the data collection effort in the
late 2020’s for the O5, O6 and O7 observation campaigns,
creating the HLVKIO5/O6/O7 networks. In the early
2030’s, the LIGO detectors (Hanford, Livingston, and
Indigo) will be upgraded to the Voyager design, reflected
in the HLVKIO8/09 networks.
The timeline beyond 2035 is quite uncertain, and we

cannot model every possible scenario. Therefore, we chose
to model three different timelines:

(1) After 2035, an optimistic detector schedule would
see the Virgo and LIGO detectors replaced by the
Einstein Telescope (E) and CE (C) detectors, re-
spectively. Furthermore, LISA (L) is targeting
around 2035 as the beginning of its data collection,
with a nominal four-year mission and an additional
six-year extension. These assumptions correspond to
the CEKL and CEKLext networks, respectively. We
follow up the multiband observation campaigns with
a final terrestrial-only observation period from
2045–2050 for the CEK network. This timeline is
shown as “scenario 1” in Table III.

(2) A less optimistic scenario might see one terrestrial
3g detector receive full funding and come online in
the 2030’s. We chose to use CE as our one 3g
terrestrial detector to create the CVKL, CVKLext,
and CVK networks. This is “scenario 2” in Table III.

(3) We also consider a pessimistic scenario where no
terrestrial 3g detectors will be observing before the
2050’s. The network will remain at its O9 sensitivity,
but it will still be joined by LISA in the 2030’s. This
scenario includes the HLVKIL, HLVKILext, and
HLVKI+ networks, and is denoted as “scenario 3” in
Table III.

Because these last three observation periods for all three
scenarios are less defined and span a wide time range, we
assume an 80% duty cycle when estimating terrestrial-only

TABLE III. (Continued)

Year Detectors Noise curves Moniker(s)

2045–2050 LIGO Hanford Advanced LIGO Voyager HLVKI+
LIGO Livingston Advanced LIGO Voyager

Virgo Advanced Virgo+ phase 2 high or low
KAGRA KAGRA 80 Mpc or 128 Mpc

LIGO India Advanced LIGO Voyager

FIG. 2. Noise curves for the various detector configurations studied in this work. The shaded bands observed for the Virgo+ phase 2
and KAGRA sensitivities reflect uncertainties in estimates of their anticipated power spectral densities.
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detection rates, but we use the full observation period for
calculating multiband rates.

B. Estimated sensitivity

The detector sensitivities can be characterized in terms
of their power spectral density Sn, which we present
in Fig. 2.
We assume that the LIGO detectors will start operating

at design sensitivity (“LIGO design” [63] in Fig. 2) in
O4 but will be upgraded to the Aþ configuration (“LIGO
A+” [63] in Fig. 2) in time for the O5 observing run. In
the early 2030’s, the LIGO detectors will be upgraded
to the Voyager sensitivity (“LIGO Voyager” [64] in
Fig. 2). Virgo observations begin with the Advanced
Virgo+ phase 1 noise curve (“Virgo phase 1” [63] in
Fig. 2) in O4, and they will subsequently be upgraded to
Advanced Virgo+ phase 2 (“Virgo phase 2” [63] in Fig. 2)
beginning in O5. To bracket uncertainties, we consider
both an optimistic (“high”) configuration and a pessi-
mistic (“low”) configuration for Virgo+ [63]. We model
the KAGRA detector using the “128 Mpc” and “80 Mpc”
configurations from Ref. [63] for optimistic and pessi-
mistic outlooks, respectively (“KAGRA” in Fig. 2). LIGO
India is planned to join the network in O5 with sensitivity
well approximated by the A+ noise curve, mirroring
the Hanford and Livingston detectors. LIGO India will
follow the same development path as its American
counterparts and be upgraded to Voyager sensitivity in
the early 2030’s.
The US-led 3g detector, CE, may replace the LIGO

detectors in 2035 at phase 1 sensitivity (“CE phase 1” in
Fig. 2). After upgrades are completed in the early 2040’s,
the detector may come back on-line with phase 2 noise
sensitivity (“CE phase 2” in Fig. 2) [65].
The European-led 3g counterpart ET could replace the

Virgo detector in 2035. ET will be modeled with the ET-D
sensitivity in this study (“ET-D” in Fig. 2). In reality, ET is
comprised of three individual detectors arranged in an
equilateral triangle, and a fully consistent treatment of ET
would incorporate the three detectors separately. However,
after testing on subsets of our populations, we concluded
that modeling ET as three identical copies of one of the
constituent detectors minimally impacts our estimates on
constraints of modified gravity, because of the small
correlations between modified gravity modifications to
the phase and the extrinsic parameters of the source, like
sky location and orientation. This approximation signifi-
cantly reduces the computational resources required to
perform this study, so we opted to use it when constructing
the Fisher matrices themselves (as discussed in Sec. V).
When calculating the detection probability, however, we do
account for the three detectors separately (cf. Sec. IV B).
This is because the different orientations and positions of
the detectors affect the rates more than they affect param-
eter estimation.

For networks that include a mixture of 3g and 2g
detectors, we will only model the 2g detectors with the
most optimistic sensitivity curve, i.e., the “high” configu-
ration for Virgo and the “128 Mpc” configuration for
KAGRA. The impact of the different 2g sensitivities is
small when implemented alongside a 3g detector, and the
shrinking of the parameter space for our models signifi-
cantly reduces the computational cost of the problem.
For LISA, we model the noise curve using the approx-

imations in Ref. [68]. At different points in this work,
we required both sky-averaged and non-sky-averaged
response functions to various detectors. For LISA this
can be more complicated than terrestrial interferometers,
so we plot the sky-averaged noise curve directly from
Ref. [68] (“LISA—sky-averaged” in Fig. 2) and the full
(non-sky-averaged) sensitivity produced in Ref. [69]
(“LISA—non-sky-averaged” in Fig. 2). However, in con-
trast to Ref. [69], we do include the factor of 2 to account
for the second channel, mirroring the approximation we
made for ET.

C. Estimated location

The relative locations of the various detectors affects the
global response function, and thus it impacts the analysis
performed in this paper. For terrestrial detectors, the various
geographical locations of each site are shown in Table IV.
The sites of detectors currently built or under construction
were taken from data contained in LALSuite [70]. Since a site
has yet to be decided upon for CE, we chose a reasonable
location near the Great Basin desert, in Nevada. For LISA,
the detector’s position and orientation as a function of time
must be taken into account, so we use the time-dependent
response function derived in Refs. [71,72]. Unlike those
papers we use the polarization angle defined by the total
angular momentum J, instead of the orbital angular
momentum L, because the latter precesses in time, while
J remains (approximately) constant.

III. STATISTICAL METHODS FOR
POPULATION SIMULATIONS

Both terrestrial and space-borne GW detectors have
nonuniform sensitivity over the sky. This effect is important
when attempting to estimate the expected detection rate and
the resulting population catalog.

TABLE IV. Detector locations used in this paper.

Detector Latitude ( ∘) Longitude ( ∘)
LIGO Hanford 46.45 −119.407
LIGO Livingston 30.56 −90.77
Virgo 43.63 10.50
KAGRA 36.41 137.31
LIGO India 14.23 76.43
Cosmic Explorer 40.48 −114.52
Einstein Telescope 43.63 10.50
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Terrestrial detector networks can mitigate this selection
bias by incorporating more detectors into the network,
which can “fill in” low-sensitivity regions in the sky. The
incorporation of the most accurate combination of detectors
and their locations can be important. This is why in
Sec. II C we specified the locations used in this study.
For space-borne detectors, some signals may be detect-

able for much longer than the observation period, so
random sky locations map to random spacetime locations,
and the effect of only seeing a portion of the signal must be
accounted for.
These issues with terrestrial networks and space detec-

tors, and their associated detection probabilities, are dis-
cussed in Secs. III A and Sec. III B, respectively.
We wish to calculate the probability that the GWs

emitted by some source will be detected by a terrestrial
network of instruments, which we will refer to as the
detection probability. We will focus primarily on two
classes of sources: SOBH binaries [73] and MBH binaries
[74]. We will use publicly available SOBH population
synthesis models to produce synthetic catalogs which are
mainly of interest for the terrestrial network, but can also be
observed as “multiband” events by both the terrestrial
network and LISA. We will also use MBH binary simu-
lations to create synthetic catalogs for LISA (these sources
are typically well outside the frequency band accessible to
terrestrial networks). Intermediate-mass BH binaries could
also be of interest [75], but we do not consider them here,
mainly because their astrophysical formation models and
rates have large uncertainties [36,76,77].

A. Terrestrial detection probability

An accurate calculation of the detection probability for
each source requires injections into search pipelines. A
simplifying, while still satisfactorily accurate, assumption
used in most of the astrophysical literature (see e.g.,
[78–80]) involves computing the SNR ρ, defined by

ρ2 ¼ 4Re

�Z
h̃h̃�

SnðfÞ
df

�
; ð1Þ

where we recall that SnðfÞ is the noise power spectral
density of the detector, while h̃ ¼ h̃ðfÞ is the Fourier
transform of the contraction between the GW strain and the
detector response function. We can factor out all the
detector-dependent quantities from the SNR in the form
of the “projection parameter” ω defined as [78,80]

ω2 ¼ ð1þ cos2 ιÞ2
4

F2þðθ;ϕ;ψÞ þ cos2 ιF2
×ðθ;ϕ;ψÞ; ð2Þ

where ι is the inclination of the binary relative to the line of
sight, θ and ϕ are the spherical angles of the source relative
to the vector perpendicular to the plane of the detector, and
ψ is the polarization angle. The single-detector antenna
pattern functions Fþ and F× are given by

Fþ ¼ 1

2
ð1þ cos2 θÞcos2ϕcos2ψ − cosθ sin2ϕsin2ψ ;

F×¼
1

2
ð1þ cos2 θÞcos2ϕsin2ψþ cosθsin2ϕcos2ψ : ð3Þ

With the projection-parameter approximation, we can
approximate the SNR as

ρ2 ≈ ω2ρ2opt; ð4Þ
where ρopt is the SNR for an optimally oriented binary with
θ ¼ 0, ι ¼ 0, and ψ ¼ 0. This relation is approximate if the
binary is precessing, so that ι is a function of time, but it is
exact otherwise.
The calculation of the detection probability can then be

rephrased as a search for the extrinsic source parameters
that satisfy ω ≈ ρ=ρopt ≥ ρthr=ρopt ≡ ωthr for some ρthr. The
probability that ω satisfies the above criteria translates into
finding the cumulative probability distribution [78],

pdet;terrðλ⃗Þ¼
Z

Θðω0ðθ;ϕ;ψ ; ιÞ−ωthrÞ
sinθdθdϕ

4π

dψ
π

dcos ι
2

;

ð5Þ

where Θð·Þ is the Heaviside function, which ultimately
describes the selection effects of our terrestrial networks.
This cumulative probability clearly depends on the source
parameter vector λ⃗, inherited from ωthr ¼ ωthrðλ⃗Þ.
Equation (5) can be extended to multiple-detector net-

works by expanding our definition of ω to

ω2
network ¼

X
i

ω2
i ; ð6Þ

where ωi is the projection parameter for a single detector in
the network, and ωnetwork ¼ ρnetwork−thr=ρopt with some
threshold network SNR, ρnetwork−thr, and single-detector
optimal SNR, ρopt. In the case of a multiple-detector
network, the locally defined position coordinates θ and
ϕ are replaced with the globally defined position coordi-
nates α (the right ascension angle) and δ (the declination
angle). The polarization angle ψ is changed to the globally
defined polarization angle ψ̄ , which is defined with respect
to an Earth-centered coordinate axis instead of the coor-
dinate system tied to a single detector.
Evaluating Eq. (5) for each network, with the network

projection operator defined as Eq. (6), provides a good
estimation of the probability we are seeking: a weighting
factor for a given binary that incorporates the sensitivity
and global geometry of a given detector network, as well as
the impact that the intrinsic properties of the source have on
its detectability. Importantly, the intrinsic source parame-
ters themselves only enter into Eq. (5) through the
calculation of ρopt in ωthr. Once a threshold SNR ρthr is
set, the detection probability function can be seen as a
function of only one number ωthr (for a given network),
through its dependence on ρopt. As Eq. (5) is a
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four-dimensional integral and must be calculated numeri-
cally, this detail can significantly save on computational
cost if we can approximate the full function pdet;terrðωthrÞ
once for each network. To do this, we form a grid in ωthr
with approximately 100 grid points and evaluate Eq. (5) for
each grid point with 109 samples uniformly distributed in
ψ̄ , cos ι, α, and sin δ. Interpolating across the grid in ωthr
produces an approximation for pdet;terrðωthrÞ. This approxi-
mation must be calculated for each specific network, as the
quantity ω0 in Eq. (5) depends on the number and relative
location of the detectors, but it only needs to be evaluated
once per network, rather than once per source.
The resulting probability functions for the four terrestrial

networks examined in this paper are shown inFig. 3.Note that
the relative location of each detector in a network impacts the
form of pdet;terr, so we label the curves by the detector nodes
and not just their number (i.e., the form of pdet;terr will be
slightly different for a Hanford, Livingston, and Virgo net-
work when compared to a Hanford, Livingson, and KAGRA
network). Furthermore, an important assumption in this
calculation is that the sensitivity of each detector is identical.
This is not a good approximation when jointly considering
second- and third-generation detectors, so in these cases we
neglect all the 2g detectors in the network. The configurations
used at each stage are summarized in Table V.

B. Space detection probability

For space-based detectors, which operate at much lower
frequencies, the picture changes quite drastically. The
terrestrial detection probability of Sec. III A addresses
the issue of random sky location and orientation of the
sources, but an important effect for detectors like LISA is
the time spent in band. Because signals observable by LISA

can be detected for much longer than the observation time
Tobs of the LISA mission, the time spent in the frequency
range accessible to LISAwill characterize the detectability
of the binary. We characterize this effect as outlined below
(we refer the reader to Ref. [33] for a more thorough
derivation and further details).
To determine the time the binary spends in the obser-

vational frequency band of LISA, we look for the roots of

ρðtmergerÞ − ρthr ¼ 0; ð7Þ
where tmerger is the time before merger at which the signal
starts, ρthr is some threshold SNR, and the SNR ρðtmergerÞ is
defined as

FIG. 3. Detection probability pdet for the four networks
examined in this paper. The black curve is for a single detector
(where global position no longer matters, so this is valid for any
single right-angle Michelson interferometer). The blue curve is
specifically for the Hanford, Livingston, and Virgo (HLV) net-
work. The red curve is for the Hanford, Livingston, Virgo, and
KAGRA (HLVK) network. Finally, the green curve represents a
network comprised of CE and ET (which includes all three of the
ET detectors as well as the 60° angle between each set of arms).

TABLE V. Configurations used at each stage of our analysis to
calculate the probability of detection for a given binary for the
terrestrial detector network. Note that networks involving multi-
ple detectors are labeled by the network nodes and not just their
number, because the relative position of the detectors impacts the
calculation of the detection probability. Our calculation depends
on the assumption that all the detectors have approximately the
same sensitivity curve, and so the curve used at each stage is
given in the last column. Because of this assumption, and the
extreme disparity in sensitivity between second- and third-
generation detectors, we only use the CE detector to calculate
rates when CE is part of the network.

Detection
network

Detector
locations

Detector sensitivity
curve

HLVKO4 Hanford site Ad. LIGO design [63]
Livingston site

Virgo site

HLVKIO5-O7 Hanford site Ad. LIGO A+ [63]
Livingston site

Virgo site
KAGRA site

HLVKIO8-O9 Hanford site Ad. LIGO Voyager [64]
Livingston site

Virgo site
KAGRA site

CEKL(ext) Cosmic Explorer site CE phase 1 [66]
All ET sites

CVKL(ext) Cosmic Explorer site CE phase 1

HLVKIL(ext) Hanford site Ad. LIGO Voyager
Livingston site

Virgo site
KAGRA site

CEK Cosmic Explorer site CE phase 2 [66]
All ET sites

CVK Cosmic Explorer site CE phase 2

HLVKI+ Hanford site Ad. LIGO Voyager
Livingston site

Virgo site
KAGRA site
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ρðtmergerÞ ¼ 4Re

�Z
minðfðtmerger−TobsÞ;1 HzÞ

fðtmergerÞ

h̃h̃�

SnðfÞ
df

�
: ð8Þ

Note that, at variance with Ref. [33], we use 1 Hz as the
upper cutoff for the LISA noise curve.
Once the roots of Eq. (7) (say T1 and T2) have been

found, we can obtain the probability of mergers for LISA
via

pSOBH
det;spaceðλ⃗Þ ¼ pdet;terrðλ⃗Þ × min

�
T1 − T2

Tobs
;
Twait − T2

Tobs

�
ð9Þ

for SOBH binaries, and

pMBH
det;spaceðλ⃗Þ ¼ min

�
T1 − T2

Tobs
;
Twait − T2

Tobs

�
ð10Þ

for MBH binaries. The probability pSOBH
det;space is weighted by

pdet;terr because all SOBH binaries we consider for LISA
are also candidate multiband events, which must be
observed both by LISA and by a terrestrial network to
be considered “true” multiband sources. In these expres-
sions, Twait is some maximum waiting time for the binary
to merge, which (following Ref. [33]) we choose to be
5 × Tobs for each detector network iteration.

C. Waveform model for population estimates

When computing the detection probability of a given
source, we need a model for the Fourier transform of the
time-domain response function h ¼ Fþhþ þ F×h×. In the
terrestrial case, we implement the full precessing inspiral/
merger/ringdown model IMRPhenomPv2 [25–27] with an
inclination angle of ι ¼ 0° to calculate the optimal SNR,
ωopt. For the space-based estimates in the next section, we
will use the spinning (but nonprecessing) sky-averaged
IMRPhenomD waveform model [26,27], with a small modi-
fication: since we are interested in LISA rather than terres-
trial, right-angle interferometers, we replace the usual factor
of 2=5 (that arises from sky-averaging) in favor of the sky-
averaged LISA sensitivity curve from [68], which accounts
for the secondLISAdata channel, sky-averaging, and the 60°
angle between the detector arms. This waveform model
depends onparameters λ⃗D¼½α;δ;θL;ϕL;ϕref ;tc;ref;DL;M;η;
χ1;χ2�, where α is the right ascension, δ is the declination, θL
and ϕL are the polar and azimuthal angles of the binary’s
orbital angular momentumL in equatorial coordinates at the
reference frequency, ϕref and tc;ref are the orbital phase and
the time of coalescence at the reference frequency,DL is the
luminosity distance, M and η are the redshifted chirp mass
and the symmetric mass ratio, and χi ¼ L̂ · Si=m2

i are the
dimensionless spin components along L̂ ¼ L=jLjwith spin
angular momentum Si.
For space-based detectors we must also choose a way

to map between time and frequency. The limits of the
SNR integral (1) and the antenna patterns (which for

LISA are functions of time) depend on this mapping.
For multiband SOBH binaries we use the leading-order PN
relation [33,72,81],

fðtmergerÞ ¼
53=8

8π
ðMÞ−5=8t−3=8merger; ð11Þ

where again tmerger is the time before merger. For massive
black hole (MBH) binaries, observed by LISA only
through merger, this PN approximation is insufficient, so
we use instead [82,83],

tmerger ¼
1

2π

dϕ
df

; ð12Þ

where ϕ is the GW Fourier phase. When calculating
detection rates, we will invert these relations numerically
as needed.

IV. POPULATION SIMULATIONS

A key ingredient of our work is the use of astrophysically
motivated BBH population models (Sec. IVA). Our meth-
odology for computing detection rates and for creating
synthetic catalogs from the models is explained in
Sec. IV B and in Sec. IV C, respectively.

A. Population models

For ease of comparison with previous work, we use the
SPOPScatalogs [73] for SOBHbinaries (Sec. IVA 1) and the
MBH binary merger catalogs used in Ref. [74] (Sec. IVA 2).

1. Stellar mass simulations

We use the public SPOPS catalog of population syn-
thesis simulations [73] in an effort to accurately capture the
full spin orientations of the binaries at merger. The SPOPS
catalog uses multiscale solutions of the precessional
dynamics [84,85] computed through the public code
PRECESSION [86] to quickly evolve the binary’s spin
orientations in time until the binary is about to merge.
The catalog is parametrized by three different variables:

the strength of the BH natal kicks, the BH spinmagnitudes at
formation, and the efficiency of tidal alignment [73]. In this
model, natal kicks are caused by asymmetric mass ejection
during core collapse, imparting a torque on one of the
constituents of the binary, while the tidal alignment reflects
spin-orbital angular momentum coupling through tidal
interactions that can realign the spin vectors with the orbital
angular momentum vector (see Ref. [73] for further details).
Following Ref. [33], we choose to vary only one

parameter of these models while keeping the others fixed.
More specifically, we consider a uniform distribution in
spin magnitude and the most realistic (“time”) prescription
for tidal alignment of Ref. [33], while varying the natal
kick. To estimate lower and upper constraints on the rates
given uncertainties in our population modeling, we use the
two most extreme natal kick models, corresponding
to σ ¼ 0 km=s and σ ¼ 265 km=s, where σ is the
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one-dimensional dispersion of the Maxwellian distribution
the kicks are drawn from. The zero-kick scenario results in a
lack of precessional effects and the highest detection rates
for all detectors, while the σ ¼ 265 km=s choice corre-
sponds to a soft upper bound on the size of the kicks, which
imparts the largest spin tilts and results in the lowest
detection rate. The two chosenvalues of σ result in optimistic
and pessimistic bounds on our projected constraints, and at
the same time they provide a useful comparison between
highly precessing systems and nonprecessing systems.

2. Massive black hole simulations

To model MBH binary populations, we adopt the
semianalytical models of early Universe BH formation
[87–89] used in the LISA parameter estimation survey of
Ref. [74]. As in that work, we focus on three populations
models, characterized by different BH seeding mechanisms
and different assumptions on the time delay between BH
mergers and the mergers of their host galaxies. These
population models are denoted as
(1) PopIII—seeds are produced from the collapse of

population III stars in the early Universe (a light-
seed scenario);

(2) Q3delays—seeds are produced from the collapse of
a protogalactic disk (heavy-seed scenario), and there
are delays between galaxy mergers and BH mergers;

(3) Q3nodelays—seeds are produced from the collapse of
a protogalactic disk (heavy-seed scenario), and there
are nodelays betweengalaxymergers andBHmergers.

These three models embody two seed formation mecha-
nisms, with two models representing optimistic and pessi-
mistic heavy-seed scenarios. The difference between PopIII
simulations with and without delays is less than a factor
of 2, so, following Ref. [74], we consider only the more
conservative estimate, in which delays are incorporated.

B. Detection rate calculations

With population synthesis simulations at our disposal,
we can now estimate expected detection rates for a given
detector network. This involves taking a model for our
Universe that predicts a certain rate of merging BBHs per
comoving volume and filtering the model through the lens
of a particular detector configuration and sensitivity. The
detection rate r for a given network follows from the
following relation [33,90]:

r ¼
ZZ

dzdλ⃗RðzÞpðλ⃗Þ dVcðzÞ
dz

1

1þ z
pdetðλ⃗; zÞ; ð13Þ

where z is the cosmological redshift, R is the intrinsic
merger rate (a function of the redshift), p is the probability
of a binary forming and merging given a set of intrinsic
source parameters λ⃗ ¼ λ⃗D (discussed in Sec. III C), and
dVc=dz is a shell of comoving volume Vc at redshift z.

The quantity pdet is the probability of a binary being
detected by a given detector network with some threshold
SNR, as discussed in Sec. III. The type of detector network
affects the quantity pdet only, while the other terms in the
integral above depend only on information contained in the
population simulation. For this study, we have used a
threshold SNR of 8 for terrestrial and space detections,
while for multiband detections we require the terrestrial
SNR and the LISA SNR to both be above 8 independently.
Because of the intrinsic difference in the duration of signals
observed by space detectors and terrestrial networks, we
treat the calculation of pdet slightly differently between the
two cases, as discussed in Sec. III A for terrestrial detectors,
and in Sec. III B for space-based detectors.
For all binaries, we evaluate the integral in Eq. (13)

through a large population of binary systems that are
evolved to the point of becoming BBHs and are weighted
according to the probability that a binary of this type would
actually be found in the Universe given some population
model. This probability is comprised of factors like the star
formation rate (SFR), cosmological evolution of the met-
allicity, the distribution of masses for these stellar pop-
ulations, etc.; the continuous equation in Eq. (13) then
becomes a discrete sum,

r ¼
X
i

ripdetðλ⃗iÞ; ð14Þ

where the index i refers to samples in the simulation, ri is
the intrinsic merger rate, which depends on parameters like
the SFR and the mass distribution, and pdetðλ⃗iÞ is the
detection probability evaluated for the source parameters of
the particular sample. This detection probability is pdet;terr

when considering a terrestrial network only, pSOBH
det;space when

considering multiband events, or pMBH
det;space when consider-

ing MBH binaries detectable only by LISA.
The intrinsic merger rate ri varies depending on the

catalog used. For the case of the SPOPS simulations, we
utilized the original StarTrack data at the foundation of
each SPOPS catalog (cf. Ref. [90] for details) to construct
the intrinsic merger rate in Eq. (13). For MBH catalogs, the
intrinsic merger rate ri becomes [74]

ri ¼ 4πWPS;i

�
DLðziÞ
1þ zi

�
2

; ð15Þ

as outlined in the data release [74,91]. The parameterWPS;i

is the weight on the Press-Schechter mass function divided
by the number of realizations [87].

C. Synthetic catalog creation

Calculating the BBH detection rate only gets us halfway
to our end goal. Once we have the number of mergers we
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expect to detect for each network and simulated population,
we still need to synthesize BBH catalogs to use for the later
Fisher analysis in this paper.
To create these synthetic catalogs, we sample directly

from the population simulations, using Monte Carlo rejec-
tion sampling. The probability of accepting a sample is
based on the intrinsic merger rate ri in Eq. (14), evaluated
for a single simulation entry, which comes directly from the
simulation data itself. This gives a distribution of sources
that reflects the expected BBH distributions for each
evolution prescription. With a distribution of “intrinsic”
mergers in this realization of the Universe, we assign any
remaining parameters according to reasonable distribu-
tions. For sky-location and orientation, this distribution
is uniform in α, sin δ, cos θL, and ϕL.

For the binary’s merger time, we use a uniform distri-
bution in GMST for the terrestrial networks, which impacts
the orientation of the terrestrial network at the time of
merger. This effect is completely degenerate with the right
ascension of the binary, which is also randomly uniform in
α. We use a similar prescription for MBH binaries, where
the signal duration is typically shorter than the observation
period. We employ a uniform distribution in time from 0 to
Tobs, which again translates to a uniform distribution in
detector orientation (random position of LISA in its orbit).
Candidates for multiband detection are more nuanced.

The signal is typically detectable for much longer than the
observation period, and the frequency-time relation is
nonlinear because of the familiar chirping behavior of
GW signals. For this class of sources, we randomly assign a
signal starting time, which has a power-law relation with

FIG. 4. Distributions of the different source properties detected by each network. For each detector network, labeled across the y-axis,
we plot the distribution of the total detector-frame massMz ¼ Mð1þ zÞ, mass ratio q ¼ m2=m1 < 1, redshift z, and SNR ρ in log-space
(base 10). Each plot is split, with the upper (grey) half coming from the σ ¼ 265 km=s SPOPS simulations, and the lower (green) half
coming from the σ ¼ 0 km=s simulations.
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the starting frequency: cf. Eq. (11). In this case, the position
of the binary in time not only affects the orientation of
LISA, but also the initial and final frequencies of the signal.
This assignment of time is important, as assigning a
uniformly random initial frequency would create a bias
towards seeing sources close to merger.
Once the full parameter vector has been specified, we

proceed to calculate the SNR for the source in question.
Sourcesmeeting the SNR threshold requirements are retained
in the final catalog. This process is repeated as necessary until
we have a catalog of sources that matches the number of
BBHs predicted by our rate calculations in Sec. IV B.
There are some drawbacks to this scheme. If this process is

repeated enough times, sources in the simulation will begin
tobe reused, as there are a fixednumber of possible sources to
draw from. For this study, however, these effects are
negligible, as the number of the sources in the simulations
is larger than any single catalog we construct. Furthermore,
the effects will be further mitigated by randomly assigning
the rest of the parameter vector not coming from the
simulation, which will imbue at least slightly different
properties to each source, even if one were reused.
To recap, our process can be broken down into the

following steps:
(1) Perform rejection sampling on the simulation entries

according to the probability of merging, neglecting
detector selection effects.

(2) Keep the “successful” events, and randomly draw
the rest of the requisite parameters according to their
individual distributions.

(3) Calculate the SNR for the given detector network. If
the binary meets the threshold requirements, keep
the source in the final catalog.

The source properties of the various detected catalogs are
shown in Fig. 4 for the SOBH populations, and in Fig. 5 for
the MBH populations targeted by LISA. Both figures show
the distributions of the redshifted total mass Mz, the mass
ratio q ¼ m2=m1 < 1, the redshift z, and the SNR ρ of the
detected populations of sources for different detector
configurations and population models. For the SOBH
sources shown in Fig. 4, the y-axis labels correspond to
different detector combinations, while the upper (grey) and
lower (green) histograms correspond to the two different
kick magnitudes (σ ¼ 265 km=s and σ ¼ 0 km=s) chosen
to bracket SOBH population models.
In the LISA SMBH case of Fig. 5, the same properties

are plotted for the three populations models and for a four-
year and ten-year LISA mission. Note that the y-axis label
now corresponds to different population models, and each
half of the violin plot corresponds to different mission
durations: the upper (grey) half corresponds to the “nomi-
nal” four-year LISA mission, and the lower (green) half
corresponding to an extended ten-year mission.
The detection rates, cumulative detected sources, and

average SNR for each class of sources are shown in Fig. 6,
where sources are broken down into four distinct categories:

(i) “SOBH—TERR”: SOBH candidates detected only
by a terrestrial network;

(ii) “SOBH—MB”: SOBH candidates detected by both
a terrestrial network and LISA (multiband);

FIG. 5. Distributions of the different MBH binary source properties detected by LISA. For each MBH binary simulations, labeled
across the y-axis, we plot the distribution of the total detector-frame mass Mz ¼ Mð1þ zÞ, mass ratio q ¼ m2=m1 < 1, redshift z, and
SNR ρ in log-space (base 10). Each plot is split in two, with the upper (grey) half corresponding to a “nominal” four-year LISA mission,
and the lower (green) half corresponding to an extended ten-year mission.
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(iii) “MBH—PopIII”: MBH sources from the PopIII
model (light seeds);

(iv) “MBH—Q3”: MBH sources from both Q3 (heavy
seeds) models, with shaded bands indicating the
range of uncertainty on delays between galaxy
mergers and BH mergers.

The year is shown across the bottomx-axis,while the detector
network timeline is shown across the top x-axis using the
acronyms defined in Table III. The solid lines and markers
represent the mean values of the different quantities when
considering each population model and optimistic/pessimis-
tic detector configurations. The error bars and shaded regions
represent the most optimistic and most pessimistic scenarios,
except in the case of the SNR in the third panel, where the
upper and lower bounds are the optimistic (pessimistic)
average plus (minus) the standard deviation of the optimistic
(pessimistic) distribution. There is no error for the PopIII
model, as we only have one iteration of this model and only
one noise curve for LISA. The detection rates for SOBHs

and MBHs in the different scenarios are also listed in
Table VI.
Roughly speaking, the power of a detector network to

reveal new physics comes from a combination of (i) the
number of sources the network can detect, and (ii) the
typical quality of each signal (as measured by the SNR).
Figure 6 attempts to capture the zeroth-order difference
between each detector configuration and population model
in these two aspects. The punchline is that although LISA
will be able, on average, to see events with much larger
SNR, these are just a few compared to the abundant number
of sources that ground-based detectors will observe (albeit
at typically lower SNR). The precision of GR tests scales as
ρ−1, and it is approximately proportional to

ffiffiffiffi
N

p
for N

events [92], therefore it is not immediately obvious which
set of observations will be best at testing GR. With our
catalogs this question can be answered quantitatively. As
we discuss below, ground-based and space-based detectors
are complementary to each other.

FIG. 6. Properties of detected merger events for various detector networks and population models. The left panels refer to terrestrial-
only sources, while MBHs and multiband sources are shown on the right. The points and thick lines show the mean values, while the
shaded regions and error bars encompass the optimistic and pessimistic scenarios. The assumed detector network is shown in the top
x-axis (using the notation of Table III), while the corresponding years are shown on the bottom x-axis. The top panels show the rates of
detected mergers for each class of sources; circles refer to the PopIII MBH population. The middle panels show the cumulative number
of observed sources: here the three different multiband scenarios are identical, as the choice of terrestrial network has little impact on the
number of multiband sources we can detect [33]. The bottom panels show the average log10SNR. Here the lower (upper) bounds
correspond to subtracting (adding) the standard deviation to the mean value of the most pessimistic (optimistic) scenario.
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V. PARAMETER ESTIMATION

In this section we describe the statistical methods we will
use to carry out projections on the strength of tests of GR in
the future, as well as our waveform model and the
numerical implementation.

A. Basics of Fisher analysis

The backbone of this work is built on the estimation of the
posterior distributions that might be inferred based on our
synthetic signals. Given a loud signal with a large enough
SNR, the likelihood of the data, i.e., the probability that one
would see a data set d given a model with parameters θ⃗, can
be expanded about the maximum likelihood (ML) param-
eters θ⃗ML. This expansion taken out to second order results in
the following approximate likelihood function (where we
focus on a single detector for the moment) [72,93]:

L ∝ exp

�
−
1

2
ΓijΔθiΔθj

�
; ð16Þ

where Δθi ¼ θiML − θi are deviations from the ML values,
and Γij is the Fisher information matrix,

Γij ¼ ð∂ihj∂jhÞjML: ð17Þ

As before, h is the template response function, and the noise-
weighted inner product is given by

ðAjBÞ ¼ 4Re

�Z
ÃB̃�

SnðfÞ
df

�
; ð18Þ

with SnðfÞ the noise power spectral density. By truncating
the expansion at second order, we have effectively repre-
sented our posterior probability distribution as a multidi-
mensional Gaussian with a covariance matrix given by
Σij ¼ ðΓ−1Þij. The variances of individual parameters can
then be read off to be σi ¼

ffiffiffiffiffiffi
Σii

p
, where index summation is

not implied.
In an attempt to capture the hard boundaries on the spin

components (the dimensionless spin magnitudes jχij and
in-plane spin component χp in GR should not exceed 1), we
incorporate a Gaussian prior on these two parameters with a
width of 1. We do so by adding to the Fisher matrix
diagonal terms of the form [72,93,94],

Γij → Γij þ Γ0
ij; ð19Þ

where Γ0
ii represents our prior distribution and is given by

Γ0
ij ¼ δχ1;χ1 þ δχ2;χ2 þ δχp;χp : ð20Þ

In the case of multiple observations for a single source,
we simply generalize the above results through sums. For
example, the likelihood for a single event observed with N
detectors can be expanded quadratically via

L ∝ exp

�
−
1

2
ΔθiΔθj

XN
k

Γij;k

�
; ð21Þ

where the subscript k labels the kth detector, and we have
assumed that the parameters θ⃗ are globally defined. This
gives the final covariance matrix,

Σij ¼
��XN

k

Γk þ Γ0

�
−1
�ij

: ð22Þ

To improve readability, additional details on the calculation
of the Fisher matrix are given in Appendix A.

B. Waveform model for the Fisher analysis

For the Fisher studies carried out in this paper, we model
binary merger waveforms using the phenomenological
waveform model IMRPhenomPv2 [25–27], which allows us

TABLE VI. Detection rates for the detector networks and pop-
ulation models examined in this study. For SOBH populations, the
first number in the parentheses is the detection rate for the terrestrial-
only network (neglecting LISA), while the second number is the
detection rate for multiband events seen in both the terrestrial
network and LISA. For MBH populations, we show the detection
rate for LISA for the PopIII, light-seeding scenario, as well as for the
Q3, heavy-seeding scenario. In the case of Q3, the first number in
parentheses corresponds to delayed mergers (Q3delays) and the
second number to the nondelayed version (Q3nodelays).

SOBH rates (yr−1)

Network SPOPS 0 SPOPS 265
(T, MB) (T, MB)

HLVKO4 (1.43 × 104, 0) (2.90 × 102, 0)
HLVKIO5-O7 (1.22 × 105, 0) (3.43 × 103, 0)
HLVKIO8-O9 (6.60 × 105, 0) (2.48 × 104, 0)

Scenario 1
CEKL (9.70 × 105, 2.58) (3.96 × 104, 0.0854)
CEKLext (9.70 × 105, 6.24) (3.96 × 104, 0.210)
CEK (9.72 × 105, 0) (3.97 × 104, 0)

Scenario 2
CVKL (8.36 × 105, 2.58) (3.36 × 104, 0.0854)
CVKLext (8.36 × 105, 6.24) (3.36 × 104, 0.210)
CVK (9.26 × 105, 0) (3.77 × 104, 0)

Scenario 3
HLVKIL (6.60 × 105, 2.58) (2.48 × 104, 0.0854)
HLVKILext (6.60 × 105, 6.24) (2.48 × 104, 0.210)
HLVKI+ (6.60 × 105, 0) (2.48 × 104, 0)

MBH Rates (yr−1)

Network PopIII Q3 (delay, nodelay)
LISA 62.5 (8.11, 119.1)
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to capture certain spin precessional effects from inspiral
until merger. The software used in this work was predomi-
nantly written from scratch, but the software library
LALSuite [70] was used for comparison and to verify our
implementation. For the actual parameter estimation cal-
culation with LISA, we rescale the sensitivity curve to
remove the sky-averaging numerical factor, and we account
for the geometric factor of

ffiffiffi
3

p
=2 manually in the LISA

response function (“LISA—non-sky-averaged” in Fig. 2),
following Ref. [69].
To fully specify the waveform produced by the

IMRPhenomPv2 template in GR, we need a 13-dimensional
vector of parameters,

λ⃗Pv2;GR ¼ ½α; δ; θL;ϕL;ϕref ; tc;ref ; DL;M; η; χ1; χ2; χp;ϕp�:
ð23Þ

The first 11 parameters are the same as those introduced for
the IMRPhenomD model in Sec. III C. The parameters χp and
ϕp define the magnitude and direction of the in-plane
component of the spin, defined as [95]

χp ¼
1

B1m2
1

max ðB1S1⊥; B2S2⊥Þ; ð24Þ

where B1 ¼ 2þ 3q=2, B2 ¼ 2þ 3=ð2qÞ, q ¼ m2=m1 < 1
is the mass ratio, and Si⊥ is the projection of the spin of BH
i on the plane orthogonal to the orbital angular momen-
tum L.
This IMRPhenomPv2 is then deformed through parame-

trized post-Einsteinian corrections to model generic,
theory-independent modifications to GR [28–31]. We
worked with deformations of two types,

h̃genðλ⃗Pv2; βÞ ¼
�
h̃GReiβðMπfÞb=3 f < 0.018m

h̃GR 0.018m < f;
ð25Þ

h̃propðλ⃗Pv2; βÞ ¼ h̃GReiβðMπfÞb=3 ; ð26Þ

where the first waveform hgen represents deviations from
GR caused by modified generation mechanisms, and hprop
represents deviations from GR caused by modified propa-
gation mechanisms. Details (including the motivation for
these implementations, and the disparity of the results
between the two types of deviations) are discussed in
Appendix C. As outlined there, differences are minor, and
therefore from now on we will focus on the propagation
mechanism, unless otherwise specified. The parameter β
controls the magnitude of the deformation, and b controls
the type of deformation considered. The ppE version of the
IMRPhenomPv2 model is then controlled by the parameters,

λ⃗Pv2;ppE ¼ λ⃗Pv2;GR ∪ fβg: ð27Þ

Recall that, in PN language [96], a term in the phase that is
proportional to ðπMfÞb=3 is said to be of ðbþ 5Þ=2 PN
order. The waveform model above is identical to the gIMR
model coded up in LAL, and used by the LVC when
performing parametrized PN tests of GR on GW data.
The main power of the ppE approach is its ability to map

the ppE deformations to known theories of gravity.
Table VII presents the mapping between ðβ; bÞ and the
coupling constants in various theories of gravity (see
Appendix B for a more detailed review of these mappings).
This table makes it clear then that ppE deformations are

not false degrees of freedom, in the language of [43]. Once
a constraint is placed on β, one can easily map it to a
constraint on the coupling constants of a given theory
through Table VII. This reparametrization is typically
computationally trivial, and therefore it saves significant
resources by reusing generic results, instead of repeating
the analysis for every individual theory.

C. Numerical implementation

Common methods for calculating the requisite deriva-
tives for the Fisher matrices typically involve either
symbolic manipulation software, such as Mathematica
[97], or the use of numerical differentiation based on a

TABLE VII. A summary of the theories examined in this work (adapted and updated from [39,45]). The columns (in order) list the
theory in question (unless a generic deviation is being examined), the physical interpretation of the modification, the way the
modification is introduced into the waveform, the PN order at which the modification is introduced, the equation specifying the ppE-
theory mapping, and the b parameter in the ppE framework. The practical ramifications between “generation” vs “propagation” effects
relates to how the modification is introduced into the waveform, as explained in Appendix C.

Theory or physical process Physical modification G=P PN order β Theory parameter b

Generic dipole radiation Dipole radiation G −1 (B2) δ _E −7
Einstein-dilaton Gauss-Bonnet Dipole radiation G −1 (B3)

ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p −7
Black hole evaporation Extra dimensions G −4 (B6) _M −13
Time varying G LPI G −4 (B7) _Gz −13
Massive graviton Nonzero graviton mass P 1 (B11) mg −3
dynamical Chern-Simons Parity violation G 2 (B8)

ffiffiffiffiffiffiffiffiffi
αdCS

p −1
Noncommutative gravity Lorentz violation G 2 (B10)

ffiffiffiffi
Λ

p
−1
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finite difference scheme. The calculation of the derivatives
is always followed by some sort of numerical integration,
which can be based on a fairly simple method such as
Simpson’s rule, or some more advanced integration algo-
rithm that might appear prepackaged in Mathematica.
All of these methods have their respective benefits:

symbolic manipulation and complex integration algorithms
provide the most accuracy, while numerical differentiation
and simpler integration schemes are typically much faster.
All methods also come with their respective drawbacks.
The maximally accurate method of adaptive integration and
symbolic differentiation in Mathematica can be computa-
tionally taxing, while the fully numerical approach can be
prone to large errors if the stepsizes are not tuned correctly,
both for the differentiation with respect to the source
parameters θ⃗, as well as for the frequency spacing in the
Fisher matrix integrals. On top of these aspects, using a
program like Mathematica can be cumbersome at times, as
interfacing with lower-level (or even scripting) languages
adds an extra layer of complexity.
A combination of the two extremes implemented in one

low-level language would be ideal, and it is the route
chosen for this work. While symbolic manipulation is not
available in the language that we chose (C++), we instead
implemented an automatic differentiation (AD) software
package natively written in C/C++: ADOL-C [98]. The
basic premise of AD (as implemented in ADOL-C) is to use
operator-overloading to perform the chain-rule directly on
the program itself. By hard-coding a select number of
derivatives on basic mathematical functions and operations
(such as trigonometric functions, exponentials, addition,
multiplication, etc.) and tracing out all the operations
performed on an input parameter as it is transformed into
an output parameter, ADOL-C can stitch together the
derivative of the original function. This results in deriva-
tives that are exact to numerical precision. As no final,
mathematical expression is output, this does not exactly
constitute symbolic differentiation, but perfectly fulfills our
requirements.
To complete the Fisher calculation, we take our exact

derivatives (to floating-point error) and integrate them with
a Gaussian quadrature scheme based on Gauss-Legendre
polynomials, as in Ref. [72]. To calculate the weighting
factors and the evaluation points, we have implemented a
modified version of the algorithm found in Ref. [99]. While
this typically incurs a high computational cost to calculate
the weights and abscissas, we mitigate this fact by doing the
calculation only once, and reusing the results for each
Fisher matrix. This results in integration errors orders of
magnitude lower than a typical “Simpson’s rule” scheme,
with the same computational speed per data point.

VI. TESTS OF GENERAL RELATIVITY

In this section we summarize the main results of the
analysis described above. We begin with the constraints on

generic modifications as a function of time for each
population and network (Sec. VI A). Next, we translate
these into constraints on specific theories (Sec. VI B, and in
particular Table VII).

A. Constraints on generic modifications

Let us begin by showing in Fig. 7 the projected strength
of constraints on modifications at various PN orders
(shown in different panels) as a function of time.
Detector scenarios are labeled at the top, and the various
astrophysical population classes are separated to facilitate
visual comparisons. Recall from Sec. II that we consider
three detector scenarios (S1, S2, and S3) bracketing
funding uncertainties in the development of the future
detector network. The source classes include the following:

(i) SOBH—TERR: SOBH populations as seen by only
terrestrial networks;

(ii) SOBH—MB: SOBH events observed by both ter-
restrial networks and LISA;

(iii) MBHs: heavy-seed (Q3) and light-seed (PopIII)
scenarios as seen by LISA.

When relevant, the error estimates shown in the figures
below come from the different versions of the population
model (i.e., SPOPS 265 vs SPOPS 0 and Q3delays vs
Q3nodelays), as well as marginalization over the different
estimates of the noise curves (i.e., the “high” and “low”
sensitivity curve for Virgo and the “128 Mpc” and
“80 Mpc” curves for KAGRA). The uncertainties corre-
spond to the minimum and maximum bounds from all the
combinations we studied at that point in the timeline.
Figure 7 is one of the main results of this paper. It allows

us to draw many conclusions, itemized below for ease of
reading1:

(i) Multiband sources yield the best constraints at neg-
ative PN orders. This is expected from previous work
[35,45]: the long, early (almost monochromatic)
inspiral signals coming from LISA observations
stringently constrain deviations at low frequencies.

(ii) LISA MBH observations do better than terrestrial
SOBH observations at negative PN orders. Con-
straints coming from the large-SNR MBH popula-
tions outperform the terrestrial networks at negative
PN order, despite the large number of expected
SOBH sources in the terrestrial network.

(iii) Terrestrial SOBH observations can do slightly better
than LISA MBH observations at positive PN orders.
Positive PN order effects can be constrained better
when the merger is in band. The terrestrial networks
begins to benefit from the millions of sources in the

1Throughout this analysis, the zeroth PN order in the GW
phase refers to the first (often called “Newtonian”) term in the GR
series, which is proportional to v−5 ∝ f−5=3. Consistently, neg-
ative (positive) PN orders identify modifications entering in at
lower (higher) powers of v, relative to this leading-order term.
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SOBH catalogs, but the extremely high-SNR
sources in the MBH catalogs mean that LISA
constraints are still competitive with terrestrial con-
straints.

(iv) Terrestrial network improvements make a big differ-
ence at negative PN orders. The different terrestrial
network scenarios are widely separated for the
negative PN effects, with the most optimistic S1

FIG. 7. Constraints on modifications to GR at various PN orders as a function of time. The colors represent different classes of
populations (including SOBH terrestrial-only sources, SOBH multiband sources, MBH sources from the Q3 heavy-seed scenario, and
MBH sources from the light-seed PopIII scenario). The bands in all of these scenarios—except for PopIII—correspond to astrophysical
uncertainties: kick velocities σ ¼ 265 km=s and σ ¼ 0 km=s give the upper and lower bounds for SOBHs, while the inclusion of delays
affects Q3 scenarios. Greyscale patches at the top of each panel correspond to the observation period for each network, labeled across the
top. Multiband sources and MBHs yield strong constraints at negative PN orders. Terrestrial-only SOBH sources begin to contribute
substantially at positive PN orders for all detector networks, with the optimistic scenario S1 yielding the best constraints. We overlay as
horizontal lines the most stringent current bounds, where available and competitive, from pulsars [42] and LVC observations
of GWs [3].
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scenario vastly outperforming the S2 and S3 scenar-
ios. This conclusions is robust with respect to
astrophysical uncertainties in the population models.

(v) Network improvements are less relevant at higher
PN order. In this case the three different scenarios
overlap considerably (but the S1 scenario maintains
a clear edge over the other two).

To understand some of these features, it can be illumi-
nating to model the scaling behavior of bounds at different
PN orders with respect to various source parameters. Below
we consider an analytical approximation that can reproduce
most of the observed features. We first model constraints on
individual sources and then fold in the enhancement
achieved by stacking multiple events.

1. Analytical scaling: Individual sources

A good first approximation is to ignore any covariances
between parameters by treating the Fisher matrix as
approximately diagonal, so that the bounds on the generic
ppE parameter β is roughly

σββ ≈
�

1

Γββ

�
1=2

¼
�
4Re

Z
fhigh

flow

ðπMfÞ2b=3jh̃j2
SnðfÞ

df

�−1=2
;

ð28Þ

where flow and fhigh are the lower and upper bounds of
integration. This expression can be simplified further by
assumingwhite noise, so that SnðfÞ ¼ S0 is constant, and by
ignoring PN corrections to the amplitude, i.e., jh̃j ¼ Af−7=6,
where A ∝ M5=6=DL is an overall amplitude (see e.g.,
[100]). This leads to

σββ ≈
�
6A2

S0

ðf2ðb−2Þ=3low − f2ðb−2Þ=3high ÞðπMÞ2b=3
2 − b

�−1=2
; ð29Þ

as long as b ≠ 2. We can further simplify the expression for
σββ by using the fact that, within the same approximations,
the SNR scales like

ρ2 ¼ 4Re

�Z
fhigh

flow

hh�

SnðfÞ
df

�
≈
3A2

S0
ðf−4=3low − f−4=3high Þ; ð30Þ

which then leads to

σββ≈
ðπMÞ−b=3

ρ

��
1−

b
2

�
f−4=3low −f−4=3high

f2ðb−2Þ=3low −f2ðb−2Þ=3high

�1=2
: ð31Þ

Assuming the higher frequency cutoff to be at the
Schwarzschild ISCO, so that fhigh ¼ fISCO ¼ 6−3=2η3=5=
ðπMÞ, and expanding to leading order in the small quantity
πMflow ≪ 1, we finally obtain the approximate scaling,

σββ ≈
�
6b−2

�
b
2
− 1

��
1=2 ðπMflowÞ−2=3

ηðb−2Þ=5ρ
; b > 2; ð32Þ

σββ ≈
�
1 −

b
2

�
1=2 ðπMflowÞ−b=3

ρ
; b < 2: ð33Þ

The expressions above do not apply to the case b ¼ 2, as the
integration would lead to a logarithmic scaling. Recall that
b > 2 corresponds to PN orders higher than 3.5.
As expected, all bounds on generic ppE parameters

approximately scale as the inverse of the SNR, regardless of
the PN order at which they enter. What is more interesting
is that they also scale with the chirp mass as M−b=3 when
b < 2, or asM−2=3 when b > 2. For a single event, we then
have the ratio

σTERRββ

σMBH
ββ

≈
ρMBH

ρTERR

�
MTERR

MMBH

�−b=3�fTERRlow

fMBH
low

�−b=3
; ð34Þ

for b < 2. Since ρMBH=ρTERR ∼ 102, MTERR=MMBH ∼
10−4 and fTERRlow =fMBH

low ∼ 105, we conclude that the ratio
σTERRββ =σMBH

ββ ≈ 103−b=3. This ratio is large (favoring MBH
sources) when b is negative and large, i.e., at highly
negative PN orders, and slowly transitions to favor terres-
trial, SOBH sources at positive PN orders, explaining the
observations in items (ii) and (iii) above. The ratio degrades
by approximately 4 orders of magnitude between -4 PN and
2 PN, in favor of the terrestrial network, and in agreement
with Fig. 7. This scaling with b holds true regardless of the
typical SNRs of the sources, as the ratio of SNRs depends
on the ratio of the chirp masses of the sources, but not on
the PN order.
Let us now consider the scaling of the bounds with PN

order in more detail. Figure 8 shows an averaged ratio
σTERRββ =σMBH

ββ computed from the full numerical simulations
of Fig. 7 (solid blue line), together with the prediction in
Eq. (34) that the ratio should scale as ∝ 10−b=3 (solid black
line). The numerical results (blue line, with an “uncer-
tainty” quantified by the shaded blue region) were com-
puted as follows. We first averaged the constraints for each
population model at each PN order and for each detector
network that concurrently observes with LISA; this allowed
us to isolate the effect of the combination of source class
and detector, neglecting the sometimes significant contri-
bution from stacking. Ratios of the averaged quantities
were then calculated for each combination of SOBH model
(SPOPS 0 and SPOPS 265) and heavy-seeding MBH
model (Q3delays and Q3nodelays) and for each detector
network—the CEKLext, CVKLext, and HLVKILext (opti-
mistic and pessimistic) configurations—resulting in 16
combinations in all at each PN order, assuming an extended
ten-year LISA mission duration. The average of these
combinations is shown as the solid blue line in Fig. 8,
and the region bounded by the minimum and maximum
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ratios is shown shaded in blue. Observe that the scaling of
Eq. (34) is consistent with the averaged ratio in the entire
domain; the small dip at b ¼ −5 (or 0PN order) is due to
degeneracies with the chirp mass, which the scaling relation
does not account for.
The relation σTERRββ =σMBH

ββ can be pushed further by
comparing multiband sources against the rest of the
SOBH sources detected only by the terrestrial network.
For these two classes of sources, the masses would be
comparable. Let us focus on the impact of the early inspiral
observation. The ratio of the SNRs in the LISA band is of
Oð1Þ for typical sources, so we will neglect it for now.
Typical initial frequencies, however, are quite different,
with multiband sources having initial frequencies of about
10−2 Hz for SOBH sources that merge within several
decades in the terrestrial band. This makes the ratio
fTERRlow =fMB

low ∼ 103, and thus, the constraining power of
multiband sources relative to that of terrestrial-only sources

is approximately σTERRββ =σMB
ββ ∼ 10−b, which explains the

scaling observed in item (i) above. In Fig. 8 we show the
averaged ratio measured from our full simulations includ-
ing the noise curves shown in Fig. 2 and the IMRPhenomPv2

waveform (solid red line) as well as the 10−b scaling
derived from Eq. (34) (solid gray line). Again, we average
the constraints from each population model at each PN
order, assuming a ten-year LISA mission duration.
However we do not consider every combination of pop-
ulation models and detector networks, but instead compare
the multiband constraints from each network and SOBH
model against the terrestrial-only constraints from the same
combination of terrestrial network and SOBH model. That
is, we compare S1 terrestrial-only constraints derived from
the SPOPS 265 model against the multiband constraints
with the S1 network and from the SPOPS 265 model,
repeating the procedure for each terrestrial network and
population model. This yields eight different combinations
of population models and networks. The red line shows the
average ratio for all the combinations considered, and the
red-shaded region shows the area bounded by the maxi-
mum and minimum ratios. The simple analytical scaling
reproduces the numerics quite well at negative PN orders,
where the contribution to the constraint on the ppE
parameter primarily comes from LISA observations. At
positive PN orders the scaling relation breaks down for two
main reasons: (i) our scaling relation neglects covariances,
and (ii) the dominant source of information is no longer
LISA’s observation of the early inspiral, but the signal from
the merger-ringdown seen by the terrestrial network.

2. Analytical scaling: Multiple sources

Our analysis above helps to elucidate some of the trends
observed in our numerical simulations by examining
individual sources, but it fails to capture the power of
combining observations to enhance constraints on modified
theories of gravity. Especially when considering terrestrial
networks, this element is critical in predicting future
constraints, and it is connected with our observations
(iv) and (v) in the previous list.
To fully explore this facet of our predictions, we try to

isolate the impact of the total number of sources on the
final, cumulative constraint for a given network. As shown
in Eq. (A11) of Appendix A, the combined constraint from
an ensemble of simulated detections is

σ2β ¼
�XN

i

1

σ2β;i

�−1

; ð35Þ

where σβ;i is the variance on β of the ith source margin-
alized over the source-specific parameters, including all
detectors and priors, and N is the total number of sources in
the ensemble. The effect of the population on all the
different combinations of detector networks and PN orders

FIG. 8. Scaling relations discussed in Sec. VI A 1. The ratio
σTERRββ =σMBH

ββ , calculated from the full Fisher simulations includ-
ing the realistic noise curves shown in Fig. 2 and the IMRPhe-
nomPv2 waveform, is shown in blue. The empirically measured
trend is derived from averaging the constraints from each
terrestrial network and each population model, then calculating
the ratios of every combination of terrestrial network and SOBH
model against each MBH heavy-seeding model. The blue line
shows the mean ratio, and the blue shaded region is the area
bounded by the maximum and minimum ratios. The red line and
the red shaded region refer instead to the ratio between the
terrestrial-only constraints and the multiband constraints, i.e.,
σTERRββ =σMB

ββ . For this class of sources, we calculate the ratio for
each population model and detector network, one at a time. That
is, the terrestrial-only constraints from the S1 network derived
from the SPOPS 265 model are compared against the multiband
constraints from the S1 network and the SPOPS 265 model. The
trends predicted analytically in the text are shown in black and
grey for MBH and multiband sources, respectively. The trend
lines we show for our predictions have been shifted along the y-
axis to better compare the with the data.
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can be summarized by the distribution in σβ;i, and we find
empirically that they all lie somewhere in the spectrum
bounded by the following extreme scenarios:
(a) all the constraints contribute more or less equally,
(b) the total constraint is dominated by a single (or a few)

observations.
When the covariances are all approximately equal, the sum
above reduces to σβ ≈ σβ;i=

ffiffiffiffi
N

p
, but when one constraint

(say σβ;strongest) dominates the ensemble, the sum reduces to
σβ ≈ σβ;strongest. Naturally, in the case where all sources are
more or less equally important, the power of large catalogs
is maximized, and one would expect terrestrial networks
observing hundreds of thousands to millions of sources to
outperform networks with smaller populations, such as
MBHs and multiband sources (everything else being
equal). When one observation dominates the cumulative
bound because of loud SNR or source parameters that
maximize the constraint, then large catalogs are not as
important.
In an attempt to quantify this effect, we can ask the

following question: what is the minimum number of
sources we can retain and still achieve a similar constraint
on β? To answer this question, we take all the variances
calculated with our Fisher analysis for a given population
model and detector network, and order them according to
the strength of the constraint from each individual source.
With some threshold constraint set, we can work our way
down the list, calculating the cumulative bound for the
“best” N0 sources at a time. We define Neff as the value of
N0 such that our threshold constraint is achieved.
Comparing the values of Neff at each PN order for a single
population model and network provides useful insights into
how generic constraints benefit from the catalog size.
The upper panel of Fig. 9 shows the values of Neff

calculated using the results from our full Fisher analysis,
including the noise curves shown in Fig. 2 and the
IMRPhenomPv2 waveform, for the CEK network with the
SPOPS 0 population model and a threshold constraint of
log10 σβ;thr ¼ 0.95 log10 σβ. A pronounced trend is evident:
positive PN orders require up to ∼105 sources to retain a
constraint equal to our threshold value, while the most
negative PN effects only require a single, highly favorable
source to reach the threshold value. The lower panel of
Fig. 9 merely shows the value of the full numerical
constraint (red × signs) compared with our value of the
threshold constraint (blueþ signs): by our own definition,
the threshold constraint captures most (i.e., 95%) of the full
constraint.
Figure 10 shows several different facets of the data

relevant to the analysis of Fig. 9. For each PN order, we
have plotted three different quantities: (i) a heat map of all
the sources in the catalog in the M–ρ plane (shown in
blue), which is the same for all PN orders, (ii) the contours
showing the strength of the individual constraints from
each source for the entire catalog (in black), and (iii) the

subset of sources required to meet the threshold constraint
σβ;thr (in red), where the shade corresponds to the strength
of the individual bounds.
Several interesting conclusions can be drawn from this

figure. First, the relation between the constraint, the SNR,
and the chirp mass changes as a function of PN order. The
highly positive PN orders benefit highly from loud sources,
with only a slight preference for the lower mass systems (if
at all), while highly negative PN effects benefit greatly from
low-mass systems, with a slight preference for louder
sources. This agrees with our intuition about low-mass
systems being most important for negative PN effects: in
Eq. (32) the chirp mass is raised to the −b=3 power,
significantly enhancing the impact of low-mass systems for
negative PN effects, while minimizing their impact for
positive PN effects (assuming b < 2). As these figures are
constructed from our fully numerical data, these trends take
into account the nonlinear relation between SNR and chirp
mass, as these are not independent parameters when
considering realistic population models. Reasonably accu-
rate population models are important in studies of this type,
as bounds can be significantly altered by changing the
distributions of source properties.

FIG. 9. Empirically determined values of Neff for the CEK
(scenario 1) network and the SPOPS 0 catalog, derived from our
full Fisher analysis, including the noise curves shown in Fig. 2
and the IMRPhenomPv2 waveform. The parameter Neff is defined
as the number of sources needed from the full catalog in order to
achieve a threshold constraint σβ;thr, using the most constraining
sources first. Here we choose log10 σβ;thr ¼ 0.95 log10 σβ, where
σβ is the cumulative bound from the full Fisher analysis
for the entire catalog. The values of the threshold constraint
(blueþ signs) are shown alongside the full constraint
(red × signs) in the lower panel. The number of required sources
grows exponentially as a function of PN order: large catalogs
benefit positive PN orders, but they are not as important for
highly negative PN orders.
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FIG. 10. Three different distributions in the M–ρ plane for the CEK network and the SPOPS 0 population model. The blue heat
map shows the distribution of the sources directly in theM–ρ plane, and it is the same for all PN orders. The black contours show the
constraints from individual sources. The red scatter plots show the sources needed to obtain a threshold cumulative constraint
log10 σβ;thr ¼ 0.95 log10 σβ, where the shade of red indicates the strength of the individual bounds (in log base 10). We utilized a 2σ
Gaussian filter over the data to smooth out the noise and create more easily interpretable contour plots. In conjunction with Fig. 9, the
growing number of scatter points as a function of PN order illustrates the increasing dependence of the cumulative constraint on the
size of the source catalog. Furthermore, the relation between chirp mass, SNR, and individual bound can be seen to shift significantly
between positive and negative PN orders, agreeing with the commonly held intuition that lower-mass sources are better for
constraining negative PN effects. In more detail, the negative PN orders benefit highly from low-mass systems, with slight
dependence on SNR, while positive PN order effects depend much more strongly on the SNR and have more minimal dependence
on the chirp mass. Finally, the range of individual bounds (∼4 orders of magnitude at negative PN orders and ∼2 orders of
magnitude at positive PN orders) helps to explain the different scaling relations between the cumulative bounds and the total number
of sources.
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A second observation one can draw from Fig. 10 relates
to the change in the relation between SNR and individual
constraints, which explains why the constraining-power
gap between the different terrestrial network scenarios
closes at positive PN orders [items (iv) and (v) from
above]. The relaxation in the SNR-constraint correlation
at high positive PN orders means that the huge boost in
SNR from utilizing 3g detectors, as compared to a 2g only
network, has only a moderate impact on the cumulative
bound, if the 2g network is sensitive enough to observe a
comparable number of sources to the 3g network. In the
case of the Voyager network (HLVKI+), the much lower
average SNR (shown in Fig. 4 and Fig. 6) hinders the
network’s capability greatly at negative PN orders, but only
minimally at positive PN orders, as compared with the CEK
or CVK networks shown in Fig. 7. This is because the total
number of sources observed in each scenario is comparable
with scenario 3, only differing by ∼30%, and allowing
HLVKI+ to maintain competitive constraining power
through comparably sized catalogs.
A third observation that we can make about Fig. 10 is

that the range in individual bounds is also clearly PN-order
dependent. The most negative PN corrections change by∼4
orders of magnitude, while the most positive PN correc-
tions only change by ∼2 orders of magnitude. This change
in constraint range lends credence to the interpretation
outlined above. When constraints are clustered closer
together and contribute equally, the cumulative constraint
scales strongly with the number of sources. The opposite is
true when the clustering is weaker and one constraint
dominates over the whole ensemble. The analysis per-
formed here, coupled with that done in Sec. VI A 1, further
clarifies the trend observed in items (ii) and (iii). The
combination of the individual source scaling favoring LISA
at negative PN orders is enhanced by the significant benefit
from large catalogs for terrestrial networks for positive PN
orders.

B. Specific theories

We can now recast the constraints on generic ppE
parameters from Sec. VI A into constraints on relevant
quantities in a variety of specific modified gravity theories.
We list and categorize these theories in Table VII.
We will utilize the scaling analysis outlined in the

previous section, with the additional step,

Γtheory ¼ J T · ΓppE · J ; ð36Þ

where J is the Jacobian ∂θ⃗ppE=∂θ⃗theory of the transforma-
tion, and ð·ÞT is the transpose operation. In our case, the
Jacobian is diagonal. This is because the off diagonal
components are all proportional to the theory-specific
modifying parameter; as we inject with GR models, these
are always set to zero for any specific beyond-GR theory.
We can then write

Γαtheoryαtheory ¼
� ∂β
∂αtheory

�
2

Γββ; ð37Þ

where β is the generic ppE modification at the correspond-
ing PN order for a given theory, and αtheory is the theory-
specific modifying parameter. The interested reader can
find the mappings βðαtheoryÞ between each theory and the
ppE formalism, and more in-depth explanations of their
motivations, in Appendix B.
This mapping between ppE constraints and theory-

specific constraints changes the scaling relations between
the theory-specific bound and different source parameters,
with many of the conclusions made by examining the
generic constraints changing quite drastically. This is
because the Jacobian typically depends on source param-
eters, like M, η, χ1, and χ2, and this can strongly enhance
the constraining power of one population of BBHs over
another. No general trend can be ascertained across
multiple modified theories since each coupling is different,
so we will examine each theory in turn. As we will see,
constraints on different theory-specific parameters scale
differently with SNR, chirp mass, etcetera, impacting how
the cumulative bound improves with stacking and how
dependent the bound is on small numbers of loud sources.
To examine this in more detail, we will focus on a single
detector network (HLVKIO8) with a single population
model (SPOPS 0) to try and isolate the pertinent effects for
each theory.

1. Generic dipole radiation

Dipole radiation is absent inGR, since in Einstein’s theory
GWs are sourced by the time variation of the quadrupole
moment of the stress-energy tensor. Therefore, any obser-
vation of dipole radiation would indicate a departure from
GR.Dipole radiationmust be sourced by additional channels
of energy loss, due to the presence of new (scalar, vector or
tensor) propagating degrees of freedom. By the balance law,
these new channels of energy loss affect the time variation of
the binding energyE, and therefore dipole effects generically
enter the GWFourier phase at−1 PN (to leading order) [45].
While many theories predict specific forms of dipole
radiation, we can constrain any process leading to dipole
radiation by the time rate of change of the binding energy, _E.
We show in Appendix B, the Jacobian in this specific

class of modifications scales as� ∂β
∂δ _E

�
2

∝ η4=5; ð38Þ

where δ _E ¼ _E − _EGR is the variation in _E due to dipole
radiation: see Eq. (B1). This implies that the scaling
relations found earlier for generic ppE modifications should
not change much when we translate them into constraints
on dipole radiation.
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These constraints are shown in Fig. 11. As dipole
radiation is a negative PN effect, multiband sources will
contribute significantly, improving bounds by at least 2
orders of magnitude over any other detector network or
population class. LISA observations of MBH binaries are
still highly competitive, outpacing the terrestrial-only net-
work in all cases except the most optimistic detector
schedule. Furthermore, the different terrestrial networks
see a wide variation, as the difference between the typical
SNRs between the networks are quite large. After thirty
years of GW measurements, our models suggest an
improvement of 3–9 orders of magnitude over existing
constraints, depending on source populations and detector
characteristics, but a 9-orders-of-magnitude improvement
is only possible with multiband events. All of these trends
are consistent with the analysis presented in Sec. VI A 1,
with constraints on this negative PN order effect benefitting
from the low initial frequency and low chirp masses of
LISA multiband sources. This is because dipole radiation
approximately scales like a generic ppE modification in
terms of SNR and chirp mass, meaning that most of the
analysis from above is still valid in this case.
To better understand the numerical results presented in

Fig. 11, we can look at our analytical approximation of
Δδ _E using the methods from the previous section. After
mapping the bound on the generic β to δ _E, expanding in
ϵ ¼ Mflow, and setting the upper frequency to the ISCO
frequency, we have the approximation,

Δδ _E ≈
112

ffiffiffi
2

p

η2=5
ðMπflowÞ7=3

ρ
: ð39Þ

Results related to this approximation are shown in Fig. 12.
The left panel shows a density map of the bounds on δ _E
versus the SNR of the source, with a numerical fit overlaid
showing the SNR scaling trend in black. Our 1=ρ scaling
prediction, shown in red, matches the numerics very well.
The right panel shows a density plot of the bound on δ _E

versus chirp mass. To isolate the impact of the chirp mass
on the attainable bound on δ _E, we restrict ourselves to thin
slices in different ranges of SNR (the ranges are highlighted
in the top panel). This is to insulate our results from the fact
that the SNR typically scales with the mass, causing a
nonlinear relationship between the mass, SNR, and con-
straint. To ensure that the scaling does not change for
different ranges of SNR, we have separately analyzed three
different ranges. For lower mass systems, we see good
agreement with the analytically predicted M7=3 scaling
relationship, but around M ∼ 30 M⊙ we see a sharp
transition, and our approximations fail.
The impact of these different scaling relations can be

seen in the range of constraints and the cumulative
constraint shown in Fig. 12. In the left panel, we have
plotted the strongest and weakest constraint as solid blue
lines, bounding the parameter space of single-source
bounds. The cumulative bound for this one network-
population combination is shown as a green line, near
the bottom of the panel. As is evident in the figure, the
improvement of the cumulative bound over the most
stringent bound is marginal. This can be explained by
the huge range of single-source bounds, covering 5 orders
of magnitude, consistent with the analysis performed in
Sec. VI A 2.

2. Local position invariance—Variable G theories

If the gravitational constant G were time-dependent, we
would observe anomalous acceleration in the inspiral of
BBHs [101]. At leading order, this affects the GW Fourier
phase at −4 PN. From the transformation in Appendix B,
the Jacobian to map from the generic ppE modification to
the parameter _G itself is

�∂β
∂ _G

�
2

∝
�

M
1þ z

�
2

: ð40Þ

The mapping now includes a chirp mass-dependent factor,
which can vary by orders of magnitude between source
classes. From this scaling with chirp mass, and the fact that
this modification enters at a highly negative PN order
(−4PN), we expect that the best sources will be those that
are seen at the widest separations (like multiband sources)
and have the largest chirp mass.

FIG. 11. Projected cumulative constraints on generic dipolar
radiation for the detector networks and population models
examined in this paper. The multiband sources outperform all
other source classes by at least ∼2 orders of magnitude, with
MBH sources and the most optimistic terrestrial scenario per-
forming comparably.
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Our predictions for the constraints on _G can be seen in
Fig. 13. Multiband constraints again outperform all other
source classes and detector configurations, as expected.
However, because the Jacobian is proportional to M2,
MBH sources seen by LISA are not far behind.
Comparatively, the terrestrial-only bounds trail signifi-
cantly behind both of these source classes, by as much
as 3 orders of magnitude. There is also a wide separation
between the three different terrestrial-only observation
scenarios. This suggests that the cumulative bound does
not benefit too much from large catalogs, but instead is
dominated by a small number of favorable observations.
AvariableGmodification presents the first departure from

our analysis on the scaling of generic results. MBH sources
receive a sizeable benefit over the SOBH sources due to the
Jacobian factor between parameters. Consequently, con-
straints on this particular modification benefit greatly from
the inclusion of LISA in theGWnetwork, both in the form of
multiband and MBH observations.
Even after thirty more years of GW detections with the

most ideal networks, our models indicate that the bounds
will still fall far short of the current constraints on _G coming
from cosmology. These constraints, however, are qualita-
tively different from those considered here. Cosmological
constraints assume a Newton constant that is linearly
dependent on time in the entire cosmological history
of the Universe, i.e., that G → GðtÞ ∼ GBBN þ _GBBNt,

FIG. 12. Result of the scaling analysis outlined in Sec. VI B 1 performed on the data synthesized with the HLVKIO8 network and the
SPOPS0population. The left panel shows a heatmapof the constraint on δ _Eversus theSNRof the source. The solid blue lines correspond to
the strongest andweakest single-source constraint, and the area between these twobounds is shown in hatching. The cumulative bound from
the entire catalog is shown as the solid green line. The power-law fit to the data in the left panel is shown as the solid black curve, and our
prediction for the scaling is shown as the solid red curve. The right panel shows three distinct slices of the catalog, with ranges in SNR from
10 to 11 (blue), 20 to 22 (green), and 50 to 55 (red). These ranges are highlighted in the left panel. The right panel shows the density of the
constraint versus the chirp mass, with empirical trends shown in black and predicted trends shown in red. There is a noticeable transition
point in the distribution, so low-mass and high-mass systems were analyzed separately. The powers used in all trend lines are shown in the
legend. For trend lines, the (logarithmic) offset for the predicted scaling relations has been adjusted to coincidewith the empirically fit offset,
to better compare the slopes of the trends. Of particular interest is the strong trend relating the SNR and the bound, as well as the tight
correlation between chirp mass and constraint for low-mass systems, which seems to taper off for high-mass systems.

FIG. 13. Projected cumulative constraints on the time derivative
of the gravitational constant _G for the detector networks and
population models examined in this paper. Multiband sources
outperform all other source classes by ∼1–2 orders of magnitude,
with MBH sources performing the next best. SOBHs observed by
the terrestrial network alone perform the worst, but with scenario
1 outperforming scenarios 2 and 3 due to the high SNR of the
observations in the former network.
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where t is time from the big bang until today, and where
GBBN and _GBBN are constants. Our _G constraints only
assume a linear time dependence near the BBH merger,
i.e., that G → GðtÞ ∼Gtc þ _Gtcðt − tcÞ for t < tc where tc
is the time of coalescence, Gtc and

_Gtc are constants, and
GðtÞ relaxes back to Gtc in a few horizon light-crossing
times. In our stacking analysis, we are implicitly assuming
that _Gtc is the same for all sources in all catalogs. Therefore,
it is not strictly fair to compare cosmological and GW
bounds.
We can again repeat the analysis from Sec. VI A to better

understand the relationship between the bound on _G and
various source parameters. Making the approximations
outlined in Sec. VI A 1, we can approximately rewrite
the constraint on _G as

Δ _G ≈
32763

5

ffiffiffi
6

5

r
ðπMflowÞ13=3ð1þ zÞ

Mρ
; ð41Þ

where we obtain the expected extra dependence on the
chirp mass from the Jacobian transformation. Results
pertinent to this approximation are shown in Fig. 14.
The left panel shows a heat map of the _G constraints
against the SNR for the sources in the HLVKIO8 network
and the SPOPS 0 model. The right panel shows a heat map
of the constraint on _G against the chirp mass, for different
slices in the SNR. Notably, the scaling of the constraint on
_G with respect to the chirp mass matches well with our
prediction of M10=3, which differs from the generic
constraint by a factor of M−1 due to the Jacobian factor.
Again, we see a large spread in the magnitude of the

constraint, ranging over ∼6 orders of magnitude. This leads
to a marginal improvement of the cumulative bound over
the strongest bound from a single observation, further
hampering the terrestrial-only networks, in agreement with
our analysis in Sec. VI A 2. After accounting for the
modified scaling due to the Jacobian, the scaling relations
and techniques from Sec. VI A generally hold for predict-
ing constraints on variable G theories.

3. Lorentz violation—Noncommutative gravity

If a commutation relation is enforced between momen-
tum and position, as in quantum mechanics, the leading
order effect occurs at 2PN. Predictions for the constraints
on the scale of the noncommutative relation are shown in
Fig. 15. The Jacobian of the transformation found in
Appendix B is given by� ∂β

∂Λ2

�
2

∝ η−4=5ð2η − 1Þ: ð42Þ

The Jacobian only introduces source-dependent terms of
Oð1Þ, and as such, bounds on Λ2 should generally follow
the scaling trends found in Sec. VI A. Given that this
modification comes at 2PN, we would expect the terres-
trial-only source catalogs to constrain noncommutative
gravity the strongest: the power of large catalogs is
enhanced, and the effect of LISA observations of the early
inspiral is less relevant for positive PN effects.
The bounds predicted by our models are shown in

Fig. 15. As expected, the terrestrial networks contribute
the most to any future bound on noncommutative gravity.
Even when just considering the three terrestrial-only

FIG. 14. Result of the scaling analysis outlined in Sec. VI B 2 performed on the data synthesized with the HLVKIO8 network and the
SPOPS 0 population. The plotting style is the same as in Fig. 12. The left panel shows a heat map of the constraint on _G versus the SNR
of the source. The right panel shows the density of the constraint versus M, with empirical trends shown in black and predicted trends
shown in red. Again, the strong trend relating the SNR and the bound agrees well with the prediction, and there seems to be a tight
correlation between M and constraint, well approximated by our analysis in Sec. VI B 2.
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scenarios, the differences are minimal. Furthermore,
the other source classes (MBH and multiband) perform
almost identically. All of these trends further solidify our

conclusion that the key to future constraints on this
particular modification is large catalogs of observations,
as opposed to single, favorable sources. Future constraints
from all source classes should improve by 1–3 orders of
magnitude over present constraints.
Continuing our analysis to explore the more subtle trends

we are seeing, we can repeat the analysis outlined in
Sec. VI A. This gives us the following approximation for
the variance on

ffiffiffiffi
Λ

p
:

Δ
ffiffiffiffi
Λ

p
≈
�
32768

1875

�
1=8 η1=5ðπMflowÞ1=12

ð1 − 2ηÞ1=4ρ1=4 : ð43Þ

Although thebound onΛ2 scales as expected fromSec.VI A,
approximating our bound on

ffiffiffiffi
Λ

p
given our constraint on Λ2

introduces modifications to the trends we would not have
expected from a straightforward extrapolation from con-
straints on generic modifications. Namely, we see that the
bound should generically scale with the SNR as ρ−1=4, and
the constraint should scale with the chirp mass as M1=12.
Pertinent trends related to this approximation are shown

in Fig. 16, where the HLVKIO8 network and the SPOPS 0
model were used to do the analysis. The left panel shows a
heat map in the constraint-SNR plane, with the extremal,
single source bounds shown as solid blue lines. The
cumulative bound for only this network-population combi-
nation is shown as the solid green line. Our predicted trend
for the constraint with respect to the SNR is shown in red,
while the empirically determined trend is shown in black.
The right panel shows a heat map in the constraint-chirp

FIG. 15. Projected cumulative constraints on
ffiffiffiffi
Λ

p
for the

detector networks and population models examined in this paper.
Terrestrial-only catalogs, with their populations of millions of
sources, seem to dominate any future constraint on this particular
deviation, with an improvement by 1–2 orders of magnitude over
any other source classification. This conclusion seems indepen-
dent of the particular terrestrial scenario we pick, with compa-
rable performance from all three.

FIG. 16. Result of the scaling analysis outlined in Sec. VI B 3 performed on the data synthesized with the HLVKIO8 network and the
SPOPS 0 population. The plotting style is the same as in Fig. 12. The left panel shows a heat map of the constraint on

ffiffiffiffi
Λ

p
versus the

SNR of the source. The right panel shows the density of the constraint versus the chirp mass, with empirical trends shown in black and
predicted trends shown in red. The small range of constraints from the catalog lead to considerable enhancements of the cumulative
bound when stacking observations, and the weak scaling with chirp mass and moderate scaling with SNR further benefit SOBH sources
over other source classes.
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mass plane, where we have separately analyzed three
different slices of sources with specific SNRs, denoted
by the colors red, blue, and green.
In the left panel of Fig. 16, we can see that our

approximation for the relation between the constraint and
the SNR does fairly well relative to the empirically deter-
mined trend. Furthermore, we see that the range of con-
straints is considerably tighter than even the generic
constraints at 2PN. The largest and smallest bound for
noncommutative gravity are separated by 1 order of magni-
tude, leading to a significant improvement of the cumulative
bound over the tightest single-observation bound. This
feature further explains to some degree the discrepancy
betweenLISA sources and terrestrial-only sources in Fig. 15.
In the right panel of Fig. 16, we see much wider

distributions in the constraint-chirp mass plane, as com-
pared to the previously analyzed modifications. Our pre-
dicted trends are moderately accurate, although with
noticeably lower accuracy. This is consistent with the fact
the constraint scales very weakly with chirp mass (M1=12),
and other correlations are widening the distribution and
complicating the relation.

4. Parity violation—Dynamical Chern Simons

One of the fundamental tenets of GR is the parity
invariance of the gravitational action. Dynamical Chern-
Simons (dCS) gravity includes a parity-odd, second-order
curvature term in the action, knownas thePontryagindensity,
coupled to a scalar field through a dimensionful parameter
αdCS. The fact that the Pontryagin density is parity-odd
necessarily restricts the scalar field to also be odd in vacuum,
making it an axial field. The leading-order effect in the GW
phase sourced by these deviations enters at 2PN order. In
Appendix B we recall that the following mapping holds:

� ∂β
∂α2dCS

�
2

∝
½m̂1sdCS2 − m̂2sdCS1 �4η8=5

ð1þ zÞ−8M8
; ð44Þ

where sdCSi is the BH sensitivity, defined in Eq. (B9), and
m̂i ¼ mi=M ¼ η−3=5ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p Þ=2 for the larger (þ)

and smaller (−) mass. Here, we have only shown the
Jacobian to leading order in spin, and we have transformed
the mass components to explicitly show the chirp mass
dependence. As the mass ratio and spin factors are bounded
to a magnitude of Oð1Þ, the dependence of the Jacobian on
M−8 should have the most significant effect on ΔαdCS and
strongly favor low-mass systems, suggesting that SOBHs
would be considerably more effective than MBHs.
Furthermore, as this is a positive PNmodification, wewould
expect to see a sizeable benefit from large catalogs, given the
analysis in Sec. VI A 2, and the impact of LISA observations
of the early inspiral should be considerably less important.
All of these factors point to the terrestrial-observation only
scenarios outperforming LISA detections of MBH sources
and LISA-terrestrial joint detections of multiband sources.

Our predictions for the constraints on the strength of this
coupling are shown in Fig. 17. Indeed, terrestrial-only
detections perform the best at constraining dCS modifica-
tions to GW, with bounds up to ∼2 orders of magnitude
tighter than multiband sources and ∼4–5 orders of magni-
tude better than MBH sources. As expected, MBH sources
detected by LISA are severely inhibited by the particular
Jacobian for this specific modification. Furthermore, we
also see little variation between the three terrestrial scenar-
ios, indicating that a significant weight lies with the size of
the catalogs, as opposed to the source properties of a select
minority of favorable observations. As the power of
constraining this particular modification to GR benefits
strongly from large numbers of sources, we can expect to
slowly push the current bound down by ∼3 orders of
magnitude, with minimal dependence on the actual detector
schedule, over the course of the next thirty years.
Further analysis using the techniques in Sec. VI A 1

leads to the following approximate form of the variance:

Δ
ffiffiffiffiffiffiffiffiffi
αdCS

p
≈
�
3584

ffiffiffi
6

p

5π

�1=4 ðπMflowÞ1=12M
ð1þ zÞη1=5ρ1=4

× ðj3015χ22m̂2
1 − 5250χ1χ2m̂1m̂2 þ 3015χ21m̂

2
2

− 14ðm̂2sdCS1 − m̂1sdCS2 Þ2jÞ−1=4: ð45Þ

FIG. 17. Projected cumulative constraints on
ffiffiffiffiffiffiffiffiffi
αdCS

p
for the

detector networks and population models examined in this paper.
Terrestrial-only catalogs, with their populations of millions of
sources, dominate any future constraint on this particular
deviation, with an improvement of 2–5 orders of magnitude
over other source classification. This conclusion is independent
of the terrestrial scenario we pick, with comparable performance
from all three. Multiband sources, with their low chirp masses,
seem to perform the next best.
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Beyond the additional terms coming from the Jacobian of
the parameter transformation, we now see additional
deviations from our analysis on generic modifications in
Sec. VI A. Raising the bound on α2dCS to the one-fourth
power to obtain our further approximated bound on

ffiffiffiffiffiffiffiffiffi
αdCS

p
has introduced new dependence of the constraint on all the
source parameters of interest. Namely, the dependence on ρ
has been amended to scale as ρ−1=4, and the dependence on
the chirp mass is now M13=12.
Results related to this analysis are shown in Fig. 18,

derived from data produced with the HLVKIO8 network
and the SPOPS 0 model. The left panel shows a heat map of
the sources in the catalog in theΔαdCS–SNR plane, with the
extremal bounds shown in blue, and the cumulative bound
(for this single catalog) shown in green. The right panel
shows a heat map of the sources in the ΔαdCS–M plane for
three slices in SNR-range (in red, blue, and green). The
trends we have predicted are shown in red, while the
empirically determined trends are shown in black, for both
panels.
Starting in the left panel, the range in single-observation

constraints on
ffiffiffiffiffiffiffiffiffi
αdCS

p
is quite small. The tight range of

the constraints (just 1–2 orders of magnitude between the
strongest and weakest constraints) helps to explain the
enhanced effectiveness of the terrestrial networks at con-
straining this modification, as the constraint scales favor-
ably with large numbers of observations. This is explicitly
seen by the sizable improvement of the cumulative con-
straint over the constraint coming from the strongest single
observation.

Furthermore, in the left panel, we see that our prediction
for the SNR trend does not accurately reflect what we
observe in the synthetic data. This is in stark contrast with
noncommutative gravity, where the modification enters at
the same PN order and predicts identical scaling with
respect to the SNR. Notably, this deviation also occurs in
EdGB gravity, detailed below, which has a similarly
complicated Jacobian. The primary differences between
the modification introduced by dCS and noncommutative
gravity are (i) the scaling of the constraint with respect to
the chirp mass, and (ii) covariances between the modified
gravity coupling constant and all other sources parameters
(such as the spins and mass ratio).
For difference (i), we can examine the right panel of

Fig. 18, where we see moderate agreement with our
predicted scaling trend for the chirp mass and much tighter
correlations for dCS than for noncommutative gravity. Not
only is the trend more accurately predicted, but the scaling
with chirp mass in dCS, as compared with noncommutative
gravity, is considerably stronger (M13=12 as opposed to
M1=12). Considering there is a negative correlation
between the constraint and the SNR, a positive correlation
between the constraint and the chirp mass, and a positive
correlation between the SNR and chirp mass, a shift in the
different trends as significant as that found in dCS may lead
to the observed deterioration in our predictions.
For difference (ii), the mild agreement of the chirp mass

scaling in the right panel suggests that covariances between
parameters are degrading the accuracy of all of our
approximations, not just the SNR. To further explore this

FIG. 18. Result of the scaling analysis outlined in Sec. VI B 4 performed on the data synthesized with the HLVKIO8 network and the
SPOPS 0 population. The plotting style is the same as in Fig. 12. The left panel shows a heat map of the constraint on

ffiffiffiffiffiffiffiffiffi
αdCS

p
versus the

SNR of the source. The right panel shows the density of the constraint versus the chirp mass, with empirical trends shown in black and
predicted trends shown in red. Our prediction for the SNR scaling is considerably less accurate than for previous theories, presumably
from covariances with other source parameters and competing scaling trends with the chirp mass. The tight range of constraints and large
improvement of the cumulative bound over all other single source constraints, seen in the left panel, indicate strong dependence on the
total number of sources in the catalog.
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idea, we can look at the typical range of values that the
other source-dependent terms from the Jacobian in Eq. (44)
can take. For the final bound from a given source, the
magnitude of these additional terms in an absolute sense is
important, but in terms of the trends we expect to see, the
range of values these terms can take is the quantity of
interest. If certain sources with comparable SNR and chirp
mass have Jacobian transformations that span several
orders of magnitude because of these additional terms,
our simple analytical approximations cannot be expected to
accurately match the synthetic data. A histogram of the
spin- and mass ratio-dependent terms for both dCS and
EdGB are shown in Fig. 19, where we do indeed see a non-
negligible range of values. Figure 18 shows that the SNR
and chirp mass both span approximately 1–2 orders of
magnitude for this particular catalog, while the complicated
Jacobian factors that we have neglected in our analysis span
approximately 4–5 orders of magnitude. A range this large
can easily erase any structure we would hope to see with
our simple approximations, and helps to explain why our
simple analytical approximation fails for dCS (and for
EdGB, as we will discuss below).
Between these two factors, our ability to predict scaling

trends of the constraint on
ffiffiffiffiffiffiffiffiffi
αdCS

p
as a function of source

parameters has moderate success with regards to the chirp
mass but is definitely degraded in general when compared
with the same analysis for general modifications. The dCS
example provides direct evidence that conclusions derived

from generic constraints may be highly misleading when
focusing on a particular modified theory.

5. Quadratic gravity—Einstein-dilaton-Gauss-Bonnet

Similar to dCS, Einstein-dilaton-Gauss-Bonnet (EdGB)
gravity is also quadratic in curvature at the level of the
action. In this case, a scalar field is coupled to the Gauss-
Bonnet invariant through a dimensionful coupling constant
αEdGB. In contrast to dCS, the scalar field in EdGB is parity-
even in vacuum (because the Gauss-Bonnet invariant is also
parity-even), and the leading order correction to the GW
phase comes at −1PN order, because the dominant modi-
fication to the generation of GWs is the introduction of
dipolar radiation. The Jacobian for this particular theory is

� ∂β
∂α2EdGB

�
2

∝
½m̂2

2s
EdGB
1 − m̂2

1s
EdGB
2 �4η12=5

ð1þ zÞ−8M8
; ð46Þ

where sEdGBi is the BH sensitivity defined in Eq. (B4), and
we again use the mass parameters m̂i ¼ mi=M ¼
η−3=5ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p Þ=2 for the larger (þ) and smaller (−)

mass. Given the new dependencies on source parameters
introduced by the Jacobian, we would expect to see SOBH
sources receive a sizeable boost due to the chirp mass
scaling. Furthermore, this is a negative PN effect, which
already tends to favor small chirp masses (cf. Sec. VI A 1).
Both of these considerations imply that multiband and
terrestrial networks should outperform LISAMBH sources.
Constraints on

ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
are shown in Fig. 20. Indeed, we

see SOBH sources of all kinds outperforming MBH
sources. Within the SOBH source classes, terrestrial net-
works outperform multiband sources by 1–2 orders of
magnitude. While multiband sources benefit from long
early inspiral observations from LISA, which encodes
much information for a negative PN effect, the large
catalogs of sources in the terrestrial-only catalogs are
enhanced by the modified dependence on the SNR, dis-
cussed below. As a further consequence of the adjusted
SNR dependence, we also see fairly minor variations
between the three terrestrial network scenarios. After
approximately thirty years of observations, our models
indicate that we could see ∼2–4 orders of magnitude
improvement on previous constraints on

ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
. This

conclusion is fairly robust under variations of the terrestrial
network.
Analyzing the constraints on

ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
with the machinery

of Sec. VI A, we obtain the following approximation on the
variance of the coupling parameter:

Δ
ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
≈
�
903168

25π6

�
1=8 ðπMflowÞ7=12M

ð1þ zÞη3=10ρ1=4
× ðm̂2

2s
EdGB
1 − m̂2

1s
EdGB
2 Þ−1=2: ð47Þ

FIG. 19. Histogram of spin-related terms contributing to the
relevant Fisher element for dCS and EdGB. The sources were
taken from the catalog derived from the HLVKIO8 network and
SPOPS 0 population model. For dCS, this only includes the term
to first order in spin. The wide range of magnitudes that this term
can take (5–6 orders of magnitude) helps to explain the break-
down of our ability to predict trends concerning the constraints on
these theories. From Fig. 18 we see that the SNR and chirp mass
only span a range of 1 or 2 orders of magnitude, and as such, the
trends we would expect to see for these parameters could be
completely washed out by this additional spin-dependent term,
which we have neglected in our simple analysis.
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We now see additional modifications to the dependencies
on source parameters, beyond the Jacobian shown above.
Just as in the cases of dCS and noncommutative gravity, we
must transform from α2EdGB to

ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
, which forces the

constraint to scale with ρ−1=4 and M19=12.
Trends related to this approximation are shown in

Fig. 21, produced from our simulations based on
HLVKIO8 and SPOPS 0. The left panel shows a heat
map of all the sources in the Δ ffiffiffiffiffiffiffiffiffiffiffiffi

αEdGB
p

-SNR plane, with
extremal single-source constraints shown in blue, and the
cumulative constraint for this catalog shown in green. The
right panel shows a heat map in theΔ ffiffiffiffiffiffiffiffiffiffiffiffi

αEdGB
p

–M plane, for
three different slices of SNR, shown as blue, green, and red.
In the left panel, we again see that our prediction for the

SNR scaling is not accurate. Just as in dCS gravity, this
discrepancy lies in covariances complicating the relation-
ships beyond the point where our simple approximations
are valid. For comparison, we can examine what we found
for generic dipole radiation constraints in Sec. VI B 1,
where we saw a much better agreement with our predictions
for the constraint-SNR relationship. Referring again to the
histogram in Fig. 19, we see that the terms related to the BH
sensitivity in EdGB span several decades, washing out
the trends we would expect to see from the analysis of
Sec. VI A. As a by-product, these complications lead to a
tight range in single-observation constraints, spanning 1–2
orders of magnitude. This in turn leads to a large enhance-
ment for terrestrial networks: cumulative bounds from

FIG. 20. Projected cumulative constraints on
ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
for the

detector networks and population models examined in this paper.
Terrestrial-only catalogs, with their populations of millions of
sources, seem to most efficiently constraint EdGB, but multiband
sources are not far behind. The modified scaling of the constraint
with SNR and chirp mass work in favor of terrestrial networks,
but the fact that EdGB produces a negative PN modification to
leading order benefits multiband sources. MBHs are not effective
at constraining EdGB, and will not contribute much to future
bounds on this theory.

FIG. 21. Result of the scaling analysis outlined in Sec. VI B 5 performed on the data synthesized with the HLVKIO8 network and the
SPOPS 0 population. The plotting style is the same as in Fig. 12. The left panel shows a heat map of the constraint on

ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
versus the

SNR of the source. The right panel shows the density of the constraint versus the chirp mass, with empirical trends shown in black and
predicted trends shown in red. Because of the small range in single-observation constraints (about 1–2 orders of magnitude), the
cumulative bound greatly benefits from large numbers of observations, despite this being a negative PN effect that would typically be
dominated by a small cadre of favorable sources. The predicted trend for the constraint-SNR relationship fails, presumably due to
covariances introduced through the Jacobian. The predicted trend for the constraint-M relationships performs fairly well, as the
correlation is enhanced through the Jacobian.
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tightly grouped populations of constraints benefit from
large numbers of sources, which is not typically expected
from a modification at −1PN.
In the right panel, we see moderate agreement between

our prediction for the Δ ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p
–M relationship, but again,

covariances seem to degrade the quality of simple analyti-
cal scaling relationships between the constraint and the
source parameters. In contrast, for generic dipole radiation
we see a much tighter correlation between the constraint
and the chirp mass. The difference between the two trends
further confirms our explanation: more complex Jacobians
tend to complicate the source parameter-constraint relation
we identified in Sec. VI A.

6. Black hole evaporation

In the case of BH evaporation, the modification first
enters the GW phase at −4PN order. The Jacobian from the
ppE parameter to this particular process, as shown in
Appendix B, is given by

� ∂β
∂ _M

�
2

∝
�
3 − 26ηþ 34η2

η2=5ð1 − 2ηÞ
�
2

: ð48Þ

As the Jacobian only depends on the system parameters
through the symmetric mass ratio [bounded to (0,0.25)], no
parameters specific to a given system will induce large
changes in the attainable bound. This fact leads us to the
conclusion that the driving factors in the constraint mag-
nitude will be the chirp mass (benefitting SOBH sources)
and the SNR (benefitting LISA MBH sources and the most
sensitive ground-based detector networks). Furthermore, as
this modification also enters at a highly negative PN order,
multiband sources can also be expected to perform
competitively.
Constraints on the rate of BH evaporation are show in

Fig. 22. As expected, multiband sources constrain BH
evaporation the tightest, with MBH sources from LISA’s
catalog trailing by 4–6 orders of magnitude. The most
sensitive terrestrial network scenario examined in this paper
is also competitive with the LISA MBH sources, but the
other two scenarios we have considered fall behind by 2–3
orders of magnitude.
By using the machinery of Sec. VI A, we obtain the

following approximate form of the bound on _M:

Δ _M ≈
425984

5

ffiffiffi
6

5

r
ðflowπMÞ13=3η2=5

ρ

���� 1 − 2η

3 − 26ηþ 34η2

����:
ð49Þ

The Jacobian does not depend on the total mass and the
phase modification scales linearly with the modifying
parameter, so we see a scaling relation as expected from
Sec. VI A.

Results related to this approximation are shown in
Fig. 23. The left panel depicts a heat map of the sources
in the HLVKIO8 network and the SPOPS 0 population
model in the Δ _M–SNR plane. The solid blue lines
correspond to the strongest and weakest constraints coming
from single observations, while the green line represents
the cumulative bound for the entire catalog. The right panel
shows a heat map in the Δ _M–M plane for different slices
of SNR (in red, blue, and green). The empirically deter-
mined scaling trends are shown in black, while our
predictions for the trends are shown in red.
The left panel of Fig. 23 shows good agreement between

the trends predicted by our simple, analytic calculations
and the data from our fully numerical treatment. The wide
distribution in constraints coming from single sources in
the catalog indicates weak scaling with the size of the
catalog, giving a relative boost in power to the smaller
source populations in the MBH LISA and MB catalogs.
This conclusion is supported by the very modest improve-
ment of the cumulative bound for the catalog over the
strongest single-source constraint. In the right panel, we see
good agreement with our predicted chirp mass scaling
relation. The correlation between the chirp mass and the
constraint is quite tight for this particular modification, due
to the strong scaling and the highly negative PN order
(reducing correlations that widen the distribution).

FIG. 22. Projected cumulative constraints on the rate of black
hole evaporation _M, for the detector networks and population
models examined in this paper. Our models predict multiband
sources to perform the best from the three classes of sources
examined in this paper, followed next by MBH observations by
LISA. Terrestrial-only observations from the most optimistic
scenario are competitive with LISA’s MBH sources, but the other
two scenarios considered in this work trail behind by 2–3 orders
of magnitude.

PROBING FUNDAMENTAL PHYSICS WITH GRAVITATIONAL … PHYS. REV. D 103, 044024 (2021)

044024-33



7. Modified dispersion—Massive graviton

If the graviton were massive, contrary to what is
predicted when considering GR as the classical limit of
a quantum theory of gravity, the leading order effect would
enter the GW phase at 1PN. The Jacobian of the trans-
formation from the ppE framework to this particular
modification is

� ∂β
∂m2

g

�
2

∝
�
MD0

1þ z

�
2

; ð50Þ

where the quantity D0 is a new cosmological distance
defined in Appendix B. We get modified scaling with the
chirp mass, and similarly to the variable-G mapping, this
Jacobian causes the constraint to inversely scale with the
mass. As a result, this new mass factor will benefit MBHs
over SOBHs. Furthermore, we now have strong depend-
ence on the distance to the source, D0, where constraints
from farther sources will be enhanced as compared to those
sources closer to Earth (see e.g., [72]). These facts benefit
LISA MBH sources, which therefore should provide the
best constraints.
This is confirmed in Fig. 24. The MBH sources observed

by LISA do indeed perform the best, but only marginally.
The effectiveness of stacking is seen to still be quite high
for this particular modification, as the three terrestrial
scenarios all perform comparably. Furthermore, as this is
a positive PN effect, terrestrial networks receive a boost
from the generic scaling effects discussed in Sec. VI A 1.
Multiband sources perform the worst, as they receive little

benefit from early inspiral observation, they typically have
low mass, and are located at low redshifts. Ultimately, we
can expect to improve on the current bound on mg by 2–3
orders of magnitude over the next thirty years, and this
conclusion is robust under variations of the terrestrial
detector schedule. This improvement will be insufficient
to rule out a massive graviton as a possible explanation of
the late-time acceleration of the Universe: in a cosmologi-
cal context, the graviton would need a mass of the order of
the inverse of the Hubble constant, H−1

0 , which is of the
order of 10−30 eV, much smaller than our predicted final
constraints.
To explore these relations deeper, we can apply our

approximation from Sec. VI A, giving us the following
approximation for the constraint on mg:

Δmg ≈
h
π

�
5

2

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ
D0

πflow
ρ

s
: ð51Þ

This approximation has produced a notably different
scaling relation than what has been seen previously.
Namely, the constraint no longer scales with the chirp
mass, as the Jacobian factor has canceled the chirp mass
dependence from the generic ppE scaling. While this final
form of the constraint does not explicitly benefit MBH
systems, generic constraints scale with the chirp mass as
M. The removal of this chirp mass dependence benefits
MBH sources much more than SOBH sources. Also
different from previous constraints, we have strong scaling
with the distance to the source. For low redshifts, the

FIG. 23. Result of the scaling analysis outlined in Sec. VI B 6 performed on the data synthesized with the HLVKIO8 network and the
SPOPS 0 population. The plotting style is the same as in Fig. 12. The left panel shows a heat map of the constraint on _M versus the SNR
of the source. The right panel shows the density of the constraint versus the chirp mass, with empirical trends shown in black and
predicted trends shown in red. The wide distribution of constraints in this catalog indicate that the benefit of large catalogs is minimal,
and the total bound is dominated by a select few, highly favorable observations. The distribution of the sources in theΔ _M–M plane is to
a very good approximation linear, showing a tight correlation between the two quantities. The Δ _M-SNR relationship also agrees fairly
well with our predictions.
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distance parameter D0 ≈ zH0 to lowest order in redshift.
Extending this expansion to the constraint, the leading-
order term should scale as z−1=2 for low-redshift sources.
The results related to this approximation are shown in

Fig. 25. The left panel shows a heat map of the sources in
the catalog created from the HLVKIO8 network and
SPOPS 0 population model in the Δmg-SNR plane, with
the solid blue lines denoting the extremal, single observa-
tion constraints. The solid green line represents the cumu-
lative bound from this particular catalog. We see good
agreement between our predicted scaling for the SNR, after
accounting for the Jacobian above. There is a narrow range
for the constraints, only spanning one order of magnitude
between all sources. This leads to sizeable benefits for large
catalogs, also evident from the overlap between the differ-
ent terrestrial network scenarios.
The right panel shows a heat map of the sources in the

Δmg-redshift plane. We do indeed see a trend in this
particular relationship, although the distributions are mod-
erately wide. Our predictions for the scaling relation agrees
fairly well with the synthetic data.

C. Effect of precession on the constraints

The differences between the two SOBH population
models go beyond the size of the catalogs, which has
been our focus so far. An aspect differentiating the SPOPS
0 and SPOPS 265 catalogs, that could have a large impact
on our analysis, is the typical magnitude of the in-plane

FIG. 24. Projected cumulative constraints on the mass of the
graviton, mg, for the detector networks and population models
examined in this paper. Our models show that MBH sources
observed by LISA will perform the best at constraining this
modification, but only slightly better than the terrestrially
observed only sources. Multiband sources perform the worst,
as they received no benefits from the Jacobian and already
perform only moderately well for positive PN order effects.

FIG. 25. Result of the scaling analysis outlined in Sec. VI B 7 performed on the data synthesized with the HLVKIO8 network and the
SPOPS 0 population. The plotting style is the same as in Fig. 12. The left panel shows a heat map of the constraint onmg versus the SNR
of the source. The right panel shows the density of the constraint versus the redshift z, with empirical trends shown in black and
predicted trends shown in red. Because of the narrow range of constraints in the catalog and the large enhancement of the cumulative
bound over the strongest single observation, stacking observations is quite efficient for this modification. The right panel shows that
there is indeed a trend in the Δmg − z relation (although the distributions are moderately wide) which would favor sources far from
Earth, and would primarily benefit MBH sources.
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component of the binary’s spins, which is the cause of
relativistic precession. The question we now address is
whether the stronger constraints coming from the SPOPS 0
catalog over the SPOPS 265 catalog are entirely due to the
larger catalog sizes or if the difference in source parameter
distributions also impacts the cumulative bounds attainable
through GWs.
Previous work has shown that the inclusion of preces-

sional effects can break degeneracies in various source
parameters when considering a full MCMC analysis,
allowing for significantly tighter constraints on various
source properties [102]. To determine if this effect can be

seen in our data, in Fig. 26 we show histograms of the
individual source constraints on dCS and EdGB, using the
two different catalogs (SPOPS 0 and SPOPS 265) and
the CEK network. These two theories in particular were
chosen because conventional thinking would suggest that
they would be the most sensitive to precessional effects,
due to the dependence of the ppE parameter on spins.
The figure shows little deviation between the two pop-

ulation models for these theories. The distribution changes
slightly on the larger-constraint side of the histogram, but the
difference is negligible when considering cumulative con-
straints. Furthermore, these small deviations in the dis-
tributions of constraints cannot be solely attributable to
precessional effects, as the parameter distributions shown
in Fig. 4 are all modified as well.
To explore the impact of precession on generic mod-

ifications in a more controlled environment, we did a direct
comparison between systems with zero precession and
“maximal” precession (in a sense to be defined shortly), but
which are otherwise identical. The results of this analysis
are shown in Fig. 27. The methodology we implemented to
produce Fig. 27 began with a set grid in the total mass,
ranging from 5 M⊙ to 20 M⊙, mass ratio in the range
[0.05, 1], and aligned-spin components for each BH
ranging from −0.8 to 0.8. With this grid of intrinsic source
parameters, we populated the other extrinsic parameters
using randomly generated numbers in the conventional
ranges. The range on the luminosity distance was chosen
such that the SNRs would range from ∼20 to 150. Once a
set of full parameter vectors had been created, we calcu-
lated one set of Fishers for a fixed detector network with the
in-plane component of the spin, χp, set to 0. Then, without
changing any other parameters, the in-plane spin compo-
nent was increased to χp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ21

p
, which is approx-

imately the maximal spin one can achieve while still
maintaining a total spin magnitude less than 1. The top
panel shows the mean constraint for both configurations as
a solid line, with the 1σ interval of the distribution of
constraints shown as the shaded region. In the bottom panel
we compare the constraints from each configuration (pre-
cessing and nonprecessing) for each individual source. The
mean of this ratio is then plotted as a solid line, and the 1σ
region is shown as the shaded region.
The conclusion from Fig. 27 is that precession seems to

have a moderate influence, but one that could be easily
washed out by other physical effects. In the most favorable
scenario where the binary is maximally precessing, our
analysis suggests an improvement of at most a factor of ∼2.
Given previous work (see e.g., [102]), one may expect more
significant improvements when considering even mild
precession. While we do predict improvements from the
use of precessing templates, our more restrained conclu-
sions could be the result of two facets of our analysis. Our
use of a more rudimentary statistical model, the Fisher

FIG. 26. Distributions of single-source constraints on the GR-
modifying parameters

ffiffiffi
α

p
dCS (top) and

ffiffiffi
α

p
EdGB (bottom) from

the two population models SPOPS 0 (blue) and SPOPS 265
(orange) as detected by the CEK network. The histograms are
normalized to provide a comparison of the shapes of the
distributions, as opposed to the raw numbers of sources. We
see that the distributions only diverge slightly, towards the larger-
constraint side of the spectrum. This suggests that the larger
precessional effects seen in the SPOPS 265 catalog do not
significantly modify the typical constraints attainable by indi-
vidual sources, or that any effect we may have seen was washed
out by the differences in the distributions of other source
parameters, such as the total mass and mass ratio. This lack of
difference could also be an artifact of our waveform model
(IMRPhenomPv2), which is not the most up-to-date waveform
available, or of the Fisher approximation, which could be
improved upon by a full MCMC analysis.
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matrix, does not capture all the more nuanced artifacts in
the posterior surface, like a full MCMC analysis would.
Furthermore, we here use the IMRPhenomPv2 waveform,
which is in some ways more limited in modeling precession
with respect to the waveforms used in Ref. [102]. Future
studies of precession could focus on these two areas in
particular.

VII. CONCLUSIONS

In this work, we have constructed forecasts of what
constraints can be placed on a variety of modifications to
GR, both generic and theory-specific, using astrophysical
models and the most current projections for detector
development over the next thirty years. Our analysis spans
several topics of interest to the GW community concerned
with tests of GR.
We investigate what fundamental physics can be done

with a variety of source populations (heavy-seed MBHs,
light-seed MBHs, terrestrially observed SOBHs, and multi-
band SOBHs) and plans for detector development. All of
these aspects are connected to what fundamental science is
achievable. Ours is the first robust study of this breadth and
scope that is capable of quantifying the effects of detector
development choices and astrophysical uncertainties.
We identify trends and scaling relationships of con-

straints for individual GWobservations, studying how they
evolve with PN order and how they depend on the target
source class (MBHs, terrestrially observed SOBHs, and
multiband SOBHs). We also quantify the effect of combin-
ing constraints from a full, synthetic catalog, appropriately
informed by robust population models. We find that the
effectiveness of stacking observations is a PN-dependent
conclusion. The techniques developed here have important
implications for the future of GW-based tests of GR,
especially in the era of 3g detectors. The two components
of our analysis (individual scaling and studies of the
stacking of multiple observations) combine to create a full
picture of some of the most important aspects involved in
testing GR with GWs.We hope that this information will be
valuable in driving design choices for future detector
development.
We map our generic constraints to theory-specific con-

straints, where we analyze specific parameters in viable,
interesting theories. Repeating some of the scaling analysis
done in previous sections leads, in some cases, to a reversal
of the conclusions drawn for generic modifications. This
reinforces the need to incorporate theory-specific wave-
forms in future analyses, when available.
This work opens up several new avenues of research. We

focused on BBH systems, neglecting future contributions
from neutron star-neutron star and neutron star-BH bina-
ries. These binaries have much longer inspiral signals
relative to typical BH mergers observed by the LVC,
and they could provide crucial information concerning
early inspiral, negative PN effects. Beyond the signal
length, neutron stars are sometimes treated on unequal
footing in the context of specific theories, such as scalar-
tensor gravity, EdGB and dCS. This could provide other
insights into specific theories that do not affect BBH
mergers.
Because of the scale of the catalogs involved we used

simple Fisher matrix forecasts, running ∼108 Fisher matrix

FIG. 27. To create the data involved in this figure, we have
created a set grid in parameter space with total mass ranging from
5 M⊙ to 20 M⊙, mass ratio in the range 0.05 to 1, and aligned-
spin components for each binary ranging from −0.8 to 0.8. The
rest of the parameters were populated with random numbers in
the usual ranges, and the luminosity distance was set such that the
typical SNRs ranged from ∼20–150. We computed Fisher
matrices for each set of parameters, with the in-plane component
of the spin set to 0, and then we recomputed them setting the in-
plane component of the spin χp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ21

p
, so that the binary is

approximately “maximally” precessing. The top panel shows the
distribution of the bounds for the two binary subsets—precessing
(blue) and nonprecessing (green)—as a function of PN order. The
solid line denotes the average of the synthetic catalog, while the
shaded region denotes the 1σ interval. The lower panel shows
the ratio σβ;p=σβ;nonp. Each ratio is calculated for a single
parameter set, and the mean of these ratios is shown as a solid
black line, with the 1σ spread shown by the shading. Even in this
more extreme comparison, the improvement in constraint as the
result of larger precession effects only amounts to a factor of ∼2.
However, more drastic difference may be possible if we per-
formed a full MCMC analysis, or if we used different waveform
models.
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calculations. A more thorough analysis using MCMC, or
other more robust data analysis techniques, could provide
more information about some of the trends we have
identified. An MCMC population study on the scale of
this work is currently intractable, but even an analysis of a
subset of sources could be enlightening.
Our work has focused on estimating only a single PN

modification at a time, but any modified theory of gravity
will correct the waveform at all orders in a PN expansion.
Recent work studied how constraints are affected when one
attempts to simultaneously constrain ppE deformations that
enter at multiple orders [103]. Here we have chosen to limit
ourselves to a single parameter at a time for the following
reasons. While allowing for multiple parameters to vary in a
completely independent way at several PN orders is a more
robust and general framework, this treatment is probably
overly pessimistic. Past work [30,104] showed that, indeed,
varying multiple generic parameters simultaneously dras-
tically lowers our ability to constrain them. However, in the
context of a given, physically motivated theory there should
be some relation between the different ppE modifications.
Any PN expansion should converge in the appropriate
domains, ensuring a hierarchy on the size of the modifi-
cations. Moreover, the modification at each PN order
should at least depend on the coupling parameters of the
theory, ensuring that no two PN orders are totally inde-
pendent from each other. These criteria suggest that the
overall bound on a given modification, in the context of a
physically motivated theory, should not be significantly
weakened by the inclusion of higher-order corrections
(except in the most unfortunate of fine-tuning scenarios).
Therefore our conclusions should be robust under the
inclusion of higher-order PN corrections to the waveform.
Our investigation of the effects of precession on modi-

fied GR constraints could be improved in at least three
ways. While we did include a full inspiral/merger/ringdown
model of precession by implementing IMRPhenomPv2

[25–27], more recent and complex waveform models
(such as IMRPhenomPv3 [105], IMRPhenomXPHM [106] or
SEOBNRv4PHM [107]) could encode more information in the
signal, helping to break degeneracies. A more robust
statistical analysis, such as a full MCMC, could explore
the posterior space more thoroughly, shedding light on the
effects of precession. Last but not least, the astrophysical
SOBH models considered here only allow for isolated field
formation under restrictive assumptions. Dynamical for-
mation generally predicts a larger fraction of precessing
systems [108], and it is important to consider other path-
ways for producing BBHs with large misaligned spins even
within the isolated formation channel [73,109].
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APPENDIX A: BAYESIAN THEORY AND FISHER
ANALYSIS DETAILS

Signal analysis in GW science is usually based on
Bayes’ theorem,

pðθ⃗; dÞ ¼ pðd; θ⃗Þpðθ⃗Þ
pðdÞ ; ðA1Þ

where pðθ⃗; dÞ is the posterior probability of the vector of
parameters θ⃗ given some data set d. The quantity pðθ⃗Þ is the
prior information about the source parameters, reflecting
any initial beliefs held before the data were taken. The
evidence, pðdÞ, is the normalization of the posterior, which
also generally holds valuable information about the signal,
but will not be the focus of this work. The quantity pðd; θ⃗Þ
is the likelihood of the data, and describes the probability
that one would see a data set d given some set of parameters
θ⃗. For GW data analysis, this is given by

pðd; θ⃗Þ ∝ exp

�
−
1

2

XNdetector

i

ðdi − hijdi − hiÞ
�
; ðA2Þ

for each data series di and detector response template hi
from the ith detector, where the noise-weighted inner
product is given by
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ðd − hjd − hÞ ¼ 4Re

�Z ðd − hÞðd − hÞ�
SnðfÞ

df

�
: ðA3Þ

To estimate the posterior using real data from LIGO, one
would use a Markov Chain Monte Carlo [112,113] to
explore the parameter space of the signal. This would yield
a set of independent samples from the posterior that
quantifies not only the most likely values for the vector
θ⃗, but also includes information about our confidence in
those estimates. This approach is the most reliable and
accurate, but it is too computationally expensive for our
purposes. Even the most optimized algorithms would take
considerable computational resources to analyze the num-
ber of sources examined in this paper. We therefore turn to a
commonly used approximation of the posterior to estimate
the confidence intervals on θ⃗ that is much more computa-
tionally tractable: the Fisher information matrix.
We calculate the Fisher matrices for each detector and

combine them to construct a total Fisher matrix for each
source according to Eq. (22). To properly reflect the ability
of a terrestrial network to localize sources in the sky, we
incorporate a time delay between detectors that is α- and
δ-dependent. That is, for each detector besides the reference
detector, we append the following factor to the phase:

tc;i → tc;ref þ δtc;iðα; δÞ; ðA4Þ

where δtc;i is defined as

δtc;iðα; δÞ ¼
xref · x̂sourceðα; δÞ − xi · x̂sourceðα; δÞ

c
: ðA5Þ

The detector positions xref and xi are in Earth-centered
coordinates, the unit vector x̂source points to the source in
the sky in the same coordinates, and we have reintroduced
the speed of light c for clarity. The positions of the detectors
in these Earth-centered coordinates were taken from
LALSuite [70]. This procedure is neglected when considering
LISA, as sky localization comes from the orbital motion of
the satellites and long signal durations for space-based
detectors.
An additional concern in the context of utilizing Fisher

matrices with consistent parameters is the description of the
binary’s orientation. There are three coordinate systems that
naturally arise in the description of terrestrial and space
detectors. The natural coordinate system to use for LISA is
the ecliptic coordinate system, specifically the parameters
θj and ϕj, as these are the quantities that show up in LISA’s
response function. For terrestrial detectors, the polarization
angle ψ̄ and the inclination angle ι naturally arise in the
response function, where the polarization angle is naturally
defined in the equatorial coordinate system. Finally, the
source properties themselves are stipulated in the source
frame, aligned with the orbital angular momentum L and
subsequently used to calculate the waveform. Any choice is

valid as long as it is consistently enforced, so we chose to
use the equatorial coordinates, and we accounted for the
coordinate transformation in the calculation of the deriva-
tive of the response function. An equally simple solution
would be to compute the Fisher matrices in their respective,
natural coordinates, then use the Jacobian matrix to trans-
form them as follows:

Γi0j0 ¼
∂xi
∂xi0 Γij

∂xj
∂xj0 ; ðA6Þ

which is exactly how we transform our bounds on generic
modifications to theory-specific modifications.
The actual transformation relies on the construction of an

explicit rotation matrix between the different frames of
reference. Transforming between ecliptic and equatorial
coordinates is a trivial rotation by a constant angle, so we
will instead just describe the transformation between the
source frame and the equatorial system.
The first frame in question is the equatorial frame, which

is the frame that defines the parameters θL, ϕL, α, and δ.
From these quantities, one can construct two vectors: the
direction of propagation N̂ (which points from the solar
system to the source), and the direction of the orbital
angular momentum L̂ at some reference frequency. These
two vectors also define the inclination angle of the orbital
angular momentum,

cos ι ¼ −L̂ · N̂; ðA7Þ

which will be needed in the next frame.
The second frame is the source frame, in which the

waveform is naturally constructed. This frame is defined by
a coordinate system with L̂ ¼ ẑ, while the other two
Cartesian axes are chosen such that the direction of
propagation −N̂ (where N̂ points from the solar system
to the source) lies in the x − z plane when the reference
phase ϕref ¼ 0. The vector N̂ is then rotated azimuthally by
an angle ϕref for nonzero reference phases. The angle
between L̂ and N̂ in the source frame is just the inclination
defined in Eq. (A7), which fully specifies this vector in the
second frame. Using these two vectors, we can construct a
third, orthogonal vector as the cross product of these two,
which we will call K̂ ¼ L̂ × N̂.
With three vectors in each frame, we can construct an

explicit rotation matrix to transform any quantities from
one frame to the other by the set of equations,

L̂eq ¼ R · L̂SF;

N̂eq ¼ R · N̂SF;

K̂eq ¼ R · K̂SF; ðA8Þ

where R is the unspecified rotation matrix and the sub-
scripts “eq” and “SF” correspond to equatorial coordinates
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and source-frame coordinates, respectively. The system
(A8) can be inverted analytically, resulting in analytical
expressions for the rotation matrix R.
This rotation matrix allows us to transform any quantity

between the two frames. This can be used to calculate the
ecliptic angles of the total angular momentum Ĵ, which is
needed for the LISA response function. The vector Ĵ is
easily constructed in the source frame, as the spins are
defined in this frame and the orbital angular momentum
already defines the coordinate system. The vector is simply
rotated into the equatorial frame and subsequently into the
ecliptic frame, to compute the LISA response function.
We also need to specify the polarization angle for the

terrestrial network. We simply use the relation [114],

tan ψ̄ ¼ Ĵ · ẑ − ðĴ · N̂Þðẑ · N̂Þ
N̂ · ðĴ × ẑÞ ; ðA9Þ

where ẑ is the unit vector of the equatorial coordinate
system aligned with the axis of rotation of the Earth,
defining a globally consistent polarization angle. These
transformations allow us to use the vector of parameters
outlined above, where all the quantities are consistently
defined.
Once a combined Fisher for each source is calculated, the

inversion of each Fisher results in the individual covariance
matrices, which effectively acts as marginalization. We
extract the variance of the ppE parameter β by taking the
diagonal element σββ, which gives us a marginalized
posterior on β for a single source. Finally, to combine
the sources, we multiply the marginalized posteriors
together (because each source is completely independent),
which for a series of Gaussians becomes

pðβjθ⃗Þ ∝
YN
i

exp

�
−
1

2

β2

σ2β;i

�

∝ exp

�
−
1

2
β2

XN
i

1

σ2β;i

�
: ðA10Þ

Therefore, our resulting bound on β is simply given by

σ2β ¼
�XN

i

1

σ2β;i

�−1

: ðA11Þ

APPENDIX B: MAPPING TO SPECIFIC
THEORIES

The main goal of this Appendix is to map parametrized
deviations, that do not necessarily have a physical inter-
pretation, to specific parameters appearing in beyond-GR
theories.

1. Dipole radiation

In GR, the generation of GWs is sourced from the second
time derivative of the mass quadrupole moment, resulting
in quadrupolar radiation. This connection to the quadrupole
moment is tied to the conservation of the stress energy
tensor, rooted in the Bianchi identities (a purely geomet-
rical constraint). If additional fields were added to the
gravitational sector that were not subject to such energy
conditions, one would generically expect dipolar radiation,
providing an additional avenue of energy loss for the
system. An additional channel for outgoing power would
drive the binary to inspiral faster than what would be
predicted by GR, and this faster inspiral would produce a
measurable effect on the waveform.
To determine this effect on the waveform, we can write

the time derivative of the gravitational binding energy of
the system as [45]

_E ¼ _EGR þ δ _E; ðB1Þ

where _EGR is the GW power output in GR, and δ _E is our
generic deviation. In terms of these parameters, our
modification to the waveform becomes (in the language
of ppE parameters) [45]

βdipole ¼
−3
224

η2=5δ _E; ðB2Þ

where η ¼ m1m2=ðm1 þm2Þ2 is the symmetric mass
ratio of the binary system.
Of course, δ _E is written generically in Eq. (B1). Once a

specific theory has been selected, this term will be a
function of the source parameters and of any fundamental
constants of the theory in question. For example, in
Einstein-dilaton Gauss-Bonnet gravity (EdGB) [115] the
waveform modification can be calculated to be [47]

βEdGB ¼ −
5

7168

ζEdGB
η18=5

ðm2
1s

EdGB
2 −m2

2s
EdGB
1 Þ2

m4
; ðB3Þ

sEdGBi ¼ 2½ð1 − χ2i Þ1=2 − 1þ χ2i �
χ2i

; ðB4Þ

where ζEdGB is related to the coupling parameter of the
theory αEdGB by ζEdGB ¼ 16πα2EdGBð1þ zÞ4=m4, and
m ¼ m1 þm2 is the total redshifted mass of the system.
The quantities sEdGBi given in Eq. (B4) are the sensitivities
of the BHs, and χi are the dimensionless, (anti)aligned spin
components of the ith BH.
Because of the approximations used to derive Eq. (B3),

this particular formula is only valid when
ffiffiffiffiffiffiffiffiffiffiffiffi
αEdGB

p ≤ ms=2,
wherems is the smallest length scale of the system (see e.g.,
[116]). For this work, the smallest length scale will be the
mass of the smaller BH, m2.
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2. Black hole evaporation

High-energy theories that might be candidates for
quantum theories of gravity often involve the embedding
of our four-dimensional spacetime in a higher-dimensional
space, where the extra dimensions are often compactified.
For example, Arkani-Hamed, Dimopoulos, and Dvali
proposed a model which had implications for the hierarchy
problem between the electroweak and Planck scale
[117,118]. Another set of models proposed by Randall
and Sundrum (RS-I/II) [119,120] postulate a braneworld
model where the four-dimensional brane we occupy resides
in a five-dimensional anti–de Sitter bulk spacetime. In
RS-II, BHs were initially predicted to evaporate much
faster as compared with analogous situations in four
dimensions, with an evaporation rate given by [121,122]

dm
dt

¼ −2.8 × 10−7
�
1 M⊙ð1þ zÞ

m

�
2
�

l
10 μm

�
2 M⊙

yr
;

ðB5Þ

where l is the length scale of the extra dimension and m is
the detected mass. However, more recent work has shown
that black holes in RS-II are actually stable and evaporation
does not occur [123,124].
Regardless of the physical origin of the evaporation, it is

still interesting to consider its effect on the gravitational
waveform. Let us imagine that either the volume or the area
of a BH changes with time due to some quantum or
classical extension of GR. The volume and the area are
common geometric quantities associated with a BH, so it is
plausible that if BH solutions become time-dependent, then
it is these quantities that acquire the time dependence.
Assume then that dV=dt ¼ cVl2 or dA=dt ¼ cAl, where
cV;A are dimensionless constants and l is a new length that
controls the scale at which time dependence kicks in.
If so, using that V ¼ ð32π=3Þm3 and A ¼ 16πm2 for
a Schwarzschild BH, we then have that dm=dt ¼
½cV=ð32πÞ�ðl=mÞ2 or dm=dt ¼ ½cA=ð32πÞ�ðl=mÞ. On gen-
eral grounds, then, one would expect dm=dt ∼ ðl=mÞq with
q ¼ 1 of q ¼ 2, depending on whether the time depend-
ence acts on the area or the volume of the BH, and a
constraint on dm=dt would then imply a constraint on the
evaporation scale l.
Regardless of the process that leads to evaporation, the

waveform modification has the form [125],

βBHE ¼ 25

851968
_M

�
3 − 26ηþ 34η2

η2=5ð1 − 2ηÞ
�
; ðB6Þ

where _M ¼ dM=dt ¼ dm1=dtþ dm2=dt is the anomalous
evaporation rate.

3. Local position invariance violation

In the case where Newton’s gravitational constant is
promoted to a time-dependent quantity, conspicuous addi-
tional accelerations could be experienced by binaries
inspiraling together. This phenomenon could come about,
for example, because the gravitational constant is tied to a
background scalar field which evolves on cosmological
timescales. This effect can be observed as alterations to the
binding energy of the binary, and it has a mapping to the
ppE framework [101],

β _G ¼ −25
65526

_GM
ð1þ zÞG ; ðB7Þ

where _G ¼ dG=dt is the time derivative of the gravitational
constant and M is the redshifted chirp mass.

4. Parity violation

Many attempts to unify quantum mechanics and gravity
involve terms quadratic in curvature at the level of the
action in the low-energy limit, as well as additional fields
coupled to these higher-order terms. The strength of this
coupling is determined by the coupling parameter of the
theory, and therefore determines the magnitude of the effect
on the waveform. EdGB (discussed above) is an example of
this type of modification where the modifying parameter
comes at a negative PN order because of dipolar radiation.
EdGB, however, preserves parity because the term added to
the action is parity-even, introducing a scalar field that is
also parity-even. A quadratic theory that does not preserve
parity is dynamical Chern-Simons (dCS) gravity [115],
which incorporates an additional quadratic curvature term
into the action that is parity-odd. In order to keep the action
invariant under parity transformations, this odd-parity term
must be coupled to an odd-parity scalar field, leading to a
variety of implications in different gravitational inter-
actions [115].
This modification affects the waveform as follows [47]:

βdCS ¼ −
5

8192

ζdcs
η14=5

ðm1sdCS2 −m2sdCS1 Þ2
m2

þ 15075

114688

ζdCS
η14=5

ðm2
2χ

2
1 − 350

201
m1m2χ1χ2 þm2

1χ
2
2Þ

m2
;

ðB8Þ

sdCSi ≡ 2þ 2χ4i − 2ð1 − χ2i Þ1=2 − χ2i ½3 − 2ð1 − χ2i Þ1=2�
2χ3i

;

ðB9Þ

where ζdCS is related to the coupling parameter by
ζdCS ¼ 16πα2dCSð1þ zÞ4=m4. The quantity sdCSi given in
Eq. (B9) is the sensitivity of the ith BH in dCS.
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As the result of the approximations involved in the
derivation of the flux, Eq. (B8) is only valid ifffiffiffiffiffiffiffiffiffi
αdCS

p ≤ ms=2, where ms is the smallest length scale of
the system, just as in EdGB. Here we are interested in
BBHs, and ms is the mass of the smaller BH.

5. Lorentz violation

Noncommutative gravity promotes the coordinates in
GR to operators with a nontrivial commutation relation
defined by ½x̂μ; x̂ν� ¼ iθμν, where θμν is a real, constant
antisymmetric tensor [59,126]. This tensor plays a role
analogous to the role of Planck’s constant in quantum
mechanics, and it defines a length scale at which there is a
fundamental uncertainty between physical parameters.
Defining the quantity Λ2 ¼ θ0iθ0i=ðlptpÞ2, where lp and

tp are the Planck length and time, respectively, one can
derive the modification to the waveform as [59,126]

βNC ¼ −
75

256
η−4=5ð2η − 1ÞΛ2: ðB10Þ

In this parameterization,
ffiffiffiffi
Λ

p
defines the energy scale of

noncommutativity, relative to the Planck scale.

6. Modified dispersion

Another assumption made by GR is that gravitons are
massless. If this is not assumed, the leading-order correction
to the measured GW signal would come about through the
propagationofGW[44,127]. Thegravitonwouldbe ascribed
a massive-particle dispersion relation E2 ¼ p2 þm2

g, where
E is thegraviton energy,p is thegravitonmomentum, andmg

is the graviton mass. With a nonlinear relation between
energy and momentum, one would expect that the group
velocity would become frequency-dependent. This introdu-
ces an additional term in the GW phase [127],

βMG ¼ π2
D0

1þ z
Mz

λ2MG
; ðB11Þ

D0 ≡ ð1þ zÞ
Z

z

0

1

Hðz0Þ
dz0

ð1þ z0Þ2 ; ðB12Þ

where D0 is a new cosmological distance similar to the
luminosity distance, and λg is theComptonwavelength of the
graviton, related to the mass by λg ¼ h=mg. To evaluate
the Hubble parameterHðzÞ we use the cosmological param-
eters inferred from the Planck Collaboration [60] and
software from the Astropy Python package [128,129].

APPENDIX C: INSPIRAL/MERGER/RINGDOWN
VS INSPIRAL WAVEFORMS

Concerning the deviations away from GR that we have
injected into the waveforms, we examine two families of
modifications: those that affect GW propagation and those

that modify GW generation. The difference between these
two mechanisms arises from our lack of knowledge about
the dynamics of BBHs close to merger in modified theories
of gravity. To reflect this ignorance, we include the
modification due to generation effects in the inspiral
portion of the waveform only. Propagation effects are
under no such shroud as the mechanism responsible acts
in the low-curvature regions between galaxies and should
equally affect the waveform across the entire frequency
range. We therefore include modifications due to propa-
gation effects in the entire waveform. As we are only ever
looking at one effect at a time, these two families of effects
are never examined concurrently. To incorporate these
modifications, we utilize the ppE methodology [28–31].
In the case of precessing systems, the modifications are
treated slightly differently. For generational effects, we
append a phase modification to the waveform in the
coprecessing frame, where the physics of GW generation
are approximately the same as those for a nonprecessing
binary. The waveform is then “twisted-up” in the usual
fashion for IMRPhenomPv2 waveforms, but with the modified
coprecessing waveform. For propagation effects, we
append the modification to the waveform at all frequencies,
after the waveform has been transformed to the inertial
frame. In equations,

h̃coprec;gen ¼
�
h̃coprec;GReiβðMπfÞ−b=3 f < 0.018m

h̃coprec;GR 0.018m < f
ðC1Þ

h̃inertial;prop ¼ h̃inertial;GReiβðMπfÞ−b=3 : ðC2Þ

A comparison between the two methods is shown in
Fig. 28, which illustrates that the difference is small.
Because of this, we used the full inspiral-merger-ringdown
modification in all of this paper.

FIG. 28. Comparison between the constraints on β at 1.5PN
predicted by using the generation modification (INS), as opposed
to the propagation modification (IMR). We used the same
catalogs and networks (SOBH base and SOBH S1) in both
cases. The difference is negligible when considering the order-of-
magnitude constraints of interest in this work.
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