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We investigate the impact on cosmological observables of fðQÞ-gravity, a specific class of modified
gravity models in which gravity is described by the nonmetricity scalar, Q. In particular we focus on a
specific model which is indistinguishable from the Λ-cold-dark-matter (ΛCDM) model at the background
level, while showing peculiar and measurable signatures at linear perturbation level. These are attributed to
a time-dependent Planck mass and are regulated by a single dimensionless parameter, α. In comparison to
the ΛCDM model, we find for positive values of α a suppressed matter power spectrum and lensing effect
on the cosmic microwave background radiation (CMB) angular power spectrum and an enhanced
integrated-Sachs-Wolfe tail of CMB temperature anisotropies. The opposite behaviors are present when the
α parameter is negative. We also investigate the modified gravitational waves (GWs) propagation and show
the prediction of the GWs luminosity distance compared to the standard electromagnetic one. Finally, we
infer the accuracy on the free parameter of the model with standard sirens at future GWs detectors.
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I. INTRODUCTION

The late-time cosmic acceleration has been confirmed by
different cosmological observations [1–8]. Within general
relativity (GR), it is the cosmological constantΛ to give rise
to the observed acceleration of the Universe. In this picture
the resulting standard cosmological model (ΛCDM),
besides providing an accurate description of the Universe,
comes along with some theoretical problems [9] and mild
observational tensions, i.e., on the measurements of the
value of the Hubble constantH0 [10–15] and the amplitude
of the matter power spectrum at present time σ8 [16–20]
from different surveys. These might signal the necessity of
looking for new physics beyond the standard model.
Several modified gravity (MG) proposals have been

considered which modify the gravitational interaction on
cosmological scales. Following the GR construction, most
of them have null nonmetricity and torsion [9,21–34].
Alternatively one can construct theories of gravity built
from the scalars associated to torsion (T) and nonmetricity
(Q). While the actions

R
d4x

ffiffiffiffiffiffi−gp
T and

R
d4x

ffiffiffiffiffiffi−gp
Q are

equivalent to GR in flat space [35], their generaliza-
tions with fðTÞ [36–40] and fðQÞ [41–45] can be ascribed
in the class of MG models. In the following we focus on
fðQÞ-gravity which introduces at least two additional
scalar modes. These disappear around maximally symmet-
ric backgrounds causing strong coupling problems.
However, while the fðTÞ-gravity models suffer from strong
coupling problems when considering perturbations around
a Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground [46], these are absent in the case of fðQÞ-gravity

[43]. In fðQÞ-gravity the main equations for the linear
perturbations for scalar, vector, and tensor modes and the
matter density perturbation have been derived [43]. From
this study, modifications in the evolution of the gravita-
tional potentials and tensor propagation equations emerge
with respect to the ΛCDM model, thus making it worth
to be further investigated by looking at the signatures
these modifications leave on cosmological observables.
Furthermore constraints on the deviations of the fðQÞ-
gravity from the ΛCDM background have been performed
using different observational probes for several parameter-
izations of the fðQÞ function in terms of redshift, z, i.e.,
fðzÞ [47] and at linear perturbation level, the modification
in the evolution of the matter density perturbation has been
tested against redshift space distortion (RSD) data [48].
In this work we focus on the fðQÞ model which shares

the same background evolution as in ΛCDM, while leaving
precise and measurable effects on cosmological observ-
ables. We perform a thorough analysis of its phenomenol-
ogy at linear order in perturbations, by comparing the
predictions of the theory to the ΛCDM model for the
temperature-temperature (TT) power spectrum, lensing
potential autocorrelation power spectrum and matter power
spectrum. To this aim we implement the model in the public
Einstein-Boltzmann code MGCAMB [49–51]. Finally we
investigate the modification in the gravitational waves
(GWs) sector by presenting the GWs luminosity distance
and we infer the accuracy on the free parameter of the
model using previous forecasts from standard sirens
[52,53] at the Einstein Telescope (ET) [54] and the
Laser Interferometer Space Antenna (LISA) [55].
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II. f ðQÞ MODEL

The action of the fðQÞ-gravity can be written as
follows [56]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
fðQÞ þ Lm

�
; ð1Þ

where g is the determinant of the metric gμν, fðQÞ is a
general function of the nonmetricity scalar Q ¼
−QαμνPαμν, with Qαμν ¼ ∇αgμν being the nonmetricity
tensor and Pα

μν¼−Lα
μν=2þðQα−Q̃αÞgμν=4−δαðμQνÞ=4

where Qα ¼ gμνQαμν, Q̃α ¼ gμνQμαν and Lα
μν ¼ ðQα

μν−
QðμνÞαÞ=2. Finally, Lm is the matter Lagrangian of standard
matter fields. The choice f ¼ Q=8πGN , where GN is the
Newtonian constant, reproduces the dynamics of GR.
A particular class of fðQÞ-theory that gives an expansion
history on a FLRW background identical to that of ΛCDM
is [43]:

f ¼ 1

8πGN
ðQþM

ffiffiffiffi
Q

p
Þ; ð2Þ

where M is a constant. In the following we use the
dimensionless parameter α≡M=H0, where H0 is the
present time value of the Hubble parameter HðtÞ≡ 1

a
da
dt

and aðtÞ is the scale factor. Given the peculiar characteristic
of the model at the background level, the different values of
α can thus only be depicted by analyzing the evolution of
the linear perturbations. The model in Eq. (2) will be the
subject of the following analysis. Hereafter we will also
make use of the redefinition: f → f=8πGN .
Considering that the nonmetricity scalar assumes the

formQ ¼ 6H2 on a FLRW background, we show in Figs. 1
and 2 top panels the behaviors of the fðQÞ function given
by the model in Eq. (2) respectively for negative and
positive values of the α parameter. The chosen values for α
have the purpose to visualize and quantify the modifica-
tions. We also include as reference the α ¼ 0 case corre-
sponding to the GR limit. The values for the cosmological
parameters used in this paper are the Planck 2018 best fit
values [11]. Significant deviations from the GR behavior
appear for smaller redshift (z < 4) and these differences
start to vanish in the distant past. We can also note that
while for positive values of α, fðQÞ is enhanced with
respect to the GR limit, for negative ones it is suppressed.
These different trends will impact the evolution of the linear
perturbations. The derivative of fðQÞ with respect to the
nonmetricity scalar, fQ ≡ df=dQ, indeed is identified to be
the effective Planck mass [43] and as such it is expected to
impact on the shape of large scale observables. In the
following we will investigate the physics of microwave
background radiation (CMB) scalar angular power spectra,
matter power spectrum and the implications of a modified
propagation of GWs.

III. EFFECTS ON OBSERVATIONS
FROM THE SCALAR SECTOR

Let us consider the perturbations of the metric in
Newtonian gauge, ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞdx2,
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FIG. 1. Evolution of f and fQ as a function of the redshift for
negative values of the α parameter.
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FIG. 2. Evolution of f and fQ as a function of the redshift z for
positive values of the α parameter.
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where Φðt; xiÞ and Ψðt; xiÞ are the gravitational potentials.
In the standard cosmological model, these two potentials
are equal during the period of structures formation. This is
no longer true when modifications in the gravitational
interaction are considered. In Fourier space the function
ηða; kÞ≡Φ=Ψ defines the nonzero anisotropic stress, and
the modifications in the Poisson equation are enclosed in
the μða; kÞ function as:

−k2Ψ ¼ 4πGNa2μða; kÞρmδm; ð3Þ

where δm ¼ δρm=ρm is the density contrast, ρmðtÞ is the
background matter density and μða; kÞ defines the effective
gravitational coupling. Moreover, a light deflection param-
eter Σða; kÞ≡ μð1þ ηÞ=2 measures the deviation in the
Weyl potential ðΦþΨÞ.
In the quasistatic approximation for perturbations deep

inside the Hubble radius for the fðQÞ-gravity one has η ¼ 1
and μ ¼ 1=fQ [43]. In detail, for the model under consid-
eration the latter turns out to be a function of time only and
it reads:

μðaÞ ¼ 12H

12H þ ffiffiffi
6

p
αH0

: ð4Þ

In Figs. 1 and 2 (bottom panels) we show the evolution
of fQ as a function of the redshift. fQ being the effective
Planck mass is always positive defined as expected. When
α < 0, we have fQ < 1, thus according to the evolution of
μ the gravitational interaction is stronger than that in GR
(see bottom panel in Fig. 3). On the other hand when α > 0
the opposite holds (upper panel in Fig. 3). This aspect is
quite interesting in light of RSD, galaxy clustering (GC)
and weak lensing (WL) data which independently detected
a lower growth rate of matter density perturbations than that
predicted by the ΛCDM model [16–18,20,57–61].
In order to perform explorations of cosmological observ-

ables we have modified the public Einstein-Boltzmann
code MGCAMB

1 [49–51] which evolves the linear cosmo-
logical perturbations equations taking into account the MG
effects given by Eq. (4).
The modification introduced by the model in Eq. (2) has

three major effects on observations:
(1) It changes the growth of matter perturbations. In

modified gravity the matter density perturbation δm
obeys the linear equation:

δ̈m þ 2H _δm − 4πGNμρmδm ¼ 0; ð5Þ

which can be solved by setting initial conditions in
the matter dominated era. We show in Fig. 4 the
redshift evolution of the growth factor DðaÞ≡
δmðaÞ=δmða ¼ 1Þ. As expected, the models with

positive values of α and μ < 1 have a larger growth
factor than ΛCDM as such, we predict a lower value
for the amplitude of the matter power spectrum at
present time, σ8, compared to ΛCDM, assuming
they share the same initial amplitude of primordial
perturbations, As [63–65]. Accordingly we observe
for positive values of α a suppression of the growth
of structures in the total matter power spectrum for
k ≥ 10−3 with respect to the ΛCDM one, as depicted
in the lower panel of Fig. 5. For the values
considered the deviations are estimated to be in
the range 5%-10%. When α is chosen to be negative
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FIG. 3. Evolution of the phenomenological function μ as a
function of the redshift z for positive (top panel) and negative
(bottom panel) values of the α parameter.
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the growth factor and the matter power spectrum
show exact opposite characteristics, and a deviation
of 15% is found for α ¼ −1 in the matter power
spectrum. RSD data have been used to constrain the
α and σ8 parameters while keeping all the others
fixed to the Planck 2018 best fit values. It is found
that α ¼ 2.0331þ3.8212

−1.9596 and σ8 ¼ 0.8326þ0.1386
−0.0630 at 1σ

[48]. From their central values we can infer a
preliminary estimation of the corresponding value
for As ≃ 2.7 × 10−9.

(2) It modifies the gravitational lensing. For the fðQÞ-
gravity the modification in the lensing gravitational
potential ϕlen ¼ ðΨþΦÞ=2 are associated to Σ ¼ μ.
Thus for the specific case that we explore, the

gravitational lensing is enhanced when μ > 1 and
suppressed for μ < 1. Let us consider now the
lensing potential autocorrelation power spectrum
which using the line of sight integration method
reads [66]:

Cϕϕ
l ¼ 4π

Z
dk
k
PðkÞ

�Z
χ�

0

dχSϕðk; τÞjlðkχÞ
�
2

; ð6Þ

with PðkÞ ¼ Δ2
RðkÞ being the primordial power

spectrum of curvature perturbations, jl is the
spherical Bessel function and

Sϕðk; τÞ ¼ 2Tϕðk; τ0 − χÞ
�
χ� − χ

χ�χ

�
; ð7Þ

where Tϕðk; τÞ ¼ kϕlen is the transfer function, χ is
the comoving distance (χ� corresponds to that to the
last scattering surface), with relation χ ¼ τ0 − τ
being τ the conformal time and τ0 is its value today.
The modifications in the lensing potential ϕlens
discussed before, when included in the source term
in Eq (7), impact on the lensing power spectrum as
shown in the central panel of Fig. 5. We note that for
the negative values of α (μ > 1) the lensing power
spectrum is enhanced with respect to ΛCDM, while
positive values correspond to a suppression of the
lensing power (μ < 1). The larger deviations are for
the higher values of jαj. They reach the 50% when
α ¼ −1 and 25% for α ¼ 1.

(3) It impacts the late-time integrated Sachs-Wolfe
(ISW) effect. A modification in the time variation
of the lensing potential is expected due to the
presence of Σ ≠ 1 for small z which induces a
late-time ISW effect. Let us consider the TT angular
spectrum [67]

CTT
l ¼ ð4πÞ2

Z
dk
k
PðkÞjΔT

lðkÞj2; ð8Þ

with

ΔT
lðkÞ ¼

Z
τ0

0

dτeikμ̃ðτ−τ0ÞSTðk; τÞjl½kðτ0 − τÞ�; ð9Þ

where μ̃ is the angular separation, and STðk; τÞ is the
radiation transfer function. The ISW contribution to
STðk; τÞ is given by

STðk; τÞ ∼
�
dΨ
dτ

þ dΦ
dτ

�
e−κ; ð10Þ

where κ is the optical depth. The late time variation
of ϕlens expected from μ thus induces the late-time
ISWeffect. We find that a suppression in the lensing

FIG. 5. Power spectra of different cosmological observables for
different values of the α parameter and for the ΛCDMmodel. Top
panel: CMB temperature-temperature power spectra at low-l.
Central panel: lensing potential autocorrelation power spectra.
Bottom panel: matter power spectra.
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power spectrum corresponds to an enhancement of
the amplitude of the low-l TT power spectrum
relative to ΛCDM, as shown in the top panel of
Fig. 5. On the contrary an enhancement in the
lensing power spectrum results in a suppression of
the large scale ISW tails. As for the lensing case, the
magnitude of the deviations from ΛCDM depends
on jαj. We find that up to a 50% deviation is present
for α ¼ 1 and 30% for α ¼ −1. The effect on the
ISW tail should be then tightly constrained from the
CMB data. We note that the realization of both a
lower ISW tail and an enhanced matter power
spectrum can be present in fðRÞ-gravity [68] and
the Galileon model [69] also.

We showed that the fðQÞ model analyzed in this section
leaves precise and measurable signatures on the CMB
temperature anisotropies as well as on the matter power
spectrum. In particular some of them can be relevant to
understand whether the model can alleviate some tensions.
For example, the model allows us to realize weaker gravity
than ΛCDM, and this can be very promising in light of the
σ8 tension. A preliminary result using only RSD data
showed that indeed this can be the case [48]. However in
the analysis only α and σ8 are varied, while all the other
cosmological parameters are fixed. Thus a more general
study is required which should include the variation of all
other parameters and the use of several datasets as well.
Moreover an enhancement in the lensing might accom-
modate the lensing excess in the CMB Planck temperature
data [10,11,70]. Instead a suppressed ISW tail might
accommodate better the CMB data over the standard
cosmological scenario as it has been shown in the
Galileon ghost condensate model [69]. These features
cannot be all present at the same time, thus a detailed
Markov chain Monte Carlo (MCMC) analysis involving
several current observational data is needed.

IV. GRAVITATIONAL WAVES
LUMINOSITY DISTANCE

The propagation of GWs modes obeys to the following
second order action in Fourier space [56]:

S ¼ 1

2

X
λ

Z
d3kdta3fQ

�
ð _hðλÞÞ2 −

k2

a2
h2ðλÞ

�
; ð11Þ

where hðλÞ are the two helicity modes of the metric tensor
perturbation part. According to this action, the correspond-
ing equation of propagation of GWs introduces a modifi-
cation in the friction term which is identified to be

δðzÞ ¼ d ln
ffiffiffiffiffiffi
fQ

p
dð1þ zÞ : ð12Þ

For fðQÞ-gravity we can connect the friction term to the
running of the effective Planck mass, αM ¼ −2δ, being fQ

the effective Planck mass. A modified friction term affects
the amplitude of GWs such that the GWs luminosity
distance, dgwL , is no longer equal to the standard electro-
magnetic luminosity distance, demL [52,71–74]. Indeed they
are related by:

dgwL ðzÞ ¼ demL ðzÞ exp
�
−
Z

z

0

dz0

1þ z0
δðz0Þ

�
: ð13Þ

In Fig. 6 we show the evolution of the ratio dgwL =demL as a
function of the redshift for some values of the parameter α.
Regardless of the value of α, dgwL =demL → 1 at small z, while
at higher z goes to a constant. The constant assumes values
larger than 1 for α > 0 and smaller than 1 for α < 0. The
fact that the ratio goes to 1 at small z is expected since there
cannot be any effect from MG when the source is at z ≃ 0.
Moreover when α < 0 the ratio dgwL =demL is smaller than 1
thus the source of GWs is magnified and can be seen to
larger distances. The opposite holds for α > 0.
In Ref. [52] it has been proposed the following phe-

nomenological parametrization: dgwL =demL ¼ ΞðzÞ, where

Ξ ¼ Ξ0 þ
1 − Ξ0

ð1þ zÞn ; ð14Þ

with fΞ0; ng being constant free parameters. This para-
metrization smoothly interpolates the limits Ξðz ≪ 1Þ ¼ 1
and Ξðz ≫ 1Þ ¼ Ξ0. The combination of LISA standard
sirens with CMB, BAO and SNIa datasets and the joint
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analysis of ET standard sirens with the same cosmological
dataset allowed us to obtain forecasted constraints on the
Ξ0 parameter to the percent level accuracy, respectively
ΔΞ0 ¼ 0.044 [53] and ΔΞ0 ¼ 0.008 [52], while the uncer-
tainty on n remains large.
We make a correspondence between the fðQÞ-gravity

and the phenomenological parametrization in Eq. (14) by
identifying:

Ξ0 ≃
1

2
ð1þ fQ0Þ; n ≃

�
f0Q

fQ − 1

�
0

; ð15Þ

where fQ0 ≡ fQðz ¼ 0Þ and prime is the derivative with
respect to ln a. For the model in Eq. (2), we find

Ξ0 ≃ 1þ α

4
ffiffiffi
6

p ; n ≃
1

2
ð3Ω0

m þ 4Ω0
r Þ; ð16Þ

where Ω0
m and Ω0

r are the present time values of the density
parameters of matter and radiation components respec-
tively. Considering the 1σ forecasted error on Ξ0 and its
ΛCDM fiducial (Ξ0 ¼ 1) we infer for the derived para-
meter α (αfiducial ¼ 0), the following forecasted errors:
Δα ≃ 0.078 for ETandΔα ≃ 0.43 for LISA standard sirens.

V. CONCLUSION

We have presented theoretical predictions on linear
cosmological observables from a modified gravity model
based on the nonmetricity scalar, Q. For this class of
models a general function of Q, fðQÞ, is included in the
action. The first derivative of f with respect to Q is
identified with a time dependent Planck mass and con-
stitutes the source of the modification with respect to the
ΛCDM behavior at large linear scales. The specific model
we analyzed in this work does not change the expansion
history with respect to ΛCDM, thus we focused on the
scalar angular power spectra and matter power spectrum as
well as on the GWs propagation.
The fðQÞ-gravity model studied in this paper is given in

Eq. (2) and it has one extra free parameter, α. Depending on
the sign of α we found measurable and specific signatures.
The anisotropic stress parameter is equal to 1, and from this
it follows that the effective gravitational coupling is equal
to the light deflection parameter. In detail, we found that
values of μ > 1 (α < 0) enhances both the matter power
spectrum and the lensing potential autocorrelation power
spectrum in comparison to the ΛCDM model. In turns,
modifications in the lensing potential impact on the low-l
ISW tail of the CMB TT power spectrum due to a modified
late-time ISW effect, which for α < 0 is suppressed with

respect to the ΛCDM model. This aspect revealed to be the
key feature for a better fit to data compared to the ΛCDM
scenario in other MG models. The case 0 < μ < 1 (α > 0)
generates a suppressed lensing power spectrum and an
enhanced low-l CMB TT power spectrum. Additionally it
allows to realize weaker gravity than ΛCDM corresponding
to a suppressed matter power spectrum. As discussed in
Sec. III, these features need to be tested against data, as
some of them are very promising in light of the σ8 tension
arising from the mismatch at more than 4σ in the mea-
surements by Planck and that obtained from WL observa-
tions, and in the interpretation of the lensing excess in the
CMB Planck temperature data. The model does not show
these features at the same time as they are driven by
different sign of the α parameter, thus only a thorough
MCMC analysis involving several datasets can give us
indications of which one is preferred by data.
Furthermore, the model under investigation includes a

modified friction term in the equation of propagation of
GWs which introduces a modification of the luminosity
distance of standard sirens. We analyzed the predictions of
the ratio of GWs luminosity distance and electromagnetic
one as function of the redshift and this showed to follow the
phenomenological parametrization introduced in [52] in
terms of two parameters fΞ0; ng. From the forecasts
obtained from standard sirens at ET and LISA using this
parametrization we computed the relation between Ξ0 and
the free parameter of our model and we deduced the
accuracy on the α parameter. Next generation of GWs
detectors will strongly help in constraining deviations due
to a running Planck mass and for the case under analysis it
will help constraining the α parameter with high accuracy.
In conclusion, the model shows very interesting signa-

tures which deserve to be tested extensively against data.
Additionally a model selection analysis would provide the
information whether the model is statistical preferred by
data over the ΛCDM scenario. We leave these investiga-
tions for future work.
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