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Gravitational decoupling for axially symmetric systems
and rotating black holes
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We introduce a systematic and direct procedure to generate hairy rotating black holes by deforming a
spherically symmetric seed solution. We develop our analysis in the context of the gravitational decoupling
approach, without resorting to the Newman-Janis algorithm. As examples of possible applications, we
investigate how the Kerr black hole solution is modified by a surrounding fluid with conserved energy-
momentum tensor. We find nontrivial extensions of the Kerr and Kerr-Newman black holes with primary
hair. We prove that a rotating and charged black hole can have the same horizon as Kerr’s, Schwarzschild’s,
or Reissner-Nordstrom’s, thus showing possible observational effects of matter around black holes.
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I. INTRODUCTION

Black holes (BHs) have been considered more than mere
exotic solutions of the Einstein equations for quite some
time now [1,2]. Nonetheless, it is only very recently that
their direct existence was detected, mainly due to the
spectacular results of both the LIGO [3] and Event
Horizon Telescope [4] Collaborations. It is also fair to
mention that some ultracompact stellar models could act as
“black-hole mimickers” [5,6], although the existence of
such objects would not necessarily exclude the existence of
BHs [7], as it could be naively concluded.

Starting with Kerr’s celebrated work [8], the interest in
BHs has increased notably, and a large number of solutions
have been found in various contexts (for some recent
notable works, see e.g., [9-15] ). Despite this diversity,
in four-dimensional space-time, we can group all cases into
two large groups: (i) static spherically symmetric solutions
and (ii) stationary rotating solutions. (Note that, if we
include non-Abelian matter fields, we can also find
axisymmetric static BHs [16].) The study of these rotating
and nonrotating BH metrics, and the shadow they produce,
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has been extensively explored in recent years [17—47], the
Newman-Janis algorithm [48] and its version without
complexification [49] being tremendously useful tools to
generate rotating systems.

In all cases, it is well known that the presence of matter
around BHs could produce a significant distortion of the
shadow in a highly model-dependent fashion (see e.g.,
[36,50-52] and references therein). The resolution of the
first BH image is not enough to support or discard any of
these models; hence, it is important to study this distortion
with a minimum set of assumptions.1 This is precisely the
topic of the present work. Namely, we will consider a Kerr
BH surrounded by an axially symmetric “tensor-vacuum”
(analogous to the electro-vacuum and scalar-vacuum cases)
represented by a conserved energy-momentum tensor S,
which could account for one or more fundamental fields
(scalar, vector, or tensor fields representing any phenom-
enologically viable form of matter energy, such as dark
matter or dark energy). The only restriction we require is
that S, satisfies either the strong energy condition (SEC) or
the dominant energy condition (DEC) in the region outside
the event horizon. Since the gravitational decoupling (GD)
approach [53,54] is precisely designed for describing

lIndeed, a theoretical model with the minimum amount of
assumptions is always desirable in any context.
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deformations of known solutions of general relativity
induced by additional sources, we will study this problem
by first extending the GD to axially symmetric systems.

The GD is originally based on the so-called minimal
geometric deformation (MGD) [55,56] (for some earlier
works on the MGD, see e.g., [57-65] and Refs. [66—84] for
some recent applications). The GD has been shown to be
particularly useful for at least three tasks [85-118]: (i) to
generate new and more complex solutions from known
(seed) solutions of the Einstein field equations, (ii) to
systematically reduce (decouple) a complex energy-
momentum tensor 7', into simpler components, and (iii) to
find solutions in gravitational theories beyond general
relativity. Despite the above, one of the apparent limitations
of the GD is that the decoupling of gravitational sources has
only been achieved in the spherically symmetric case so far.
One of the goals of this paper is to show that indeed the GD
can be implemented beyond spherical symmetry. In par-
ticular, we will show how the GD can be obtained for
axially symmetric systems, which is of particular impor-
tance for the study of rotating stellar systems and BHs.

The paper is organized as follows: in Sec. II, we first
review the fundamentals of the GD approach for a spheri-
cally symmetric system containing two sources, and then
we show in detail how to extend the GD approach for the
axially symmetric case; in Sec. III, we apply our results to
generate the axially symmetric version of two spherically
symmetric hairy BH solutions, without implementing the
Newman-Janis algorithm. The first solution contains a source
satisfying the SEC and is an extension of the Kerr metric,
while the DEC holds for the source in the second solution,
which represents an extension of the Kerr-Newman BH;
finally, we summarize our conclusions in Sec. IV.

II. GRAVITATIONAL DECOUPLING

We start this section by briefly reviewing the key aspects
of the GD for spherically symmetric systems (described in
detail in Ref. [54]). A particularly simple case of GD is
given by the MGD [55,56], which will guide us to
introduce a GD for the axially symmetric case.

We start by considering the Einstein field equation”

N 1 N
Gu =R, — 3Ry, = KT, (1)

with a total energy-momentum tensor containing two
contributions,

pr = Tﬂl/ + Suw (2)

where T, is usually associated with a known solution of
general relativity, whereas S, may contain new fields or a

new gravitational sector. Since the Einstein tensor G,w

*We use units with ¢ =1 and k? = 87Gy, where Gy is
Newton’s constant.

satisfies the Bianchi identity, the total source TM,, must be
covariantly conserved.

A. Spherically symmetric case

For spherically symmetric and static systems, the metric
Jyu can be written as

ds? = ¢! dr? — A dr? — 2dQ2, (3)
where v = v(r) and A = A(r) are functions of the areal

radius 7 only and dQ? = d6” + sin? @d¢?*. The Einstein
tensor in Eq. (1) then reads

~ 1 1 X

GOO*ﬁ— A(ﬁ‘;) (4)

-, 1 YA

Gl :p—e p 7 ’ (5)
5 -1 L
Gzz——%<2u”+1/2—/1'1/+2y . ), (6)

where f'=0,f and T;°> =7T,> due to the spherical
symmetry. By simple inspection, we can identify an
effective density

e=T¢"+S,, (7)
an effective radial pressure
pr=-T"=58", (8)
and an effective tangential pressure
P = —Tz2 - 522- )
Since the anisotropy I = p, — p, usually does not vanish,
the system of Eqs. (4)—(6) may be viewed as an aniso-
tropic fluid.
We next consider a solution to Eq. (1) generated by the
seed source T, alone (i.e., for §,, = 0), which we write as
ds? = efdi> — e* N dr? — 2dQ?, (10)

where

2m(r)

K[
et =1 ——/ X*TH(x)dx =1— (11)
rJo

is the standard general relativity expression containing the
Misner-Sharp mass function m = m(r). Adding the source
S, can then be accounted for by the deformation of the
seed metric (10) given by
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E-sv=~¢+ayg, (12)
et = et =e M +af, (13)

where the parameter « is introduced to keep track of these
deformations.

By means of Egs. (12) and (13), the Einstein equa-
tions (1) split into the Einstein field equations for the seed
metric (10), that is

Gl (&) = KT, (14)
where
1 (1 Y
G00:r2—€”<r2—r>, (15)
1 (1 ¥
Gllzp—eﬂ<ﬁ+7), (16)

r

and a second set containing the source S,,, which reads

aG (& psf.g) = kS, (18)
where
ff
G =-5-L. (19)
G'=-f i+”—/ -Z (20)
1 — }’2 r 1
2 __ _J_C " 2 I/_/ _L/ / % _
g2 = 4 (21/ + v +2 r) 4 (IJ + r> Zz, (21)
and
Zl = e_:gj B (22)

2 /
47, = e <29” + g%+ Tg +2&¢ —,u’g’). (23)

One clearly sees that the tensor §,, must vanish when the
metric deformations vanish (@ = 0). On assuming g = 0,
we have Z; = Z, = 0 and Eq. (18) reduces to the simpler
“quasi-Einstein” system of the MGD of Refs. [55,56], in
which the deformation f is only determined by the source
S, and the seed metric (10).

What makes the GD work is the fact that, under the
transformations (12) and (13), the Einstein tensor changes as

Gyg<§a ﬂ) - G},U(l/, }“) = Gyd(‘g’ﬂ) + agya(l/7 /1) (24)

Thatis to say, Eqs. (12) and (13) yield a linear decomposition
of the Einstein tensor in the parameter o, like the two sources
add linearly in the rhs of Eq. (1). We therefore expect that a
similar GD can be introduced for any given space-time,
independently of its symmetries, if we can implement a linear
decomposition for the Einstein tensor of the form in Eq. (24).
A natural application is then to consider axially symmetric
systems.

B. Axially symmetric case

Let us start with the simplest extension of the Kerr
metric, given by [119]

ds? = [1 _ 2”?72(")} drr + Mdtd(/)
p P
P’ Tsin0
—=dr?* - p*d6* - ———d¢?, (25)
A p
with
p? = r* +a*cos? 0, (26)
A =r*=2rin(r) + @, (27)
T = (4 @*)? — a*Asin’6, (28)
and
a=1J/M, (29)

where J is the angular momentum and # the total mass of
the system. Note that the line element (25) reduces to the
Kerr solution when the metric function i = M. Moreover,
when @ = 0, we obtain the Schwarzschild-like metric in
Eq. (3) with

2ﬁ1(r).

e/ =et=1- (30)

Hence, the correspondence between the metrics (3) and
(25) is clear, with the latter being a rotational version of a
Kerr-Schild spherically symmetric space-time (see e.g.,
Refs. [120-123]). Although Eq. (25) is not the most general
axially symmetric line element, it can be used to describe
rotating compact objects, like BHs and gravastars, among
many others.

The components of the Einstein tensor for the metric (25)
read
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GOO 5 }’4 + (p2 _ r2)26_|_a2(2r2 _p2) oy
P
B razsinzﬁ v (1)
p
~ r2
G =2, (32)
p
)
G2 =22+ D, (33)
p p
G2 =r) +6612(102 -2
P
~2 2
B a(2 2 _ 52 ~
Gy =2 P )y B 35
p p

The key observation now is that this Einstein tensor is
linear in derivatives® of the mass function m(r), whereas
the rotational parameter @ appears in a convoluted form.
Any linear decomposition of the mass function,

in = m(r) + amy(r), (36)

will therefore generate a linear decomposition of the
Einstein tensor of the form in Eq. (24) with G = G,
provided the rotational parameter & is left unaffected, that is
G,°(im.a) = G,°(m.a) + aG,’(m,a).  (37)

Like for the spherically symmetric case in Sec. Il A, we
will assume that the mass functions m and m, are generated
by the energy-momentum tensor 7, and S, in Eq. (2),
respectively. It is convenient to introduce the tetrads [124]

. VA(0,1,0,0)
é; :—2’ ey —2
p-A VP

~ . 2
o _(asm 0,0,0,1) (38)

V2 sing
so that the total source Tﬂy generating the metric (25) can be
written as

TH = 682 + p,hey + Pothey + Py?dy.  (39)

where the energy density € and the pressures p,, py, and p,
are given by

3 . . . .
Of course, when /m = M is constant, the Einstein tensor

G , = 0, since Eq. (25) is the vacuum Kerr metric.

I

2 2
= —p, = i, (40)
p
r 2(r2 = p?
pe_l’a(ﬁ_—p—zﬁ/l”_k%fh/, (41)

which are also, consistently, linear in (derivatives of) the
mass function.

We next consider a solution to the Eq. (1) for the seed
source T, alone, which we write as

U5 — [1 B 2rm2(r)} a4 4arm(;;)sin29 dtdep
p P
P, 5, IS’
_Kdr —p-do- — e do=, (42)

where the expressions for p, X, and A are the same as those
in Egs. (26)—(28) but contain m and a instead of /m and a.
The addition of the second source §,, can then be
accounted for by the GD of the seed metric (42) given by

m(r) = i = m(r) + amy(r), (43)

with the parameter a introduced to keep track of the
deformation as usual. In order to achieve the decoupling
(37) of Egs. (31)—(35), we must also demand

a=a=a,, (44)

that is to say, the length scales a and ag associated,
respectively, with the sources T,, and §,, must be and
remain equal. Finally, notice that the mass deformation (43)
corresponds to the particular metric deformation f in
Eq. (13) given by

flr)=—-——"+. (45)

Unlike the general GD for the spherically symmetric
case, Egs. (43) and (44) split the Einstein equations (1) in
two equal sets: (i) one is given by Einstein field equations
with the energy-momentum tensor 7,,, that is

GM"(m, a)= szﬂ’“, (46)

whose solution is the seed metric (42), and (ii) the second
set contains the source §,, and reads

aG,*(mg,a) = k*S,*, (47)

whose solution has the same form as the one in Eq. (42) but
with m(r) — am(r). In this case, we conclude that the two
sources T, and S,, can be decoupled by means of the
metric deformations (43) and the length-scale invariant
condition (44). Notice that the energy and pressures in
Egs. (40) and (41) can be written as [49]
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€ = €+ aeg, (48)

pi=pitaps (i=r0.9), (49)
where e€g and pg; are the energy and pressures of the source
S,,- Finally, we see that for a = 0 the sets (46) and (47)
reduce to those in (14) and (18), respectively. We want to
emphasize once again that this procedure is exact and does
not require a perturbative expansion in the parameter a.

1. Strategy

We can now detail our scheme to generate new axially
symmetric metrics from known solutions of the Einstein
field equations which are as follows:

(1) Consider the field equations G,, = k*T,, which

determine the metric g, (7, a) in Eq. (25), where
Tﬂ,, = T)w +---+ Ty, and TLD is the energy-mo-
mentum tensor of the ith gravitational source.

(2) Solve Gi, = k*T}, for each Ti, to find their

respective gi,, (m;, a;) in Eq. (42) [of the same form
as (25)], namely,

Gllw = k2T;1w = g;ltl/(mhal)

Gﬁu = szzu = gzv(mnv an)'

(3) The solution gy, (i, a) in Eq. (25) of the original
problem G,w = szﬂ,, is obtained by setting

Ex
I

my e,

N
|

a=--=a,
in the line element (25).

The previous scheme can be simplified even further by

noting that step 2 actually amounts to computing just the

mass functions m; = m;(r). We can thus do that for a; = 0

for each G, = k*T',, that is solve the spherically sym-

metric cases

Giw = sz/iw = g/iw(mi» a; = 0) (50)

and generate the axially symmetric version by plugging the
mass function /i = my + --- + m, into Eq. (25) with the
asymptotic angular momentum parameter @ of choice.

2. Decoupling Einstein-Maxwell

With the aim of testing the consistency of our approach,
let us consider a well-known case, namely, the Einstein-
Maxwell system. In particular, we will consider the axially
symmetric electro-vacuum, for which the result must be the
well-known Kerr-Newman solution.

Following our strategy, we start by identifying the
sources T }w =T, =0 and T,zw =S, of relevance for
the case at hand, that is

i 0
T,u,l/ = 771,1/ + Sp,w (51)

where

1

1
S;w = E <F,uaF s Zg;wFaﬁF ﬁ) (52)

is the Maxwell tensor.

Next, we solve the Einstein equations for each source
separately, in the particularly simple case a; = a, = 0. For
the vacuum T, = 0, we find the Schwarzschild solution
with mass

For the source S

w» we find the Reissner-Nordstrom
solution, whose mass function is given by

Q2

5 (54)

ms(r ) =A
where A and Q are integration constants, with Q eventually
identified as the electric charge.
The total mass function is given by
0 0
=M+A-——"=M-=—, 55
m(r) * 2r 2r (53)

which, plugged into the metric (25), yields the well-known
Kerr-Newman solution with

A=r-2rM+ad®+ Q% (56)

We see that the method is straightforward, and that we do
not need to use the Newman-Janis algorithm to map the
spherically symmetric solution into the axially symmet-
ric one.

III. ROTATING BLACK HOLE SOLUTIONS

In a recent paper [125], we developed a new method to
generate spherically symmetric hairy BHs by imposing a
minimal set of requirements consisting of (i) the existence
of a well-defined event horizon and (ii) the SEC or DEC
for the hair outside the horizon. In particular, we considered
a Schwarzschild BH surrounded by a spherically symmet-
ric tensor-vacuum represented by a conserved energy-
momentum tensor S,,, which is dealt with as explained
in Sec. I A. We will here use those solutions as seeds to
generate axially symmetric systems according to our
strategy in Sec. [IB 1.
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1.0

—_— = . 4

(=0.2; ry<Tker

— (=0.8; Iy < IKerr
2

— {={; TH = TKerr
S Q| 0

3 | =
-2
-4
3 4 5 -4 -2 0 2 4 6

FIG. 1. Extended Kerr solution: function A (left panel) and silhouette (right panel) of the shadow cast for different values of £ with
a=0.6, a=0.3, and M = 1. The Kerr horizon rg., here corresponds to the saturated case of Eq. (58).

A. Extended Kerr solution

When we demand that S, satisfies the SEC in the region
outside the event horizon, we found the extended
Schwarzschild BH metric

1
e =et=1——2M +¢y) + ae”"/M
r

1 2M e, (57)
r

where £, = aZ measures the increase of entropy from the
minimum Schwarzschild value S = 4zM? caused by the
hair and must satisfy

Co K2M =2k (58)
in order to ensure asymptotic flatness.

In order to extend this metric to the axially symmetric
case, we just need to identify the mass function from
Eq. (57), that is

i = M= ag e /M-, (59)
which we then plug into the metric (25). This yields

A=r+a>=2rM+ar’e/M=%/2) (60)

The equation determining the horizon r = ry of the metric
(25) is given by 0 = §’" ~ A, which yields

154 a? = 2Mry + arge”n/M=%/2) =0 (61)
We see that the Kerr horizon
rKe[T:./\/l-i— \/Mz_az (62)

is recovered for a = 0 and also when the inequality (58) is
saturated.

The function (60) is plotted in Fig. 1 for a few values of
¢y at fixed @ and a. We see that the horizon shifts to larger
radii when 7|, increases, reaching a maximum value
corresponding to the Kerr horizon for £, = ¢. The
silhouette of the BH is also shown in Fig. 1 where ¢
and f are the usual celestial coordinates (see the Appendix).

We conclude that the metric (25) with the mass function
(59) represents a family of rotating hairy BHs described by
the parameters { M, a, £y}, where £, = af represents a
charge associated with primary hair.

Finally, the spherically symmetric metric with compo-
nents (57) satisfies the SEC, that is

€s+ psr+2psg =20
ps+psr =0
ps+ pso 2 0. (63)

It can be checked straightforwardly that this property is
inherited by the rotating solution.

B. Extended Kerr-Newman solution

The second case we will consider is the rotating version
of the spherically symmetric solution [125]

r r r

M — 7) e—r/(M—af/Z)’ (64)

which extends a Reissner-Nordstrom-like metric* to include
a conserved source S, satisfying the DEC. From (64), we
read out the mass function

*We remark that Q is not necessarily the electric charge, but
could be a tidal charge of extra-dimensional origin or any other
charge for the tensor S,.
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. Q* a 20\ —r/(M=to)2)
m=M 2r+2(M 5 )¢ o/2) - (65)

which immediately yields the rotating version (25) with

A=r+ad+Q*-2rM—ar (M - %) e~/ (M=t0/2),
(66)

where again the inequality (58) must hold to ensure asymp-
totic flatness. 5
The horizon is again determined by A =0 or

it a® + 0% =2Mry

4
= ary <M - 20> e~/ (M=to/2) (67)
The Kerr-Newman horizon

rKN:M+ Mz—az—Qz (68)
is found for ¢ =0 (hence £, =0) and also when the
inequality in (58) is saturated.

The metric function (66) is plotted in Fig. 2 for given
values of a, a, and Q. For the range of # shown there, the
horizon shrinks to smaller radii when # increases, reaching a
minimum value corresponding to the Kerr-Newman horizon
when Eq. (58) is saturated. We conclude that the metric (25)
with the mass function (65) represents rotating hairy BHs
depending on the parameters { M, a, Q, a, ¢}, where ¢, =
a? represents a charge associated with primary hair.

Like with the SEC in Sec. III A, one can check
straightforwardly that the rotating metrics inherit the
DEC satisfied by the spherically symmetric metric func-
tions in Eq. (64),

1.0
— (=0.2; Ty > TN
— (=0.8, ryg>rw
— {=lkn; TH=TkN
S
<
0 1 2 3 4 5

FIG. 2. Extended Kerr-Newman solution: function A for differ-
ent values of Z witha = 0.6, a = 0.3, Q = 0.2, and M = 1. The
Kerr-Newman horizon rgy here corresponds to the saturated case
of Eq. (58).

Ps > 0’ (69)

ps 2 |Psil (i=r.0,4). (70)

It is impossible to find analytical solutions to Eq. (67),
except for some particular cases. Three of them are
shown below.

1. Case 1

If the charge and angular momentum parameters satisfy
the condition

A
a2+Q2 :arH(M_EO)e_rH/(M_fO/Z)’ (71)
we have

A:r2—2r/\/l+a</\/l—%>

X [re=/ M=00/2) _ pgmr/(M=60/2)] (72)

and the event horizon is located at the Schwarzschild radius
ruy = 2M. This indicates that the source S, filling the
“electro-vacuum” produces a screening effect on the
charges a and Q in such a way that an external observer
will see a rotating space-time with the horizon apparently
generated by a nonrotating and neutral distribution.

2. Case 2

Next, if the charge satisfies
2 %o\ - M—ty/2
Q = ary _/\/l_7 e ru/( o/ )’ (73)
the metric function
- A
A= r2+a2—2r./\/l+a</\/l—?0>
X l:rﬂe_rH/(M_KO/z) pa— re_r/(M_fO/2>:|’ (74)

and the event horizon is located at ry = rgg, given in
Eq. (62), provided a* < M?. This indicates a screening
effect of the charge Q only, so that an external observer will
detect a horizon corresponding to a neutral distribution.

3. Case 3

Last, if the angular momentum satisfies
20\ /(M-
@ = ary( M =22 e/l (75)

which leads to
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2
X[VHe—VH/(M‘KO/Z) — re_r/(M_fO/z)]’ (76)

A—r2+Q2—2rM+a<M—@)

the event horizon is given by Eq. (77) with a = 0, namely,
the Reissner-Nordstrom horizon

rry = M+ \//\T—QZ, (77)

provided of course the charge Q> < M?. In this case, the
screening effect occurs on the rotational charge a. An
external observer will see a rotating BH with effective
horizon corresponding to a nonrotating charged distribution.

The three screening cases above can be described
collectively by the metric function

A=r+272 - 2rM + aL(rge™/t —re™/L), (78)
where L = M —¢,/2 and

Z; ={Z3. Zx. Zgn} = {0.4*. Q°} (79)

for the three effective horizons, namely, Schwarzschild,

Kerr, and Reissner-Nordstrom, respectively. Notice that the

hair charge £, = a¢ in the expressions (71), (73), and (75)

is related with the charges M, a, and Q by the Lambert WV
function as

(80)

S I]

4';
|
[\S]
o
[\S]
'S
(o]

FIG. 3. Special extended Kerr-Newman solutions: BH shadow
for (a) Schwarzschild horizon (black), (b) Kerr horizon (blue),
and (c) Reissner-Nordstrom horizon (red), for a = 0.9, £ = 0.7,
a=04,0=02,and M = 1.

where the index i runs on the three cases in Eq. (79). As an
example, Fig. 3 shows the shadow cast in the three cases for
a given choice of parameters.

IV. CONCLUSIONS

Using the GD approach and the simplest extension of the
Kerr metric (25), which could be generated by the
Newman-Janis algorithm without complexification [49],
we have proven that the decoupling of gravitational sources
in general relativity is possible in the axially symmetric
case, as long as the metric takes the form (25) and the
asymptotic angular momentum parameter a in Eq. (29)
satisfies the critical condition (44). As a direct conse-
quence, we provided a simple and systematic strategy to
generate axially symmetric BHs departing from a spheri-
cally symmetric seed solution, without implementing any
variant of the Newman-Janis algorithm.

On a formal level, our results stem from observing that
the Einstein tensor (31)—(35) for the metric (25) is linear in
derivatives of the mass function. This property could be at
the heart of other known methods to generate axially
symmetric solutions of the Einstein equations from spheri-
cally symmetric solutions. Moreover, the GD could help in
investigating mass functions in nonspherically symmetric
systems [126—131].5

Following the aforementioned approach, we showed
how the Kerr BH, given by the metric (25) with mass
function equal to the total mass M, is modified when a
fluid with conserved energy-momentum tensor S, fills the
axially symmetric vacuum. We thus find nontrivial exten-
sions of the Kerr BH, given by the mass function (59), and
Kerr-Newman BH, with mass function (65). Both solutions
can support a primary hair £, < 2M, whose impact on the
silhouette of the shadow is displayed in Figs. 1 and 3.

Finally, in the case of the extended Kerr-Newman BH,
whose horizon is found by solving Eq. (67), we identify
special cases describing a screening effect induced by the
source §,, on the charges a and Q, in such a way that an
external observer would see a rotating BH with effective
horizon corresponding to (i) nonrotating and neutral dis-
tribution, (ii) neutral distribution, and (iii) nonrotating but
charged distribution. This clearly indicates that the matter
around BHs may have a significant observational impact
and separating different models of BHs could remain a very
hard task. In this respect, we notice that these results do not
contradict the conclusions of Ref. [132] about no hairs for
BHs in astrophysical environments, since the (effective)
fluid modifying the Kerr geometry overlaps the BH horizon
in our case.

Although it is not the main goal of the present work, we
would like to conclude by mentioning that both rotating
solutions [characterized by the metric functions in Egs. (60)

>We plan to investigate these issues further in separate works.
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and (66), respectively] could be investigated further, in
particular, for possible observational constraints on the
primary hairs ¢, and Q. However, this is beyond the
purpose of the present work.
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APPENDIX: NULL GEODESICS AROUND
ROTATING BHS

We briefly review how to study null geodesics in a
rotating space-time like the one in Eq. (25) and find the
celestial coordinates describing the BH shadow. Waves
propagate along characteristic curves described by the
Hamilton-Jacobi equation

oS 1
— ==¢"0,50,S, Al
8& 29” H v ( )
where 4 is a parameter along the curve and S the Jacobi
action. Given the symmetries of the space-time (25),
Eq. (Al) is separable and one has [133]
S=—Et+®¢p+S,.(r)+ Sp(0), (A2)
with £ and @ being the conserved energy and angular
momentum, respectively. Replacing (A2) in Eq. (A1), we
obtain

S, = / \/IFdr
$0= [ Ve

where

R =[( + a®)E — a®]? — A[Q + (® — aE)?]

0 = Q — (®%csc?d — a’E?)cos?0), (A4)

with Q the Carter constant.
The (unstable) circular photon orbits are determined by
R = R’ = 0, namely,

(@*>—aé+r’) —(a®>+r*F)|(a—&)*+n =0

da®>—at+r?)=[(a=&?+n|(rF' +2F) =0, (AS)

where £ = ®/E and n = Q/E? are the impact parameters.
Accordingly,

§:a+r_2_4(a2+r2F)

a a(rF' +2F)’
Pl +2a(a—¢&) — (a—&)*F]
N a? + r’F ’
2m
Fo1-2" (A6)

r

where r is the radius of the unstable photon orbit.
The apparent shape of the shadow is finally described by
the celestial coordinates [134]

d
o= lim (—r(% sin 90—¢ > =—— 3 (A7)
rg—00 r (rO.HU) Sin 90
and
do
f= lim (r%— )
foee dr (r0,00)
= \/r] — £2cot?0, + a*cos?H,, (A8)

where (rg, 6,) are the coordinates of the observer.
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