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We introduce a systematic and direct procedure to generate hairy rotating black holes by deforming a
spherically symmetric seed solution. We develop our analysis in the context of the gravitational decoupling
approach, without resorting to the Newman-Janis algorithm. As examples of possible applications, we
investigate how the Kerr black hole solution is modified by a surrounding fluid with conserved energy-
momentum tensor. We find nontrivial extensions of the Kerr and Kerr-Newman black holes with primary
hair. We prove that a rotating and charged black hole can have the same horizon as Kerr’s, Schwarzschild’s,
or Reissner-Nordström’s, thus showing possible observational effects of matter around black holes.
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I. INTRODUCTION

Black holes (BHs) have been considered more than mere
exotic solutions of the Einstein equations for quite some
time now [1,2]. Nonetheless, it is only very recently that
their direct existence was detected, mainly due to the
spectacular results of both the LIGO [3] and Event
Horizon Telescope [4] Collaborations. It is also fair to
mention that some ultracompact stellar models could act as
“black-hole mimickers” [5,6], although the existence of
such objects would not necessarily exclude the existence of
BHs [7], as it could be naively concluded.
Starting with Kerr’s celebrated work [8], the interest in

BHs has increased notably, and a large number of solutions
have been found in various contexts (for some recent
notable works, see e.g., [9–15] ). Despite this diversity,
in four-dimensional space-time, we can group all cases into
two large groups: (i) static spherically symmetric solutions
and (ii) stationary rotating solutions. (Note that, if we
include non-Abelian matter fields, we can also find
axisymmetric static BHs [16].) The study of these rotating
and nonrotating BH metrics, and the shadow they produce,

has been extensively explored in recent years [17–47], the
Newman-Janis algorithm [48] and its version without
complexification [49] being tremendously useful tools to
generate rotating systems.
In all cases, it is well known that the presence of matter

around BHs could produce a significant distortion of the
shadow in a highly model-dependent fashion (see e.g.,
[36,50–52] and references therein). The resolution of the
first BH image is not enough to support or discard any of
these models; hence, it is important to study this distortion
with a minimum set of assumptions.1 This is precisely the
topic of the present work. Namely, we will consider a Kerr
BH surrounded by an axially symmetric “tensor-vacuum”
(analogous to the electro-vacuum and scalar-vacuum cases)
represented by a conserved energy-momentum tensor Sμν
which could account for one or more fundamental fields
(scalar, vector, or tensor fields representing any phenom-
enologically viable form of matter energy, such as dark
matter or dark energy). The only restriction we require is
that Sμν satisfies either the strong energy condition (SEC) or
the dominant energy condition (DEC) in the region outside
the event horizon. Since the gravitational decoupling (GD)
approach [53,54] is precisely designed for describing
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deformations of known solutions of general relativity
induced by additional sources, we will study this problem
by first extending the GD to axially symmetric systems.
The GD is originally based on the so-called minimal

geometric deformation (MGD) [55,56] (for some earlier
works on the MGD, see e.g., [57–65] and Refs. [66–84] for
some recent applications). The GD has been shown to be
particularly useful for at least three tasks [85–118]: (i) to
generate new and more complex solutions from known
(seed) solutions of the Einstein field equations, (ii) to
systematically reduce (decouple) a complex energy-
momentum tensor Tμν into simpler components, and (iii) to
find solutions in gravitational theories beyond general
relativity. Despite the above, one of the apparent limitations
of the GD is that the decoupling of gravitational sources has
only been achieved in the spherically symmetric case so far.
One of the goals of this paper is to show that indeed the GD
can be implemented beyond spherical symmetry. In par-
ticular, we will show how the GD can be obtained for
axially symmetric systems, which is of particular impor-
tance for the study of rotating stellar systems and BHs.
The paper is organized as follows: in Sec. II, we first

review the fundamentals of the GD approach for a spheri-
cally symmetric system containing two sources, and then
we show in detail how to extend the GD approach for the
axially symmetric case; in Sec. III, we apply our results to
generate the axially symmetric version of two spherically
symmetric hairy BH solutions, without implementing the
Newman-Janis algorithm.The first solution contains a source
satisfying the SEC and is an extension of the Kerr metric,
while the DEC holds for the source in the second solution,
which represents an extension of the Kerr-Newman BH;
finally, we summarize our conclusions in Sec. IV.

II. GRAVITATIONAL DECOUPLING

We start this section by briefly reviewing the key aspects
of the GD for spherically symmetric systems (described in
detail in Ref. [54]). A particularly simple case of GD is
given by the MGD [55,56], which will guide us to
introduce a GD for the axially symmetric case.
We start by considering the Einstein field equation2

G̃μν ≡ R̃μν −
1

2
R̃g̃μν ¼ k2T̃μν; ð1Þ

with a total energy-momentum tensor containing two
contributions,

T̃μν ¼ Tμν þ Sμν; ð2Þ

where Tμν is usually associated with a known solution of
general relativity, whereas Sμν may contain new fields or a
new gravitational sector. Since the Einstein tensor G̃μν

satisfies the Bianchi identity, the total source T̃μν must be
covariantly conserved.

A. Spherically symmetric case

For spherically symmetric and static systems, the metric
g̃μν can be written as

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2dΩ2; ð3Þ

where ν ¼ νðrÞ and λ ¼ λðrÞ are functions of the areal
radius r only and dΩ2 ¼ dθ2 þ sin2 θdϕ2. The Einstein
tensor in Eq. (1) then reads

G̃0
0 ¼ 1

r2
− e−λ

�
1

r2
−
λ0

r

�
; ð4Þ

G̃1
1 ¼ 1

r2
− e−λ

�
1

r2
þ ν0

r

�
; ð5Þ

G̃2
2 ¼ −

e−λ

4

�
2ν00 þ ν02 − λ0ν0 þ 2

ν0 − λ0

r

�
; ð6Þ

where f0 ≡ ∂rf and T̃3
3 ¼ T̃2

2 due to the spherical
symmetry. By simple inspection, we can identify an
effective density

ϵ̃ ¼ T0
0 þ S00; ð7Þ

an effective radial pressure

p̃r ¼ −T1
1 − S11; ð8Þ

and an effective tangential pressure

p̃t ¼ −T2
2 − S22: ð9Þ

Since the anisotropy Π≡ p̃t − p̃r usually does not vanish,
the system of Eqs. (4)–(6) may be viewed as an aniso-
tropic fluid.
We next consider a solution to Eq. (1) generated by the

seed source Tμν alone (i.e., for Sμν ¼ 0), which we write as

ds2 ¼ eξðrÞdt2 − eμðrÞdr2 − r2dΩ2; ð10Þ

where

e−μðrÞ ≡ 1 −
k2

r

Z
r

0

x2T0
0ðxÞdx ¼ 1 −

2mðrÞ
r

ð11Þ

is the standard general relativity expression containing the
Misner-Sharp mass function m ¼ mðrÞ. Adding the source
Sμν can then be accounted for by the deformation of the
seed metric (10) given by

2We use units with c ¼ 1 and k2 ¼ 8πGN, where GN is
Newton’s constant.
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ξ → ν ¼ ξþ αg; ð12Þ

e−μ → e−λ ¼ e−μ þ αf; ð13Þ

where the parameter α is introduced to keep track of these
deformations.
By means of Eqs. (12) and (13), the Einstein equa-

tions (1) split into the Einstein field equations for the seed
metric (10), that is

Gμ
νðξ; μÞ ¼ k2Tμ

ν; ð14Þ

where

G0
0 ¼ 1

r2
− e−μ

�
1

r2
−
μ0

r

�
; ð15Þ

G1
1 ¼ 1

r2
− e−μ

�
1

r2
þ ξ0

r

�
; ð16Þ

G2
2 ¼ −

e−μ

4

�
2ξ00 þ ξ02 − μ0ξ0 þ 2

ξ0 − μ0

r

�
; ð17Þ

and a second set containing the source Sμν, which reads

αGμ
νðξ; μ; f; gÞ ¼ k2Sμν; ð18Þ

where

G0
0 ¼ −

f
r2

−
f0

r
; ð19Þ

G1
1 ¼ −f

�
1

r2
þ ν0

r

�
− Z1; ð20Þ

G2
2 ¼ −

f
4

�
2ν00 þ ν02 þ 2

ν0

r

�
−
f0

4

�
ν0 þ 2

r

�
− Z2; ð21Þ

and

Z1 ¼
e−μg0

r
; ð22Þ

4Z2 ¼ e−μ
�
2g00 þ g02 þ 2g0

r
þ 2ξ0g0 − μ0g0

�
: ð23Þ

One clearly sees that the tensor Sμν must vanish when the
metric deformations vanish (α ¼ 0). On assuming g ¼ 0,
we have Z1 ¼ Z2 ¼ 0 and Eq. (18) reduces to the simpler
“quasi-Einstein” system of the MGD of Refs. [55,56], in
which the deformation f is only determined by the source
Sμν and the seed metric (10).
What makes the GD work is the fact that, under the

transformations (12) and (13), the Einstein tensor changes as

Gγ
σðξ; μÞ → Gγ

σðν; λÞ ¼ Gγ
σðξ; μÞ þ αGγ

σðν; λÞ: ð24Þ

That is to say, Eqs. (12) and (13) yield a linear decomposition
of the Einstein tensor in the parameter α, like the two sources
add linearly in the rhs of Eq. (1). We therefore expect that a
similar GD can be introduced for any given space-time,
independently of its symmetries, ifwe can implement a linear
decomposition for the Einstein tensor of the form in Eq. (24).
A natural application is then to consider axially symmetric
systems.

B. Axially symmetric case

Let us start with the simplest extension of the Kerr
metric, given by [119]

ds2 ¼
�
1 −

2rm̃ðrÞ
ρ̃2

�
dt2 þ 4ãrm̃ðrÞsin2θ

ρ̃2
dtdϕ

−
ρ̃2

Δ̃
dr2 − ρ̃2dθ2 −

Σ̃sin2θ
ρ̃2

dϕ2; ð25Þ

with

ρ̃2 ¼ r2 þ ã2 cos2 θ; ð26Þ

Δ̃ ¼ r2 − 2rm̃ðrÞ þ ã2; ð27Þ

Σ̃ ¼ ðr2 þ ã2Þ2 − ã2Δ̃sin2θ; ð28Þ

and

ã ¼ J̃=M̃; ð29Þ

where J̃ is the angular momentum and M̃ the total mass of
the system. Note that the line element (25) reduces to the
Kerr solution when the metric function m̃ ¼ M̃. Moreover,
when ã ¼ 0, we obtain the Schwarzschild-like metric in
Eq. (3) with

eν ¼ e−λ ¼ 1 −
2m̃ðrÞ

r
: ð30Þ

Hence, the correspondence between the metrics (3) and
(25) is clear, with the latter being a rotational version of a
Kerr-Schild spherically symmetric space-time (see e.g.,
Refs. [120–123]). Although Eq. (25) is not the most general
axially symmetric line element, it can be used to describe
rotating compact objects, like BHs and gravastars, among
many others.
The components of the Einstein tensor for the metric (25)

read
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G̃0
0 ¼ 2

r4 þ ðρ2 − r2Þ2 þ ã2ð2r2 − ρ2Þ
ρ6

m̃0

−
rã2sin2θ

ρ4
m̃00; ð31Þ

G̃1
1 ¼ 2

r2

ρ4
m̃0; ð32Þ

G̃2
2 ¼ 2

ρ2 − r2

ρ4
m̃0 þ r

ρ2
m̃00; ð33Þ

G̃3
3 ¼ 2

2r2ðρ2 − r2Þ þ ã2ðρ2 − 2r2Þ
ρ6

m̃0

þ rðã2 þ r2Þ
ρ4

m̃00; ð34Þ

G̃0
3 ¼ 2

ãð2r2 − ρ2Þ
ρ6

m̃0 −
ãr
ρ4

m̃00: ð35Þ

The key observation now is that this Einstein tensor is
linear in derivatives3 of the mass function m̃ðrÞ, whereas
the rotational parameter ã appears in a convoluted form.
Any linear decomposition of the mass function,

m̃ ¼ mðrÞ þ αmsðrÞ; ð36Þ

will therefore generate a linear decomposition of the
Einstein tensor of the form in Eq. (24) with Gσ

γ ¼ Gσ
γ ,

provided the rotational parameter ã is left unaffected, that is

G̃γ
σðm̃; ãÞ ¼ Gγ

σðm; ãÞ þ αGγ
σðms; ãÞ: ð37Þ

Like for the spherically symmetric case in Sec. II A, we
will assume that the mass functionsm andms are generated
by the energy-momentum tensor Tμν and Sμν in Eq. (2),
respectively. It is convenient to introduce the tetrads [124]

ẽμt ¼
ðr2 þ ã2; 0; 0; ãÞffiffiffiffiffiffiffiffi

ρ2Δ
p ; ẽμr ¼

ffiffiffiffi
Δ

p ð0; 1; 0; 0Þffiffiffiffiffi
ρ2

p

ẽμθ ¼
ð0; 0; 1; 0Þffiffiffiffiffi

ρ2
p ; ẽμϕ ¼ −

ðãsin2θ; 0; 0; 1Þffiffiffiffiffi
ρ2

p
sin θ

; ð38Þ

so that the total source T̃μν generating the metric (25) can be
written as

T̃μν ¼ ϵ̃ẽμt ẽνt þ p̃rẽ
μ
r ẽνr þ p̃θẽ

μ
θ ẽ

ν
θ þ p̃ϕẽ

μ
ϕẽ

ν
ϕ; ð39Þ

where the energy density ϵ̃ and the pressures p̃r, p̃θ, and p̃ϕ

are given by

ϵ̃ ¼ −p̃r ¼
2r2

ρ4
m̃0; ð40Þ

p̃θ ¼ p̃ϕ ¼ −
r
ρ2

m̃00 þ 2ðr2 − ρ2Þ
ρ4

m̃0; ð41Þ

which are also, consistently, linear in (derivatives of) the
mass function.
We next consider a solution to the Eq. (1) for the seed

source Tμν alone, which we write as

ds2 ¼
�
1 −

2rmðrÞ
ρ2

�
dt2 þ 4armðrÞsin2θ

ρ2
dtdϕ

−
ρ2

Δ
dr2 − ρ2dθ2 −

Σsin2θ
ρ2

dϕ2; ð42Þ

where the expressions for ρ, Σ, and Δ are the same as those
in Eqs. (26)–(28) but contain m and a instead of m̃ and ã.
The addition of the second source Sμν can then be
accounted for by the GD of the seed metric (42) given by

mðrÞ → m̃ ¼ mðrÞ þ αmsðrÞ; ð43Þ

with the parameter α introduced to keep track of the
deformation as usual. In order to achieve the decoupling
(37) of Eqs. (31)–(35), we must also demand

ã ¼ a ¼ as; ð44Þ

that is to say, the length scales a and as associated,
respectively, with the sources Tμν and Sμν must be and
remain equal. Finally, notice that the mass deformation (43)
corresponds to the particular metric deformation f in
Eq. (13) given by

fðrÞ ¼ −
2msðrÞ

r
: ð45Þ

Unlike the general GD for the spherically symmetric
case, Eqs. (43) and (44) split the Einstein equations (1) in
two equal sets: (i) one is given by Einstein field equations
with the energy-momentum tensor Tμν, that is

Gμ
νðm; aÞ ¼ k2Tμ

ν; ð46Þ

whose solution is the seed metric (42), and (ii) the second
set contains the source Sμν and reads

αGμ
νðms; aÞ ¼ k2Sμν; ð47Þ

whose solution has the same form as the one in Eq. (42) but
withmðrÞ → αmsðrÞ. In this case, we conclude that the two
sources Tμν and Sμν can be decoupled by means of the
metric deformations (43) and the length-scale invariant
condition (44). Notice that the energy and pressures in
Eqs. (40) and (41) can be written as [49]

3Of course, when m̃ ¼ M is constant, the Einstein tensor
G̃μν ¼ 0, since Eq. (25) is the vacuum Kerr metric.
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ϵ̃ ¼ ϵþ αϵS; ð48Þ

p̃i ¼ pi þ αpSi ði ¼ r; θ;ϕÞ; ð49Þ

where ϵS and pSi are the energy and pressures of the source
Sμν. Finally, we see that for a ¼ 0 the sets (46) and (47)
reduce to those in (14) and (18), respectively. We want to
emphasize once again that this procedure is exact and does
not require a perturbative expansion in the parameter α.

1. Strategy

We can now detail our scheme to generate new axially
symmetric metrics from known solutions of the Einstein
field equations which are as follows:
(1) Consider the field equations G̃μν ¼ k2T̃μν which

determine the metric g̃μνðm̃; ãÞ in Eq. (25), where
T̃μν ¼ T1

μν þ � � � þ Tn
μν, and Ti

μν is the energy-mo-
mentum tensor of the ith gravitational source.

(2) Solve Gi
μν ¼ k2Ti

μν for each Ti
μν to find their

respective giμνðmi; aiÞ in Eq. (42) [of the same form
as (25)], namely,

G1
μν ¼ k2T1

μν ⇒ g1μνðm1; a1Þ
..
.

Gn
μν ¼ k2Tn

μν ⇒ gnμνðmn; anÞ:

(3) The solution g̃μνðm̃; ãÞ in Eq. (25) of the original
problem G̃μν ¼ k2T̃μν is obtained by setting

m̃ ¼ m1 þ � � � þmn

ã ¼ a1 ¼ � � � ¼ an

in the line element (25).
The previous scheme can be simplified even further by
noting that step 2 actually amounts to computing just the
mass functions mi ¼ miðrÞ. We can thus do that for ai ¼ 0

for each Gi
μν ¼ k2Ti

μν, that is solve the spherically sym-
metric cases

Gi
μν ¼ k2Ti

μν ⇒ giμνðmi; ai ¼ 0Þ ð50Þ

and generate the axially symmetric version by plugging the
mass function m̃ ¼ m1 þ � � � þmn into Eq. (25) with the
asymptotic angular momentum parameter ã of choice.

2. Decoupling Einstein-Maxwell

With the aim of testing the consistency of our approach,
let us consider a well-known case, namely, the Einstein-
Maxwell system. In particular, we will consider the axially
symmetric electro-vacuum, for which the result must be the
well-known Kerr-Newman solution.

Following our strategy, we start by identifying the
sources T1

μν ¼ Tμν ¼ 0 and T2
μν ¼ Sμν of relevance for

the case at hand, that is

ð51Þ

where

Sμν ¼
1

4π

�
FμαFα

ν þ
1

4
gμνFαβFαβ

�
ð52Þ

is the Maxwell tensor.
Next, we solve the Einstein equations for each source

separately, in the particularly simple case a1 ¼ a2 ¼ 0. For
the vacuum Tμν ¼ 0, we find the Schwarzschild solution
with mass

m1 ¼ M: ð53Þ

For the source Sμν, we find the Reissner-Nordström
solution, whose mass function is given by

msðrÞ ¼ A −
Q2

2r
; ð54Þ

where A andQ are integration constants, withQ eventually
identified as the electric charge.
The total mass function is given by

mðrÞ ¼ M þ A −
Q2

2r
≡M −

Q2

2r
; ð55Þ

which, plugged into the metric (25), yields the well-known
Kerr-Newman solution with

Δ̃ ¼ r2 − 2rMþ a2 þQ2: ð56Þ

We see that the method is straightforward, and that we do
not need to use the Newman-Janis algorithm to map the
spherically symmetric solution into the axially symmet-
ric one.

III. ROTATING BLACK HOLE SOLUTIONS

In a recent paper [125], we developed a new method to
generate spherically symmetric hairy BHs by imposing a
minimal set of requirements consisting of (i) the existence
of a well-defined event horizon and (ii) the SEC or DEC
for the hair outside the horizon. In particular, we considered
a Schwarzschild BH surrounded by a spherically symmet-
ric tensor-vacuum represented by a conserved energy-
momentum tensor Sμν, which is dealt with as explained
in Sec. II A. We will here use those solutions as seeds to
generate axially symmetric systems according to our
strategy in Sec. II B 1.
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A. Extended Kerr solution

When we demand that Sμν satisfies the SEC in the region
outside the event horizon, we found the extended
Schwarzschild BH metric

eν ¼ e−λ ¼ 1 −
1

r
ð2M þ l0Þ þ αe−r=M

¼ 1 −
2M
r

þ αe−r=ðM−l0=2Þ; ð57Þ

where l0 ¼ αl measures the increase of entropy from the
minimum Schwarzschild value S ¼ 4πM2 caused by the
hair and must satisfy

l0 ≤ 2M≡ lK ð58Þ

in order to ensure asymptotic flatness.
In order to extend this metric to the axially symmetric

case, we just need to identify the mass function from
Eq. (57), that is

m̃ ¼ M − α
r
2
e−r=ðM−l0=2Þ; ð59Þ

which we then plug into the metric (25). This yields

Δ̃ ¼ r2 þ a2 − 2rMþ αr2e−r=ðM−l0=2Þ: ð60Þ

The equation determining the horizon r ¼ rH of the metric
(25) is given by 0 ¼ g̃rr ∼ Δ̃, which yields

r2H þ a2 − 2MrH þ αr2He
−rH=ðM−l0=2Þ ¼ 0: ð61Þ

We see that the Kerr horizon

rKerr ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ð62Þ

is recovered for α ¼ 0 and also when the inequality (58) is
saturated.

The function (60) is plotted in Fig. 1 for a few values of
l0 at fixed α and a. We see that the horizon shifts to larger
radii when l0 increases, reaching a maximum value
corresponding to the Kerr horizon for l0 ¼ lK. The
silhouette of the BH is also shown in Fig. 1 where σ
and β are the usual celestial coordinates (see the Appendix).
We conclude that the metric (25) with the mass function

(59) represents a family of rotating hairy BHs described by
the parameters fM; a;l0g, where l0 ¼ αl represents a
charge associated with primary hair.
Finally, the spherically symmetric metric with compo-

nents (57) satisfies the SEC, that is

ϵS þ pSr þ 2pSθ ≥ 0

ρS þ pSr ≥ 0

ρS þ pSθ ≥ 0: ð63Þ

It can be checked straightforwardly that this property is
inherited by the rotating solution.

B. Extended Kerr-Newman solution

The second case we will consider is the rotating version
of the spherically symmetric solution [125]

eν ¼ e−λ ¼ 1 −
2M þ αl

r
þQ2

r2
−
αMe−r=M

r

¼ 1 −
2M
r

þQ2

r2
−
α

r

�
M −

αl
2

�
e−r=ðM−αl=2Þ; ð64Þ

which extends a Reissner-Nordström-like metric4 to include
a conserved source Sμν satisfying the DEC. From (64), we
read out the mass function

FIG. 1. Extended Kerr solution: function Δ̃ (left panel) and silhouette (right panel) of the shadow cast for different values of l with
α ¼ 0.6, a ¼ 0.3, and M ¼ 1. The Kerr horizon rKerr here corresponds to the saturated case of Eq. (58).

4We remark that Q is not necessarily the electric charge, but
could be a tidal charge of extra-dimensional origin or any other
charge for the tensor Sμν.
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m̃ ¼ M −
Q2

2r
þ α

2

�
M −

l0

2

�
e−r=ðM−l0=2Þ; ð65Þ

which immediately yields the rotating version (25) with

Δ̃ ¼ r2 þ a2 þQ2 − 2rM − αr

�
M −

l0

2

�
e−r=ðM−l0=2Þ;

ð66Þ

where again the inequality (58) must hold to ensure asymp-
totic flatness.
The horizon is again determined by Δ̃ ¼ 0 or

r2H þ a2 þQ2 − 2MrH

¼ αrH

�
M −

l0

2

�
e−rH=ðM−l0=2Þ: ð67Þ

The Kerr-Newman horizon

rKN ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
ð68Þ

is found for α ¼ 0 (hence l0 ¼ 0) and also when the
inequality in (58) is saturated.
The metric function (66) is plotted in Fig. 2 for given

values of α, a, and Q. For the range of l shown there, the
horizon shrinks to smaller radii when l increases, reaching a
minimum value corresponding to the Kerr-Newman horizon
when Eq. (58) is saturated. We conclude that the metric (25)
with the mass function (65) represents rotating hairy BHs
depending on the parameters fM; a; Q; α;l0g, where l0 ¼
αl represents a charge associated with primary hair.
Like with the SEC in Sec. III A, one can check

straightforwardly that the rotating metrics inherit the
DEC satisfied by the spherically symmetric metric func-
tions in Eq. (64),

ρS ≥ 0; ð69Þ

ρS ≥ jp̃Sij ði ¼ r; θ;ϕÞ: ð70Þ

It is impossible to find analytical solutions to Eq. (67),
except for some particular cases. Three of them are
shown below.

1. Case 1

If the charge and angular momentum parameters satisfy
the condition

a2 þQ2 ¼ αrH

�
M −

l0

2

�
e−rH=ðM−l0=2Þ; ð71Þ

we have

Δ̃ ¼ r2 − 2rMþ α

�
M −

l0

2

�

× ½rHe−rH=ðM−l0=2Þ − re−r=ðM−l0=2Þ�; ð72Þ

and the event horizon is located at the Schwarzschild radius
rH ¼ 2M. This indicates that the source Sμν filling the
“electro-vacuum” produces a screening effect on the
charges a and Q in such a way that an external observer
will see a rotating space-time with the horizon apparently
generated by a nonrotating and neutral distribution.

2. Case 2

Next, if the charge satisfies

Q2 ¼ αrH

�
M −

l0

2

�
e−rH=ðM−l0=2Þ; ð73Þ

the metric function

Δ̃ ¼ r2 þ a2 − 2rMþ α

�
M −

l0

2

�

× ½rHe−rH=ðM−l0=2Þ − re−r=ðM−l0=2Þ�; ð74Þ

and the event horizon is located at rH ¼ rKerr given in
Eq. (62), provided a2 ≤ M2. This indicates a screening
effect of the chargeQ only, so that an external observer will
detect a horizon corresponding to a neutral distribution.

3. Case 3

Last, if the angular momentum satisfies

a2 ¼ αrH

�
M −

l0

2

�
e−rH=ðM−l0=2Þ; ð75Þ

which leads to

FIG. 2. Extended Kerr-Newman solution: function Δ̃ for differ-
ent values of l with α ¼ 0.6, a ¼ 0.3,Q ¼ 0.2, andM ¼ 1. The
Kerr-Newman horizon rKN here corresponds to the saturated case
of Eq. (58).
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Δ ¼ r2 þQ2 − 2rMþ α

�
M −

l0

2

�

×½rHe−rH=ðM−l0=2Þ − re−r=ðM−l0=2Þ�; ð76Þ

the event horizon is given by Eq. (77) with a ¼ 0, namely,
the Reissner-Nordström horizon

rRN ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; ð77Þ

provided of course the charge Q2 ≤ M2. In this case, the
screening effect occurs on the rotational charge a. An
external observer will see a rotating BH with effective
horizon corresponding to a nonrotating charged distribution.
The three screening cases above can be described

collectively by the metric function

Δ̃ ¼ r2 þ Z2
i − 2rMþ αLðrHe−rH=L − re−r=LÞ; ð78Þ

where L ¼ M − l0=2 and

Z2
i ¼ fZ2

S; Z
2
K; Z

2
RNg ¼ f0; a2; Q2g ð79Þ

for the three effective horizons, namely, Schwarzschild,
Kerr, and Reissner-Nordström, respectively. Notice that the
hair charge l0 ≡ αl in the expressions (71), (73), and (75)
is related with the chargesM, a, and Q by the Lambert W
function as

l0i ¼ 2M −
2rHi

W
�

αr2Hi
a2þQ2−Z2

i

� ; ð80Þ

where the index i runs on the three cases in Eq. (79). As an
example, Fig. 3 shows the shadow cast in the three cases for
a given choice of parameters.

IV. CONCLUSIONS

Using the GD approach and the simplest extension of the
Kerr metric (25), which could be generated by the
Newman-Janis algorithm without complexification [49],
we have proven that the decoupling of gravitational sources
in general relativity is possible in the axially symmetric
case, as long as the metric takes the form (25) and the
asymptotic angular momentum parameter a in Eq. (29)
satisfies the critical condition (44). As a direct conse-
quence, we provided a simple and systematic strategy to
generate axially symmetric BHs departing from a spheri-
cally symmetric seed solution, without implementing any
variant of the Newman-Janis algorithm.
On a formal level, our results stem from observing that

the Einstein tensor (31)–(35) for the metric (25) is linear in
derivatives of the mass function. This property could be at
the heart of other known methods to generate axially
symmetric solutions of the Einstein equations from spheri-
cally symmetric solutions. Moreover, the GD could help in
investigating mass functions in nonspherically symmetric
systems [126–131].5
Following the aforementioned approach, we showed

how the Kerr BH, given by the metric (25) with mass
function equal to the total mass M, is modified when a
fluid with conserved energy-momentum tensor Sμν fills the
axially symmetric vacuum. We thus find nontrivial exten-
sions of the Kerr BH, given by the mass function (59), and
Kerr-Newman BH, with mass function (65). Both solutions
can support a primary hair l0 ≤ 2M, whose impact on the
silhouette of the shadow is displayed in Figs. 1 and 3.
Finally, in the case of the extended Kerr-Newman BH,

whose horizon is found by solving Eq. (67), we identify
special cases describing a screening effect induced by the
source Sμν on the charges a and Q, in such a way that an
external observer would see a rotating BH with effective
horizon corresponding to (i) nonrotating and neutral dis-
tribution, (ii) neutral distribution, and (iii) nonrotating but
charged distribution. This clearly indicates that the matter
around BHs may have a significant observational impact
and separating different models of BHs could remain a very
hard task. In this respect, we notice that these results do not
contradict the conclusions of Ref. [132] about no hairs for
BHs in astrophysical environments, since the (effective)
fluid modifying the Kerr geometry overlaps the BH horizon
in our case.
Although it is not the main goal of the present work, we

would like to conclude by mentioning that both rotating
solutions [characterized by the metric functions in Eqs. (60)FIG. 3. Special extended Kerr-Newman solutions: BH shadow

for (a) Schwarzschild horizon (black), (b) Kerr horizon (blue),
and (c) Reissner-Nordström horizon (red), for α ¼ 0.9, l ¼ 0.7,
a ¼ 0.4, Q ¼ 0.2, and M ¼ 1. 5We plan to investigate these issues further in separate works.
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and (66), respectively] could be investigated further, in
particular, for possible observational constraints on the
primary hairs l0 and Q. However, this is beyond the
purpose of the present work.
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APPENDIX: NULL GEODESICS AROUND
ROTATING BHS

We briefly review how to study null geodesics in a
rotating space-time like the one in Eq. (25) and find the
celestial coordinates describing the BH shadow. Waves
propagate along characteristic curves described by the
Hamilton-Jacobi equation

∂S
∂λ ¼ 1

2
gμν∂μS∂νS; ðA1Þ

where λ is a parameter along the curve and S the Jacobi
action. Given the symmetries of the space-time (25),
Eq. (A1) is separable and one has [133]

S ¼ −EtþΦϕþ SrðrÞ þ SθðθÞ; ðA2Þ

with E and Φ being the conserved energy and angular
momentum, respectively. Replacing (A2) in Eq. (A1), we
obtain

Sr ¼
Z ffiffiffiffiffiffiffiffiffi

RðrÞp
Δ

dr

Sθ ¼
Z ffiffiffiffiffiffiffiffiffiffi

ΘðθÞ
p

dθ; ðA3Þ

where

R ¼ ½ðr2 þ a2ÞE − aΦ�2 − Δ½Qþ ðΦ − aEÞ2�
Θ ¼ Q − ðΦ2csc2θ − a2E2Þcos2θ; ðA4Þ

with Q the Carter constant.
The (unstable) circular photon orbits are determined by

R ¼ R0 ¼ 0, namely,

ða2 − aξþ r2Þ2 − ða2 þ r2FÞ½ða − ξÞ2 þ η� ¼ 0

4ða2 − aξþ r2Þ − ½ða − ξÞ2 þ η�ðrF0 þ 2FÞ ¼ 0; ðA5Þ

where ξ ¼ Φ=E and η ¼ Q=E2 are the impact parameters.
Accordingly,

ξ ¼ aþ r2

a
−
4ða2 þ r2FÞ
aðrF0 þ 2FÞ ;

η ¼ r2½r2 þ 2aða − ξÞ − ða − ξÞ2F�
a2 þ r2F

;

F ¼ 1 −
2m̃
r

; ðA6Þ

where r is the radius of the unstable photon orbit.
The apparent shape of the shadow is finally described by

the celestial coordinates [134]

σ ≡ lim
r0→∞

�
−r20 sin θ0

dϕ
dr

				
ðr0;θ0 Þ

�
¼ −

ξ

sin θ0
ðA7Þ

and

β≡ lim
r0→∞

�
r20
dθ
dr

				
ðr0;θ0Þ

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η − ξ2cot2θ0 þ a2cos2θ0

q
; ðA8Þ

where ðr0; θ0Þ are the coordinates of the observer.
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