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In this work, we explore wormhole geometries in a recently proposed modified gravity theory arising
from a nonconservative gravitational theory, tentatively denoted action-dependent Lagrangian theories. The
generalized gravitational field equation essentially depends on a background four-vector λμ, that plays
the role of a coupling parameter associated with the dependence of the gravitational Lagrangian upon the
action, and may generically depend on the spacetime coordinates. Considering wormhole configurations,
by using “Buchdahl coordinates,” we find that the four-vector is given by λμ ¼ ð0; 0; λθ; 0Þ and that the
spacetime geometry is severely restricted by the condition gttguu ¼ −1, where u is the radial coordinate. We
find a plethora of specific asymptotically flat, symmetric, and asymmetric solutions with power law choices
for the function λ, by generalizing the Ellis-Bronnikov solutions and the recently proposed black-bounce
geometries, among others. We show that these compact objects possess a far richer geometrical structure
than their general relativistic counterparts.
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I. INTRODUCTION

A key ingredient in traversable wormhole geometries is
the flaring-out condition [1,2], which in General Relativity
(GR) entails the violation of the null energy condition
(NEC). The latter is defined as Tμνkμkν ≥ 0, for any null
vector kμ [3,4], and matter violating the NEC has been
denoted as exotic matter. However, it has been shown that
these violations may be minimized using several proce-
dures, such as the cut-and-paste techniques in the thin-shell
formalism, where the exotic matter is concentrated at the
junction interface [5–14]. In fact, the problem is improved
with evolving traversable wormholes, where it has been
demonstrated that these time-dependent geometries may
satisfy the energy conditions in arbitrary finite intervals
of time [15,16], and recently, specific dynamical four-
dimensional solutions were presented that satisfy the null
and weak energy conditions everywhere and everywhen
[17,18]. In fact, modified theories of gravity are an
interesting avenue of research to explore traversable worm-
holes, where these compact objects possess a richer
geometrical structure than their general relativistic counter-
parts. In this context, it has been shown that the NEC can be
satisfied for normal matter threading the wormhole throat,
where it is the higher order curvature terms that sustain the
wormhole [19–27].

In this work, we will be interested in studying wormhole
geometries in a recently proposed modified gravity theory
arising from a nonconservative gravitational theory, tenta-
tively denoted action-dependent Lagrangian theories [28].
The latter are obtained through an action principle for action-
dependent Lagrangians by generalizing the Herglotz varia-
tional problem [29,30] for several independent variables.
The novel feature when comparing with previous imple-
mentations of dissipative effects in gravity is the possible
arising of such phenomena from a least action principle, so
they are of a purely geometric nature. Applications to this
model have also been explored, namely, in cosmology [31],
braneworld gravity [32], cosmic string configurations [33],
the late-time cosmic accelerated expansion and large scale
structure [34], and static spherically symmetric stellar
solutions [35], among others.
The complete set of field equations considered in this

action-dependent Lagrangian theory [28] is based on the
following total Lagrangian,

L ¼ Lg þ Lm ¼ ðR − λμsμÞ þ Lm; ð1Þ

where the Einstein-Hilbert Lagrangian is extended with the
geometrical sector dealing with the additional dissipative
term λμsμ, whileLm is the Lagrangian of the matter fields. In
general, the background four-vector λμ depends on the
spacetime coordinates; however, it can be assumed to be
constant. The field sμ is an action-density field which
disappears after the variation of the action such that the
modification to the GR counterpart is given by the four-
vector λμ only. Note that λμ may be considered a background

*ismaelayuso12@gmail.com
†fslobo@fc.ul.pt
‡jpmimoso@fc.ul.pt

PHYSICAL REVIEW D 103, 044018 (2021)

2470-0010=2021=103(4)=044018(12) 044018-1 © 2021 American Physical Society

https://orcid.org/0000-0002-0606-764X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.044018&domain=pdf&date_stamp=2021-02-11
https://doi.org/10.1103/PhysRevD.103.044018
https://doi.org/10.1103/PhysRevD.103.044018
https://doi.org/10.1103/PhysRevD.103.044018
https://doi.org/10.1103/PhysRevD.103.044018


four-vector, that plays the role of a coupling parameter
associated with the dependence of the gravitational
Lagrangian upon the action. In the majority of the works
considered above, it is assumed to be constant; however, in a
more general scenario, onemay assume it to be a coordinate-
dependent four-vector.
Thus, the field equations are given by

Gμν þ Zμν ¼ κ2Tμν; ð2Þ

where we have defined κ2 ¼ 8π, Gμν is the Einstein tensor,
and for notational simplicity we have defined Zμν as

Zμν ¼ Kμν −
1

2
gμνK: ð3Þ

The symmetric geometric structure Kμν is defined as

Kμν ¼ λαΓα
μν −

1

2
ðλμΓα

να þ λνΓα
μαÞ; ð4Þ

which is constructed from the particular combination of the
four-vector λμ and the Christofell symbols

Γα
μν ¼

gαβ

2
ðgβμ;ν þ gβν;μ − gμν;βÞ: ð5Þ

The quantity Kμν (and its trace K) represents the geometric
structure behind the dissipative nature of the theory. Note
that the limit of a vanishing λμ restores the dissipationless
feature of GR.
Thus, motivated by the existence of static spherically

symmetric compact objects analysed in Ref. [35], we extend
this analysis to the context of wormhole physics. This work
is outlined in the followingmanner: In Sec. II, we present the
most general restrictions on static and spherically symmetric
wormhole geometries imposed by the geometrical structure
of the action-dependent Lagrangian theory. In Sec. III, we
consider a plethora of specific solutions of action-dependent
Lagrangian induced wormhole geometries. Finally, in
Sec. IV, we summarize our results and conclude.

II. GENERAL RESTRICTIONS
ON WORMHOLE GEOMETRIES

Consider the general static and spherically symmetric
metric given by

ds2 ¼ −fðuÞdt2 þ gðuÞdu2 þ R2ðuÞdΩ2; ð6Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the linear element of the
unit sphere, and themetric functions fðuÞ, gðuÞ, andRðuÞ are
functions of the radial coordinate u. The coordinate choices
used in metric (6) are often called “Buchdahl coordinates”
[36–38]. Note that one possesses a freedom in choosing the
radial coordinate, consequently allowing one to fix the form

of one of the metric function fðuÞ, gðuÞ, or RðuÞ, which will
be considered below. Here, the radial coordinate lies in the
rangeu ∈ ð−∞;þ∞Þ, so that two asymptotically flat regions
exist, i.e., u → �∞, and are connected by the throat. The
function RðuÞ possesses a global positive minimum at the
wormhole throat u ¼ u0, which one can set at u0 ¼ 0,
without a loss of generality. Thus, the wormhole throat is
defined as R0 ¼ minfRðuÞg ¼ Rð0Þ.
In order to avoid event horizons and singularities

throughout the spacetime, one imposes that the metric
functions fðuÞ and gðuÞ are positive and regular every-
where. Taking into account these restrictions, namely, the
necessary conditions for the minimum of the function
imposes the flaring-out conditions, which are given by

R0
0 ¼ 0; R00

0 > 0: ð7Þ
In this work, we consider an anisotropic distribution of

matter threading the wormhole described by the following
stress-energy tensor Tμν,

Tμν ¼ ðρþ ptÞUμUν þ ptgμν þ ðpr − ptÞχμχν; ð8Þ
whereUμ is the four-velocity; χμ is the unit spacelike vector
in the radial direction, i.e., χμ ¼ g−1=2ðuÞδμu; ρðuÞ is the
energy density; prðuÞ is the radial pressure measured in the
direction of χμ; and ptðuÞ is the transverse pressure
measured in the orthogonal direction to χμ.
Now, rather than write out the full gravitational field

equations (2) for the metric (6), we note that the only nonzero
components of the Einstein and the stress-energy tensor are
the diagonal terms, so that the nondiagonal part of the
additional tensor Zμν, defined by Eq. (3), also provides
additional information on the geometrical structure of the
solutions of the theory, namely, that Zμν ¼ 0 for μ ≠ ν. More
specifically, the nondiagonal components of the symmetric
tensorZμν places restrictions on the formof the four-vector λμ.
The independent components of the tensor Zμ

ν ¼ Kμ
ν −

1
2
δμνK are given by

Zu
t ¼ −

λt½fg0R− gðf0R− 4fR0Þ�
4fg2R

; Zu
u ¼

λθ
R2

cotθ; ð9Þ

Zu
θ ¼ −

λθðfgÞ0
4fg2

−
λu
2g

cot θ; Zu
ϕ ¼ −

λϕðfgÞ0
4fg2

; ð10Þ

Zθ
θ ¼ Zϕ

ϕ ¼ λuðRf0 þ 2fR0Þ
2fgR

; ð11Þ

Zθ
ϕ ¼ λϕ

2R2
cot θ; Zθ

t ¼ −
λt
2R2

cot θ; ð12Þ

Zt
t ¼

2λuR0

gR
þ λθ
R2

cot θ; Zt
ϕ ¼ 0: ð13Þ

From Zθ
ϕ ¼ Zθ

t ¼ 0, one readily extracts the restrictions
λϕ ¼ λt ¼ 0. Taking into account the assumption of the
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static and spherical symmetric character of the spacetime, the
field equations should only depend on the radial coordinate,
so that from the diagonal Zu

u component one readily verifies
that λθ ∝ ðcot θÞ−1, or more specifically λθ ¼ λðuÞ=ðcot θÞ
[one may consider the simple case λðuÞ ¼ λ0 ¼ const]. We
emphasize that this result was also obtained in Ref. [35].
Note that if one were to consider λθ ¼ 0, then the condition
Zu
θ ¼ 0 would impose that λu ¼ 0, taking us trivially back to

GR. Analogously, in order for Zt
t to only depend on the

radial coordinate, from Zu
θ ¼ 0, this imposes that λu ¼ 0 and

consequently places a further constraint on the metric
functions, namely, ðfgÞ0 ¼ 0.
Thus, the additional information on the geometrical

structure of the theory, which imposes that the nondiagonal
components of the symmetric tensor Zμν vanish, imposes
the following condition on the four-vector λμ,

λμ ¼
�
0; 0;

λðuÞ
cot θ

; 0

�
; ð14Þ

and the additional geometric tensor Zμ
ν takes the diagonal

form Zμ
ν ¼ ðλðuÞ=R2Þdiagð1; 1; 0; 0Þ. Furthermore, from

the constraint on the metric functions ðfgÞ0 ¼ 0, we can
consider, without a loss of generality, the following choice:

gðuÞ ¼ f−1ðuÞ ¼ AðuÞ: ð15Þ

III. SPECIFIC SOLUTIONS OF ACTION-
DEPENDENT LAGRANGIAN INDUCED

WORMHOLE GEOMETRIES

The analysis outlined in the previous section imposes
that the static and spherical symmetric configuration (6) in
the theory (1) can be written as

ds2 ¼ −AðuÞdt2 þ A−1ðuÞdu2 þ R2ðuÞdΩ2; ð16Þ

where as before the wormhole throat is defined as
R0 ¼ minfRðuÞg ¼ Rð0Þ, and in order to avoid event
horizons and singularities throughout the spacetime, one
imposes that the function AðuÞ is positive and regular
everywhere. These restrictions imposes the flaring-out
conditions, translated by Eq. (7).
As the metric function AðuÞ is positive and regular for

∀ u, it is useful to analyze its derivatives at the throat
u ¼ 0. In particular, the sign of A00

0 determines the type of
extrema of AðuÞ; i.e., it is a minimum if A00

0 > 0 and a
maximum if A00

0 < 0. This implies that the maximum
(minimum) of AðuÞ corresponds to a maximum (minimum)
of the gravitational potential, so that in the vicinity of a
maximum (minimum) the gravitational force is repulsive
(attractive). Thus, the wormhole throat possesses a repul-
sive or an attractive nature that depends on the sign of A00

0 .
Now, taking into account the modified Einstein equa-

tion (2), the spacetime metric (16), and the stress-energy

tensor (8), the gravitational field equations are finally
given by

8πρ ¼ −
2ARR00 þ AR02 þ A0RR0 − 1

R2
−
λðuÞ
R2

; ð17Þ

8πpr ¼
AR02 þ A0RR0 − 1

R2
þ λðuÞ

R2
; ð18Þ

8πpt ¼
A00Rþ 2AR00 þ 2A0R0

2R
: ð19Þ

Adding Eqs. (17) and (18) yields the following relation,

R00jR0
¼ −

4πR
A

ðρþ prÞjR0
; ð20Þ

and using the condition at the throat R00
0 > 0, one verifies

that in these specific action-dependent Lagrangian theories
the NEC is generically violated at the throat, i.e.,
ðρþ prÞjR0

< 0.
Taking into account the field equations (17)–(19), one

has three independent equations with six unknown func-
tions of the radial coordinate u, namely, ρðuÞ, prðuÞ, ptðuÞ,
AðuÞ, RðuÞ, and λðuÞ. There are several strategies that one
may now follow. More specifically, one may consider
specific choices for the components of the stress-energy
tensor and then solve the field equations to determine the
metric functions and λðuÞ; one may also take into account a
plausible stress-energy tensor profile by imposing equa-
tions of state pr ¼ prðρÞ and pt ¼ ptðρÞ and close the
system by adequately choosing the energy density, or any
of the metric functions. Alternatively to this approach, one
may use the reverse philosophy usually adopted in worm-
hole physics by simple choosing specific choices for the
metric functions and λðuÞ and through the field equations
determine the stress-energy profile responsible for sus-
taining the wormhole geometry. In the following section,
we will adopt several strategies outlined above, and a
mixture thereof, to obtain specific exact solutions of
wormhole spacetimes induced by these action-dependent
Lagrangian theories.

A. Specific wormhole solutions:
Ellis-Bronnikov solution

Using an appropriate parametrization, we can present a
solution by taking into account the reverse philosophy of
solving the modified field equations, as follows [39],

RðuÞ ¼ e−αðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
; AðuÞ ¼ e2αðuÞ; ð21Þ

with the factor αðuÞ defined as

αðuÞ ¼
�
m
a

�
arctan

�
u
a

�
; ð22Þ
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wherem and a are two free parameters. Thus, the spacetime
metric is given by

ds2 ¼ −e2αdt2 þ e−2α½du2 þ ðu2 þ a2ÞdΩ2�: ð23Þ

Following the previous definition of the wormhole
throat, which is situated at u0 ¼ 0, we readily obtain
R0ð0Þ ¼ −m=a so that the condition R0ð0Þ ¼ 0 imposes
m ¼ 0. Note that these conditions imply that the solution
reduces to the well-known Ellis-Bronnikov wormhole
spacetime [40–42]. This does indeed simplify the analysis
below, such that αðuÞ ¼ 0, AðuÞ ¼ 1, and

R00ðu0Þ ¼
1

jaj > 0: ð24Þ

In addition to this, Eqs. (17)–(19) yield the following
stress-energy profile:

ρðuÞ ¼ −
ða2 þ u2ÞλðuÞ þ a2

8πða2 þ u2Þ2 ; ð25Þ

prðuÞ ¼
ða2 þ u2ÞλðuÞ − a2

8πða2 þ u2Þ2 ; ð26Þ

ptðuÞ ¼
a2

8πða2 þ u2Þ2 : ð27Þ

For the specific case of λ ¼ 0, where the four-vector λμ

vanishes, this solution simply reduces to the general
relativistic Ellis-Bronnikov stress-energy components.
However, for the general case, one still needs to impose
one more condition to close the system, and in the
following, we consider specific choices for the function
λðuÞ. Equations (25)–(26) yield the following relation,

ρðuÞ þ prðuÞ ¼ −
a2

4πða2 þ u2Þ2 ; ð28Þ

which states that the NEC is violated throughout the entire
spacetime and is independent of the function λðuÞ.
We are only interested in asymptotically flat solutions, so

taking into account the limit of Eq. (25), one finds

lim
u→∞

ρðuÞ ∼ − lim
u→∞

λðuÞ
u2

: ð29Þ

For instance, assuming a power law solution for λðuÞ ∼ uα,
the asymptotic flatness condition imposes that α < 2, and
from the regularity of the stress-energy components, we
have α ≥ 0 so that the parameter lies in the range
0 ≤ α < 2. One may perform a similar analysis with
the radial pressure prðuÞ, but with a change in the sign
for the limit. Note that the tangential pressure, ptðuÞ, is
independent of λðuÞ; possesses a maximum value at the

throat, ptðu ¼ 0Þ ¼ ð8πa2Þ−1; and tends to zero with
increasing u.
Several choices for the function λðuÞ are depicted in

Fig. 1. Depending on the sign of λðuÞ, one obtains a
plethora of specific symmetric or asymmetric solutions.
More specifically, for the case of λðuÞ ∼�u, one obtains
asymmetric solutions where the energy density is negative
at the throat and in the positive (negative) branch of u but
becomes positive in the negative (positive) branch, while
the radial pressure possesses the inverse qualitative behav-
ior, as is transparent from Fig. 1. Thus, it is possible to
alleviate the negative energy densities needed to thread this
wormhole configuration, relative to GR. The wormhole
solutions obtained with λ ≠ 0 possess a richer structure
than their general relativistic counterparts.

B. Specific stress-energy profile

We now consider the strategy of specifying the profile of
the energy density and radial pressure given by

ρðuÞ ¼ ρ0

�
a2

a2 þ u2

�
α

; ð30Þ

prðuÞ ¼ p0

�
a2

a2 þ u2

�
α

; ð31Þ

with α > 0, so that both components tend to zero at spatial
infinity. In addition to this, we close the system by
considering the specific choice for the metric function

RðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

p
: ð32Þ

Note that Eqs. (30) and (31) can be written as pr ¼ ωρ,
with ω ¼ p0=ρ0. Thus, this case is formally equivalent to
choosing Eq. (32), one of Eqs. (30) or (31), and the
equation of state prðuÞ ¼ ωρðuÞ.
The gravitational field equations (17)–(19) provide the

following solutions:

AðuÞ ¼ −4πa2ρ0ðωþ 1Þ
�

a2

a2 þ u2

�
α−2

; ð33Þ

λðuÞ ¼ 1þ 4πρ0½2a2ω − ð2α − 5Þu2ðωþ 1Þ�

×

�
a2

a2 þ u2

�
α−1

: ð34Þ

As before, we impose the asymptotic flatness condition,
namely,

lim
u→�∞

AðuÞ → 1; ð35Þ

and taking into account that AðuÞ should be positive and
regular ∀ u implies the following two stringent restrictions,
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α ¼ 2; and 4πa2ρ0ð1þ ωÞ ¼ −1; ð36Þ

where the second condition imposes:

ρ0ð1þ ωÞ < 0: ð37Þ

This implies two specific cases: (i) ρ0 > 0 and ω < −1, so
that taking into account the equation of state ω ¼ p0=ρ0
implies a negative radial pressure at the throat, or (ii) ρ0 < 0
andω > −1, so that p0 > 0 for−1 < ω < 0 and p0 < 0 for
ω > 0. Specific cases are depicted in Fig. 2. Relative to the
analysis at the throat, note that the wormhole conditions are
satisfied, namely, R0ðu0Þ ¼ 0 and R00ð0Þ ¼ 1=jaj > 0. In
addition to this, for the imposition of the asymptotic
flatness condition, namely, α ¼ 2, we readily obtain
AðuÞ ¼ 1, so that A0ðu0Þ ¼ A00ðu0Þ ¼ 0.

C. Black bounce solutions

Recently, a number of novel regular “black-bounce”
spacetimes were explored [43,44]. These are specific
geometries where the “area radius” always remains

nonzero, thereby leading to a “throat” that is either timelike
(corresponding to a traversable wormhole), spacelike
(corresponding to a “bounce” into a future universe), or
null (corresponding to a “one-way wormhole”). The
regularity, the energy conditions, and the causal structure
of these models are analyzed in detail in Refs. [43,44]. The
main results are several new geometries with two or more
horizons, with the possibility of an extremal case.
Motivated by these novel solutions, in this subsection,
we shall analyze specific generalized black-bounce worm-
hole geometries induced by action-dependent Lagrangian
theories.

1. Simpson-Visser black-bounce spacetime

In this section, we consider a specific black-bounce
geometry, which we denote as the Simpson-Visser solution
[13,43,44]. Consider the following parameters, which were
presented in Ref. [43]:

RðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
; AðuÞ ¼ 1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p : ð38Þ

FIG. 1. The plots depict the specific case of the Ellis-Bronnikov wormhole configuration with a ¼ 1, for convenience, and for
different choices of the function λðuÞ. Depending on the sign of λðuÞ, one obtains a plethora of specific symmetric or asymmetric
solutions. Note that for λðuÞ ∼�u, one obtains asymmetric solutions, where the energy density is negative at the throat and in the
positive (negative) branch of u but becomes positive in the negative (positive) branch; the radial pressure exhibits the inverse qualitative
behavior. We refer the reader to the text for more details.
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Note that the Schwarzschild solution is recovered, if we
take the limit a → 0.
This spacetime possesses several interesting properties

[43]. First, for a > 0, the geometry is everywhere regular,
which can verified as RðuÞ is never zero and is regular, as is
AðuÞ. Now, one has several cases, for instance:

(i) If 0 < a < 2m, two horizons exist, namely,
u� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ2 − a2

p
, where uþ is positive and

u− is negative. This solution corresponds to a regular
black hole spacetime, where the core consists of a
bounce located at u ¼ 0.

(ii) If a ¼ 2m, a wormhole exists with a throat located at
u ¼ 0. This is an extremal null throat, which can
only be crossed from one region to another, so the
wormhole is only one-way traversable.

(iii) Finally, if a > 2m, a two-way traversable wormhole
exists, that possesses a timelike throat located at
u ¼ 0. Thus, only the case (iii) for a > 2m interests
us here. We refer the reader to Refs. [43,44] for
specific details.

Taking into account the choices for the metric functions
(38), the field equations (17)–(19) provide the following
stress-energy profile:

ρðuÞSV ¼ −
1

8π

�
a2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

p
− 4mÞ

ða2 þ u2Þ5=2 þ λðuÞ
a2 þ u2

�
; ð39Þ

prðuÞSV ¼ ða2 þ u2ÞλðuÞ − a2

8πða2 þ u2Þ2 ; ð40Þ

ptðuÞSV ¼ a2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

p
−mÞ

8πða2 þ u2Þ5=2 ; ð41Þ

respectively. The asymptotic limits of the energy density
and the radial pressure are given by

lim
u→�∞

ρðuÞSV ∼ − lim
u→�∞

prðuÞSV ∼ − lim
u→�∞

λðuÞ
a2 þ u2

: ð42Þ

As before, if we assume a power law for λðuÞ ∼ uα, the
asymptotic flatness condition and the regularity of
the stress-energy components, as before, impose that
0 ≤ α < 2; note that the tangential pressure ptðuÞ → 0
for u → �∞ and possesses a maximum at the wormhole
throat, i.e., ptðu ¼ 0Þ ¼ ða −mÞ=ð8πa3Þ, and is positive
throughout the spacetime as we are only considering the
condition a > 2m.

FIG. 2. Results for the specific stress-energy profile given by (30) and (31) with a2 ¼ −1=ð4πρ0ð1þ ωÞÞ and α ¼ 2. The upper plots
are for the case ρ0 ¼ 1 (ω < −1), and the lower plots are for ρ0 ¼ −1 (ω > −1).
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Several choices for the function are depicted in Fig. 3.
Depending on the sign of λðuÞ, one obtains a plethora of
specific symmetric or asymmetric solutions. Note that these
compact objects possess a richer geometrical structure than
their general relativistic counterparts. It is transparent from
Fig. 3 that one may obtain wormhole configurations with
an entirely positive energy density throughout the space-
time, for negative values of the function λðuÞ; for instance,
for the latter, it is also possible to obtain positive radial
pressures in the negative branch of the u axis. However, the
NEC is always violated at the wormhole throat.

2. Black bounce II

Another black-bounce spacetime that exhibits interesting
properties is given by the following specific metric func-
tions [44]:

RðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
; AðuÞ ¼ 1 −

2mu2

ðu2 þ a2Þ3=2 : ð43Þ

Note that by solving for the roots of the function AðuÞ ¼ 0,
we have the following:

(i) for a < aext ¼ 4m=ð3 ffiffiffi
3

p Þ, there are four real sol-
utions, which are symmetrical to each other, namely,
ðrþ; rC;−rC;−rþÞ, (where uþ corresponds to the
event horizon and uC corresponds to a Cauchy
horizon).

(ii) For a ¼ aext, we have two real solutions ðuþ;−uþÞ.
(iii) For a > aext, no real value exists.
We refer the reader to Ref. [44] for more details. Thus, in

order to have a traversable wormhole solution, where only
the case of AðuÞ > 0 is satisfied, only the specific case for
a > aext interests us here.
For this case, the gravitational field equations (17)–(19)

yield the stress-energy profile, given by the following
relations:

ρðuÞ ¼ −
1

8π

�
a2ða2 þ u2Þ3=2 − 8ma2u2

ða2 þ u2Þ7=2 þ λðuÞ
a2 þ u2

�
; ð44Þ

prðuÞ ¼
1

8π

�
−
a2ða2 þ u2Þ3=2 þ 4ma2u2

ða2 þ u2Þ7=2 þ λðuÞ
a2 þ u2

�
;

ð45Þ

FIG. 3. The plots depict the Simpson-Visser black-bounce solution, for the specific choices m ¼ 1, a ¼ 3. Note that one may obtain
wormhole configurations with an entirely positive energy density throughout the spacetime, for negative values of the function λðuÞ and
positive radial pressures in the negative branch of the u axis. As before, it is transparent from the plots that these compact objects possess
a richer geometrical structure than their general relativistic counterparts. See the text for more details.
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ptðuÞ ¼
a2u2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

p
þ 5mÞ þ a4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ u2

p
− 2mÞ

8πða2 þ u2Þ7=2 ;

ð46Þ
respectively, which are depicted in Fig. 4 for specific
choices of the model parameters.

Assuming, once again, a power law for λðuÞ ∼ uα, we
have that0 ≤ α < 2 by the asymptotic flatness condition and
the regularity of the stress-energy components, as before. As
before, these wormhole geometries induced by action-
dependent Lagrangian theories possesses a far richer inter-
nal structure than their general relativistic counterparts, and

FIG. 4. The plots depict the stress-energy profile for the black-bounce II solution, given by the metric function (43), where for
numerical convenience we have assumed the following choices for the parameters: m ¼ 1, a ¼ 1. Recall that the parameters are
restricted by the condition a > 4m=ð3 ffiffiffi

3
p Þ. As before, these wormhole configurations possess a far richer internal structure than their

general relativistic counterparts, and depending on the sign of λðuÞ, specific symmetric or asymmetric solutions are obtained. However,
here the tangential pressure at the wormhole throat, ptðu ¼ 0Þ ¼ ða − 2mÞ=ð8πa3Þ, takes negative values for the parameter range
4m=ð3 ffiffiffi

3
p Þ < a < 2m and positive values for a > 2m. We refer the reader to the text for more details.
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depending on the sign of λðuÞ, specific symmetric
or asymmetric solutions are obtained. We refer the reader
to Fig. 4 for a qualitative behavior of the stress-
energy profile; recall that taking into account the parameter
range, we consider the condition a > 4m=ð3 ffiffiffi

3
p Þ. Here,

the tangential pressure at the wormhole throat is given by
ptðu¼0Þ¼ða−2mÞ=ð8πa3Þ and takes negative values for
4m=ð3 ffiffiffi

3
p Þ<a<2m, possessing a minimum at the throat

and positive values for a > 2m; note that ptðuÞ → 0
for u → �∞.

3. Black bounce III

Finally, we consider another black-bounce solution
explored in Ref. [44], that also exhibits interesting proper-
ties, given by

FIG. 5. The plots depict the stress-energy profile for the black-bounce III solution, given by the functions (47) and (49), for the case
n ¼ 1, where a > aext, so that there are no event horizons. We have chosen the following values for the parameters: m ¼ 1 and a ¼ 2.
Note that for these solutions, the negative energy densities are improved, and one may also obtain positive radial pressures for positive
values of the function λðuÞ. See the text for more details.
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RðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
ð47Þ

and the mass function

MðuÞ ¼ m

�
RðuÞ
u

��
2

π

�
n
arctann

�
u
a

�
ð48Þ

so that the metric function AðuÞ is given by

AðuÞ ¼ 1 −
2MðuÞ
RðuÞ

¼ 1 −
2m
u

�
2

π

�
n
arctann

�
u
a

�
: ð49Þ

In the limit ða; nÞ → 0, we regain the Schwarzschild
solution. However, one can fix n and regulate the presence
of horizons by adjusting a. For instance, consider n ¼ 1,
where the extreme case is given by aext ¼ 4m=π [44].

The causal structure, for the specific case of n ¼ 1, is
given by the following:

(i) For a > aext, this corresponds to the traditional two-
way traversable wormhole.

(ii) For a ¼ aext, we have a one-way wormhole geom-
etry with an extremal null throat.

(iii) For a < aext, we have one horizon located in each
universe, where one may propagate through this
event horizon, located at u ¼ uþ in order to reach
the spacelike bounce hypersurface at u ¼ 0, before
“bouncing” into a future version of our own
Universe.

We refer the interested reader to Ref. [44] for more
details. Thus, we are only interested in the case a > aext, for
n ¼ 1, where there are no event horizons.
Taking into account the metric functions (47) and (49),

the gravitational field equations (17)–(19) provide the
following stress-energy components:

ρðuÞ ¼ −
1

8π

�
a2

ða2 þ u2Þ2
�
1 −

2m
ua

�
2

π

�
n
�
arctan

�
u
a

��
n−1

�
a arctan

�
u
a

�
þ nu

��
þ λðuÞ
a2 þ u2

�
; ð50Þ

prðuÞ ¼
1

8π

�
2ma

uða2 þ u2Þ2
�
2

π

�
n
�
arctan

�
u
a

��
n−1

�
a arctan

�
u
a

�
− nu

�
þ ða2 þ u2ÞλðuÞ − a2

ða2 þ u2Þ2
�
; ð51Þ

ptðuÞ ¼
a2

8πða2 þ u2Þ2
�
1 −

m
au3

�
2

π

�
n
�
arctan

�
u
a

��
n−2

×

�
2ða3 þ 2au2Þ

�
arctan

�
u
a

��
2

− 2nuða2 þ u2Þ arctan
�
u
a

�
þ aðn − 1Þnu2

��
; ð52Þ

respectively. Here, we will only consider, for simplicity, the
specific case of n ¼ 1 and a > aext.
If we consider, as before, a power law for λðuÞ ∼ uα,

the asymptotic flatness and regularity conditions impose
0 ≤ α < 2. Once again, one obtains a wide variety of
solutions, both symmetric and asymmetric, which are
depicted in Fig. 5. The advantage of these solutions consists
essentially of ameliorating the negative energy densities for
negative values of the function λðuÞ. However, positive
values of the function λðuÞ allow positive radial pressures
as is transparent in Fig. 5. The tangential pressure tends to
zero at spatial infinity, i.e., ptðuÞ → 0 for u → �∞, and
possesses a maximum at the throat, as depicted in Fig. 5.

IV. CONCLUSIONS

In this work, we have explored wormhole geometries in
the recently proposed action-dependent Lagrangian theo-
ries [28], that are obtained through an action principle for
action-dependent Lagrangians by generalizing the Herglotz
variational problem for several independent variables. An
interesting feature of these theories as compared with

previous implementations of dissipative effects in gravity
is the possible arising of such phenomena from a least
action principle, so they are of a purely geometric nature. It
was shown that the generalized gravitational field equation
essentially depends on a background four-vector λμ, that
plays the role of a coupling parameter associated with the
dependence of the gravitational Lagrangian upon the
action, and may generically depend on the spacetime
coordinates. In the context of wormhole configurations,
we have used the Buchdahl coordinates and found that the
four-vector is given generically by λμ ¼ ð0; 0; λθðu; θÞ; 0Þ.
In addition to this restriction, the spacetime geometry is
also severely constrained by the condition gttguu ¼ −1,
where u is the radial coordinate.
More specifically, we have shown that the field equa-

tions (17)–(19) impose a system of three independent
equations with six unknown functions of the radial coor-
dinate u, namely, ρðuÞ, prðuÞ, ptðuÞ, AðuÞ, RðuÞ, and λðuÞ.
Thus, one possesses several strategies to solve the system
of equations. For instance, one may consider a plausible
stress-energy tensor profile by imposing equations of state
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pr ¼ prðρÞ and pt ¼ ptðρÞ and close the system by
adequately choosing the energy density, or a specific metric
function. However, one may also adopt the reverse philoso-
phy approach usually used in wormhole physics by simply
choosing specific choices for the metric functions and λðuÞ
and through the field equations determine the stress-energy
profile responsible for sustaining the wormhole geometry.
Here, we have found a plethora of specific asymptotically
flat, symmetric, and asymmetric solutions with power law
choices for the function λ, for instance, by generalizing the
Ellis-Bronnikov solutions and the recently proposed black-
bounce geometries, among other solutions. We have shown
that these compact objects possess a far richer geometrical
structure than their general relativistic counterparts. It would
be interesting to investigate time-dependent spacetimes as
outlined in Refs. [17,18] in order to explore the energy
conditions. To this effect, one could consider that the metric
functions in the line element (6) are now also time

dependent. This would imply a nonzero Einstein tensor
Gt

u component, which would consequently yield the pres-
ence of flux terms. Using themodified Einstein filed (2), one
could then expect that Zt

u ≠ 0, which would modify the
structure of λμ, implying a nonzero time-component, i.e.,
λt ≠ 0. Work along these lines is presently underway.
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