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We study quantum noise and decoherence induced by gravitons. We derive a Langevin equation of
geodesic deviation in the presence of gravitons. The amplitude of noise correlations tells us that large
squeezing is necessary to detect the noise. We also consider the decoherence of spatial superpositions of
two massive particles caused by gravitons in the vacuum state and find that gravitons could give a relevant
contribution to the decoherence. The decoherence induced by gravitons would offer new vistas to test
quantum gravity in tabletop experiments.
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I. INTRODUCTION

An understanding of the nature of gravity has been a
central issue in physics since the discovery of general
relativity and quantummechanics. Nevertheless, no one has
succeeded in constructing quantum theory of gravity. In
particular, the existence of gravitons is still obscure [1]. In
these situations, it is legitimate to doubt the necessity of
canonical quantization of gravity [2]. Hence, it is worth
seeking an experimental evidence of quantum gravity.
Usually, theorists explore the field of quantum gravity

at energy scales near the Planck scale. However, it is far
beyond the capacity of the current or future particle
accelerators. Instead, cosmological observations have been
exploited for probing high-energy physics. In fact, cosmo-
logical observations suggest that the large scale structure of
the universe stems from the quantum fluctuations during
the inflationary stage. It is natural to consider that primor-
dial gravitational waves are also generated directly from
the quantum fluctuations. Hence, one possible approach to
testing quantum gravity is to study the nonclassicality of
primordial gravitational waves [3,4]. Recently, as an alter-
native approach, tabletop experiments are drawing attention
[5–7]. Remarkably, based on the development of quantum
information, several ideas to test the quantum nature of
gravity through laboratory experiments are proposed [8,9].
More recently, as a new probe of gravitons, noise in the
lengths of the arms of gravitational wave detectors is
discussed by using a path integral approach [10]. One of
our goals in this paper is to derive the quantum Langevin

equation in order to obtain the noise in the gravitational
wave detectors.
The noise is usually associated with the decoherence

induced by quantum entanglement between a system and
gravitons [11]. Thus, as an approach to testing quantum
gravity, it would be important to understand the noise induced
by gravitons and then the decoherence caused by the noise.
The decoherence due to gravity in the context of quantum
superposition of massive objects has been investigated [12].1

The effect of a gravitational field on the quantum dynamics
of nonrelativistic particles was investigated by using the
influence functional method and it is shown that the
decoherence due to a gravitational field is effective in
the energy eigenstate basis [14]. Moreover, based on the
effective field theory approach, the decoherence rate was
derived under the Markovian approximation (the assumption
that the correlation time is very short) [15]. The quantum
Markovmaster equation for gravitatingmatter was derived in
[16]. Following the paper of decoherence in the context of
electromagnetic dynamics [17], the effect of the gravitational
bremsstrahlung on the destruction process of quantum super-
position has been considered [18]. More explicit formulation
along this direction has been given in [19]. The formalism is
further applied to the system of atoms [20]. Recently, this
possibility was discussed again under the Markovian
assumption [21]. The decoherence due to quantum fluctua-
tions of geometry caused by gravitons is also discussed in
[22]. Since the Markovian approximation cannot be applied
to the decoherence caused by the gravitational bremsstrah-
lung, the non-Markovian decoherence process is analyzed in
[23]. In the abovepapers, theminimal couplingof ametric to a
particle has been considered. However, from the point of
view of the equivalence principle, the point particle doesPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The cosmological decoherence due to thermal gravitons can
be found in [13].

PHYSICAL REVIEW D 103, 044017 (2021)
Editors' Suggestion

2470-0010=2021=103(4)=044017(14) 044017-1 Published by the American Physical Society

https://orcid.org/0000-0003-2986-2352
https://orcid.org/0000-0002-6421-306X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.044017&domain=pdf&date_stamp=2021-02-09
https://doi.org/10.1103/PhysRevD.103.044017
https://doi.org/10.1103/PhysRevD.103.044017
https://doi.org/10.1103/PhysRevD.103.044017
https://doi.org/10.1103/PhysRevD.103.044017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


not feel gravity. Hence, the deviation of the geodesics
is studied in [24]. Thus, when considering the decoherence
due to gravitons, it would be necessary to take into
account both the non-Markov process and the equivalence
principle.
In this paper, we study the quantum noise and decoherence

in order to probe gravitons and ultimately quantum gravity.
First,we target quantumnoise in gravitationalwave detectors.
When gravitational waves arrive at the laser interferometer,
the suspended mirrors interact with the gravitational waves.
The mirror interacts with an environment of gravitons
quantum mechanically. By using Fermi normal coordinates,
we evaluate the effect of quantum noise induced by gravitons
on the suspended mirrors. We show that the noise in the
squeezed state can be sizable. The results we obtain by using
the quantum Langevin equation are consistent with those
derived by using the path integral method in [10].
Second, as our main goal in this paper, we consider a

tabletop experiment by using two massive particles, one of
which is superposed spatially, so called, the quantum state
of Schrödinger’s cat. Without using the Markovian
assumption, we give a formula for the decoherence rate
of the superposition induced by gravitons. We then evaluate
the decoherence rate for some simple configurations of
superposition states and show that the decoherence due to
gravitons could be a relevant contribution. To explore the
decoherence process due to gravitons would be a first step
toward discovery of gravitons in a laboratory.
The organization of the paper is as follows: In Sec. II, we

describe geodesics in the graviton background and derive a
Langevin type equation of the system by eliminating the
environment of gravitons. In Sec. III, we evaluate the noise
correlation functions and show that the noise can be
observable if the gravitons are in the squeezed state. In
Sec. IV, we discuss the decoherence induced by gravitons
and detectability of gravitons. We give a formula for the
decoherence rate and evaluate it for simple cases. The final
section is devoted to the conclusion. A detailed calculation
of a momentum integral is presented in the Appendix A and
the derivation of decoherence functionals is given in
Appendix B. We work in the natural unit: c ¼ ℏ ¼ 1.

II. QUANTUM MECHANICS IN THE
GRAVITON BACKGROUND

In this section, we present a model to study quantum
mechanics in the graviton background. It gives rise to the
basis for studying the noise and the decoherence due to low
energy gravitons. In particular, we derive the quantum
Langevin equation.

A. Gravitational waves

We consider gravitational waves in Minkowski space.
The metric describing gravitational waves in the transverse
traceless gauge is expressed as

ds2 ¼ −dt2 þ ðδij þ hijÞdxidxj; ð2:1Þ

where t is the time, xi are spatial coordinates, δij and hij are
the Kronecker delta and the metric perturbations which
satisfy the transverse traceless conditions hij;j ¼ hii ¼ 0.
The indices ði; jÞ run from 1 to 3. Substituting the metric
Eq. (2.1) into the Einstein-Hilbert action, we obtain the
quadratic action

1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
R ≃

1

8κ2

Z
d4x½ _hij _hij − hij;khij;k�; ð2:2Þ

where κ2 ¼ 8πG and a dot denotes the derivative with
respect to the time. We can expand the metric field hijðxi; tÞ
in terms of the Fourier modes

hijðxi; tÞ ¼
2κffiffiffiffi
V

p
X
k;A

hAkðtÞeik·xeAijðkÞ; ð2:3Þ

where we introduced the polarization tensor eAijðkÞ nor-
malized as e�Aij ðkÞeBijðkÞ ¼ δAB. Here, the index A denotes
the linear polarization modes A ¼ þ;×. Note that we
consider finite volume V ¼ LxLyLz and discretize the k-
mode with a width k ¼ ð2πnx=Lx; 2πny=Ly; 2πnz=LzÞ
where n ¼ ðnx; ny; nzÞ are integers. Substituting the for-
mula (2.3) into the quadratic action (2.2), we get

Sg ≃
Z

dt
X
k;A

�
1

2
_hAðk; tÞ _hAðk; tÞ − 1

2
k2hAðk; tÞhAðk; tÞ

�
;

ð2:4Þ

where we used k ¼ jkj.

B. Action for two test particles

When gravitational waves arrive at the laser interferom-
eters, the suspended mirrors interact with the gravitational
waves. Let us regard the mirror as a point particle for
simplicity. A single particle, however, does not feel the
gravitational waves because of Einstein’s equivalence
principle at least classically. To see the effect of the
gravitational waves, we need to consider two massive
particles and measure the geodesic deviation between them.
In this subsection, we evaluate the effect of gravitational

waves on the two particles by introducing an appropriate
coordinate system called the Fermi normal coordinates
along one of their geodesics γτ (see Fig. 1). The Fermi
normal coordinate system represents a local inertial frame.
The dynamics of the other geodesic of particle γτ0 is
described by the position xiðtÞ ¼ ξiðtÞ in the vicinity of
the point Pð0; tÞ and ξi represents the deviation.
The action for the two test particles along the geodesics

γτ; γτ0 is given by
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Sp ¼ −m
Z
γτ0
dτ ¼ −m

Z
γτ0
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðξi; tÞ_ξ μ _ξ ν

q
; ð2:5Þ

where ξμ ¼ ðt; ξiðtÞÞ. Note that we omit the action for
the particle along γτ because it is in the inertial frame and
then the action has no dynamical variables. The metric gμν
up to the second order of xi in the Fermi coordinates is
computed as

ds2 ≃ ð−1 − R0i0jxixjÞdt2 −
4

3
R0jikxjxkdtdxi

þ
�
δij −

1

3
Rikjlxkxl

�
dxidxj: ð2:6Þ

Here the Riemann tensor is evaluated at the origin xi ¼ 0
in the Fermi normal coordinate system. Substituting the
metric (2.6) into the action (2.5), the action for the two
particles up to the second order of ξi is expressed as

Sp ≃
Z
γτ0
dt

�
m
2
_ξi

2

−
m
2
R0i0jð0; tÞξiξj

�
: ð2:7Þ

Because the Riemann tensor R0i0j is gauge invariant at the
leading order in the metric fluctuation hij, we can evaluate
it in the transverse traceless gauge to get R0i0jð0; tÞ ¼
−ḧijð0; tÞ=2. We then finally obtain the action for the
geodesic deviation

Sp ≃
Z
γτ0
dt

�
m
2
_ξi

2 þm
4
ḧijð0; tÞξiξj

�
: ð2:8Þ

Notice that, when considering gravitation waves with
wavelengths smaller than the characteristic separation
length ξ, an approximation (2.6) cannot be used.
However, we expect that the effect from such gravitational

waves will be suppressed because of the equivalence
principle. Hence, we consider the action of the form

Sp ≃
Z
γτ0
dt

�
m
2
_ξi

2 þm
2

κffiffiffiffi
V

p
X
A

X
k≤Ωm

ḧAðk; tÞeAijðkÞξiξj
�
;

ð2:9Þ

where the metric hijð0; tÞ is replaced by the Fourier modes
in Eq. (2.3) and

P
k≤Ωm

represents the mode sum with the
UV cutoff Ωm ∼ ξ−1. We see a qubic derivative interaction
appear in the above action.

C. Particles in an environment of gravitons

From Eqs. (2.4) and (2.9), the total action S ¼ Sg þ Sp
we consider is given by

S ≃
Z

dt
X
k;A

�
1

2
_hAðk; tÞ _h�Aðk; tÞ − 1

2
k2hAðk; tÞh�Aðk; tÞ

�

þ
Z

dt

�
m
2
_ξi

2 þm
2

κffiffiffiffi
V

p
X
A

X
k≤Ωm

ḧAðk; tÞeAijðkÞξiξj
�
:

ð2:10Þ

Note that the geodesic deviation of particles in the graviton
background is studied in [10,22,24]. Now we canonically
quantize this system. We can expand the interaction picture
field ĥ A

I ðk; tÞ, whose time evolution is governed by the
quadratic action, in terms of the creation and annihilation
operators as

ĥ A
I ðk; tÞ ¼ âAðkÞukðtÞ þ â†Að−kÞu�kðtÞ; ð2:11Þ

where the creation and annihilation operators satisfy the
standard commutation relations2

½âAðkÞ; â†A0 ðk0Þ� ¼ δk;k0δAA0 ; ½âAðkÞ; âA0 ðk0Þ�
¼ ½â†AðkÞ; â†A0 ðk0Þ� ¼ 0 ð2:12Þ

and ukðtÞ denotes a mode function properly normalized as

_ukðtÞu�kðtÞ − ukðtÞ _u�kðtÞ ¼ −i: ð2:13Þ

The Minkowski vacuum j0i is defined by âAðkÞj0i ¼ 0,
with choosing the mode function as

ukðtÞ ¼
1ffiffiffiffiffi
2k

p e−ikt ≡ uMk ðtÞ: ð2:14Þ

FIG. 1. Two neighboring timelike geodesics (γτ; γτ0 ) separated
by ξi are depicted in the blue lines and the green lines show two
neighboring spacelike geodesics (γs; γs0 ) orthogonal to the geo-
desic γτ in the spacelike hypersurface Σs. We introduce the Fermi
normal coordinate system using the orthogonal geodesics at the
point Pð0; tÞ.

2δk;k0 is replaced by δð3Þðk − k0Þ when taking the infinite
volume limit Lx; Ly; Lz → ∞.
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An expectation value of ĥ A
I ðk; tÞ can be nonzero for

generic quantum states, such as coherent states as we will
see in Sec. III A 1. In this case, it may be convenient
to divide the gravitational perturbation ĥ A

I around the
Minkowski background into a “classical” piece hclðk; tÞ≡
hĥ A

I ðk; tÞi and a “quantum” piece as

δĥ A
I ðk; tÞ ¼ ĥ A

I ðk; tÞ − hclðk; tÞ: ð2:15Þ

Here, hX̂i denotes an expectation value of an operator X̂ for
a given quantum state. A precise value of the expectation
value depends on the given quantum state. We refer to δĥ as
the gravitational quantum fluctuations, i.e., gravitons, in the
presence of the classical gravitational perturbations hcl.
Similarly, we promote the position ξiðtÞ to the operator
ξ̂ iðtÞ below.

D. Langevin type equation of geodesic deviation

The variation of the action Eq. (2.10) with respect to h�A

and ξi gives the following equations of motion for the
operators in the Heisenberg picture:

̈ĥ Aðk; tÞ þ k2ĥ Aðk; tÞ ¼ κm

2
ffiffiffiffi
V

p e�Aij ðkÞ
d2

dt2
fξ̂ iðtÞξ̂ jðtÞg;

ð2:16Þ
̈ξ̂ iðtÞ ¼ κffiffiffiffi

V
p

X
A

X
k≤Ωm

eAijðkÞ ̈ĥ Aðk; tÞξ̂ jðtÞ: ð2:17Þ

Equation (2.16) is solved by standard Green’s function
techniques. Specifically we consider the setup where the
interaction between ĥ and ξi is turned on at t ¼ 0. Under
this setup, the formal solution of Eq. (2.16) is given by

ĥ Aðk; tÞ ¼ hAclðk; tÞ þ δĥ A
I ðk; tÞ þ

κm

2
ffiffiffiffi
V

p e�Aij ðkÞ
Z

t

0

dt0
sin kðt − t0Þ

k
d2

dt02
fξ̂ iðt0Þξ̂ jðt0Þg: ð2:18Þ

The last nonhomogeneous solution describes the gravitational waves emitted from the particles. Substituting the formal
solution Eq. (2.18) into Eq. (2.17), we have

̈ξ iðtÞ ¼ 1

2
ḧclijð0; tÞξ̂ jðtÞ − κffiffiffiffi

V
p ξjðtÞ

X
A

X
k≤Ωm

k2eAijδĥ
A
I ðk; tÞ

−
κ2m
4V

ξjðtÞ
X
k≤Ωm

½PikPjl þ PilPjk − PijPkl�
Z

t

0

dt0k sin kðt − t0Þ d2

dt02
fξ̂ kðt0Þξ̂ lðt0Þg

þ κ2m
4V

X
k≤Ωm

½PikPjl þ PilPjk − PijPkl�ξ̂ jðtÞ d
2

dt2
fξ̂ kðtÞξ̂ lðtÞg; ð2:19Þ

where we have defined

hclijðxi; tÞ≡ 2κffiffiffiffi
V

p
X
k;A

eAijðkÞhAclðk; tÞeik·x; ð2:20Þ

and introduced the projection tensor Pij ¼ δij − k̄ik̄j orthogonal to the unit wave number k̄i ¼ ki=k and used

X
A

e�Aij ðkÞeAklðkÞ ¼
1

2
½PikPjl þ PilPjk − PijPkl�: ð2:21Þ

Here, the UV-regulated mode sum
P

k≤Ωm
in the second and the third lines of (2.19) can be performed by taking the

continuum limit of the k-mode by removing the width introduced in Eq. (2.3): 1=V
P

k≤Ωm
→ 1=ð2πÞ3 RΩm d3k. The

momentum integral is computed in Appendix A, and the result is

̈ξ̂ iðtÞ − 1

2
ḧ cl

ijð0; tÞξ̂ jðtÞ þ κ2m
40π

�
δikδjl þ δilδjk −

2

3
δijδkl

�
ξ̂ jðtÞ d

5

dt5
fξ̂ kðtÞξ̂ lðtÞg

¼ −δN̂ijðtÞξ̂ jðtÞ þ κ2m
20π2

Ωm

�
δikδjl þ δilδjk −

2

3
δijδkl

�
ξ̂ jðtÞ d

4

dt4
fξ̂ kðtÞξ̂ lðtÞg ð2:22Þ

where we have defined
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δN̂ijðtÞ≡ κffiffiffiffi
V

p
X
A

X
k≤Ωm

k2eAijðkÞδĥ A
I ðk; tÞ: ð2:23Þ

The third term on the left-hand side represents the force of
radiation reaction. On the right-hand side, the first term is
the random force induced by gravitons, which is nothing
but quantum noise. The last term is not relevant in the
discussions of the noise and the decoherence. The sche-
matic expression of Eq. (2.22) without the last term is
obtained in [10]. The noise of gravitons δN̂ij always exists
if the gravitational waves are quantized. If the noise is
detected, it would be evidence that gravity is quantized.

III. QUANTUM NOISE INDUCED BY GRAVITONS

A. Quantum noise correlations

In this section, we compute the amplitude of the noise for
various quantum states.
The anticommutator correlation function of δNijðtÞ can

be computed by using Eqs. (2.21) and (2.12) in the infinite
volume limit Lx; Ly; Lz → ∞ as

hfδN̂ijðtÞ; δN̂klðt0Þgi ¼
κ2

10π2

�
δikδjl þ δilδjk −

2

3
δijδkl

�

×
Z

Ωm

0

dkk6Pδhðk; t; t0Þ; ð3:1Þ

where we defined the anticommutator symbol f·; ·g as
fX̂; Ŷg≡ ðX̂ Ŷ þŶ X̂Þ=2, and Pδh is given by

hfδhAI ðk; tÞ; δhA0
I ðk0; t0Þgi ¼ δAA0δkþk0;0Pδhðk; t; t0Þ: ð3:2Þ

Below we compute the noise correlation functions when the
graviton is in a squeezed-coherent state and discuss the
Minkowski vacuum as a special case. The coherent state or
squeezed state can be realized when the squeezing param-
eter or the coherent parameter goes to zero, respectively.

1. Squeezed coherent states

The definition of the squeezed coherent state jζ; Bi is

jζ; Bi≡ ŜðζÞD̂ðBÞj0i; ð3:3Þ

where ŜðζÞ and D̂ðBÞ are the squeezing and the displace-
ment operators, respectively. They are expressed by

ŜðζÞ≡ exp

�
1

V

X
k;A

ðζ�kâAðkÞâAð−kÞ þ ζkâ
†
AðkÞâ†Að−kÞÞ

�
;

ð3:4Þ

D̂ðBÞ≡ exp

�
1

V

X
k;A

ðBkâ
†
AðkÞ − B�

kâAðkÞÞ
�
; ð3:5Þ

where ζk ≡ rk exp½iφk� and rk is the squeezing parameter.
Bk is the coherent parameter. We assume that the parameter
ζk and Bk only depend on k and are independent of the
direction of k. These operators are unitary, and satisfy the
following relations:

D̂†ðBÞŜ†ðζÞâAðkÞŜðζÞD̂ðBÞ ¼ ðâAðkÞ þ BkÞ cosh rk − ðâ†Að−kÞ þ B�
kÞeiφk sinh rk; ð3:6Þ

D̂†ðBÞŜ†ðζÞâ†Að−kÞŜðζÞD̂ðBÞ ¼ ðâ†Að−kÞ þ B�
kÞ cosh rk − ðâAðkÞ þ BkÞe−iφk sinh rk: ð3:7Þ

The vacuum expectation value of the above operators become

h0jD̂†ðBÞŜ†ðζÞâAðkÞŜðζÞD̂ðBÞj0i ¼ Bk cosh rk − B�
ke

iφk sinh rk; ð3:8Þ

h0jD̂†ðBÞŜ†ðζÞâ†Að−kÞŜðζÞD̂ðBÞj0i ¼ B�
k cosh rk − Bke−iφk sinh rk: ð3:9Þ

On the other hand, the transformation of the operator δĥ A
I ðk; tÞ is given by definition as

D̂†ðBÞŜ†ðζÞδĥ A
I ðk; tÞŜðζÞD̂ðBÞ ¼ D̂†ðBÞŜ†ðζÞĥ A

I ðk; tÞŜðζÞD̂ðBÞ − h0jD̂†ðBÞŜ†ðζÞĥ A
I ðk; tÞŜðζÞD̂ðBÞj0i: ð3:10Þ

Because ĥ A
I ðk; tÞ consists of the âAðkÞ and â†AðkÞ, we see that the right-hand side of the above relation is independent of the

coherent parameter Bk and we have

D̂†ðBÞŜ†ðζÞδĥ A
I ðk; tÞŜðζÞD̂ðBÞ ¼ ðâAðkÞcoshrk− â†Að−kÞeiφk sinhrkÞukðtÞþ ðâ†Að−kÞcoshrk− âAðkÞe−iφk sinhrkÞu�kðtÞ

¼ usqk ðtÞâAðkÞþusq�k ðtÞâ†Að−kÞ
¼ Ŝ†ðζÞĥ A

I ðk; tÞŜðζÞ; ð3:11Þ
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where the mode function in the squeezed state is given
in terms of that in the Minkowski space in Eq. (2.14)
such as

usqk ðtÞ≡ uMk ðtÞ cosh rk − e−iφkuM�
k ðtÞ sinh rk: ð3:12Þ

Hence, the anticommutator correlation function of δN̂ijðtÞ
in the squeezed coherent state in Eq. (3.1) becomes
independent of the coherent state such as

hζ; BjfδN̂ijðtÞ; δN̂klðt0Þgjζ; Bi

¼ κ2

10π2

�
δikδjl þ δilδjk −

2

3
δijδkl

�

×
Z

Ωm

0

dkk6Re½usqk ðtÞusqk �ðt0Þ�; ð3:13Þ

where

Pδhðk; t; t0Þ ¼ Re½usqk ðtÞusqk �ðt0Þ�

¼ 1

2k
½cosfkðt − t0Þg cosh 2rk

− cosfkðt − t0Þ − φkg sinh 2rk�: ð3:14Þ

In general, the squeezing parameter rk and the phase φk
depend on k. However, for simplicity, we regard these
variables as constants. Then, plugging this into Eq. (3.13),
we obtain

hζ;BjfδN̂ijðtÞ;δN̂klðt0Þgjζ;Bi

¼ κ2Ω6
m

20π2

�
δikδjl þ δilδjk −

2

3
δijδkl

�
FðΩmðt− t0Þ; r;φÞ;

ð3:15Þ

where

Fðx; r;φÞ ¼ 1

x6
½fð5x4 − 60x2 þ 120Þ cos xþ xðx4 − 20x2 þ 120Þ sin x − 120g cosh 2r

− fð5x4 − 60x2 þ 120Þ cos ðφ − xÞ − xðx4 − 20x2 þ 120Þ sin ðφ − xÞ − 120 cosφg sinh 2r�: ð3:16Þ

Note that Fðx; r;φÞ converges to zero for large x and the
function Fðx; r;φÞ for small x can be expanded as

Fðx; r;φÞ ¼ 1

6
ðcosh 2r − cosφ sinh 2rÞ − 10

7
sinφ sinh 2rx

−
25

4
ðcosh 2r − cosφ sinh 2rÞx2 þOðx3Þ:

ð3:17Þ

We find that quantum noise correlations increase as Ωm
increases.

2. The Minkowski vacuum state

For comparison, let us see the correlation functions of the
quantum noise in the Minkowski vacuum state which is
obtained by taking rk → 0 and then we have

Pδhðk; t; t0Þ ¼ Re½uMk ðtÞuM�
k ðt0Þ� ¼ 1

2k
cosfkðt − t0Þg:

ð3:18Þ

Substituting this into Eq. (3.1), we get

h0jfδN̂ijðtÞ; δN̂klðt0Þgj0i

¼ κ2Ω6
m

20π2

�
δikδjl þ δilδjk −

2

3
δijδkl

�
FðΩmðt − t0ÞÞ;

ð3:19Þ

where

FðxÞ≡ 1

x6
½ð5x4 − 60x2 þ 120Þ cos x

þ xðx4 − 20x2 þ 120Þ sin x − 120�: ð3:20Þ

Note that, for small x, the function FðxÞ can be expanded as

FðxÞ ¼ 1

6
−
25

4
x2 þOðx4Þ: ð3:21Þ

Comparing this with the result of the squeezed coherent
state, we see the quantum noise correlations are enhanced
exponentially by the squeezing parameter.

B. Detectability of the quantum noise

In this subsection, we roughly estimate the effective
strain heff corresponding to the quantum noise δN̂ij and
discuss the detectability of the quantum noise. For a given
quantum state, the amplitude of the quantum noise in the
frequency domain can be characterized as

δNðfÞ≡
�Z

∞

−∞
dthfδNijðtÞ; δNijð0Þgie2πift

�1
2

: ð3:22Þ

From Eq. (2.22), it is found that the response of ξi to the
presence of the classical gravitational wave and the
quautum noise is proportional to ḧclðt; 0Þ and δNðtÞ,
respectively. Here we omitted spatial indices. This suggests
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that we can discuss the detectablity of the noise by using
the effective strain heffðfÞ≡ ð2πfÞ−2δNðfÞ in the fre-
quency domain.
Let us start with the Minkowski vacuum state. In this

case, the amplitude of the quantum noise in the frequency
domain can be computed as

δNðfÞ ¼ π2
ð2fÞ52
Mpl

; ð3:23Þ

where the reduced Planck mass is Mpl ∼ 1018 GeV. The
corresponding effective strain is then

heffðfÞ ¼
ð2fÞ12
Mpl

≈ 2 × 10−42
�

f
1 Hz

�1
2

Hz−
1
2: ð3:24Þ

For instance, the characteristic frequency of LIGO is
around 100 Hz. Then the amplitude of quantum noise
becomes heffðfÞjf∼100 Hz ∼ 10−41 Hz−1=2. The strain sensi-
tivity of LIGO is about 10−23 Hz−1=2 for f ∼ 100 Hz, so the
amplitude of quantum noise is too small to be detected.
However, if gravitational waves are in the squeezed state

(or in the squeezed coherent state) when arriving at the
detectors, the amplitude of the quantum noise is enhanced
by the exponential factor of the squeezing parameter as
seen in Eq. (3.14). That is,

heffðfÞ ≈ 2 × 10−42
�

f
1 Hz

�1
2

erk jk¼2πf Hz−
1
2: ð3:25Þ

For instance, if the squeezing parameter is large as much
as erk ∼ 1022, the amplitude of the quantum noise at the
characteristic frequency of LIGO becomes heffðfÞ∼
10−20 Hz−

1
2, which is detectably large. This point is

emphasized in [10].
One possible and well-known mechanism to produce

gravitons with large quantum fluctuations is inflation.
Gravitons produced during inflation experience large
squeezing which leads to the detectably large noise
amplitudes.3 In the case of primordial gravitational waves,
the relation between the squeezing parameter and the
current frequency f is given by

erk jk¼2πf ≈
�
fc
f

�
2

; ð3:26Þ

where fc is the cutoff frequency. In the case of grand
unified theory inflation, we have fc ∼ 108 Hz. In this case,
the effective strain at f ∼ 0.1 Hz, which is the characteristic

frequency of DECIGO4 [25,26], reads heffðfÞ∼10−24Hz−
1
2

because we have erk ∼ 1018. This is the reason why the
stochastic gravitational waves from inflation could be
detectably large. We here stress that, if we could detect
the noise δN̂ij, it would imply discovery of gravitons.

IV. DECOHERENCE INDUCED BY GRAVITONS

In the previous section, we discussed the effect of noise
induced by gravitons on gravitational wave detectors. In
this section, we explore the effect of gravitons on the
process of decoherence in a laboratory.
We consider a system of two massive particles, one of

which is in a superposition state of two spatially separated
locations as shown in Fig. 2, and investigate the loss of
coherence of the superposition state caused by gravitons. If
the decoherence process due to gravitons is detectable in a
laboratory, it would be strong evidence that gravity is
quantized.5

A. Setup and the decoherence functional

We consider timelike curves γτ and γτ0 of two massive
particles with a mass m and γτ0 is spatially superposed
across the distance ξ2 − ξ1 in the Minkowski space (see
Fig. 2). The superposition state survives for 0 < t < tf, and
the system is assumed to be in a certain initial quantum
state jΨðt0Þi at the initial time t0 < 0. The normalization
condition is hΨðt0ÞjΨðt0Þi ¼ 1.

FIG. 2. Timelike curves of two massive particles γτ and γτ0 ,
and the γτ0 is in a superposition state of two spatially separated
locations ξ1ðtÞ and ξ2ðtÞ. The superposition state survives
ξ1ðtÞ ≠ ξ2ðtÞ for the duration 0 < t < tf .

3The gravitons may undergo the quantum decoherence during
inflation or during the propagation. However, when discussing
the amplitude of the noise, we do not need to take care of the
decoherence.

4DECIGO stands for Decihertz Interferometer Gravitational
Wave Observatory. It is a gravitational wave antenna in space
operating in the 0.1–10 Hz frequency band. It consists of three
drag-free spacecraft, 1,000 km apart from each other.

5Strictly speaking, we may also need to take into account the
intrinsic gravitational decoherence proposed by [27,28].
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In the Schrödinger picture, the unitary time evolution of
the superposition state is expressed as

jΨðt0Þi → jΨðtÞi ¼ jξ1ðtÞi þ jξ2ðtÞi; ð4:1Þ

where jξ1ðtÞi and jξ2ðtÞi are approximately eigenstates
of the operator ξ̂ i satisfying ξ̂ ijξ1ðtÞi ¼ ξi1ðtÞjξ1ðtÞi and
ξ̂ ijξ2ðtÞi ¼ ξi2ðtÞjξ2ðtÞi. The superposition state lasts for
0 < t < tf and ξi1ðtÞ ¼ ξi2ðtÞ holds for t ∉ ð0; tfÞ.
The decoherence arises through the interaction of the

system of massive particles with the environmental grav-
itons in this setup. The leading interaction is given in the
last term on the right-hand side of (2.10):

S ⊃
m
2

Z
dt

κffiffiffiffi
V

p
X
A

X
k≤Ωm

ḧ Aðk; tÞeAijðkÞξiξj: ð4:2Þ

To discuss the rate of decoherence, we use the influence
functional method [29] and compute the modulus of the
influence functional

exp½−ΓðtfÞ�≡
���� hξ2ðtfÞjξ1ðtfÞihξ2ðt0Þjξ1ðt0Þi

����: ð4:3Þ

The loss of quantum coherence between jξ1ðtÞi and jξ2ðtÞi
occurs when exp½−ΓðtfÞ� ≪ 1. We can compute the
decoherence functional by integrating out the gravitons as6

ΓðtfÞ ≈
m2

8

Z
tf

0

dtΔðξiξjÞðtÞ

×
Z

tf

0

dt0ΔðξkξlÞðt0ÞhfδN̂ijðtÞ; δN̂klðt0Þgi: ð4:4Þ

Here ΔðξiξjÞðtÞ ¼ ξi1ðtÞξj1ðtÞ − ξi2ðtÞξj2ðtÞ denotes a differ-
ence of ξiðtÞξjðtÞ in the superposition. The value of
ΔðξiξjÞðtÞ is determined by an experimental setup. We
consider some simple configurations of the superposition
state in order to evaluate the rate of decoherence explicitly
in the next subsection.

B. Decoherence rate for simple configurations
of the superposition state

For simplicity, we assume that ξiaðtÞ ¼ ξaðtÞδi1 for
a ¼ 1, 2 and that ξ≡ ðξ1ðtÞ þ ξ2ðtÞÞ=2 is independent
of time. We then consider the configuration of the super-
position state with the separation ΔξðtÞ≡ ξ2ðtÞ − ξ1ðtÞ as7

ΔξðtÞ ¼
�
2vt for 0 < t ≤ tf=2;

2vðtf − tÞ for tf=2 < t < tf ;
ð4:5Þ

where the norm of velocity v is constant (0 < v < 1).
The velocity of the particle changes only at the moment
t ¼ tf=2 in this configuration. The schematic diagram of
this configuration is depicted in Fig. 3. The maximum
separation at t ¼ tf=2 is Δξðtf=2Þ ¼ vtf ≡ ΔL.
The decoherence rate Eq. (4.4) in the Minkowski

vacuum state is expressed as

ΓðtfÞ ≈
m2Ω6

mξ
2

30π2M2
pl

Z
tf

0

dt
Z

tf

0

dt0ΔξðtÞΔξðt0ÞFðΩmðt − t0ÞÞ:

ð4:6Þ

Here we used Eq. (3.19). Substituting Eq. (4.5) into
Eq. (4.6), we obtain8

ΓðtfÞ ≈
2m2v2

5π2M2
pl

ðΩmξÞ2GðΩmtfÞ; ð4:8Þ

where GðxÞ is given by

GðxÞ≡ 1þ 2

3x

�
sinðxÞ − 8 sin

�
x
2

��

þ 1

x2

�
2

3
cosðxÞ − 32

3
cos

�
x
2

�
þ 10

�
: ð4:9Þ

FIG. 3. The schematic diagram of the configuration of the
superposition state given in Eq. (4.5). The trajectory at xi ¼ ξi is
spatially superposed across the distance ΔξðtÞ for the duration
0 < t < tf . The superposition state consists of the dotted red and
green lines. The averaged trajectory of the two dotted lines ξ is
time independent.

6For the derivation of (4.4), see Appendix B.
7This parametrization is essentially the same as the one in [17].

8In terms of the maximum separation length ΔL, Eq. (4.8) can
be written as

ΓðtfÞ ≈
2m2

5π2M2
pl

ðΩmξÞ2ðΩmΔLÞ2
GðΩmtfÞ
ðΩmtfÞ2

: ð4:7Þ

Note that 0 < ΔL < tf because the velocity of the particle cannot
exceed the speed of light.
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The behavior ofGðxÞ is shown in Fig. 4. The functionGðxÞ
grows polynomially as GðxÞ ≃ x4=288þOðx6Þ for x ≪ 1
and shows a damping oscillation aroundGðxÞ ¼ 1 for large
x. As we explained in Sec. II B, the cutoff Ωm satisfies
Ωmξ ∼Oð1Þ. If we take Ωmξ ¼ 1, then Eq. (4.8) reads

ΓðtfÞ ≈
2m2v2

5π2M2
pl

GðΩmtfÞ: ð4:10Þ

Since GðxÞ ∼Oð1Þ, we find ΓðtfÞ ≪ 1 as long as the
momentum of the massive particle is much smaller
than the Planck mass, mv ≪ Mpl ≈ 4 × 10−6 g, and then
decoherence does not occur. On the other hand, for
mv ≫ Mpl, the decoherence happens. Let us estimate the
decoherence time τdec defined by ΓðτdecÞ ¼ 1 in this case.
In order to hold ΓðτdecÞ ¼ 1, GðxÞ has to be less than unity.
Thus the decoherence time can be computed by using
GðxÞ ≃ x4=288 (x ≪ 1) as

Ωmτdec ∼ 10 ×

�
Mpl

mv

�
1=2

: ð4:11Þ

We see the decoherence time is Ωmτdec ≪ 1 for the case
that the momentum of the massive particle is much larger
than the Planck mass mv ≫ Mpl.
As another simple configuration of the superposition

state, we consider a system that the previous configuration
Eq. (4.5) repeats N times as

ΔξðtÞ ¼
XN−1

k¼0

Δξðt; kÞ; ð4:12Þ

with

Δξðt; kÞ≡
8<
:

2vt for kðTs þ TcÞ < t ≤ ðkþ 1=2ÞTs þ kTc;

2vðtf − tÞ for ðkþ 1=2ÞTs þ kTc < t < ðkþ 1ÞTs þ kTc;

0 for t ≤ kðTs þ TcÞ; ðkþ 1ÞTs þ kTc ≤ t:

ð4:13Þ

The configuration of the superposition state of (4.12) is
shown in Fig. 5. The duration of the superposition state is
Ts and each configuration repeats with a time interval Tc.
We assume Tc ≫ Ts so that each configuration is inde-
pendent. Under this assumption, we have

ΓðtfÞ ≈ N ×
2m2v2

5π2M2
pl

GðΩmTsÞ; ð4:14Þ

with tf ¼ NTs þ ðN − 1ÞTc. If we compared with
Eq. (4.10), we see an enhancement factor N come in.
Thus, if we take a sufficiently large N, decoherence occurs
(ΓðtfÞ ≫ 1) even when the momentum of the massive
particle is smaller than the Planck mass, mv≲Mpl. This
system might be possible to get carried out in a tabletop
experiment with upcoming technology and would open up
the possibility of the first detection of the graviton-induced
decoherence. Thus, we expect that the decoherence caused
by the noise of gravitons would offer new vistas to test
quantum gravity in tabletop experiments.
We note that the decoherence rate is enhanced for

squeezed states. As we showed in Sec. III B, gravitons
produced during inflation experience large squeezing.
Hence, it would be interesting to consider the decoherence
induced by the primordial gravitons. We should also notice
that our analysis of the superposition state can only be
applicable for a frequency range lower than ξ−1. Hence,
our estimation of the decoherence rate is a lower bound.

FIG. 4. A plot ofGðxÞ.GðxÞ grows polynomially for x ≪ 1 and
then oscillatory behavior converges to order unity for x ≳ 10.

FIG. 5. The separation of the configuration of the superposition
state as a function of time. The blue solid line indicates the
configuration given in Eq. (4.12). The configuration of Eq. (4.5)
repeatsN times as time evolves. The duration of the superposition
state is Ts and each configuration repeats in particular time
interval Tc.
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We should assess the decoherence rate by taking into
account the contribution from a frequency range Ωmξ > 1.

V. CONCLUSION

In this paper, we studied the physical effects induced by
gravitons on the system of two massive particles. We first
derived the effective equation of motion for the geodesic
deviation between two particles, that is, the Langevin-type
equation in (2.22). We found that gravitons give rise to the
noise to the dynamics of particles. Note that Eq. (2.22)
without the last term agrees with the one in [10]. We
calculated the noise correlation in squeezed coherent
states and demonstrated that the squeezed states enhance
it compared with the vacuum state. We then discussed the
detectability of the noise of gravitons by gravitational
wave detectors. It turned out that the amplitude of the
noise of gravitons in the case of the Minkowski vacuum is
too small to be detected by the current detectors. However,
in the squeezed state, the noise of gravitons is enhanced by
the exponential factor of the squeezing parameter. This is
consistent with the amplitude of the stochastic gravita-
tional waves from inflation that experience the large
squeezing.
We then explored the effect of gravitons on the process

of decoherence in a laboratory. We considered a system of
two massive particles, one of which is in a superposition
state of two spatially separated locations as shown in Fig. 3
and investigated the loss of coherence of the superposition
state caused by gravitons. In order to estimate the
decoherence rate, we presented two simple configurations

of superposition states. In the simplest configuration given
in Eq. (4.5), we found that the decoherence does not occur
unless we consider the momentum of the massive particle is
much larger than the Planck mass (c ¼ ℏ ¼ 1). As the
second simplest configuration, we considered the system
that repeats the first configuration Eq. (4.5) N times as time
evolves as shown in Fig. 5. We found that the decoherence
rate is enhanced by the factor N and decoherence happens
even when the momentum of the massive particle is smaller
than the Planck mass if we take a sufficiently large N. The
system we considered might be possible to get carried out
in a tabletop experiment with upcoming technology and
would open up the possibility of the first detection of the
graviton-induced decoherence. We expect that the graviton-
induced decoherence would offer new vistas to test quan-
tum gravity in tabletop experiments.
In order to perform a tabletop experiment to find

gravitons, we need a more concrete setup for the experi-
ment. Correspondingly, we should clarify to what extent
other sources of decoherence contribute and also refine the
method for analyzing the decoherence induced by grav-
itons. We leave these issues for future work.
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APPENDIX A: MOMENTUM INEGRAL

Here, we calculate the integral in Eq. (2.19):

̈ξ iðtÞ ¼ 1

2
ḧ cl

ijð0; tÞξ̂ jðtÞ − κffiffiffiffi
V

p ξ̂ jðtÞ
X
A

X
k≤Ωm

k2eAijδĥ
A
I ðk; tÞ

−
κ2m
4

1

ð2πÞ3 ξ̂
jðtÞ

Z
Ωm

d3k½PikPjl þ PilPjk − PijPkl�
Z

t

0

dt0k sin kðt − t0Þ d2

dt02
fξ̂ kðt0Þξ̂ lðt0Þg

þ κ2m
4

1

ð2πÞ3
Z

Ωm

d3k½PikPjl þ PilPjk − PijPkl�ξ̂ jðtÞ d
2

dt2
fξ̂ kðtÞξ̂ lðtÞg: ðA1Þ

By using the following angular integrals,

Z
dΩ ¼ 4π;

Z
dΩkikj ¼ 4

3
πδij;

Z
dΩkikjkkkl ¼ 4π

15
ðδijδkl þ δikδ

jlþδilδjkÞ; ðA2Þ

we find

Z
dΩ½PikPjl þ PilPjk − PijPkl� ¼

8π

5

�
δikδjl þ δilδjk −

2

3
δijδkl

�
: ðA3Þ

Then we can perform the momentum integral as
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Z
Ωm

d3k½PikPjl þ PilPjk − PijPkl� ¼
Z

Ωm

0

dkk2
Z

dΩ½PikPjl þ PilPjk − PijPkl�

¼ 8π

15

�
δikδjl þ δilδjk −

2

3
δijδkl

�
Ω3

m: ðA4Þ

If we define the limit representation of Dirac’s delta function as

fðt − t0Þ ¼ sinΩmðt − t0Þ
t − t0

→ Ωm → ∞πδðt − t0Þ; ðA5Þ

we have

fðt − t0Þjt0¼t ¼ Ωm;

fðt − t0Þjt0¼0 ¼
sinΩmt

t
≃ 0 for t ≠ 0;

d
dt0

fðt − t0Þ
����
t0¼t

¼ 0;

d
dt0

fðt − t0Þ
����
t0¼0

¼ sinΩmt −Ωmt cosΩmt
t2

≃ 0 as Ωm → ∞; ðA6Þ

d2

dt02
fðt − t0Þ

����
t0¼t

¼ −
1

3
Ω3

m;

d2

dt02
fðt − t0Þ

����
t0¼0

¼ 2 sinΩmt − 2Ωmt cosΩmt −Ω2
mt2 sinΩmt

t2
≃ 0 as Ωm → ∞: ðA7Þ

For Eqs. (A6) and (A7), after smearing the functions with an appropriate window function, these quantities vanish. The
momentum integral in the second line of the right-hand side of Eq. (A1) is written by the function fðt − t0Þ of this form

Z
Ωm

0

dkk2
Z

t

0

dt0k sin kðt − t0Þ d2

dt02
fξiðtÞξjðtÞg ¼

Z
t

0

dt0
d3

dt03
fðt − t0Þ d2

dt02
fξiðt0Þξjðt0Þg: ðA8Þ

Using the above results, we can evaluate as follows:

Z
t

0

dt0
d3

dt03
fðt − t0Þ d2

dt02
fξiðt0Þξjðt0Þg ¼

�
d2

dt02
fðt − t0Þ d2

dt02
fξiðt0Þξjðt0Þg

�
t

0

−
�
d
dt0

fðt − t0Þ d3

dt03
fξiðt0Þξjðt0Þg

�
t

0

þ
�
fðt − t0Þ d4

dt04
fξiðt0Þξjðt0Þg

�
t

0

−
Z

t

0

dt0fðt − t0Þ d5

dt05
fξiðt0Þξjðt0Þg

¼ −
1

3
Ω3

m
d2

dt02
fξiðt0Þξjðt0Þg þ Ω3

m
d4

dt04
fξiðt0Þξjðt0Þg − π

2

d5

dt05
fξiðt0Þξjðt0Þg: ðA9Þ

Then Eq. (A1) becomes

̈ξ iðtÞ ¼ 1

2
ḧ cl

ijð0; tÞξ̂ jðtÞ − κffiffiffiffi
V

p ξ̂ jðtÞ
X
A

X
k≤Ωm

k2eAijδĥ
A
I ðk; tÞ

þ κ2m
4

1

5π2
ξjðtÞ

�
δikδjl þ δilδjk −

2

3
δijδkl

��
Ωm

d4

dt04
fξiðt0Þξjðt0Þg − π

2

d5

dt05
fξiðt0Þξjðt0Þg

�
: ðA10Þ

This is the Eq. (2.22).

NOISE AND DECOHERENCE INDUCED BY GRAVITONS PHYS. REV. D 103, 044017 (2021)

044017-11



APPENDIX B: INFLUENCE FUNCTIONAL
METHOD

In this Appendix, we briefly explain the influence
functional method, particularly focusing on its applica-
tion to the current context. In Appendix B 1, we consider
the quantum electrodynamics (QED) setup which is the
same as the setup discussed in [17], and obtained the
same result. We then generalize the discussion to
the gravitational setup in Appendix B 2 to derive
Eq. (4.4).

1. Influence functional in QED

We consider the superposition state of an electrically
charged particle which is analogous to the setup we
discussed in Sec. IV, and briefly explain how we can
compute the coherence of the superposition state after
integrating out photons. The setup and the discussion in this
Appendix is essentially based on [17].
Specifically, we consider the superposition state of an

electrically charged particle such as an electron, and the
respective world lines of the particle are parametrized by
ðt;x1ðtÞÞ and ðt;x2ðtÞÞ. Corresponding 4-velocities are
vμaðtÞ≡ ð1; _xaðtÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _x2

a

p
for a ¼ 1, 2, which are nor-

malized as ημνv
μ
avνa ¼ −1.

Suppose that the superposition state survives for
0 < t < tf , and the system is in a certain initial quantum
state jΨðt0Þi at the initial time t0 < 0. Then, we have
x1ðtÞ ¼ x2ðtÞ for all t ∉ ð0; tfÞ. The schematic picture of
each trajectory is shown in Fig. 6. We impose the
normalization condition < Ψðt0ÞjΨðt0Þ > ¼ 1. In this
setup, the time evolution of the quantum state in the
Schrödinger picture can be written as

jΨðt0Þi → jΨðtÞi ¼ jΨ1ðtÞi þ jΨ2ðtÞi; ðB1Þ

wherewe assume that jΨ1ðtÞi and jΨ2ðtÞi are approximately
the eigenstates of the current density operator Ĵμðx; tÞ.
We refer to the respective eigenvalues as Jμ1ðx; tÞ ¼
ðρ1ðx; tÞ; J1ðx; tÞÞ and Jμ2ðx; tÞ ¼ ðρ2ðx; tÞ; J2ðx; tÞÞ, and
we treat an electric current Jμ as an external current. Writing
the charge of the particle as q, we can write these current
densities as Jμaðx; tÞ ¼ qvμaðtÞδðx − xaðtÞÞ. We then have
Jμ1ðx; tÞ ≠ Jμ2ðx; tÞ only for 0 < t < tf.
These two states are proportional to the initial state

jΨðt0Þi at the initial time t0 < 0, and hence we can write

jΨaðt0Þi ¼ cajΨðt0Þi; c1 þ c2 ¼ 1; ðB2Þ

for a ¼ 1, 2 without loss of generality. Here, ca can be
complex in general. Obviously, this setup is quite similar to
the gravitational setup discussed in Sec. IV.
We now discuss how photons affect the coherence

between these states. In the Coulomb gauge which is
specified by the condition ∂iAiðx; tÞ ¼ 0, the time
evolution of the system is governed by the action S ¼
S½A; J� þ Scoul½ρ� which is defined by

S½A; J�≡
Z

d4x

�
−
1

2
ð∂μAðxÞÞ2 þAðxÞ · JðxÞ

�
;

Scoul½ρ�≡ −
1

2

Z
d4x

Z
d3y

ρðxÞρðy; tÞ
4πjx − yj ; ðB3Þ

where x ¼ ðx; tÞ. The term
R
d4xðA · JÞ encodes the

influence of the external current JðxÞ on the time evolution.
Scoul expresses the influence of the Coulomb energy on
the system. Using the standard path-integral expression
of the unitary time evolution in the Lagrangian form,
one has

jΨaðtfÞi ¼ caeiScoul½ρa�
Z

DAjAðx; tfÞieiS½A;Ja�Ψ0½A�;

for a ¼ 1; 2: ðB4Þ

Here, Ψ0½A�≡Q
xhAðx; 0ÞjΨðt0Þi is the initial wave

functional. jAðx; tÞi denotes an eigenstate of the gauge
field ÂðxÞ in the Schrödinger picture: ÂðxÞjAðx; tÞi ¼
Aðx; tÞjAðx; tÞi.9 Using Eq. (B4), we obtain the path-
integral expression of the decoherence functional as

FIG. 6. The schematic diagram of each trajectory of a charged
particle. The superposition state survives for 0 < t < tf.

9Strictly speaking, the state jAðx; tÞi is also an eigenstate of
Ĵ, while we have omitted its eigenvalue dependence. We can
safely omit this dependence here because both jΨ1ðtfÞi and
jΨ2ðtfÞi are eigenstates of Ĵ with an identical eigenvalue
J1ðtfÞ ¼ J2ðtfÞ.

SUGUMI KANNO, JIRO SODA, and JUNSEI TOKUDA PHYS. REV. D 103, 044017 (2021)

044017-12



exp½−ΓðtfÞ�¼
���� hΨ2ðtfÞjΨ1ðtfÞi
hΨ2ðt0ÞjΨ1ðt0Þi

����
¼
����
Z

DAþ

Z
DA−

Y
x

δðAþðx;tfÞ

−A−ðx;tfÞÞeiðS½Aþ;J1�−S½A−;J2�ÞΨ0½Aþ�Ψ�
0½A−�

����:
ðB5Þ

This is nothing but the modulus of the generating functional
for photons in the Schwinger-Keldysh formalism. Then, the

right-hand side of (B5) can be obtained by computing all
the connected diagrams in which external currents are
connected by photon propagators just as we usually do in
the external field method. The diagram which contributes to
Γ is shown in Fig. 7, and the result is

ΓðtfÞ ¼
1

2

Z
tf

0

dt
Z

tf

0

dt0
Z

d3x

×
Z

d3yΔJiðx; tÞhfÂiðx; tÞ; Âkðy; t0ÞgiΔJkðy; t0Þ;

ðB6Þ

with ΔJ≡ J1 − J2 and Âðx; tÞ≡ Û†ðt; t0ÞÂðxÞÛðt; t0Þ,
Ûðt; t0Þ is a unitary operator expressing the time evolution
in the absence of the external current. Here, we used
ΔJðx; tÞ ¼ 0 for all t ∉ ð0; tfÞ, hAi ¼ 0, and the following
equality

hfÂiðx; tÞ; Âkðy; t0Þgi ¼
Z

DAþ

Z
DA−

Y
x

δðAþðx; tfÞ −A−ðx; tfÞÞeiðS½Aþ;0�−S½A−;0�ÞΨ0½Aþ�Ψ�
0½A−�Ac

i ðx; tÞAc
kðy; t0Þ;

ðB7Þ

whereAc ≡ AþþA−
2

. Equation (B6) precisely coincides with
the one obtained in [17]. Note that when hAi ≠ 0, we need
to replace hfÂiðx; tÞ; Âkðy; t0Þgi by its connected piece
which equals the symmetric two-point function of
δÂ≡ Â − hÂi:

hfÂiðx; tÞ; Âkðy; t0Þgiconnected ¼ hfδÂiðx; tÞ; δÂkðy; t0Þgi:
ðB8Þ

2. Influence functional in gravity

We consider the system discussed in Sec. IV. It is almost
obvious that our gravitational setup is formally almost

the same as the QED case we discussed in Appendix B 1
except the form of the action. In the gravitational setup, the
time evolution of this system is governed by the action
(2.10) in the Fermi normal coordinates, with treating ξi

as an external field whose time dependence is given by
hand. The last term on the right-hand side of (2.10) is the
interaction between gravitons and the system consisting of
two test particles, which could induce the loss of coherence
after integrating out gravitons. The Hamiltonian of the
system is still quadratic in the conjugate momentum of
gravitons, and hence the derivation of the path-integral
expression of the decoherence functional is parallel to the
discussion in Appendix B 1, leading to

exp½−ΓðtfÞ� ¼
���� hξ2ðtfÞjξ1ðtfÞihξ2ðt0Þjξ1ðt0Þi

���� ≈
����
Z

Dhþij

Z
Dh−ij

Y
x

δðhþijðx; tfÞ − h−ijðx; tfÞÞeiðS̃½h
þ
ij ;ξ

i
1
�−S̃½h−ij;ξi2�ÞΨ0½hþij�Ψ�

0½h−ij�
����; ðB9Þ

where S̃½h; ξ� is

S̃½h; ξ� ¼
Z

dt
Z

d3k
ð2πÞ3

X
A

�
1

2
_h Aðk; tÞ _h�Aðk; tÞ − 1

2
k2hAðk; tÞh�Aðk; tÞ þmκ

2
ḧ Aðk; tÞeAijðkÞξiðtÞξjðtÞΘðΩm − kÞ

�
:

ðB10Þ

FIG. 7. The diagram which contributes to Γ. Two blobs are the
external sources which are given by the difference of external
current densities. External sources are connected by the wavy
internal line which is the symmetric propagator of photons.
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Here, we took the infinite volume limit V → ∞. We also omitted the terms which only change the overall phase of jξ1ðtÞi
and jξ2ðtÞi so that they do not contribute to ΓðtfÞ. Equation (B9) implies that we can compute ΓðtfÞ by writing down all the
connected diagrams as in the QED case discussed in Appendix B 1. The result can be written in terms of the noise of
graviton δN̂ij as

ΓðtfÞ ≈
m2

8

Z
tf

0

dtΔðξiξjÞðtÞ
Z

tf

0

dt0ΔðξkξlÞðt0ÞhfδN̂ijðtÞ; δN̂klðt0Þgi: ðB11Þ

Here, ΔðξiξjÞðtÞ≡ ξi1ðtÞξj1ðtÞ − ξi2ðtÞξj2ðtÞ and δN̂ij is defined by (2.23). In this way, we obtain Eq. (4.4).
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