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We study quantum noise and decoherence induced by gravitons. We derive a Langevin equation of
geodesic deviation in the presence of gravitons. The amplitude of noise correlations tells us that large
squeezing is necessary to detect the noise. We also consider the decoherence of spatial superpositions of
two massive particles caused by gravitons in the vacuum state and find that gravitons could give a relevant
contribution to the decoherence. The decoherence induced by gravitons would offer new vistas to test

quantum gravity in tabletop experiments.
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I. INTRODUCTION

An understanding of the nature of gravity has been a
central issue in physics since the discovery of general
relativity and quantum mechanics. Nevertheless, no one has
succeeded in constructing quantum theory of gravity. In
particular, the existence of gravitons is still obscure [1]. In
these situations, it is legitimate to doubt the necessity of
canonical quantization of gravity [2]. Hence, it is worth
seeking an experimental evidence of quantum gravity.

Usually, theorists explore the field of quantum gravity
at energy scales near the Planck scale. However, it is far
beyond the capacity of the current or future particle
accelerators. Instead, cosmological observations have been
exploited for probing high-energy physics. In fact, cosmo-
logical observations suggest that the large scale structure of
the universe stems from the quantum fluctuations during
the inflationary stage. It is natural to consider that primor-
dial gravitational waves are also generated directly from
the quantum fluctuations. Hence, one possible approach to
testing quantum gravity is to study the nonclassicality of
primordial gravitational waves [3,4]. Recently, as an alter-
native approach, tabletop experiments are drawing attention
[5-7]. Remarkably, based on the development of quantum
information, several ideas to test the quantum nature of
gravity through laboratory experiments are proposed [8,9].
More recently, as a new probe of gravitons, noise in the
lengths of the arms of gravitational wave detectors is
discussed by using a path integral approach [10]. One of
our goals in this paper is to derive the quantum Langevin
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equation in order to obtain the noise in the gravitational
wave detectors.

The noise is usually associated with the decoherence
induced by quantum entanglement between a system and
gravitons [11]. Thus, as an approach to testing quantum
gravity, it would be important to understand the noise induced
by gravitons and then the decoherence caused by the noise.
The decoherence due to gravity in the context of quantum
superposition of massive objects has been investigated [ 1 2!
The effect of a gravitational field on the quantum dynamics
of nonrelativistic particles was investigated by using the
influence functional method and it is shown that the
decoherence due to a gravitational field is effective in
the energy eigenstate basis [14]. Moreover, based on the
effective field theory approach, the decoherence rate was
derived under the Markovian approximation (the assumption
that the correlation time is very short) [15]. The quantum
Markov master equation for gravitating matter was derived in
[16]. Following the paper of decoherence in the context of
electromagnetic dynamics [17], the effect of the gravitational
bremsstrahlung on the destruction process of quantum super-
position has been considered [18]. More explicit formulation
along this direction has been given in [19]. The formalism is
further applied to the system of atoms [20]. Recently, this
possibility was discussed again under the Markovian
assumption [21]. The decoherence due to quantum fluctua-
tions of geometry caused by gravitons is also discussed in
[22]. Since the Markovian approximation cannot be applied
to the decoherence caused by the gravitational bremsstrah-
lung, the non-Markovian decoherence process is analyzed in
[23]. In the above papers, the minimal coupling of a metric to a
particle has been considered. However, from the point of
view of the equivalence principle, the point particle does

"The cosmological decoherence due to thermal gravitons can
be found in [13].
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not feel gravity. Hence, the deviation of the geodesics
is studied in [24]. Thus, when considering the decoherence
due to gravitons, it would be necessary to take into
account both the non-Markov process and the equivalence
principle.

In this paper, we study the quantum noise and decoherence
in order to probe gravitons and ultimately quantum gravity.
First, we target quantum noise in gravitational wave detectors.
When gravitational waves arrive at the laser interferometer,
the suspended mirrors interact with the gravitational waves.
The mirror interacts with an environment of gravitons
quantum mechanically. By using Fermi normal coordinates,
we evaluate the effect of quantum noise induced by gravitons
on the suspended mirrors. We show that the noise in the
squeezed state can be sizable. The results we obtain by using
the quantum Langevin equation are consistent with those
derived by using the path integral method in [10].

Second, as our main goal in this paper, we consider a
tabletop experiment by using two massive particles, one of
which is superposed spatially, so called, the quantum state
of Schrodinger’s cat. Without using the Markovian
assumption, we give a formula for the decoherence rate
of the superposition induced by gravitons. We then evaluate
the decoherence rate for some simple configurations of
superposition states and show that the decoherence due to
gravitons could be a relevant contribution. To explore the
decoherence process due to gravitons would be a first step
toward discovery of gravitons in a laboratory.

The organization of the paper is as follows: In Sec. II, we
describe geodesics in the graviton background and derive a
Langevin type equation of the system by eliminating the
environment of gravitons. In Sec. III, we evaluate the noise
correlation functions and show that the noise can be
observable if the gravitons are in the squeezed state. In
Sec. IV, we discuss the decoherence induced by gravitons
and detectability of gravitons. We give a formula for the
decoherence rate and evaluate it for simple cases. The final
section is devoted to the conclusion. A detailed calculation
of a momentum integral is presented in the Appendix A and
the derivation of decoherence functionals is given in
Appendix B. We work in the natural unit: c =7 = 1.

II. QUANTUM MECHANICS IN THE
GRAVITON BACKGROUND

In this section, we present a model to study quantum
mechanics in the graviton background. It gives rise to the
basis for studying the noise and the decoherence due to low
energy gravitons. In particular, we derive the quantum
Langevin equation.

A. Gravitational waves

We consider gravitational waves in Minkowski space.
The metric describing gravitational waves in the transverse
traceless gauge is expressed as

ds* = —di* + (6;; + h;;)dx'dx/, (2.1)
where ¢ is the time, x' are spatial coordinates, J; jand h;; are
the Kronecker delta and the metric perturbations which
satisfy the transverse traceless conditions h;; ; = h;; = 0.
The indices (7, j) run from 1 to 3. Substituting the metric
Eq. (2.1) into the Einstein-Hilbert action, we obtain the
quadratic action

1 - y
2K'2 d4x V _gR = 8]('2/ d4x[h ]hij —h ]’khl‘j’k}, (22)
where k2 = 87zG and a dot denotes the derivative with
respect to the time. We can expand the metric field A;;(x', 1)
in terms of the Fourier modes

h(xi 1) = %Zhﬂ(r)eik"‘e{}(k), (2.3)
k.A

where we introduced the polarization tensor ef;(k) nor-

malized as ¢}/ (k)ef (k) = §'%. Here, the index A denotes

the linear polarization modes A = +, x. Note that we
consider finite volume V = L,L,L_ and discretize the k-
mode with a width k = (2zn,/L,,2zn,/L,,2zn /L))
where n = (n,,n,,n,) are integers. Substituting the for-
mula (2.3) into the quadratic action (2.2), we get

~ l'A LA _1 27A A
Sy_/dthA:Lh (k. )" (k. 1) = S K20 (k. 1) (K. 1) |
(2.4)

where we used k = |Kk|.

B. Action for two test particles

When gravitational waves arrive at the laser interferom-
eters, the suspended mirrors interact with the gravitational
waves. Let us regard the mirror as a point particle for
simplicity. A single particle, however, does not feel the
gravitational waves because of Einstein’s equivalence
principle at least classically. To see the effect of the
gravitational waves, we need to consider two massive
particles and measure the geodesic deviation between them.

In this subsection, we evaluate the effect of gravitational
waves on the two particles by introducing an appropriate
coordinate system called the Fermi normal coordinates
along one of their geodesics y, (see Fig. 1). The Fermi
normal coordinate system represents a local inertial frame.
The dynamics of the other geodesic of particle y, is
described by the position x'(¢) = £/(¢) in the vicinity of
the point P(0,7) and & represents the deviation.

The action for the two test particles along the geodesics
Yz Yo 1S given by
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FIG. 1. Two neighboring timelike geodesics (y,,y,) separated
by & are depicted in the blue lines and the green lines show two
neighboring spacelike geodesics (y,, 7y ) orthogonal to the geo-
desic y, in the spacelike hypersurface X,. We introduce the Fermi
normal coordinate system using the orthogonal geodesics at the
point P(0, 7).

SP:—m/ dT:—m/ dt
v 7d

7

—gu (&, 1)EHEY,

where & = (1,£(t)). Note that we omit the action for
the particle along y, because it is in the inertial frame and
then the action has no dynamical variables. The metric g,

up to the second order of x’ in the Fermi coordinates is
computed as

L 4 . .
ds? ~ (=1 = Ryjp;x'x’)dt* — gRoj,»kxkadtdx’

1
+ (5,-j 3lej,,px X )dx dx/. (2.6)

Here the Riemann tensor is evaluated at the origin x' = 0
in the Fermi normal coordinate system. Substituting the
metric (2.6) into the action (2.5), the action for the two
particles up to the second order of & is expressed as

S, ~ /y dzgéfz—%ROioj(o,z)gigf} (2.7)

Because the Riemann tensor Ry, is gauge invariant at the
leading order in the metric fluctuation ;;, we can evaluate
it in the transverse traceless gauge to get Rp;(0.7) =
—ﬁij(O, t)/2. We then finally obtain the action for the
geodesic deviation

S, = / dz[%é"er%hij(o, neEE|. (2.8)
€4

Notice that, when considering gravitation waves with
wavelengths smaller than the characteristic separation
length &, an approximation (2.6) cannot be used.
However, we expect that the effect from such gravitational

waves will be suppressed because of the equivalence
principle. Hence, we consider the action of the form

sz/y/dt{ '2+——ZZhAkz (k)& |,

k=<Q,
where the metric /;;(0, ) is replaced by the Fourier modes
in Eq. (2.3) and ) .o represents the mode sum with the

UV cutoff Q, ~ &1, We see a qubic derivative interaction
appear in the above action.

(2.9)

C. Particles in an environment of gravitons

From Egs. (2.4) and (2.9), the total action § = S, + S,
we consider is given by

S~ / dz; B WA (k, )™ (K, 1) — % 2R (K, 1) b (K, z)}

o fal3E LSS S

)5,4
(2.10)

Note that the geodesic deviation of particles in the graviton
background is studied in [10,22,24]. Now we canonically
quantize this system. We can expand the interaction picture

field /{(k, ), whose time evolution is governed by the
quadratic action, in terms of the creation and annihilation
operators as

R (k1) = an()ug(0) + &4 (-K)up(n). (2.11)

where the creation and annihilation operators satisfy the
standard commutation relations

[aa(k), &y (K')] = SiaeBans (04 (K), ap (K')]

= [a} (k). &) (k)] =0
and u; () denotes a mode function properly normalized as
i (D) uy (1) — wy (1)1 (1) = —i.

The Minkowski vacuum |0) is defined by a4 (k)|0) =0,
with choosing the mode function as

(2.12)

(2.13)

e~k = yM(7). (2.14)

1
ug(r) = Vak

8 is replaced by 6@)(k — k') when taking the infinite
volume limit L, L,, L, — co.
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An expectation value of fzf‘(k, t) can be nonzero for
generic quantum states, such as coherent states as we will
see in Sec. III A 1. In this case, it may be convenient
to divide the gravitational perturbation }Azf‘ around the
Minkowski background into a “classical” piece h(k, ) =
(h{(k.7)) and a “quantum” piece as

Shiv(k, 1) = hi'(k, 1) — hy(Kk.1). (2.15)
Here, (X) denotes an expectation value of an operator X for
a given quantum state. A precise value of the expectation
value depends on the given quantum state. We refer to Sh as
the gravitational quantum fluctuations, i.e., gravitons, in the
presence of the classical gravitational perturbations h.
Similarly, we promote the position &(¢) to the operator
(1) below.

hA(k, 1) = hA(K, 1) + 6h{(k, 1) +

m
e

it [[ar =D L i

D. Langevin type equation of geodesic deviation

The variation of the action Eq. (2.10) with respect to 2*4
and & gives the following equations of motion for the
operators in the Heisenberg picture:

. Km 2
) A ) = ST ) S 308 0),

(2.16)

Ei) == ehhr(k.0E(r).  (2.17)

K<Q,

Equation (2.16) is solved by standard Green’s function
techniques. Specifically we consider the setup where the
interaction between & and & is turned on at t+ = 0. Under
this setup, the formal solution of Eq. (2.16) is given by

()} (2.18)

The last nonhomogeneous solution describes the gravitational waves emitted from the particles. Substituting the formal

solution Eq. (2.18) into Eq. (2.17), we have

(1) = SIl(0.08/(1

k<Q,

——5/ Z > Kepshi(

A

dt/Z

m t . > .
- Wf’(f) Z [PiPjs+ PPy — Piijf]/ di'ksink(r — 1) —{EK(1)E7(F)}
k<Q 0

=3¢m

2

K“m
+—Z[PikPjZ+Piijk_P P& (1) 2{5() “(0)}. (2.19)
4V S dt
where we have defined
i 2K A A ik-x
h,j<x )= v eij(k)hcl(k, 1)e'*x, (2.20)
KA
and introduced the projection tensor P;; = 6;; — k; I_c orthogonal to the unit wave number k; = k;/k and used
1

Ze ekf E[Plkplf +PlfP]k Piijf]' (221)

Here, the UV-regulated mode sum ) in the second and the third lines of (2.19) can be performed by taking the
continuum limit of the k-mode by removing the width introduced in Eq. (2.3): 1/V Zk<g - 1/(2x) f n Bk. The
momentum integral is computed in Appendix A, and the result is

K'ZWL

B0~ S hej0.08/(0) + 5

2

sz

= —oN; ()f (1) + 2022

where we have defined

{5 Ojr + 6irdjk

Q |:5ik5jf + 51'1/”5]]( -

5

-S| 0 S5 O )

4
2 £/ S EH0E () 2.2)
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(Z)E%ZZ/CZ Ak, 7).

A Kk<Q,

(2.23)

The third term on the left-hand side represents the force of
radiation reaction. On the right-hand side, the first term is
the random force induced by gravitons, which is nothing
but quantum noise. The last term is not relevant in the
discussions of the noise and the decoherence. The sche-
matic expression of Eq. (2.22) without the last term is
obtained in [10]. The noise of gravitons 6N, ; ; always exists
if the gravitational waves are quantized. If the noise is
detected, it would be evidence that gravity is quantized.

III. QUANTUM NOISE INDUCED BY GRAVITONS

A. Quantum noise correlations

In this section, we compute the amplitude of the noise for
various quantum states.

The anticommutator correlation function of 6N,;(#) can
be computed by using Eqs. (2.21) and (2.12) in the infinite
volume limit L,, Ly, L, — oo as

2

" N K 2
({0N;(2), 6N (1)}) = 1022 (5ik5jf + 8ip0jk — §5ij5kf>

an
x / dkkSPs, (k. t.1),  (3.1)
0

where we defined the anticommutator symbol {-,-} as
{X, ¥} = (XY +Y X)/2, and Py, is given by

<{5h§‘(k, t),5h{*'(k’, 1)}) = SanOxix oPsu(k, 1.1). (3.2)

DY(B)ST(¢)a!, (=k)S(¢)D(B) = (a)(=k) + B;) cosh r — (@, (k) + By)e™ ™ sinh ry.

= (a,(k) + By) coshr —

Below we compute the noise correlation functions when the
graviton is in a squeezed-coherent state and discuss the
Minkowski vacuum as a special case. The coherent state or
squeezed state can be realized when the squeezing param-
eter or the coherent parameter goes to zero, respectively.

1. Squeezed coherent states

The definition of the squeezed coherent state |{, B) is

.B) =5(0)D(B)|0), (3:3)

where $(¢) and D(B) are the squeezing and the displace-
ment operators, respectively. They are expressed by

5(0) = exp 5 6 (K)an(-K) + 40} 10} (k)

k.A
(3.4)

0 -Bak)|. 63

where {; = r;exp[ig;] and ry is the squeezing parameter.
By is the coherent parameter. We assume that the parameter
{r and By only depend on k and are independent of the
direction of k. These operators are unitary, and satisfy the
following relations:

The vacuum expectation value of the above operators become

(0|D¥(B)

A

(01D (B)S" (¢)aj (=

§'(©)aa(k)5(£)D(B)[0)
k)S(0)D(B)[0) =

On the other hand, the transformation of the operator 6@’1“(k, t) is given by definition as

DY(B)S"(¢)sh{ (k.1)S(5)D(B) = D'(B)S"({)h

1 (k.0)8()D(B) -

(&} (=k) + B})e' sinh 1y, (3.6)

(3.7)

= By cosh ry — Bje'#  sinh ry, (3.8)
Bj cosh ry, — Bye™ "k sinh ry. (3.9)
(IDY(B)S ()1 (k, )S(£)D(B)[0).  (3.10)

Because /14 (k, 7) consists of the &4 (k) and @ (k), we see that the right-hand side of the above relation is independent of the

coherent parameter B; and we have

—at ! (—K)esinh ry)uy (1) + (&;(—k) coshry

—ay(k)e™rsinhry)uj (1)

D'(B)S"(0)shi (k.0)S(6)D(B) = (a(k) coshr
= ;! (1) (k) + 1" (1) (k)
= 8" Oh{ (k.0)3(0),

(3.11)
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where the mode function in the squeezed state is given
in terms of that in the Minkowski space in Eq. (2.14)
such as

u (1) = udl(t) cosh ry — e~ xul™ (1) sinh . (3.12)
Hence, the anticommutator correlation function of 6N ii(1)

in the squeezed coherent state in Eq. (3.1) becomes
independent of the coherent state such as

(¢, B|{5Nij(t)’ SN (1)}C. B)

Pyy(k.1.1) = Re[u (1) (¢')]
1
=5z [cos{k(t — ')} cosh2r,

—cos{k(t—1) — @i} sinh2r]. (3.14)
In general, the squeezing parameter r, and the phase ¢,
depend on k. However, for simplicity, we regard these
variables as constants. Then, plugging this into Eq. (3.13),
we obtain

<CvB|{5Nij(t)’6Nkf(t/)}

{.B)

o )
— 8526, 4+ 8,8, —=6::0 2096
b} ikYje itYjk ijYkt K Qm 2
107 . 3 =202 <5ik5,if +0i00j — §5ij5kf> F(Q,(1=1).r.¢9).
« A QISR (1) (1], (3.13) (3.15)
where where
1
F(x,r,¢) = — [{(5x* — 60x* 4 120) cos x 4 x(x* — 20x* 4 120) sinx — 120} cosh 2r
X
— {(5x* = 60x* + 120) cos (¢ — x) — x(x* — 20x*> + 120) sin (¢ — x) — 120 cos ¢} sinh 27]. (3.16)
|
Note that F(x, r, @) converges to zero for large x and the = where
function F(x, r,¢) for small x can be expanded as
1
| 10 F(x) = —[(5x* — 60x* + 120) cos x
F(x,r,¢) =—(cosh2r — cos ¢ sinh 2r) — —sin ¢ sinh 2rx *
6 7 + x(x* =20x% 4+ 120) sinx — 120].  (3.20)

25
- (cosh2r — cos ¢ sinh 2r)x* + O(x?).
(3.17)

We find that quantum noise correlations increase as Q,
increases.

2. The Minkowski vacuum state

For comparison, let us see the correlation functions of the
quantum noise in the Minkowski vacuum state which is
obtained by taking r; — 0 and then we have

Psy(k,1,7) = Re[uM (1) ut™(7)] = %cos{k(t -7}
(3.18)

Substituting this into Eq. (3.1), we get

(O{8N (1), 8N, (1) }|0)
K2Q5, 2
= 2072 <5ik5jf +6i6j — 35ij5kf> F(Q,(t-1)),

(3.19)

Note that, for small x, the function F(x) can be expanded as

F(x) :l—éx2 + O(x*).

- (3.21)

Comparing this with the result of the squeezed coherent
state, we see the quantum noise correlations are enhanced
exponentially by the squeezing parameter.

B. Detectability of the quantum noise

In this subsection, we roughly estimate the effective
strain /. corresponding to the quantum noise 6N ij and
discuss the detectability of the quantum noise. For a given
quantum state, the amplitude of the quantum noise in the
frequency domain can be characterized as

SN(f) = ( /_ ” dz<{5Nif'(z),5Nij(0)}>e2ﬂff'f>2. (3.22)

(o]

From Eq. (2.22), it is found that the response of & to the
presence of the classical gravitational wave and the
quautum noise is proportional to /i.(z,0) and SN(1),
respectively. Here we omitted spatial indices. This suggests
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that we can discuss the detectablity of the noise by using
the effective strain he(f) = (27f) 26N(f) in the fre-
quency domain.

Let us start with the Minkowski vacuum state. In this
case, the amplitude of the quantum noise in the frequency
domain can be computed as

) =z

3.23
", (3:23)

where the reduced Planck mass is M, ~ 10" GeV. The
corresponding effective strain is then

heir (f) = f{)i ~2x 1074 <L)é Hz7:  (3.24)

pl 1 Hz

For instance, the characteristic frequency of LIGO is
around 100 Hz. Then the amplitude of quantum noise
becomes A (f)] 100 1, ~ 107" Hz™/2. The strain sensi-

tivity of LIGO is about 10~23 Hz~!/2 for f ~ 100 Hz, so the
amplitude of quantum noise is too small to be detected.

However, if gravitational waves are in the squeezed state
(or in the squeezed coherent state) when arriving at the
detectors, the amplitude of the quantum noise is enhanced
by the exponential factor of the squeezing parameter as
seen in Eq. (3.14). That is,

1
hege(f) & 2 x 10742 (L>ze'k|k2,,f Hz2.  (3.25)

1 Hz

For instance, if the squeezing parameter is large as much
as et ~ 10?2, the amplitude of the quantum noise at the
characteristic frequency of LIGO becomes hgg(f) ~
1020 Hzz, which is detectably large. This point is
emphasized in [10].

One possible and well-known mechanism to produce
gravitons with large quantum fluctuations is inflation.
Gravitons produced during inflation experience large
squeezing which leads to the detectably large noise
arnplitudes.3 In the case of primordial gravitational waves,
the relation between the squeezing parameter and the
current frequency f is given by

AT
e |k:2nf~ 7 )

where f. is the cutoff frequency. In the case of grand
unified theory inflation, we have f, ~ 103 Hz. In this case,
the effective strain at f ~ 0.1 Hz, which is the characteristic

(3.26)

The gravitons may undergo the quantum decoherence during
inflation or during the propagation. However, when discussing
the amplitude of the noise, we do not need to take care of the
decoherence.

Ve Yo

&1(t)

&) | 3
a0 "

xt=0 xt =&t

FIG. 2. Timelike curves of two massive particles y, and y,,
and the y, is in a superposition state of two spatially separated
locations &;(f) and &,(¢). The superposition state survives
&1 (1) # &,(¢) for the duration 0 < 7 < ;.

1

frequency of DECIGO" [25,26], reads Ay (f) ~ 10724 Hz ™2
because we have e’ ~ 10'8. This is the reason why the
stochastic gravitational waves from inflation could be
detectably large. We here stress that, if we could detect
the noise SN, ;» it would imply discovery of gravitons.

IV. DECOHERENCE INDUCED BY GRAVITONS

In the previous section, we discussed the effect of noise
induced by gravitons on gravitational wave detectors. In
this section, we explore the effect of gravitons on the
process of decoherence in a laboratory.

We consider a system of two massive particles, one of
which is in a superposition state of two spatially separated
locations as shown in Fig. 2, and investigate the loss of
coherence of the superposition state caused by gravitons. If
the decoherence process due to gravitons is detectable in a
laboratory, it would be strong evidence that gravity is
quantized.’

A. Setup and the decoherence functional

We consider timelike curves y, and y, of two massive
particles with a mass m and y, is spatially superposed
across the distance &, — &, in the Minkowski space (see
Fig. 2). The superposition state survives for 0 < ¢ < f;, and
the system is assumed to be in a certain initial quantum
state |W(7y)) at the initial time #;, < 0. The normalization
condition is (¥(#)|¥(p)) = 1.

“DECIGO stands for Decihertz Interferometer Gravitational
Wave Observatory. It is a gravitational wave antenna in space
operating in the 0.1-10 Hz frequency band. It consists of three
draég—free spacecraft, 1,000 km apart from each other.

Strictly speaking, we may also need to take into account the
intrinsic gravitational decoherence proposed by [27,28].
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In the Schrodinger picture, the unitary time evolution of
the superposition state is expressed as

[¥(2)) = 161(2)) + &2(2)),

where [£;(7)) and |&, (7)) are approximately eigenstates
of the operator &' satisfying &7|&,(r)) = & (1)|&,(¢)) and
E11& (1)) = &(1)|& (7). The superposition state lasts for
0 <<t and &(1) = &(r) holds for 1 & (0, ;).

The decoherence arises through the interaction of the
system of massive particles with the environmental grav-
itons in this setup. The leading interaction is given in the
last term on the right-hand side of (2.10):

») %/dr%z D Ak el (k)EE.

A k<Q,

¥(1)) = (4.1)

(4.2)

To discuss the rate of decoherence, we use the influence
functional method [29] and compute the modulus of the
influence functional

(&a(1)61 (%))
(&:(10)1&:1(20))

The loss of quantum coherence between |&,(2)) and |&,(¢))
occurs when exp[-I'(#)] < 1. We can compute the
decoherence functional by integrating out the gravitons as’

exp[—r(tf)}E’ ’ (4.3)

2

)~y [ e

0

« /0 " AP AEE) (1) (SN (1), 5N (1)), (4.4)

Here A(E'E) (1) = & ()& (1) — & (1)&) (1) denotes a differ-
ence of &(7)&(r) in the superposition. The value of
A(E'E)(t) is determined by an experimental setup. We
consider some simple configurations of the superposition
state in order to evaluate the rate of decoherence explicitly
in the next subsection.

B. Decoherence rate for simple configurations
of the superposition state

For simplicity, we assume that & (1) = &,(1)8'! for
a=1, 2 and that = (&(¢) + &,(7))/2 is independent
of time. We then consider the configuration of the super-

position state with the separation A&(t) = &,(¢) — &,(2) as
2ut for 0 <t <1t/2,

AE(t) = { (4.5)
20(t; —t) for t;/2 <t < ty,

For the derivation of (4.4), see Appendix B.
"This parametrization is essentially the same as the one in [17].

| t=tf
Ae(t)
xt = fl(t) A =g(0)
I’ t=0
xt=0 xt=¢t
FIG. 3. The schematic diagram of the configuration of the

superposition state given in Eq. (4.5). The trajectory at x' = & is
spatially superposed across the distance A&(r) for the duration
0 < t < t;. The superposition state consists of the dotted red and
green lines. The averaged trajectory of the two dotted lines & is
time independent.

where the norm of velocity » is constant (0 < v < 1).
The velocity of the particle changes only at the moment
t = t;/2 in this configuration. The schematic diagram of
this configuration is depicted in Fig. 3. The maximum
separation at t = f;/2 is AE(t;/2) = vty = AL.

The decoherence rate Eq. (4.4) in the Minkowski
vacuum state is expressed as

F(tf)~30 2M2/ dt/ dY AE(H)AE(Y)F(Qu(t—1)).
(4.6)

Here we used Eq. (3.19). Substituting Eq. (4.5) into
Eq. (4.6), we obtain®

2m?v?
C(t) & =55 (2nE)>G(Qutr), 4.8
(tt) 5772M12)1( mg) ( mtf) ( )
where G(x) is given by
2
Gx)=1+ e [Sin(x) — 8sin (g)]
1|2 32
+ 2 [gcos(x) — 3 cos (2> + 10] (4.9)

*In terms of the maximum separation length AL, Eq. (4.8) can
be written as

2m2 G(Qm[f)
13

['(t) ~ 57[2—11/[]%1 (Qné)*(QuAL)? (4.7)

Note that 0 < AL < t; because the velocity of the particle cannot
exceed the speed of light.
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1.8 1
1.4 1
Gx)

0.6 1

20 40 60 80 100
X

FIG. 4. Anplotof G(x). G(x) grows polynomially for x < 1 and
then oscillatory behavior converges to order unity for x = 10.

The behavior of G(x) is shown in Fig. 4. The function G(x)
grows polynomially as G(x) ~ x*/288 + O(x°) for x < 1
and shows a damping oscillation around G(x) = 1 for large
x. As we explained in Sec. II B, the cutoff Q, satisfies

Since G(x) ~O(1), we find I'(#;) < 1 as long as the
momentum of the massive particle is much smaller
than the Planck mass, mv < My ~ 4x10°° g, and then
decoherence does not occur. On the other hand, for
mv > M, the decoherence happens. Let us estimate the
decoherence time 74, defined by I'(z4..) = 1 in this case.
In order to hold I'(z4..) = 1, G(x) has to be less than unity.
Thus the decoherence time can be computed by using
G(x) ~x*/288 (x < 1) as

M\ 12
QTgee ~ 10 x (—21) 7

o (4.11)

We see the decoherence time is Q,74.. < 1 for the case
that the momentum of the massive particle is much larger
than the Planck mass mv > M.

As another simple configuration of the superposition
state, we consider a system that the previous configuration
Eq. (4.5) repeats N times as

Q.&~O(1). If we take Q& = 1, then Eq. (4.8) reads N-1
AE() =S A1 k). (4.12)
2m?v? k=0
D(tr) % 5y G(Sa): (4.10)
MG with
|
20t for k(T,+T.) < t < (k+ 1/2)T, + kT..
A&t k) =4 20(tp— 1) for (k+ 1/2)T, + kT, <t < (k+ 1)T, + kT, (4.13)
0 for t <k(Tg+T.), (k+ )T+ kT, < t.
|
The configuration of the superposition state of (4.12) is 2m?v?
shown in Fig. 5. The duration of the superposition state is (1) ® N x 5.2 le G(QnTy), (4.14)
p

T, and each configuration repeats with a time interval 7.
We assume 7, > T so that each configuration is inde-
pendent. Under this assumption, we have

AE(t)
T, T,
D>
0 T, T, +T, X te ¢
(tf = NTS + (N - 1)Tc)
FIG. 5. The separation of the configuration of the superposition

state as a function of time. The blue solid line indicates the
configuration given in Eq. (4.12). The configuration of Eq. (4.5)
repeats N times as time evolves. The duration of the superposition
state is 7, and each configuration repeats in particular time
interval T..

with 7 =NT,+ (N—-1)T.. If we compared with
Eq. (4.10), we see an enhancement factor N come in.
Thus, if we take a sufficiently large N, decoherence occurs
(I'(#;) > 1) even when the momentum of the massive
particle is smaller than the Planck mass, mv < M. This
system might be possible to get carried out in a tabletop
experiment with upcoming technology and would open up
the possibility of the first detection of the graviton-induced
decoherence. Thus, we expect that the decoherence caused
by the noise of gravitons would offer new vistas to test
quantum gravity in tabletop experiments.

We note that the decoherence rate is enhanced for
squeezed states. As we showed in Sec. III B, gravitons
produced during inflation experience large squeezing.
Hence, it would be interesting to consider the decoherence
induced by the primordial gravitons. We should also notice
that our analysis of the superposition state can only be
applicable for a frequency range lower than &', Hence,
our estimation of the decoherence rate is a lower bound.
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We should assess the decoherence rate by taking into
account the contribution from a frequency range Q& > 1.

V. CONCLUSION

In this paper, we studied the physical effects induced by
gravitons on the system of two massive particles. We first
derived the effective equation of motion for the geodesic
deviation between two particles, that is, the Langevin-type
equation in (2.22). We found that gravitons give rise to the
noise to the dynamics of particles. Note that Eq. (2.22)
without the last term agrees with the one in [10]. We
calculated the noise correlation in squeezed coherent
states and demonstrated that the squeezed states enhance
it compared with the vacuum state. We then discussed the
detectability of the noise of gravitons by gravitational
wave detectors. It turned out that the amplitude of the
noise of gravitons in the case of the Minkowski vacuum is
too small to be detected by the current detectors. However,
in the squeezed state, the noise of gravitons is enhanced by
the exponential factor of the squeezing parameter. This is
consistent with the amplitude of the stochastic gravita-
tional waves from inflation that experience the large
squeezing.

We then explored the effect of gravitons on the process
of decoherence in a laboratory. We considered a system of
two massive particles, one of which is in a superposition
state of two spatially separated locations as shown in Fig. 3
and investigated the loss of coherence of the superposition
state caused by gravitons. In order to estimate the
decoherence rate, we presented two simple configurations

|

of superposition states. In the simplest configuration given
in Eq. (4.5), we found that the decoherence does not occur
unless we consider the momentum of the massive particle is
much larger than the Planck mass (¢ =7 =1). As the
second simplest configuration, we considered the system
that repeats the first configuration Eq. (4.5) N times as time
evolves as shown in Fig. 5. We found that the decoherence
rate is enhanced by the factor N and decoherence happens
even when the momentum of the massive particle is smaller
than the Planck mass if we take a sufficiently large N. The
system we considered might be possible to get carried out
in a tabletop experiment with upcoming technology and
would open up the possibility of the first detection of the
graviton-induced decoherence. We expect that the graviton-
induced decoherence would offer new vistas to test quan-
tum gravity in tabletop experiments.

In order to perform a tabletop experiment to find
gravitons, we need a more concrete setup for the experi-
ment. Correspondingly, we should clarify to what extent
other sources of decoherence contribute and also refine the
method for analyzing the decoherence induced by grav-
itons. We leave these issues for future work.
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APPENDIX A: MOMENTUM INEGRAL

Here, we calculate the integral in Eq. (2.19):

i 2,A 54
Ei(r) = 2 h$l(0,1)&4(r) ZA:gQ:k Loht (k. 1)
m 14, Q‘“S VT /d2 Sk(NEC (4
—7(2”)35"(1) k[P P+ PigPj — PijPy/| dtksmk(t—t)ﬁ{f ()& (1)}
sz 1 Qy 3
+T(27z)3 BKPyPjs + PigPji — PiiPre & (1 ) a7 {5 (&7 (0} (Al)
By using the following angular integrals,
4 kg Az .. » 5 151 5Tk
dQ = 4r, dQk'k) = §7z5’f , dQk kK k" k" = 5 (618K 4 §ikom +om T (A2)
we find
87 2
dQ[PyPjs + PiyPj — P;;Ps| = 5 0ibjr + 6ir0 i —§5ij5kf . (A3)

Then we can perform the momentum integral as
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Q. Qn
/ kPP s+ PigPjy — PijPrs] = / dkkz/dQ[Pikij + Pi¢Pji — PijP/]
0

87z 2
=15 <5zk5]f + 6,70, — 3 51‘,;5/05’) Q.

If we define the limit representation of Dirac’s delta function as

sinQ,, (¢ — )

fe=1)= - Q, — oond(t—1),

t—1
we have
f(l - t/)|z’:t = Qm9
in Q. ¢
flt=1)eg =00 for 140,
d
—ft=1") =0,
dr it
d sinQ .t —Q tcos Q¢
— f(t-"¢ = m m m ~(0 Q s
=0 > 25 O — 0
2 1 3
— f(t—71 =—-Q),
dt’zf( ),/:l 3° "
&2 2sinQ, r —2Q fcosQ, 1t — Q22 sinQ, ¢t
Wf(t—t’) _ 2sinQ, m cots2 m mlosin ~0 as Q, — oo,
=0

(AS)

(A6)

(A7)

For Egs. (A6) and (A7), after smearing the functions with an appropriate window function, these quantities vanish. The
momentum integral in the second line of the right-hand side of Eq. (A1) is written by the function f(z — ¢') of this form

3

[ avee [avwsink -0 qgwgoy = [ ar s ste- 1) s EOFO)

Using the above results, we can evaluate as follows:

t 1

t 3 2 . . 2 2 . . 3 . .
[ e =0 2 €O = |12 ru =) S €O - |- 1) E @)

0 0
4 t t S ) )
+ |- gatewan| - ['are-n s o)
4 T 5
) R KM ) S Sy L))
Then Eq. (A1) becomes
() = 50,080~ THOY Y Kejgii
k<Q,
K’m , o zd
P80 (0ude + 0,05 =500 ) (Qmm{f’(f)é’(l’)} TR EOI)).

This is the Eq. (2.22).
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APPENDIX B: INFLUENCE FUNCTIONAL
METHOD

In this Appendix, we briefly explain the influence
functional method, particularly focusing on its applica-
tion to the current context. In Appendix B 1, we consider
the quantum electrodynamics (QED) setup which is the
same as the setup discussed in [17], and obtained the
same result. We then generalize the discussion to
the gravitational setup in Appendix B2 to derive
Eq. (4.4).

1. Influence functional in QED

We consider the superposition state of an electrically
charged particle which is analogous to the setup we
discussed in Sec. IV, and briefly explain how we can
compute the coherence of the superposition state after
integrating out photons. The setup and the discussion in this
Appendix is essentially based on [17].

Specifically, we consider the superposition state of an
electrically charged particle such as an electron, and the
respective world lines of the particle are parametrized by
(t,x1(t)) and (t,x,(r)). Corresponding 4-velocities are
va(t) = (1,%,(1))//1 = X2 for a = 1, 2, which are nor-
malized as 77, vav, = —1.

Suppose that the superposition state survives for
0 <t < t;, and the system is in a certain initial quantum
state |W(zy)) at the initial time ¢z, < 0. Then, we have
x;(t) = x,(¢) for all ¢t & (0, t;). The schematic picture of
each trajectory is shown in Fig. 6. We impose the
normalization condition < W¥(#()|¥(ty) > = 1. In this
setup, the time evolution of the quantum state in the
Schrodinger picture can be written as

W(10)) = [¥(1)) = [¥1(2)) + [¥2(1)),  (BI)

xi=x i ( t) xl — xé’ (t)

I

i

X

FIG. 6. The schematic diagram of each trajectory of a charged
particle. The superposition state survives for 0 < ¢ < f.

where we assume that |¥; (7)) and |¥,(#)) are approximately
the eigenstates of the current density operator JH(x,1).
We refer to the respective eigenvalues as J/(x,1) =
(p1(x,2), J1(x, 1)) and Jo(x,1) = (pa(X, 1), J2(x, 1)), and
we treat an electric current J¥ as an external current. Writing
the charge of the particle as g, we can write these current
densities as J4(x,1) = qvh()5(x — x,()). We then have
Ji(x,t) # J5(x. 1) only for 0 < 1 < ;.

These two states are proportional to the initial state
|¥(10)) at the initial time 7y < 0, and hence we can write

Wa(to)) = cal¥(0)),  c1+ea=1, (B2)

for a = 1, 2 without loss of generality. Here, ¢, can be
complex in general. Obviously, this setup is quite similar to
the gravitational setup discussed in Sec. IV.

We now discuss how photons affect the coherence
between these states. In the Coulomb gauge which is
specified by the condition 0;A(x,t) =0, the time
evolution of the system is governed by the action S =
S[A, J] 4+ Scoulp] which is defined by

= /d4x {_%@A(x))z FAW) I,
ScoulLU] E_%/d4x/d3yw

, B3
dr|x —y| (B3)

where x = (x,7). The term [d*x(A-J) encodes the
influence of the external current J(x) on the time evolution.
Seour €xpresses the influence of the Coulomb energy on
the system. Using the standard path-integral expression
of the unitary time evolution in the Lagrangian form,
one has

¥, (1)) = coeiSord / DAJA (x. 1)) eSALg [A],

fora=1,2. (B4)

Here, Wo[A] =[][(A(x,0)|¥(#)) is the initial wave
functional. |A(x,7)) denotes an eigenstate of the gauge
field A(x) in the Schrodinger picture: A (x)|A(x, 1)) =
A(x,1)|A(x,1)).” Using Eq. (B4), we obtain the path-
integral expression of the decoherence functional as

. *Strictly speaking, the state |A(x, 7)) is also an eigenstate of
J, while we have omitted its eigenvalue dependence. We can
safely omit this dependence here because both |¥;(#)) and
|W,(t;)) are eigenstates of J with an identical eigenvalue

Ji (1) = Ja(tp).
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AJi(x, t) @NNANNNNN® AJK(y, )
Ai(x,t) AL, t")
FIG. 7. The diagram which contributes to I". Two blobs are the
external sources which are given by the difference of external

current densities. External sources are connected by the wavy
internal line which is the symmetric propagator of photons.

| (a1 (1)
expl—T (1) —\m‘

I (

_‘ / DA, / DA_J[o(A (x.%;)

A ST A (A |
(B5)

This is nothing but the modulus of the generating functional
for photons in the Schwinger-Keldysh formalism. Then, the

({Ai(x. 1), Ag(y. 1

/DA /DAH5 L(x, 1) —

where A¢ = A+ +A . Equation (B6) precisely coincides with

the one obtalned in [17]. Note that when (A) # 0, we need
to replace ({A;(x.1),A.(y.7)}) by its connected piece
which equals the symmetric two-point function of
SA— A — (A):

({64,(x. 1), 6Ax(y. 1)}).
(B8)

<{Ai<x7 t)vAk(yv tl)}>connected =

2. Influence functional in gravity

We consider the system discussed in Sec. IV. It is almost
obvious that our gravitational setup is formally almost
|

right-hand side of (B5) can be obtained by computing all
the connected diagrams in which external currents are
connected by photon propagators just as we usually do in
the external field method. The diagram which contributes to
I' is shown in Fig. 7, and the result is

1 [ o 3
F(tf):EA dt/0 dt/d~x

></d3yAJ"(Xst)<{Ai(X’t),flk(y’ )}AT(y. 1),

(B6)

with AJ=J, —J, and A(x,7) = U (1,10)A(x)U(1, 1),
U (1,1,) is a unitary operator expressing the time evolution
in the absence of the external current. Here, we used
AJ(x,t) =0forall 7 ¢ (0,%), (A) = 0, and the following
equality

A_(x. 1)) eiSA- 0-SA- 0D [A ]WHTA JAS (x. DAS (. ©).

(B7)

the same as the QED case we discussed in Appendix B 1
except the form of the action. In the gravitational setup, the
time evolution of this system is governed by the action
(2.10) in the Fermi normal coordinates, with treating &
as an external field whose time dependence is given by
hand. The last term on the right-hand side of (2.10) is the
interaction between gravitons and the system consisting of
two test particles, which could induce the loss of coherence
after integrating out gravitons. The Hamiltonian of the
system is still quadratic in the conjugate momentum of
gravitons, and hence the derivation of the path-integral
expression of the decoherence functional is parallel to the
discussion in Appendix B 1, leading to

exp(=r ()] = (ECSEE | [ 0w [ D [Toth 5.1 = ) 5515040 (8)
where S[h, £] is
Sih.é = /dt/ 2”];3;{ WAk, )i (k. 1) — kZhA(k DR K, 1) + ";"hA(k,t)eg;(k)gf(t)gf(z)(a(gm—k)].
(B10)
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Here, we took the infinite volume limit V — oco. We also omitted the terms which only change the overall phase of |£; (1))
and |&, (7)) so that they do not contribute to I'(#;). Equation (B9) implies that we can compute I'(#;) by writing down all the
connected diagrams as in the QED case discussed in Appendix B 1. The result can be written in terms of the noise of

graviton SN; j as

() / " A E) (1) / " 40 A () ({8, (1). 5 (1))

(B11)

Here, A(E'E) (1) = & (1)&](1) — & ()& (1) and 6N; is defined by (2.23). In this way, we obtain Eq. (4.4).
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