
 

Semilinear wave model for critical collapse

Isabel Suárez Fernández ,* Rodrigo Vicente , and David Hilditch
CENTRA, Departamento de Física, Instituto Superior Técnico IST, Universidade de Lisboa UL,
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In spherical symmetry compelling numerical evidence suggests that in general relativity solutions near
the threshold of black hole formation exhibit critical behavior. One aspect of this is that threshold solutions
themselves are self-similar and are, in a certain sense, unique. To an extent yet to be fully understood, the
same phenomena persist beyond spherical symmetry. It is therefore desirable to construct models that
exhibit such symmetry at the threshold of blowup. Starting with deformations of the wave equation, we
discuss models which have discretely self-similar threshold solutions. We study threshold solutions in the
past light cone of the blowup point. In spherical symmetry there is a sense in which a unique critical solution
exists. Spherical numerical evolutions are also presented for more general models, and exhibit similar
behavior. Away from spherical symmetry threshold solutions attain more freedom. Different topologies of
blowup are possible, and even locally the critical solution needs reinterpretation as a parametrized family.
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I. INTRODUCTION

The veracity of the weak and strong cosmic censorship
conjectures is of monumental importance in classical 3þ 1
dimensional gravity. Of these, the weak cosmic censorship
conjecture can be thought of informally as the statement
that, given generic asymptotically flat initial data, the
resulting solution will exist globally outside of a black
hole region [1,2]. Strong cosmic censorship is likewise the
conjecture of uniqueness of solutions emanating from
generic initial data, and is directly related to regularity
of solutions at blowup. A natural role for numerical
relativity in this context is in the construction of potential
counterexamples. A hope might be to give convincing
evidence that an open set of initial data do not have
complete black hole exteriors, or are sufficiently regular
at blowup so that they may be extended nonuniquely.
One strategy to try and construct such extreme space-

times is the following: consider a one-parameter family of
initial data such that small values of the (strength) param-
eter result in data close to flat space, with larger values
being more and more deformed. Then tune that strength
parameter to the threshold of black hole formation. Starting
with the pioneering work of Choptuik [3], studies along
these lines in spherical symmetry revealed behavior which
has since come to be known as critical phenomena in
gravitational collapse [4]. In short, it has been found that for
a given family there is, in a sense, a single solution lying
between dispersion and collapse to form a black hole.
Numerical evidence suggests that these solutions have

naked singularities, but these are not considered true
counterexamples to the cosmic censorship because the
phenomena occurs only by fine-tuning the initial data.
These threshold solutions are fascinating. Empirically, they
are either continuously or discretely self-similar, and,
remarkably, for a given model appear to be unique, in
the sense that all families of initial data exhibit the same
threshold solution, called the critical solution, and are thus
in some sense as close as possible to being attractors in
solution space. Consequently, when considered as a func-
tion of the strength parameter, solutions naturally give rise
to power law behavior near the threshold. For example,
when the critical solution is discretely self-similar, the
maximum of any nonvanishing curvature scalar, viewed as
a function of distance from the threshold in phase space,
follows a power law with a superposed periodic wiggle
[5–7]. Beyond spherical symmetry similar behavior has
also been observed, although typically with features that
have yet to be persuasively explained. For example in the
collapse of electromagnetic waves [8], threshold solutions
appear to be only approximately self-similar.
Much of the picture of critical collapse described above

was formed through a combination of the empirical
findings of numerical studies and thoughtful heuristic
modeling. To understand what might be shown rigorously
it is therefore desirable to construct maximally simple
models that capture the qualitative behavior near the
threshold of blowup. Various such investigations have
been made in the literature [9–13], but all so far exhibit
continuous, rather than discrete self-similarity. From the
point of view of nonlinear partial differential equations
(PDEs) we therefore seek a simple system that admits a*isabel.suarez@tecnico.ulisboa.pt
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small-data global existence result, but with large data
breaking down, and a unique discretely self-similar critical
solution at the threshold between the two regimes.
Illustrative would furthermore be if, just as the system,

□ϕ ¼ ∇aϕ∇aϕ; ð1Þ
can be used to motivate the utility of the classical null
condition [14], the model were to indicate the structural
form of nonlinear terms that generate self-similar critical
solutions. We denote by ∇ the Levi-Civita derivative
compatible with ηab, the Minkowski metric, and □ the
flat space d’Alembertian. The first aim of this work is to
give, for the first time, such a model. In what follows we
therefore present a number of different toys. With the
simplest parameter choice, one of our models is

□ϕþ ϕ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

p
1 − ϕ2

∇aϕ∇aϕ ¼ 0: ð2Þ

In Fig. 1 we plot a spherical solution to the associated
model equation at the threshold of blowup (albeit with
slightly different parameters for the purposes of plotting) in
the past light cone of the blowup point.
We are furthermore interested in the properties of

solutions near blowup and in the status of conjectures
related to cosmic censorship both in and beyond spherical
symmetry. All of the models we study, like (2), are
semilinear or equivalent to a semilinear PDE. That is,

there is no nonlinearity whatsoever in the principal part.
The principal part is furthermore taken to be the d’Alembert
operator associated with the Minkowski metric. With the
metric so fixed, there are no notions of either trapped
surface, or black hole formation intrinsic to the model.
Therefore, in any setup with this restriction, if blowup is
present without fine-tuning initial data, the obvious con-
jecture directly analogous to weak cosmic censorship must
be false. Our focus is instead on the nature of solutions at
the threshold of blowup, and the extent to which critical
behavior is obtained for solutions nearby in phase space.
The paper is structured as follows. In Sec. II we discuss

different notions of blowup and self-similarity. Then in
section III we explain the construction of our various
models. In Sec. IV we study the behavior of threshold and
near-threshold solutions. Afterwards, we restrict to spheri-
cal symmetry and present a set of numerical evolutions in
Sec. V. We conclude in Sec. VI.

II. SELF-SIMILAR FUNCTIONS

Solutions to our models either live forever or terminate at
some finite time. The manner in which solutions blow up in
our models splits into two categories depending on the
model; either just first derivatives, or the field itself
explodes pointwise. Each of these has an obvious, although
inequivalent, analog in L2-like norms. Solutions at the
threshold of blowupmay exhibit more structure, described in
many cases by self-similarity, a special class of scale
invariance. Likewise, in our examples two types of self-
similarity, discrete and continuous, manifest. Since these
threshold solutions are just examples of blowup, there must
then be a relationship between these notions, which we
discuss in this section.

A. Notions of blowup

The choice of a function space in which mathematical
results are formulated and proven is subtle, but for our
models a simple overview will suffice. A function fðt; xiÞ is
said to be in L2 at instant t if the integral

jjfjjL2 ≡
�Z

D½fðt;·Þ�
dΣjfðt; xiÞj2

�
1=2

ð3Þ

exists and is finite, where D½fðt; ·Þ� is the domain of
fðt; xiÞ. Throughout, the coordinates t; xi are taken to be
global inertial on Minkowski and dΣ denotes the natural
volume form induced in level sets of t. Another norm that
appears in the study of wave equations is given by

jjfjjH1 ≡
�Z

D½fðt;·Þ�
dΣ

�
jfðt;xiÞj2þ

X
i
j∂ifðt;xiÞj2

��
1=2

:

ð4Þ
When this quantity is finite we will colloquially refer to the
function as being H1. Here and in what follows ∂i denotes

FIG. 1. A contour plot of a threshold solution of model 3 with
A3 ¼ 1=15, see Eq. (24). The parameter here was chosen simply
for clarity of plotting. This threshold solution blows up inH1 (and
not in L2) in a discretely self-similar fashion at ðt⋆; r⋆Þ ¼ ð1; 0Þ.
In the inset the solution is plotted along the red curve tþ 2rðtÞ ¼
1 indicated in the main plot. The figure is naturally compared
with Fig. 1 of [15].
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the partial derivative ∂=∂xi. More generally, a function
fðt; xiÞ is said to be in the Sobolev space Hk at instant t if
the norm [16]

jjfjjHk ≡
�Z

D½fðt;·Þ�
dΣ

X
jαj≤kj∂α

i fðt; xiÞj2
�

1=2
ð5Þ

is finite. In the last expression, we are using the multi-index
notation with the 3-tuple α ¼ ðα1; α2; α3Þ of non-negative
integers, where jαj ¼ α1 þ α2 þ α3 and ∂α

i f ≡ ∂α1
x ∂α2

y ∂α3
z f.

Note thatH0≡L2.We additionally consider theE1-norm [14]

jjfjjE1≡
�Z

D½fðt;·Þ�
dΣ

�
j∂tfðt;xiÞj2þ

X
i
j∂ifðt;xiÞj2

��
1=2

;

ð6Þ

which is perhaps the norm that appears most naturally for
wave equations.When a functionwhich is initially inHk (E1)
fails to be so at some instant t0, we say that it “blows up” inHk

(E1) at that instant t0. Clearly, if a function blows up inHk, it
blows up also in Hk0 with k0 > k.
We might like to restrict our attention exclusively to

classical solutions with bounded derivatives (called Ck
b) and

discuss blowup exclusively in terms of the field or
derivatives thereof. Alternatively, we may want to consider
the function space L∞ of measurable bounded functions;
this space contains and has the same norm of C0

b. However,
besides the inconvenient fact that proofs of existence and so
forth do not naturally appear in these spaces, the formu-
lation of the weak cosmic censorship itself [2] is given in
terms of local L2 integrability of the connection coeffi-
cients. Intuitively this makes sense, because we can
introduce local inertial coordinates at any point, and so
if some blowup occurs and is unavoidable we might expect
it to be associated with at least one derivative of the metric,
and hence the connection appears naturally. From a
modeling point of view, we are therefore more interested
in finding semilinear wave equations with blowup in E1

rather than in L2.

B. Self-similar functions

The notion of self-similarity has to do with invariance
under certain scale transformations. We consider two kinds
of self-similarity; continuous (CSS) and discrete (DSS). A
scalar function f is said to be CSS if there exists a
coordinate system ðt; xiÞ and a ν ∈ R such that

fðλt; λxiÞ ¼ λνfðt; xiÞ; ð7Þ

for any λ > 0. Notice that we have chosen our coordinates
so that the origin coincides with the center of the symmetry.
When ν is an integer, f is also called a homogeneous
function of degree ν. On the other hand, a function f is said

to be DSS if there exists coordinate system ðt; xiÞ, a ν ∈ R,
and some Δ > 0 such that (7) holds for λ ¼ e−mΔ, with
any m ∈ Z. Thus, DSS functions have a fractal-type
behavior under scale transformations. The condition (7)
is often expressed in similarity coordinates ðT;XiÞ¼
ð−logjtj;xi=tÞ as

fðT þ τ; XiÞ ¼ e−ντfðT; XiÞ; ð8Þ

where τ ¼ − log λ. In the case of DSS functions the last
condition is satisfied for τ ¼ mΔ.

C. Self-similarity and blowup

Interestingly, self-similar functions offer special exam-
ples of blowup, either pointwise or under some integral
norm. For example, a CSS function satisfying (7)—with xi

the canonical Cartesian coordinates—satisfies also

Z
R3

dΣ
X
jαj¼k

j∂α
i fðt; xiÞj2

¼ 1

λ2ðν−kþ3=2Þ

Z
R3

dΣ
X
jαj¼k

j∂α
i fðλt; xiÞj2; ð9Þ

with any λ. Here we are assuming that the domain of f is
R3, except (possibly) a set of zero measure. Choosing λ ¼
1=jtj we see that for t < 0

Z
R3

dΣ
X
jαj¼k

j∂α
i fðt; xiÞj2

¼ 1

jtj2ðk−ν−3=2Þ
Z
R3

dΣ
X
jαj¼k

j∂α
i fð−1; xiÞj2: ð10Þ

Thus, a nontrivial CSS function with ν ≤ −3=2þ k cannot
be in Hk for all times; if it is in Hk at a particular instant
t < 0, it must blow up at t ¼ 0. It is easy to see that the
same argument goes through for CSS functions in E1; if a
nontrivial CSS function with ν ≤ −1=2 is in E1 at a
particular instant t < 0, it must blow up at t ¼ 0. A CSS
function satisfies

∂α
t fðt; xiÞ ¼

1

λν−k
∂α
λtfðλt; λxiÞ; jαj ¼ k;

∂α
xifðt; xiÞ ¼

1

λν−k
∂α
λxifðλt; λxiÞ; jαj ¼ k; ð11Þ

with any λ. Choosing again λ ¼ 1=jtj, we obtain

∂α
t fðt;xiÞ¼

1

jtjk−ν∂
α
λtfðλt;λxiÞjð−1;xi=jtjÞ; jαj¼k;

∂α
xifðt;xiÞ¼

1

jtjk−ν∂
α
λxifðλt;λxiÞjð−1;xi=jtjÞ; jαj¼k: ð12Þ
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So, a CSS function with ν < k cannot be in Ck
b for all times;

if it is in Ck
b at a particular instant t < 0, it must blow up at

t ¼ 0. The two arguments above can be easily extended to
DSS functions with the same bounds on ν by taking the
limit t → 0− through a sequence tm ¼ −1=λm ¼ −e−mΔ.
Note that DSS functions satisfy (9) and (11) for a discrete
set of values of λ. The results of this section are summarized
in Table I.

D. Sobolev embedding

It can be shown (for details see Theorem 6.5 in [16]) that,
for each k a non-negative integer and s > kþ 3=2, there is
a constant c such that

jjfjjCk
b
≤ cjjfjjHs; ð13Þ

with f an arbitrary function. In particular, for k ¼ 0 and
s ¼ 2,

jjfjjC0
b
≤ cjjfjjH2 : ð14Þ

This implies that if a function blows up in C0
b, it also blows

up in H2. Since the C0
b norm is equal to the L∞ norm, if a

function blows up in L∞ it also blows up in H2.

III. MODEL EQUATIONS

In this section we present a simple method to generate
nonlinear wave equations with analytically known solu-
tions, which we state explicitly in terms of partial waves.
We then list the specific models used throughout the article.
Some, but not all, of our models follow this procedure
directly.

A. The wave equation and partial wave solutions

Let ðr; θAÞ be spherical polar coordinates built from xi in
the usual manner, with polar coordinates θ1 and θ2. In these
coordinates the flat-space wave equation is

□φ≡ −∂2
tφþ ∂2

rφþ 2

r
∂rφþ Δφ ¼ 0; ð15Þ

with Δ the standard Laplacian on the round two-sphere of
area radius r. The general solution can be written in terms of
partial waves φlmðt; rÞ, with the full solution constructed as

φ ¼
X∞
l¼0

Xl

m¼−l
φlmðt; rÞYlmðθAÞ; ð16Þ

withYlm the standard spherical harmonics. Each partial wave
solves the associated equation,

−∂2
tφlm þ ∂2

rφlm þ 2

r
∂rφlm −

lðlþ 1Þ
r2

φlm ¼ 0: ð17Þ

For our needs a convenient representation for the exact
regular solution of this equation is [17]

φlm ¼
Xl

k¼0

ðkþ lÞ!
2kk!ðl − kÞ!

1

rkþ1
½Fl−kðuÞ − ð−1Þl−kFl−kðvÞ�;

ð18Þ

with retarded time u ¼ t − r and advanced time v ¼ tþ r
defined in the usual way, and F a real-valued function which
we take to decay at large argument, and which is determined
by the desired initial data for the partial wave and its time
derivative.

B. Deformation functions

To generate nonlinear equations, we use the deformed
scalar field ϕ≡DðφÞ, which, whenever φ satisfies (15),
must solve

□ϕ − χ∇aϕ∇aϕ ¼ 0; ð19Þ

where ∇aϕ∇aϕ≡ −ð∂tϕÞ2 þ ð∂rϕÞ2 þ =∇Aϕ=∇Aϕ and =∇
denotes the covariant derivative induced by ηab on the
two-spheres of constant u and v. The deformation function
D is taken to be twice continuously differentiable and such
that

χ ¼ D00

D02 ð20Þ

is single valued when viewed as a function of ϕ. We require
moreover that DðφÞ ≃ φ for small φ. This implies, by
construction, that the model has global solutions for small
initial data, that analytic solutions can be trivially con-
structed using (18). Moreover the manner of blowup for
larger data, should that occur, is determined by the specific
choice of D. We will see below that when the deformation
function involves a periodic function this construction has
to be adjusted slightly, but the core idea is unaltered. Below
we list the models studied in the article.

C. Model 1

This model is generated by the deformation function

ϕ ¼ DðφÞ≡ A−1
1 logð1þ A1φÞ; ð21Þ

TABLE I. A CSS or DSS function with degree ν [see Eq. (7)]
must blow up in a given function norm (first line) if the associated
condition in ν (second line) is satisfied.

Hk E1 Ck
b

ν ≤ −3=2þ k ν ≤ −1=2 ν < k
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which results in the nonlinear wave equation

□ϕþ A1∇aϕ∇aϕ ¼ 0: ð22Þ

The parameter A1 is a real constant that we are free to
choose. Similar parameters appear in the subsequent
models. This is the classical example of Nirenberg which
motivates the classical null condition for nonlinear wave
equations and was discussed in [14]. We use it primarily to
determine reliability of our code in preparation for solving
models that do not arise as deformations of the wave
equation.

D. Model 2

Ultimately we are interested not in equations that arise
by manipulation of the wave equation, but those that appear
in physical applications in general relativity (GR). To build
at least some confidence that the properties of threshold
solutions of the former are not peculiar to those specific
models, we will compute numerical solutions for systems
that cannot be constructed in the same way. The first of
these is a modification of model 1 to a system of two
coupled scalar fields. It is described by the system

□ϕ1 þ A2∇aϕ2∇aϕ2 ¼ 0;

□ϕ2 þ B2∇aϕ1∇aϕ1 ¼ 0: ð23Þ

Here we do not know solutions analytically, but in the
special case that A2 ¼ B2 ¼ A1 they coincide with those of
(22) provided that ϕ1 and ϕ2 and their time derivatives
agree as functions.

E. Model 3

Looking at plots of the Choptuik solution, for example
Figs. 3 and 4 of [18], one is starkly reminded of the
topologists sine curve. We therefore want to consider
deformations involving periodic functions. To avoid subtle-
ties with branch cuts however we adjust the construction
made in (19) as follows:

ϕ1 ¼ D1ðφÞ≡ A3 sin ½A−1
3 logð1þ φÞ�;

ϕ2 ¼ D2ðφÞ≡ A3 cos ½A−1
3 logð1þ φÞ�: ð24Þ

Although these deformations are not globally invertible,
D00

1=D
02
1 and D00

2=D
02
2 are single-valued functions of both ϕ1

and ϕ2. Together these generate the nonlinear coupled
equations,

□ϕ1 þ
ϕ1 þ A3ϕ2

A2
3 − ϕ2

1

∇aϕ1∇aϕ1 ¼ 0;

□ϕ2 þ
ϕ2 − A3ϕ1

A2
3 − ϕ2

2

∇aϕ2∇aϕ2 ¼ 0; ð25Þ

with the algebraic constraint ϕ2
1 þ ϕ2

2 ¼ A2
3. Using the

constraint we obtain

∇aϕ1∇aϕ1

A2
3 − ϕ2

2

−
∇aϕ2∇aϕ2

A2
3 − ϕ2

1

¼ 0; ð26Þ

and also

ϕ1□ϕ1 þ ϕ2□ϕ2 þ∇aϕ1∇aϕ1 þ∇aϕ2∇aϕ2 ¼ 0; ð27Þ

which, with system (25), results in

∇aϕ1∇aϕ1 þ∇aϕ2∇aϕ2 ¼ A2
3

∇aϕ1∇aϕ1

A2
3 − ϕ2

2

: ð28Þ

Using this relation it is easy to see that system (25), subject
to the algebraic constraint, is equivalent to

□ϕ1 þ A−2
3 ðϕ1 þ A3ϕ2Þð∇aϕ1∇aϕ1 þ∇aϕ2∇aϕ2Þ ¼ 0;

□ϕ2 þ A−2
3 ðϕ2 − A3ϕ1Þð∇aϕ1∇aϕ1 þ∇aϕ2∇aϕ2Þ ¼ 0:

ð29Þ

For the Cauchy problem, solutions with initial data satisfy-
ing the constraint will be of the form (24), and thus satisfy
the constraint everywhere for all times. For the initial
boundary value problem boundary conditions must be
constraint preserving. At the continuum level there is thus
no clear advantage of (29) over (25), but crucially for
numerical approximation we avoid the explicit poles
present in the latter. By using the constraint to eradicate
either ϕ1 or ϕ2 in Eq. (25), we see that the fields satisfy
equations similar to (2).

F. Model 4

Just as we view model 2 as an extension of model 1, in
model 4 we extend model 3 by dropping the algebraic
constraint on ϕ2

1 þ ϕ2
2. We simultaneously adjust the

equations of motion to

□ϕ1 þ A−2
4 ðϕ1 þ A4ϕ2Þð∇aϕ1∇aϕ1 þ∇aϕ2∇aϕ2Þ ¼ 0;

□ϕ2 þ B−2
4 ðϕ2 − B4ϕ1Þð∇aϕ1∇aϕ1 þ∇aϕ2∇aϕ2Þ ¼ 0:

ð30Þ

Again, since this model was not obtained from a deforma-
tion of the wave equation, solutions of this system are not
known analytically in general, but are coincident when the
constraint is satisfied and A4 ¼ B4. Blowup solutions will
be investigated carefully in Sec. IV, but it is already obvious
that blowup solutions for model 3 will be oscillatory in
nature. The key question here, which we examine numeri-
cally in Sec. V, is whether or not this behavior persists
generically with the present model.
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G. Model 5

Returning to the general deformation function, we can
define the conformal metric η̃ab ¼ Ω2ηab with conformal
factor Ω−2 ¼ ∂φD viewed now as a function of ϕ. We
denote the inverse conformal metric by η̃ab and the
associated covariant derivative by ∇̃a. In these terms the
general deformation equation (19) can be rewritten as

□̃ϕ≡ η̃ab∇̃a∇̃bϕ ¼ 0: ð31Þ

It follows immediately that the deformed wave equation
admits the standard stress energy,

Tab½ϕ� ¼ ∇̃aϕ∇̃bϕ −
1

2
η̃ab∇̃cϕ∇̃cϕ; ð32Þ

where, as is conventional, indices on the conformal
covariant derivatives were raised using the conformal
metric. The stress energy (32) is of course covariantly
conserved ∇̃bTab½ϕ� ¼ 0. In this manner we have rewritten
our original model in a clean geometric form that resulted
in a quasilinear equation. This reformulation by itself is not
particularly helpful, but in the future the conserved energy
will certainly be useful in proving the findings of this paper
rigorously. This construction also allows us to build more
general “DSS” type models too. Let ϕ ¼ ϕ0, and suppose
that the original deformation function D is monotonic
increasing on its domain. Inspired by (24), set

ϕ1 ¼ P1ðϕ0Þ; ϕ2 ¼ P2ðϕ0Þ; ð33Þ

where P1 and P2 are any periodic functions that satisfy

P2
1 þ P2

2 ¼ δ2; P02
1 þ P02

2 ¼ ε2; ð34Þ

with δ and ε positive functions of ϕ0 uniformly bounded
above and below away from 0. Computations very similar
to those for model 3 in the build up to (29) then reveal the
regularized equations of motion,

□̃ϕ1 − ε−2P00
1ðϕ0Þð∇̃aϕ1∇̃aϕ1 þ ∇̃aϕ2∇̃aϕ2Þ ¼ 0;

□̃ϕ2 − ε−2P00
2ðϕ0Þð∇̃aϕ1∇̃aϕ1 þ ∇̃aϕ2∇̃aϕ2Þ ¼ 0: ð35Þ

These equations can be solved alongside (31) for a
complete model. The fields ϕ1 and ϕ2 have a combined
conserved stress energy that can again be obtained naturally
by a conformal transformation. This model has the dis-
advantage of requiring more fields, but is more robust than
model 3, because it grants a large amount of freedom in
choosing a compactifying function. A shortcoming of using
(31) with (35) is that the coupling between the fields is one
directional, which makes it impossible, when choosing
initial data, that violate the various constraints between the
different fields, to seed nontrivial evolution in ϕ0 from ϕ1

and ϕ2. A final modification can be made to side-step this.
Using

ε2∇̃aϕ0∇̃aϕ0 ¼ ∇̃aϕ1∇̃aϕ1 þ ∇̃aϕ2∇̃aϕ2; ð36Þ

Eq. (31) can be rewritten as

□̂ϕ0 − ε−2χð∇̃aϕ1∇̃aϕ1 þ ∇̃aϕ2∇̃aϕ2Þ ¼ 0; ð37Þ

where □̂ϕ0 ≡ η̃ab∇a∇bϕ0 denotes the reduced wave oper-
ator associated with η̃ab, and χ is again to be viewed as a
function of ϕ0. Interestingly, the combined system (35) and
(37) admits a natural analogy with GR. The fields ϕ1;ϕ2

are akin to some field theory matter and, since it is required
in building η̃ab, the field ϕ0 to a metric component.

IV. CRITICALITY, REGULARITY AND THE
THRESHOLD OF BLOWUP

In this section we focus on nonlinear equations, as
exemplified by models 1 and 3, that are generated by a
deformation of the wave equation. We examine the extent
to which threshold solutions and those in a neighborhood of
the threshold in phase space exhibit a behavior like that in
gravitational collapse. We start with spherical solutions and
then move on to the more general setting.

A. Bounds and blowup in spherical symmetry

We want to establish that spherical threshold solutions
blow up at the origin. We start with solutions to the wave
equation. In this context the d’Alembert solution (18) takes
the well-known form

φ ¼ 1

r
½Fðtþ rÞ − Fðt − rÞ�: ð38Þ

Consider a subset fφ⋆ðt; rÞg of the solutions (38), such that
for t < t⋆, we have φ⋆ðt; rÞ > ξ⋆, some constant, and
φ⋆ðt⋆; r⋆Þ ¼ ξ⋆ is a local minimum. Loosely speaking
we may think of the point ðt⋆; r⋆Þ as the location of
blowup in the deformed equation, so that the label ⋆,
somewhat prejudicially, stands for “critical.” This mini-
mum must be attained at the origin, r⋆ ¼ 0. To see this,
suppose on the contrary that r⋆ > 0. Since ðt⋆; r⋆Þ is a local
extremum we have

r⋆½F0⋆ðt⋆þ r⋆ÞþF0⋆ðt⋆−r⋆Þ� ¼F⋆ðt⋆þ r⋆Þ−F⋆ðt⋆− r⋆Þ;
F0⋆ðt⋆þ r⋆Þ¼F0⋆ðt⋆− r⋆Þ; ð39Þ

which implies that

φ⋆ðt⋆; r⋆Þ ¼ 2F0⋆ðt⋆ − r⋆Þ ¼ ξ⋆: ð40Þ

At the origin however we have
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φ⋆ðt; 0Þ ¼ 2F0⋆ðtÞ; ð41Þ

which gives

φ⋆ðt⋆ − r⋆; 0Þ ¼ φ⋆ðt⋆; r⋆Þ ¼ ξ⋆: ð42Þ

By assumption r⋆ > 0, so this contradicts the assumption
that φ⋆ðt; 0Þ > ξ⋆ for t < t⋆. Thus we have shown that
r⋆ ¼ 0. Consequently the global minimum of a spherical
solution to the wave equation occurs at the origin. Consider
now a compactifying deformation function D½φ� ¼ CðφÞ,
with CðφÞ defined on φ > ξ⋆ and such that we have the
blowup

lim
φ→ξ⋆

CðφÞ ¼ ∞: ð43Þ

Recall from Sec. III that we additionally require CðφÞ ≃ φ
for small φ. For a one-parameter family of initial data, the
solutions of Eq. (19) at the threshold between global
existence and blowup are of the form ϕ⋆ðt; rÞ≡
C½φ⋆ðt; rÞ�. These are called threshold solutions, and by
the previous discussion must blow up at ðt⋆; 0Þ.

B. Criticality of spherical threshold solutions

Interestingly, the threshold solutions of our deformation
models are universal in the sense that the form of their
blowup near ðt⋆; 0Þ is independent of the initial conditions
and, thus, of the family of initial data considered. We
therefore call this “late time” universal solution a critical
solution. To illustrate this notice that the original solution to
the wave equation satisfies,

lim
ðt;rÞ→ðt⋆;0Þ

φ⋆ðt; rÞ

∼ ξ⋆ þ
1

2
∂2
tφ⋆ðt⋆; 0Þðt⋆ − tÞ2

−
1

2
∂t∂rφ⋆ðt⋆; 0Þðt⋆ − tÞrþ 1

2
∂2
rφ⋆ðt⋆; 0Þr2: ð44Þ

Moreover, it is easy to show that ∂t∂rφðt; 0Þ ¼ 0 and
∂2
tφðt; 0Þ ¼ 3∂2

rφðt; 0Þ ¼ 2F000ðtÞ for any regular solution
(18) of the wave equation. The last limit thus becomes

lim
ðt;rÞ→ðt⋆;0Þ

φ⋆ðt; rÞ

∼ ξ⋆ þ F000⋆ ðt⋆Þ
�
ðt⋆ − tÞ2 þ 1

3
r2
�

∼ ξ⋆ þ F000⋆ ðt⋆Þe−2T
�
1þ 1

3
X2

�
; ð45Þ

where in the last line we have introduced similarity adapted
coordinates

T ¼ − logðt⋆ − tÞ; X ¼ ðt⋆ − tÞ−1r; ð46Þ

and expanded about ðt⋆; 0Þ. Working with model 1 and
setting A1¼ 1 we have CðφÞ ¼ log ð1þ φÞ. Then ξ⋆ ¼ −1,
which gives

lim
ðt;rÞ→ðt⋆;0Þ

ϕ⋆ðt; rÞ

∼ −2T þ log

�
1þ 1

3
X2

�
þ log ½F000⋆ ðt⋆Þ�; ð47Þ

where the first term is the critical solution; note that in the
neighborhood of ðt⋆; r⋆Þ, within its past light cone, we have
X ≤ 1. To leading order this expression is independent of
the initial data, which illustrates the universality of blowup
of threshold solutions. Evidently the critical solution blows
up in L∞. Regularity in other function spaces is discussed
below. The critical solution is approximately CSS, centered
at the blowup point, with ν ¼ 0 [see Eq. (7)],

lim
ðt0;rÞ→ð0;0Þ

ϕ⋆ðt⋆ þ λt0; λrÞ ∼ ϕ⋆ðt⋆ þ t0; rÞ: ð48Þ

C. Alternative compactifications

For a more general class of models with ξ⋆ ¼ −1, we
consider

CðφÞ ¼ 1

n

�
1 −

1

ð1þ φÞn
�
; ð49Þ

where n > 0, and so one has

lim
ðt;rÞ→ðt⋆;0Þ

ϕ⋆ðt; rÞ ∼
1

n
½F⋆000ðt⋆Þ�−n

�
1þ 1

3
X2

�
−n
e2nT: ð50Þ

In this case, the universality of blowup of threshold
solutions is weaker since there is a dependence on the
initial conditions through ∂2

tφ⋆ðt⋆; 0Þ. Nevertheless we still
have a universal power 2n. It is remarkable that the entire
freedom within a large function space boils down to just
one parameter at the threshold. It is appealing to think of the
single remaining parameter as a single hair of “the” critical
solution, so that uniqueness can be understood in a para-
metrized sense as in the standard discussion of stationary
black holes with symmetry. The threshold solutions of
these models blow up in a CSS manner, centered at the
blowup point, with ν ¼ −2n [see Eq. (7)].

D. Deformations using periodic functions

Now let us focus on a deformation with the functional
formD½φ�≡ P ∘ CðφÞ, with P a bounded periodic function
with period Λ, satisfying limC→0 PðCÞ ∼ C. By construc-
tion, the solutions of Eq. (19) have global existence for
sufficiently small initial data and can never blow up in L∞

regardless of the initial conditions. First derivatives of
solutions with sufficiently large initial data, however, must
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explode. Here the threshold solutions are the ones at the
threshold between global existence and this blowup, and
are of the form ϕ⋆ðt; rÞ≡ P ∘ C½φ⋆ðt; rÞ�. Similarly to the
previous type of deformation functions, the blowup of these
threshold solutions is universal and happens at ðt⋆; 0Þ. For
this type of deformation function we have the first
derivatives

∂tϕ⋆ðt; rÞ ¼ P0 ∘ C½φ⋆ðt; rÞ�C0½φ⋆ðt; rÞ�∂tφ⋆ðt; rÞ;
∂rϕ⋆ðt; rÞ ¼ P0 ∘ C½φ⋆ðt; rÞ�C0½φ⋆ðt; rÞ�∂rφ⋆ðt; rÞ: ð51Þ

Model 3 has ξ⋆ ¼ −1, period Λ ¼ 2π and

ϕ1 ¼ P ∘ CðφÞ ¼ A3 sin ½A−1
3 logð1þ φÞ�; ð52Þ

which results in the bounded field

lim
ðt;rÞ→ðt⋆;0Þ

ϕ1⋆ðt; rÞ

∼ A3 sin

�
A−1
3 log

�
F000⋆ ðt⋆Þe−2T

�
1þ 1

3
X2

���
; ð53Þ

and the blowup of the first derivatives

lim
ðt;rÞ→ðt⋆;0Þ

∂tϕ1⋆ðt; rÞ ∼ −
6eT

3þ X2
cosð�Þ; ð54Þ

and

lim
ðt;rÞ→ðt⋆;0Þ

∂rϕ1⋆ðt; rÞ ∼
2XeT

3þ X2
cosð�Þ; ð55Þ

where � here denotes the argument of the sin term in (53).
Thus the threshold solutions of this model blow up, and
there are universal powers directly prior. Again, depend-
ence on initial data reduces down to just one number, in this
case appearing as a pure phase offset. An interesting
challenge for either this model or any other would be to
diagnose such behavior by purely numerical means. The
blowup of ∂tϕ1⋆ and ∂rϕ1⋆ is DSS, centered at ðt⋆; 0Þ, with
ν ¼ −1 and λm ¼ e−mΔ ¼ emπA3 [see Eq. (7)],

lim
ðt0;rÞ→ð0;0Þ

∂μϕ1⋆ðt⋆þλnt0;λnrÞ∼λ−1n ∂μϕ1⋆ðt⋆þ t0;rÞ: ð56Þ

Using the construction of model 5 we can build alternative
P ∘ C deformation models. For example, by combining the
compactification (49) with sin, we get

ϕ1 ¼ sin

�
1

n

�
1 −

1

ð1þ φÞn
��

: ð57Þ

The threshold solutions of this model have the form

lim
ðt;rÞ→ðt⋆;0Þ

ϕ1⋆ðt; rÞ

∼ sin

�
1

n
½F000⋆ ðt⋆Þ�−n

�
ðt⋆ − tÞ2 þ 1

3
r2
�
−n
�
; ð58Þ

which is bounded. Their first derivatives blow up with

lim
ðt;rÞ→ðt⋆;0Þ

∂tϕ1⋆ðt; rÞ

∼ 2½F⋆000ðt⋆Þ�−n
t⋆ − t

ð½t⋆ − t�2 þ 1
3
r2Þnþ1

cosð�Þ; ð59Þ

and

lim
ðt;rÞ→ðt⋆;0Þ

∂rϕ1⋆ðt; rÞ

∼ −
2

3
½F⋆000ðt⋆Þ�−n

r
ð½t⋆ − t�2 þ 1

3
r2Þnþ1

cosð�Þ; ð60Þ

where ⋆ here denotes the argument of the sin term in (57). It
is easy to verify (looking at the cos term) that in these
coordinates the blowup does not satisfy the symmetry (7).
We have not found a coordinate system, which would
imply a DSS blowup, in which that property holds;
however, this possibility is not excluded. Nevertheless
the power of blowup is still universal and (as before) it
is 2n. Again, the critical solution is unique modulo a single
parameter. It is very interesting that much of the desired
phenomenology can be achieved but with threshold sol-
utions of an apparently different character. If we insisted on
finding alternative models that do have DSS threshold
solutions we could try deformation functions of the form

DðφÞ ≃ eCðφÞP ∘ CðφÞ; ð61Þ

but we are already content with the simpler option above.
All of the power laws discussed so far appear in physical
space. Below (see the penultimate paragraph of this
section) we discuss similar results in phase space (a − a⋆).

E. Regularity of spherical solutions at blowup

So far, we have focused only on pointwise blowup, but a
proper understanding of the threshold must also include
statements about local integrability. Consider first defor-
mation functions that involve only a compactification. As
we have already discussed, with this setup blowup sol-
utions, whether generic or at the threshold, become
unbounded pointwise. Therefore by Sobolev embedding
H2 must explode [see Eq. (14)], but beneath that, the story
is more subtle. By choosing initial data constant in space
for the first time derivative out to some radius and then
cutting off, it is clear that solutions can blow up in L2 for
any of our pure compactification deformation functions.
But around the threshold, the solutions blow up in a special,
localized manner, so that boundedness in L2 depends on the
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specific deformation function/compactification. This must
also fall in line with the observations made in the previous
section about regularity of self-similar functions. In fact,
since the compactification determines also ν, there must
exist a relationship between the universal powers and
regularity at the threshold. To examine this, we suppose
that the integral is dominated by the values of the integrand
at the origin. Expanding then, we find with the log
compactification that

jjϕ⋆jjL2 ∼ e−3T=2T; jjϕ⋆jjE1 ∼ e−T=2;

jjϕsjjL2 ∼ T; jjϕsjjE1 ∼ eT; ð62Þ

for threshold solutions. Here we used the fact that, at the
threshold, the spatial scale on which the solution becomes
large pointwise is fixed in the similarity coordinate X. We
assumed that blowup of the supercritical solution ϕs
occurred at the origin with the spatial scale fixed in r,
and set the slow time T ¼ − logðt⋆ − tÞ, with t⋆ the instant
at which the solution explodes so that T → ∞ at the
blowup. Thus this estimate on ϕs need not be verified in
practice, and indeed it is easy to come up with examples in
which L2ðϕsÞ is finite even at blowup. For the alternative
compactification (49) we find

jjϕ⋆jjL2 ∼ eð2n−3=2ÞT; jjϕ⋆jjE1 ∼ eð2n−1=2ÞT;

jjϕsjjL2 ∼ enT; jjϕsjjE1 ∼ eðnþ1ÞT: ð63Þ

Again these naive estimates on ϕs need not be satisfied, and
serve only as an indication of possible behavior. All of
these estimates can be verified numerically and are in
agreement with the results in Sec. II. Moving on to
deformation functions involving a periodic function, by
construction, obviously solutions can never blow up in L2.
Proceeding as before, we have

jjϕ⋆jjE1 ∼ e−T=2; jjϕsjjE1 ∼ eT; ð64Þ

for model 3 and

jjϕ⋆jjE1 ∼ eð2n−1=2ÞT; jjϕsjjE1 ∼ eðnþ1ÞT; ð65Þ

with the composite deformation function sin ∘ C taking
again the compactification (49). As mentioned in the
discussion above, we have checked these predictions in
practice by computing numerically norms for different
blowup solutions. Some examples are shown in Fig. 2.
In summary, threshold solutions blow up at t ¼ t⋆ in E1

when n ≥ 1=4 (that is ν ≤ −1=2), and in the CSS setting in
L2 when n ≥ 3=4 (ν ≤ −3=2). The two takeaways are, first,
that generic blowup solutions are less regular than thresh-
old solutions, and second, that there is a direct relationship
between the universal power and the specific level of
regularity.

F. Aspherical perturbations of spherical critical
solutions

So far we have established that in pure spherical
symmetry threshold solutions of our deformation models
depend to leading order on only one number from the initial
data and are, in this sense, unique. Therefore, in accord
with the usual picture of critical gravitational collapse, if we
consider a one-parameter family of spherically symmetric
initial data and tune this parameter to the threshold of
blowup we recover the critical solution. What is more,
simply by continuous dependence on given data, spherical
initial data close to the threshold generate solutions that
appear like the critical solution for some time in their
development. Evidently the latter statement is true also for
nonspherical perturbations of the spherical critical solution.
But in fact a stronger result holds. Take a family of
spherical solutions ϕaðt; rÞ ¼ D½aφ⋆ðt; rÞ� normalized so
that a ¼ 1 corresponds to the threshold solution ϕ⋆ ¼ ϕ1.
As discussed above, in the past light cone of the blowup
point, ϕ⋆ is associated with a critical solution by simple
Taylor expansion. Let φ̃ denote any regular partial wave
solution (16) with vanishing spherical component φ̃00. We
may think of this solution as being parametrized by the
infinite number of parameters stating how much of each of
the individual partial wave solutions φ̃lm, each of which
also have a full functional degree of freedom, is present.
Consider the perturbed solutions

ϕ̃a ¼ D½aðφ⋆ þ ϵφ̃Þ�; ð66Þ

FIG. 2. Plots of the E1 norm for spherical solutions of various
models up to the time at which some field quantity explodes in
L∞. On the top left we have a threshold solution for model 1. On
the top right a supercritical solution for the same model is shown,
demonstrating that a variation of behavior is possible at blowup.
On the bottom left we show the result for ϕ1 from model 3 at the
threshold. Finally in the lower right panel we show the same for
the composite deformation function sin ∘C, with the compacti-
fication (49) and n ¼ 1=4, which can be used in practice within
model 5. These examples are compatible with our consideration
of self-similar functions and our naive norm estimates.
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and observe, crucially, from (18) that φ̃lmðt; rÞ ¼ OðrlÞ
near the origin. We then see that for ϵ sufficiently small
ϕ̃⋆ ¼ ϕ̃1 is also a threshold solution. Starting from ϕ̃⋆,
within this family the onlyway to restore global existence is
to reduce the strength parameter a. It seems that this result
would fit nicely with a perturbative analysis along the lines
of that given in [19]. To understand the effect of the φ̃ on
the asymptotic solution in the past light cone of the blowup
point we present below a generalization of the spherical
Taylor expansion given above.

G. Single-harmonic threshold solutions

To this point the behavior exhibited by solutions of our
models had a direct analog with the standard picture of
critical collapse. In moving to consider general nonspheri-
cal threshold solutions we now part ways with that picture.
The discussion here is focused on model 3, but holds in fact
more generally. We start by constructing a particular
threshold solution from a pure l ¼ 2, m ¼ 0 partial wave
solution φ20 to the wave equation. Recalling the exact
solution (18) and working with the family generated by the
Gaussian,

FðrÞ ¼ ae−ðrþ1Þ2 ; ð67Þ

we find that the threshold solution ϕ⋆ is obtained with
a⋆ ≃ 1.678. As observed above, the partial wave vanishes at
the origin, and therefore the blowup point occurs else-
where, in this case at ðt⋆; x⋆; y⋆; z⋆Þ ≃ ð0.735; 0; 0; 1.324Þ.
This threshold solution is plotted in Fig. 3. Although there
clearly are qualitative similarities with the spherical thresh-
old solution plotted in Fig. 1 for the same model, one could
hardly claim that the two solutions are the same.

Interestingly, even if we restrict to threshold solutions built
from a single spherical harmonic in this manner there is still
another distinct branch of threshold solutions. To see this
consider, for example, the form of the Y20 harmonic,

Y20ðθAÞ ¼
1

4

ffiffiffi
5

π

r
ð3 cos2 θ1 − 1Þ; ð68Þ

which has local extrema on the x and z axes. Since we are
concerned here with an axisymmetric solution we are free
to identify x with the cylindrical radial coordinate.
Therefore our solution to the wave equation

φðt; r; θAÞ ¼ φ20ðt; rÞY20ðθAÞ ð69Þ

giving rise to a solution of the deformed wave equation can
explode the compactification in one of two ways,

φ20 ¼ −2
ffiffiffi
π

5

r
; φ20 ¼ 4

ffiffiffi
π

5

r
; ð70Þ

at some point, resulting in the first case in blowup of ϕ on
the symmetry axis as plotted in Fig. 3, or else on a ring in
the xy plane in the second. A snapshot of a solution close to
this type of blowup, obtained with the family

GðrÞ ¼ −Fð−rÞ; ð71Þ

with F the Gaussian from before, is shown in Fig. 4.

H. Blowup amplitudes under perturbations

The previous example shows that threshold solutions
constructed from a generic single harmonic are not unique,
and may differ even in the topology of their blowup. In the

FIG. 3. A contour plot of an axisymmetric threshold solution for model 3 shown on the symmetry axis. Despite shared attributes with
the spherical solution of Fig. 1, there are obvious differences too, as the data here leading to blowup is mostly outgoing. For this model
therefore the conjecture that there is in general a unique threshold solution regardless of initial data is false.
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spherical setting we have seen that adding arbitrary small
perturbations to the initial data at the threshold nevertheless
leave us with the same critical amplitude. So an obvious
question is whether or not threshold solutions built from a
single harmonic, or sum of harmonics are locally unaf-
fected by adding additional harmonics in the same sense.
The answer is no. To see this, recall that the mechanism for
this outcome in the spherical case was that higher order
partial wave solutions vanish at the origin, where blowup is
guaranteed to occur with spherical symmetry. In general the
support of higher order partial waves includes however
possible blowup points induced by another partial wave
solution. Therefore a small addition of a higher order partial
wave can render a threshold solution small enough to avoid
blowup or drive it unambiguously over the threshold. The
difference between the spherical and generic setup is
illustrated by Fig. 5. General threshold solutions are thus
described as a sum over all harmonics, with any individual
harmonic potentially playing a role in the blowup, and with
different topologies, like the ring of Fig. 4, of the singular
points possible. This behavior could be side-stepped if we
reexpanded the solution in terms of translated spherical
harmonics centered at the blowup point, or more generally
a point in the curve of blowup points, to again recover a
basis well adapted to the solution at hand.

I. Self-similarity and generic threshold solutions

By definition, a generic threshold solution can be
obtained through the deformation ϕ⋆ ¼ Dðφ⋆Þ, where
φ⋆ is a solution of the flat-space wave equation such that
for t < t⋆ we have φ⋆ðt; xiÞ > ξ⋆, and φ⋆ðt⋆; xi⋆Þ ¼ ξ⋆ is a
local minimum. Again, the point ðt⋆; xi⋆Þ is taken to be the
location of blowup of the deformed solution. Because φ⋆ is
a local minimum at ðt⋆; xi⋆Þ, all first derivatives vanish at
this point, and some second derivatives must be positive,
like ∂2

tφ⋆; however, the second derivatives ∂t∂iφ⋆ and
∂j∂iφ⋆ may be zero if the blowup happens in a curve or a
surface (as illustrated in Fig. 4). We assume here that the
blowup happens at a point, but the same discussion applies
to any point in a curve or surface of blowup, with the caveat
that the past light cone of each such point can be treated
locally as follows, with a global understanding to be tackled
separately. Close to this blowup point, the solution of the
original flat-space wave equation is

lim
ðt;xiÞ→ðt⋆;xi⋆Þ

φ⋆ ∼ ξ⋆ þ
1

2
∂2
tφ⋆ðt⋆ − tÞ2

− ∂t∂iφ⋆ðt⋆ − tÞðxi − xi⋆Þ

þ 1

2
∂i∂jφ⋆ðxi − xi⋆Þðxj − xj⋆Þ; ð72Þ

FIG. 4. Here we plot a pure l ¼ 2, m ¼ 0 threshold solution for
model 3 shortly before blowup. Special in this case is that the
blowup occurs on a ring in the z ¼ 0 plane. This was achieved
with the family (71), which we may think of as the same data as
(67), but evolved backwards in time. This shows that away from
spherical symmetry, even when building threshold solutions
purely from a single harmonic, there exist fundamentally different
threshold solutions, although the number of such branches for
each harmonic is always presumably finite. This story becomes
even more involved with higher harmonics.

FIG. 5. Plots of the blowup threshold amplitude starting from
either a pure spherical solution (blue curve) or an l ¼ 1, m ¼ 0
solution (red dashed curve), and adding in each case by l ¼ 2,
m ¼ 0 spherical harmonic parametrized by ϵ. See the main text
following Eq. (66) for details. There is a neighborhood around the
spherical solution in which the nonspherical deformation makes
absolutely no difference to critical amplitude, although the
asymptotic solution in the past light cone of the blowup point
is modified. Once the perturbation is sufficiently large however
the blue curve does bend away. At this point the threshold
solution takes a structure similar to that illustrated in Fig. 3. We
expect that when the blue curve is extended to the left, eventually
the threshold solution will take the form illustrated in 4. In
contrast, the pure l ¼ 1 threshold amplitude is immediately
affected by the perturbation.
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with all derivatives evaluated at ðt⋆; xi⋆Þ. Uniqueness of the
threshold solution in the spherical case, and the lack thereof
in general, can be understood here from the fact that the
derivatives in the former case depend only on the l ¼ m ¼ 0
partial wave solution, whereas in general higher harmonics
can contribute. To count the number of free parameters here,
first observe that, performing a trace/trace-free decomposi-
tion on ∂i∂jφ⋆, the Laplace piece can be replaced using the
wave equation. We then count nine free parameters. If we
introduce a spherical harmonic decompositionofφ⋆ centered
atxi⋆, it follows by theOðrlÞ property of the partialwaves that
only the lowest order (up to l ¼ 2) harmonics can contribute,
which gives a consistent count of parameters. The first
derivatives are

lim
ðt;xiÞ→ðt⋆;xi⋆Þ

∂tφ⋆ ∼ ∂2
tφ⋆ðt⋆ − tÞ þ ∂t∂iφ⋆ðxi − xi⋆Þ;

lim
ðt;xiÞ→ðt⋆;xi⋆Þ

∂iφ⋆ ∼ ∂2
iφ⋆ðt⋆ − tÞ − ∂t∂iφ⋆ðt⋆ − tÞ: ð73Þ

Let us look at the models arising from deformations using
periodic functions. Using model 3, for instance, which has
ξ⋆ ¼ −1, we have

lim
ðt;xiÞ→ðt⋆;xi⋆Þ

∂tϕ1⋆

∼ − lim
ðt;xiÞ→ðt⋆;xi⋆Þ

cos ½A−1
3 log ð1þ φ⋆Þ�

∂tφ⋆
1þ φ⋆

ð74Þ

and

lim
ðt;xiÞ→ðt⋆;xi⋆Þ

∂iϕ1⋆

∼ − lim
ðt;xiÞ→ðt⋆;xi⋆Þ

cos ½A−1
3 log ð1þ φ⋆Þ�

∂iφ⋆
1þ φ⋆

: ð75Þ

Close to the point ðt⋆; xi⋆Þ, the denominator ð1þ φ⋆Þ is
quadratic in ðt⋆ − t; xi − xi⋆Þ and the first derivatives ∂tφ1⋆
and ∂iφ1⋆ are linear in the same argument. So, the argument
applied to spherically symmetric solutions goes through, and
we conclude that the blowup of ∂tϕ1⋆ and ∂iϕ1⋆ is DSS,
centered at ðt⋆; xi⋆Þ, with ν ¼ −1 and λm ¼ e−mΔ ¼ emπA3 .
Thus we find that the CSS and DSS blowup properties of
spherically symmetric threshold solutions, and even the
nonstandard behavior with our more general compactifica-
tions like in model 5, can be extended to arbitrary threshold
solutions. Now, however, nine parameters rather than one are
required to characterize the asymptotic solution in the past-
light cone of the blowup point.

J. Power-law scaling around general threshold solutions

So far we have discussed power-law behavior that occurs
in physical space. In critical collapse such behavior is
usually viewed in phase space. We turn our attention to this
next, working with the time derivative of the field, since

this allows us to treat both types of model in a unified way.
Consider a family of solutions ϕa ¼ D½aφ�, parametrized
by a, with φ a fixed, nontrivial solution of the wave
equation which explodes the deformation function first at
a ¼ a⋆ as usual. Let xμðaÞ be the locus of maxima (in
amplitude) ofΠa ¼ ∂tϕa, which we assume defines a curve
when a ≲ a⋆, with a⋆ the threshold amplitude. Since Πa
attains a local maxima at xμðaÞ, we have

∂tΠa ¼ aD0ðaφÞ∂2
tφþ a2D00ðaφÞð∂tφÞ2 ¼ 0; ð76Þ

which is understood to hold at xμðaÞ, and which we can
solve for ð∂tφÞ2. Since this equation must hold for all
values of a, we can derive in a, and obtain an expression for
t0ðaÞ in terms of the other variables. Assuming more
regularity on the curve, we are free to take higher
derivatives too. Starting with the general expression for
Πa we then get

ΠaðxμðaÞÞ−2 ¼
D00ðaφÞ

aD0ðaφÞ3∂2
tφ

; ð77Þ

again understood to hold at xμðaÞ. From here we split our
discussion into two cases. First suppose that D ¼ C with
our compactification (49), assuming that n > 0. In this case
(77) takes the form

ΠaðxμðaÞÞ−2 ¼ −
C00ðaφÞ

aC0ðaφÞ3∂2
tφ

¼ ð1þ aφÞ2nþ1

a∂2
tφ

: ð78Þ

We need to extract the piece of this that dominates as
a → a⋆. Since ∂2

tφ is generically nonzero at the maximum
and nonzero as a → a⋆, we need only consider

C00ðaφÞ
C0ðaφÞ3 ¼ −ðnþ 1Þð1þ aφÞ2nþ1: ð79Þ

Raising this to the power 1=ð2nþ 1Þ, Taylor expanding at
an arbitrary a ¼ a0, plugging in the result for t0ðaÞ, and
taking the limit a0 → a⋆ we conclude that, in the regime
a≲ a⋆, we have

ΠaðxμðaÞÞ ≃ ða − a⋆Þ−ð2nþ1Þ=2: ð80Þ
The logarithmic compactification used in (21) is more subtle
to treat, but corresponds to the case n ¼ 0. In fact for this
model the range −1=2 < n < 0 may also be interesting to
investigate, but we do not do so here. Moving now to the
case D ¼ P ∘ C, again for concreteness taking the compac-
tification from (49), we find that (78) is instead replaced by

−ΠaðxμðaÞÞ−2¼
P00

aP03CðaφÞ∂2
tφ

þ P0C00ðaφÞ
aP03CðaφÞ3∂2

tφ
: ð81Þ

Following from here the same procedure as before, noting
that the first of these terms is now the leading piece, and
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raising to the power 1=ðnþ 1Þ, in the regime a ≲ a⋆, we
find that

ΠaðxμðaÞÞ ≃ ða − a⋆Þ−ðnþ1Þ=2: ð82Þ

Again the log compactification can be thought of as n ¼ 0.
With a little more care we expect that one could see here also
the superposed periodic wiggle. An important message here
is that power-law behavior may appear even in models for
which self-similarity is absent at the threshold, so evidence
of both phenomena are needed for a confident diagnosis. In
summary, we find that under mild assumptions on the
regularity of xμðaÞ, close to the threshold, all of our models
admit universal power laws regardless of the nature of the
threshold solution itself. Nevertheless some care is needed in
interpreting this result. For general data there may appear
multiple “large-data” regions, and the peak of that which
ultimately leads to blowup in the limit a → a⋆ may be
obfuscated, over some range of a, by another.

K. Regularity of threshold vs generic blowup solutions

Recovering results on the norms of threshold and blowup
solutions in the nonspherical setting is trickier than the
previous case. Although the only numerical part of
the calculation is in the evaluation of the norm itself, the
solutions can be highly oscillatory. Nevertheless in all of
the cases that we can reliably verify, which include all of
those presented in Fig. 2, we find that our spherical results
carry over without any surprises, and that threshold
solutions are slightly more regular than generic blowup
solutions. In the future it will be interesting to use the
geometric reformulation of our models given in Sec. III
together with the conserved stress energy to prove these
properties beyond doubt.

V. NUMERICAL RESULTS

In the previous section we gave a fairly complete picture
of threshold solutions for the models that arise as a
deformation of the wave equation. To address the obvious
criticism that such models may not be qualitatively repre-
sentative of systems that do not arise as a deformation, we
now present numerical evidence that similar phenomenol-
ogy does occur within our nondeformation models.
Presently we restrict to spherical symmetry, postponing
detailed numerical of generic threshold solutions for future
work. We begin by explaining briefly the method used,
before presenting the classification and numerical results for
each model. Similar, though more comprehensive, numeri-
cal work for alternative models can be found in [9–13].

A. Methods

As presented in Sec. III, all model equations are second
order both in time and space. For the code we reduce the

system to fully first order form and use centered finite
differences. To do so we introduce the following auxiliary
evolved fields,

Φ ¼ ∂rϕ; Π ¼ ∂tϕ: ð83Þ
In order to deal with the coordinate singularity at the origin,
we apply the Evans method, for any scalar field Ψ and its
derivative Ψ0 ¼ dΨ

dr , with p ¼ 2 [20],

Ψ0 þ p
r
Ψ ¼ ðpþ 1Þ dðr

pΨÞ
dðrpþ1Þ ; ð84Þ

where the differential operator can be expressed in terms of
the grid points as

ðpþ 1Þ dðr
pΨÞ

dðrpþ1Þ ¼ ðD̃ΨÞi ¼ ðpþ 1Þ r
p
iþ1Ψiþ1 − rpi−1Ψi−1

rpþ1
iþ1 − rpþ1

i−1
:

ð85Þ
In Sec. II definitions for the different norms we consider
were given, and their blowup for CSS and DSS functions
was introduced and related. Below in this section we
classify the models presented in Sec. III following this
criteria. We employ the method of lines with a Runge-Kutta
4 time integrator. Our baseline numerical grid spacing in
space is h ¼ 0.01. We take a Courant-Friedrichs-Lewy
factor of 0.4, so the time step is 2h=5. For convergence tests
we always double resolution for each new member of the
convergence series. The code itself is written in PYTHON,
and our longest numerical evolutions take just a few hours
on a normal desktop machine. To avoid rapid growth of
numerical error we use Kreiss-Oliger artificial dissipation
[21] with a small dissipation parameter of order σ ¼ 0.02.
The particular boundary conditions for each model are
stated at their corresponding section.
To perform a bisection search to reach the threshold of

blowup we start with our base resolution to obtain crude
bounds. Afterwards we double resolution and perform a
bisection search, classifying the data as having blown up if
jπðt; 0Þj > 1025. In most cases we have then doubled
resolution once more and redone the bisection to check
for consistency. Since we found no surprises when increas-
ing resolution like this in our searches, we focus in the
following primarily on the physical outcome rather than
giving strict error estimates.

B. CSS and L∞ blowup

C. Model 1

The equations of motion for the auxiliary fields are

∂tΦ ¼ ∂rΠ;

∂tΠ ¼ ∂rΦþ 2

r
Φþ A1ðΦ2 − Π2Þ: ð86Þ
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We impose the condition

∂tΠ¼̂ − ∂rΠ ð87Þ

at the outer boundary. Modulo boundary effects which are
negligible in our present study, we can write down closed
form solutions for this model, so numerical work con-
stitutes only a code test. But such work can be highly
valuable as it may give confidence in purely numerical
studies and highlight algorithmic shortcomings. We have
performed numerical evolutions with a variety of initial
data and find that the method converges reliably at second
order as expected. As observed in Sec. IV this model is an
example with approximately CSS threshold behavior. All
blowup solutions, including those at the threshold, explode
in L∞, but nevertheless may remain finite in L2 and even in
the energy norm E1. At the threshold solutions are finite in
E1, whereas generically blowup solutions explode in E1.
An important question therefore is how well numerical
methods can cope with data at these varying levels of
regularity. Pessimistically one might expect that with
standard methods when the solution explodes pointwise,
numerical error becomes large so fast that any approxima-
tion to L2 (and so forth) from the numerical data also
diverges. We have investigated this, as shown for example
in Fig. 6, and find that the numerics capture the expected
behavior well. To quantify the agreement up to blowup, we
observe that in the supercritical data plotted there the
blowup occurs at t ≃ 0.14603. The numerical evolution
was made with a grid spacing h ¼ 0.0025, and our last
output is made at t ≃ 0.146. At that time our approximation

to the L2 norm is good to about one part in 104. In the future
it may be useful to examine the same question for models
that have different regularity at blowup, for example by
using our parametrized compactification (49).

D. Model 2

The equations of motion for the reduction variables are

∂tΦ1 ¼ ∂rΠ1; ∂tΦ2 ¼ ∂rΠ2;

∂tΠ1 ¼ ∂rΦ1 þ
2

r
Φ1 þ A2ðΠ2

2 −Φ2
2Þ;

∂tΠ2 ¼ ∂rΦ2 þ
2

r
Φ2 þ B2ðΠ2

1 −Φ2
1Þ: ð88Þ

At the outer boundary we impose

∂tΠ1¼̂ − ∂rΠ1; ∂tΠ2¼̂ − ∂rΠ2: ð89Þ

We have evolved and tuned to the threshold of blowup with
several families of initial data, but here discuss a repre-
sentative example with initial data,

Φ1ð0; rÞ ¼ Φ2ð0; rÞ ¼ 0;

Π1ð0; rÞ ¼
2

5
e1=2−r

2

; Π2ð0; rÞ ¼ ae1=2−r
2

: ð90Þ

We have experimented with various choices for the
parameters A2 and B2, which do not seem to affect the
qualitative behavior of solutions. Recall that if we choose
A2 ¼ B2 ¼ A1 and set ϕ1 ¼ ϕ2 we recover solutions of
model 1, making this choice of the parameters an interest-
ing point to investigate in more detail. In Fig. 7 we do so by
plotting the logarithm of the maximum of the time
derivative of the scalar field at the origin [Π1ðt; 0Þmax,
Π2ðt; 0Þmax] against the logarithmic distance to the critical
point a⋆ together with their respective linear least-squares
regressions. Note that hereafter a is the only parameter in
each family of solutions and a⋆ refers to its critical value in
each case. Note that there are two lines, one red and one
green, but near the threshold they perfectly overlap and
give, as a result, the figures mentioned above. Interestingly,
in fact we find that for any strong data, with A2 ¼ B2, the
two sets ðϕ1;Φ1;Π1Þ and ðϕ2;Φ2;Π2Þ miraculously
coincide, and so in fact threshold solutions agree with
those of model 1. This behavior is shown in the right panel
of Fig. 7. Scaling shows that if A2B2 > 0 then

A−1
1 ðA2B2

2Þ1=3ϕ1; A−1
1 ðA2

2B2Þ1=3ϕ2; ð91Þ

solve the same model with fresh constants A0
2 ¼ B0

2 ¼ A1.
This is of course borne out in our simulations. Our numerical
evidence therefore strongly suggests that all spherical thresh-
old solutions can be constructed directly from model 1. We
conclude that model 2 does indeed have a unique critical
solution in spherical symmetry. Given this, it is perhaps not

FIG. 6. L2 and E1 for model 1 for subcritical, critical and
supercritical data computed from our numerical simulations and
the exact solution for model 1 with A1 ¼ −1. The numerical data
agree extremely well with the values computed from the exact
solution. This indicates that, with suitable care, numerical
evolutions can be of real value in determining regularity even
at blowup.
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surprising that experiments indicate the same level of
regularity in L2 and E1 for this model as for model 1 in
Fig. 6 for subcritical, critical and supercritical initial data.

E. DSS models and their blowup

F. Model 3

The equations of motion for the third model,

∂tϕ1¼Π1; ∂tϕ2¼Π2;

∂tΦ1¼∂rΠ1; ∂tΦ2¼∂rΠ2;

∂tΠ1¼∂rΦ1þ
2

r
Φ1þA−2

3 ðϕ1þA3ϕ2Þ½Φ2
1þΦ2

2−Π2
1−Π2

2�;

∂tΠ2¼∂rΦ2þ
2

r
Φ2þA−2

3 ðϕ2−A3ϕ1Þ½Φ2
1þΦ2

2−Π2
1−Π2

2�;
ð92Þ

are supplemented with the corresponding boundary con-
ditions,

∂tΠ1¼̂ − ∂rΠ1 −
1

r
Π1; ∂tΠ2¼̂ − ∂rΠ2 −

1

r
Π2: ð93Þ

These boundary conditions are modified with respect to
those of the previous models simply to avoid code crashes,
but in all applications we nevertheless keep the outer
boundary causally disconnected from the region at the
center we are actually interested in. Like model 1, we know
the solutions here, and so view these numerics primarily as
a code test. In this spirit, in Fig. 8 we again show the

logarithm of the maximum of the time derivative
Π1ðt; 0Þmax against the logarithmic distance to the critical
point for a representative family of initial data given by

FIG. 7. In the left panel we plot the scaling law obtained close to the threshold by taking the maximum of the time derivatives of the
evolved fields ϕ1;ϕ2 for model 2. We have chosen A2 ¼ B2 ¼ −1, and used initial data as stated in (90). The threshold amplitude
a⋆ ¼ 1.5103468 was obtained by numerical bisection. In the legend r2 refers to the square of the Pearson correlation coefficient, which
we computed using the SciPy PYTHON library [22]. A best fit on the data at this resolution returns the gradient 0.49594 with standard
error 0.00018. On the right we plot snapshots of the same fields close to blowup for the threshold solution itself. Observe that the fields
lie on top of each other at late times, indicating that the threshold solution is in fact described by the same critical solution of model 1.
Identical results are obtained with other families of initial data.

FIG. 8. Scaling plot for Π1ðt; 0Þmax for model 3 with A3 ¼ 1 for
the family of initial data (94). The threshold amplitude for this
family is a⋆ ¼ −

ffiffiffi
2

p
. For comparison the analytic result is also

given. The drift between the numerical and analytic curves is
caused by numerical error, but does converge away with
resolution, as can be understood from the higher resolution data.
In the legend r2 again refers to the square of Pearson correlation
coefficient, which was computed from the lower resolution data
and is close to unity. Linear regression on the numerical data
gives the gradient 0.4945, with standard error 0.0049, close to the
expected value 1=2 seen in Sec. IV.
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ϕ1ð0; rÞ ¼ 0; ϕ2ð0; rÞ ¼ 1;

Φ1ð0; rÞ ¼ 0; Φ2ð0; rÞ ¼ 0;

Π1ð0; rÞ ¼ ae1=2−r
2

; Π2ð0; rÞ ¼ 0; ð94Þ
in this instance using A3 ¼ 1. In all cases we clearly
observe the expected DSS behavior, which manifests as
a straight line plus a periodic wiggle whose period depends
on the value of A3. Regarding regularity, recall that this
model actually has the similar behavior as model 1.
Although the solution itself never diverges, first derivatives
are divergent for any blowup solution. Solutions are always
finite in L2. At the threshold E1 is finite, but for all other
blowup solutions it diverges. We have examined how well
this behavior is captured in our numerical approximation
and find that results similar to those displayed in Fig. 6 are
easily obtained, albeit with L2 finite, and that these results
agree very well with those computed directly from the exact
solution, even at blowup.

G. Model 4

The final model that we implemented is an extension of
model 3 in which the constraint ϕ2

1 þ ϕ2
2 ¼ A3 is violated.

The equations of motion in this case are

∂tϕ1¼Π1; ∂tϕ2¼Π2;

∂tΦ1¼∂rΠ1; ∂tΦ2¼∂rΠ2;

∂tΠ1¼∂rΦ1þ
2

r
Φ1þA−2

4 ðϕ1þA4ϕ2Þ½Φ2
1þΦ2

2−Π2
1−Π2

2�;

∂tΠ2¼∂rΦ2þ
2

r
Φ2þB−2

4 ðϕ2−B4ϕ1Þ½Φ2
1þΦ2

2−Π2
1−Π2

2�:
ð95Þ

In this case, the two scalar fields of the model are not,
a priori, related to each other because solutions do not arise
from a deformation of the wave equation. In Fig. 9 we plot
the logarithm of the maximum of the time derivative
Π1ðt; 0Þmax against the logarithmic distance to the critical
point and observe that this model, despite violating the
constraint and not coming from a deformation of the wave
equation, exhibits DSS behavior too. In this particular plot
weworked with A4 ¼ B4 ¼ 1, and the family of initial data,

ϕ1ð0; rÞ ¼ 0; ϕ2ð0; rÞ ¼
1

2
;

Φ1ð0; rÞ ¼ 0; Φ2ð0; rÞ ¼ 0;

Π1ð0; rÞ ¼ ae1=2−r
2

; Π2ð0; rÞ ¼ 0; ð96Þ

and tuned to the threshold a⋆ ¼ −2.4122175 by numerical
bisection. Similar to model 2, close to the threshold we
observe that, at least for the families of data that we tested,
the “constraint” is in fact small close to criticality. We
observe similar behavior for any blowup solution, but it is
most pronounced at the threshold. This is illustrated in the
second plot of Fig. 9.We do note however, that this behavior
is not as striking as in model 2, where the constraint seems
identically satisfied over an entire region, rather than just
being small as in this case. Concerning regularity, at the
threshold the raw fieldsϕ1 andϕ2 remain finite (and thus the
solution remains finite inL2), but as shown in the discussion
above first derivatives do explode. Our data suggest that the
energy norm E1 is finite at the threshold but diverges for
supercritical solutions, in agreement with model 3. Having
examined several different families of initial data, our
numerical evidence again suggests that in spherical

FIG. 9. Representative plots obtained with model 4 with A4 ¼ B4 ¼ 1 and the initial data family (96). This is obtained with
a⋆ ≃ −2.4122. On the left we give the now familiar scaling plot for Π1. As in model 3 the curve looks like a straight line plus a periodic
wiggle, indicating that we are in a DSS regime. Linear regression on the numerical data gives a slope 0.499, with standard error 0.019.
On the right we plot the maximum of the absolute value at the origin of the quantity that serves as a constraint in model 3. In fact this
quantity is small in a neighborhood around the origin, so that near the threshold, solutions of model 4 are close to solutions of model 3.
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symmetry model 4 has a unique critical solution in the same
sense as our other models.

VI. CONCLUSIONS

The cosmic censorship conjectures are perhaps the most
important open problems in strong-field gravity. In looking
for evidence either for or against them it is imperative that
we examine extreme regions of the solution space.
Combining such considerations with numerical approxi-
mation, critical phenomena in gravitational collapse have
been discovered. The standard picture of critical collapse is
that, if we consider any one-parameter family of initial data
and tune that parameter to the threshold of black hole
formation, then as it heads towards blowup the resulting
threshold solution will approximate ever more closely, in
the strong-field region, a unique self-similar critical sol-
ution which has a naked singularity. In suitable coordinates
data within the family, but close to the threshold, approach
the critical solution for some time interval ∼ − γ−1 log ja −
a⋆j before either dispersing or collapsing, with γ a universal
parameter independent of the particular family. Examining
solutions parametrically in a neighborhood of the threshold
reveals that the curvature scalars, black hole masses and so
forth display power-law behavior, with power γ, in a⋆ − a.
In spherical symmetry numerical evidence in favor of

this picture is pristine, and there is even a proof [15] that the
Choptuik critical solution, with the posited discrete self-
similarity, exists. Part of this phenomenology remains
robustly without symmetry, but cracks have appeared in
the picture. Prominent examples are given by the variability
of the scaling parameters and apparent contradiction of
uniqueness of the critical solution in scalar field collapse
when large aspherical perturbations are present [18,23], the
seeming absence of a unique self-similar critical solution in
the collapse of the electromagnetic fields [8] and the
consistent challenge in treating threshold solutions in
vacuum gravity [24–26] and so in recovering the results
of [27]. In all of these cases however, we are reaching to the
edge of what is possible with present numerical methods, so
there are arguments against adjusting the standard picture
until numerical error could be reliably controlled.
In the present study we therefore sought a way to

side-step these difficulties by constructing the absolute
simplest school-boymodel that could capture the qualitative
behavior of interest. Our models are based on a trick of
Nirenberg, admit a small-data global existence result, and in
most cases can be solved analytically, making interpretation
of threshold solutions unambiguous, regardless of sym-
metry. We call these deformation models. In contrast with
earliermodels, they also have the advantage, at least from the
point of viewof gravitation, that their nonlinearity appears in
first derivatives of the fields, just as in GR nonlinearities are
of the form “Γ2 − Γ2.”To the best of our knowledgewe have
also given the first such model that admits discretely self-
similar solutions. (Other examples with such solutions are

known [28] but require a large number of fields.) Although
the models can be reformulated in a natural way that
introduces a nontrivial spacetime metric, they are never-
theless fundamentally tied to the flat metric, and so should
not be thought of as a model for weak cosmic censorship.
Rather, at bestwe can hope to capture the properties required
for strong cosmic censorship in terms of regularity at blowup
and of course those of critical collapse. Our findings,
conclusions and conjectures can be split into categories
discussed in turn in the next paragraphs.

A. Spherical symmetry

Restricting to pure spherical symmetry, the obvious
analog of the standard picture of critical collapse was
completely vindicated for all of our models regardless of
how they arose. For our deformation models, simple Taylor
expansion shows that generically at most one number from
the initial data survives to parametrize the threshold
solution near the blowup point. In fact there is a mea-
sure-0 special case in which this parameter vanishes, but we
have not investigated this in detail. We define this one-
parameter family of Taylor expanded threshold solutions to
be the critical solution. In that one parameter remains, it is
unique in the same sense the Schwarzschild is the unique
static vacuum solution. Extracting this parameter in any
numerical setup seems impractical, however. For models
that do not arise as a deformation of the wave equation, we
tackled the spherical setting numerically and found evi-
dence compatible with this picture. With either type of
model we found that universal power-law behavior, for
example in the maximum of any divergent field quantity,
like for example energy density, was manifest. This was
shown analytically for the deformation models. Moving on
to consider small aspherical perturbations, to avoid having
to perform more costly numerics we studied only defor-
mation models. We found that the critical amplitude
remains fixed, and that the blowup itself is still dominated
by the lowest spherical harmonic. This is a simple conse-
quence of the fact that aspherical partial wave solutions all
vanish at the origin. Nevertheless the asymptotic threshold
solution, which maintains the scale symmetry from the
spherical setting, is deformed as perturbations are added,
perhaps in contradiction expectations, so that a larger
number of parameters are needed for its description.
Power-law scaling in this regime, both in the physical
and phase space pictures, also remains universal. The
agreement with the standard picture of critical collapse
in the regime in which numerical results are unambiguous,
is striking. This gives us confidence that our models do
capture qualitatively the phenomena of interest, and poten-
tially do have predictive power for GR.

B. Strong cosmic censorship

As mentioned in the Introduction, the strong cosmic
censorship conjecture may be thought of as the requirement
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that for generic initial data the resulting solution, when
maximally extended, is unique. In the context of blowup,
typically in the context of black hole interiors as in [29,30],
this is taken to mean that at a Cauchy horizon, or more
generally in the limit towards any the end point of any
incomplete geodesic, the metric should lose enough regu-
larity that the solution cannot be extended beyond the
blowup, even if we allow weak solutions. If this fails to be
the case, perhaps by choosing fresh data at the singular
surface, we may obtain many inequivalent extensions
and so violate global uniqueness. The specific requirement
in GR [2] is that there exist no coordinates in which
the Christoffel symbols are locally L2. The natural analog
for our models is the requirement that, at blowup, solutions
explode in the energy norm E1. The conclusion from
our models is that for each type of model there exists a
direct, specific, relationship between the physical and
phase space power-law parameters ν and γ, and the
regularity of data at blowup. We find that threshold
solutions are more regular than generic blowup solutions,
and so depending on the values of these parameters
solutions could be extended beyond the blowup point.
We have not investigated this in detail, and this result may
have no direct counterpart in GR, but if it does it will permit
numerical simulations a new say on strong cosmic censor-
ship in a variety of scenarios.

C. The threshold of blowup

When considering either large aspherical deformations
of spherical threshold solutions or general threshold
solutions we depart from the standard picture of critical
collapse. But from an empirical point of view, our results
in this regime are nevertheless compatible with numerical
results in GR. First, power-law scaling persists both in
physical space near the blowup point, and also in phase
space as the threshold is approached. In GR there is
evidence, in scalar field collapse, that power-law rates
deviate from their values in spherical symmetry as large
asphericity appears [18,23] so this is a possible difference
to the models. That said, it is not obvious that the available
numerical data are sufficiently fine-tuned to recover the
limiting rates, and the interactions of multiple fields
complicate the interpretation. If spherical data for the
models are perturbed by a sufficiently large asphericity,
blowup occurs away from the origin, with the solution
appearing very differently than the spherical critical
solution in the past light cone of the blowup point, in
contradiction with the expectation that there exists a
unique critical solution in the general setting. This may
manifest, for example by the formation of multiple
nonspherical centers away from the origin. The latter
has been observed in GR in both scalar field [18,23] and
vacuum collapse [26]. As illustrated in Fig. 4 blowup can
even occur on curves rather than points, an important
possibility to be investigated in the gravitational context.

Depending on the model, general threshold solutions may
exhibit self-similarity, but require several parameters to
describe them as they approach blowup. In GR, by
analogy, the existence of a single critical solution would
be a red herring in general. Instead, the threshold of
collapse should be characterized by power-law scaling,
and, crucially, additional regularity with respect to general
blowup solutions. Recalling that we have models which
display these features, but do not satisfy the formal
definition of self-similarity at the threshold, and the lack
of exact self-similarity in nonspherical numerical work for
GR, we conjecture that in the past light cone of a blowup
point, threshold solutions in GR can still be described by a
finite number of parameters. In this way, we can still use
the language critical solution, but that solution must now
be thought of as a parametrized family, whose specific
nature is, for now, uncertain.

D. Future work

The study of model problems can never definitively
solve problems in the full generality that we would wish.
Several possibilities present themselves for future develop-
ments. Regarding our models, it is highly desirable to
develop tools to rigorously prove, without using the exact
solutions, the properties of the solutions we have uncov-
ered, and to satisfactorily explain what are the structural
conditions that determine either CSS or DSS behavior at
the threshold. Obvious directions for numerical work are to
compute threshold solutions to the models without sym-
metry, and to examine carefully whether or not the solution
space of GR exhibits the properties suggested, but as yet
verified, by our models. As mentioned in the Introduction,
a key shortcoming of all the models we worked with here is
that they are fundamentally semilinear, and thus admit no
notion of black hole formation. Therefore the construction
of more sophisticated models without this shortcoming
must also be a priority. Progress on these fronts will be
reported elsewhere.
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