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In this paper we consider conformally flat perturbations on the Friedmann-Lemaitre-Robertson-Walker
spacetime containing a general matter field. Working with the linearized field equations, we unearth some
important geometrical properties of matter shear and vorticity and how they interact with the
thermodynamical quantities in the absence of any free gravity powered by the Weyl curvature. As there
are hardly any physically realistic rotating exact conformally flat solutions in general relativity, these
covariant and gauge invariant results bring out transparently the role of vorticity in the linearized regime.
Most interestingly, we demonstrate that the matter shear obeys a transverse traceless tensor wave equation,
and the vorticity obeys a vector wave equation in this regime. These shear and vorticity waves replace the
gravitational waves in the sense that they causally carry the information about local change in the curvature
of these spacetimes. We also look at the heat transport equation in this case and how this varies from the
Newtonian case.
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I. INTRODUCTION

Conformal flatness is a condition that is often applied in
the study of gravitational interactions, since many of these
models characterize spacetimes of physical importance
[e.g., Friedmann-Lemaitre-Robertson-Walker (FLRW)].
Several other classes of conformally flat spacetimes
have been applied in cosmology, including generalized
Friedmann models, generalized Schwarzschild interior
models, Bertottic-Robinson models, and radiation fields
[1]. In a conformally flat spacetime theWeyl tensor vanishes
identically [2] and the technique of embedding has proved to
be a useful tool in generating a variety of exact solutions
[3,4], with perfect fluids, pure radiation, and electromag-
netic fields. Conformal flatness is also widely used in
studying gravitational collapse for various matter fields.
Collapse in the presence of scalar fields was studied in [5],
with dissipative matter giving rise to radiating stellar
configurations [6–10]. Conformal flatness has also proven
to be useful in constructing static anisotropic stars that can
represent real pulsars [11]. In addition to this, vanishing of
theWeyl tensor helps to solve the field equations inmodified
gravity theories [see for example [12] for fðRÞ-theories of
gravity, and [13] for Einstein-Gauss-Bonnet gravity].
Although a lot of works have been done on the

conformal symmetries of these spacetimes and also numer-
ous solutions have been found, most of these stick to

spacetimes with specific symmetries (for example, spheri-
cal or cylindrical symmetries) and very specific types of
matter fields. The main reason behind this is, in spite of the
Weyl tensor being identically zero in these spacetimes, the
field equations still remain extremely complicated for any
general treatment. To overcome this hurdle, we start by
taking baby steps. We consider a general, but conformally
flat perturbation on FLRW spacetime and work with
linearized field equations up to the first order. In other
words, the Weyl tensor vanishes identically in the perturbed
spacetime. Nevertheless, all the other quantities that were
zero in the background become first order quantities in the
perturbed scenario and we deal with a general form of
matter with anisotropic stresses and heat flux to the first
order of smallness. The main aim of this investigation is to
track the behavior of geometrical quantities, like matter
shear or vorticity in the perturbed conformally flat scenar-
ios. This will definitely give an indication of how these
quantities will behave in the most general treatment of field
equations.
In this paper we use a local semitetrad covariant

formalism, and hence all the perturbation results are frame
invariant and gauge invariant in general. Pioneering work in
this regard was done by Bruni et al. [14], where the scalar,
vector, and tensor modes of the perturbations were treated
in a covariant and gauge invariant way. Further works on
cosmological gravitational waves were done in [15,16].
Similar techniques were used in [17,18], to show that in a
shear-free perturbation of FLRW spacetime, matter cannot
expand and rotate simultaneously even in the linearized
regime. An interesting parallel emerges between our work
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and the results presented in [19,20], where the authors
performed a general study of dissipative fluids with
anisotropic stresses. Although, perhaps these works are a
little more restricted in the sense that they assume axial and
reflection symmetries. However using a similar semitetrad
approach, these works give a comprehensive description of
how the Weyl tensor effects vorticity and shear and in turn
affects the heat flux and pressure anisotropy. Hence, it is
very important to remember that our study actually empha-
sizes the effects of Weyl tensor on spacetime geometry via
negation. This understanding will definitely help us in
recognizing the effects of free gravity with better clarity, as
changes involving the appearance of vorticity and shear are
highly dependent on the Weyl tensor.
Unless otherwise specified, we use natural units

(c ¼ 8πG ¼ 1) throughout this paper; Latin indices run
from 0 to 3. The symbol ∇ represents the usual covariant
derivative and ∂ corresponds to partial differentiation. We
use the ð−;þ;þ;þÞ signature and the Riemann tensor is
defined by

Ra
bcd ¼ Γa

bd;c − Γa
bc;d þ Γe

bdΓa
ce − Γe

bcΓa
de: ð1Þ

The Ricci tensor is obtained by contracting the first and the
third indices

Rab ¼ gcdRcadb: ð2Þ

The symmetrization and the antisymmetrization over the
indices of a tensor are defined by

TðabÞ ¼
1

2
ðTab þ TbaÞ; T ½ab� ¼

1

2
ðTab − TbaÞ: ð3Þ

The Hilbert-Einstein action in the presence of matter is
given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Lm�; ð4Þ

variation of which gives Einstein’s field equations as

Gab ¼ Tab: ð5Þ

II. 1 + 3 COVARIANT SPLITTING
OF SPACETIMES

This formalism [21] is based on a local 1þ 3 threading
of the spacetime manifold and has been a very handy tool
for understanding many geometrical and physical aspects
of relativistic fluid flows, both in general relativity or in the
gauge invariant, covariant perturbation formalism [4]. We
first define a timelike congruence with a unit tangent vector
ua along the fluid flow lines. Then the spacetime is split
locally in the form R ⊗ V where R denotes the worldline
along ua and V is the 3-space perpendicular to ua.

Any vector Xa can then be projected on the 3-space by
the projection tensor hab ¼ gab þ uaub. The choice of ua

naturally defines two derivatives: the covariant time
derivative along the observers’ worldlines (denoted by a
dot), and the fully orthogonally projected covariant deriva-
tive D on the three-dimensional space. For any tensor
Sa::bc::d, we have

_Sa::bc::d ¼ ue∇eSa::bc::d; ð6Þ

and

DeSa::bc::d ¼ hafhpc…hbghqdhre∇rSf::gp::q; ð7Þ

with total projection on all the free indices. Angle brackets
denote orthogonal projections of vectors, and the orthogo-
nally projected symmetric trace-free (PSTF) part of ten-
sors:

Vhai ¼ habVb; Shabi ¼
�
hðachbÞd −

1

3
habhcd

�
Scd: ð8Þ

This also defines the 3-volume element

ϵabc ¼ −
ffiffiffiffiffi
jgj

p
δ0½aδ

1
bδ

2
cδ

3
d�u

d: ð9Þ

The covariant derivative of the timelike vector ua can now
be decomposed into the irreducible part as

∇aub ¼ − _uaub þ
1

3
habΘþ σab þ ϵabcω

c; ð10Þ

where _ua is the acceleration, Θ ¼ Daua is the expansion,
σab ¼ Dhaubi is the shear tensor, and ωa ¼ ϵabcDbuc is the
vorticity vector. Similarly the Weyl curvature tensor can be
decomposed irreducibly into the gravito-electric and grav-
ito-magnetic parts as

Eab ¼ Cabcducud ¼ Ehabi;

Hab ¼
1

2
ϵacdCcd

beue ¼ Hhabi; ð11Þ

which allows for a covariant description of tidal forces and
gravitational radiation. The energy momentum tensor for a
general matter field can be similarly decomposed as
follows:

Tab ¼ μuaub þ qaub þ qbua þ phab þ πab; ð12Þ

where μ¼Tabuaub is the energy density, p ¼ ð1=3ÞhabTab

is the isotropic pressure, qa ¼ qhai ¼ −hcaTcdud is the
3-vector defining the heat flux, and πab ¼ πhabi is the
anisotropic stress.
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III. CONFORMALLY FLAT PERTURBATION
AROUND FLRW SPACETIME

To see in a transparent manner, how the absence of the
Weyl tensor affects other geometrical and thermodynamic
quantities, we consider a conformally flat perturbation of
the FLRWmanifold. In other words, the background metric
is given as

ds2¼−dt2þ a2ðtÞ
1−kr2

dr2þ r2a2ðtÞðdθ2þ sin2θdϕ2Þ: ð13Þ

One can easily see that the nonzero geometric and
thermodynamic quantities for the background are

D0 ¼ fΘ; μ; pg: ð14Þ

We now perturb this background spacetime in such a way
that the perturbed spacetime still remains conformally flat,
that is the Weyl tensor remains identically zero. In that case
the quantities that are of first order smallness in the
perturbed spacetime are given as

D1 ¼ f _uhai;ωhai; σhabi; qhai; πhabig: ð15Þ

The Riemann tensor of the perturbed spacetime can now be
completely specified in terms of the matter variables as
follows:

Rab
cd ¼ −2ðu½ahb�½cqd� þ u½ch½ad�qb�

þ u½au½cπb�d� − h½a½cπb�d�Þ

þ 2

3
½ðμþ 3pÞu½au½chb�d� þ μha½chbd��: ð16Þ

We now use this form of the Riemann tensor to get the Ricci
identities of the vector ua and doubly contracted Bianchi
identities (linearized by setting any higher power of the first
order quantities to zero). These equations can be further
classified into evolution (time derivative) equations and
constraints on 3-space. Solutions to these equation will
then completely specify the dynamics of the perturbed
spacetimes to the linear order and furthermore all these
equations remain gauge invariant by Stewart’s andWalker’s
lemma [22].

A. Evolution equations

The evolution equations take the following form:

_Θ −Da _ua ¼ −
1

3
Θ2 −

1

2
ðμþ 3pÞ; ð17Þ

_σhabi −Dha _ubi ¼ 1

2
πab −

2

3
Θσab; ð18Þ

_ωhai −
1

2
ϵabcDb _uc ¼ −

2

3
Θωa; ð19Þ

_πhabi þDhaqbi ¼ −ðμþ pÞσab − Θ
3
πab; ð20Þ

_qhai þDapþDbπ
ab ¼ −

4

3
Θqa − ðμþ pÞ _ua; ð21Þ

_μþDaqa ¼ −Θðμþ pÞ: ð22Þ

B. Constraints

The constraints equation on a given spatial 3-surface can
be written as

ðC1Þa ≡Dbσ
ab −

2

3
DaΘþ ϵabcDbωc þ qa ¼ 0; ð23Þ

ðC2Þ≡Daω
a ¼ 0; ð24Þ

ðC3Þab ≡Dhaωbi − ϵcdhaDcσ
bi
d ¼ 0; ð25Þ

ðC4Þa ≡ 1

2
Dbπ

ab −
1

3
Daμþ 1

3
Θqa ¼ 0; ð26Þ

ðC5Þa ≡ ðμþ pÞωa þ 1

2
ϵabcDbqc ¼ 0; ð27Þ

ðC6Þab ≡ ϵcdhaDcπ
bi
d ¼ 0: ð28Þ

We note that the last constraint (28) is not an original
constraint of the field equations. We get this constraint by
forcing the perturbed spacetime to be conformally flat.
A consistent evolution of this constraint (so that this is valid
at all epochs) will give further restrictions on different
geometrical and thermodynamical quantities as we shall see
in the next section.

C. Commutation relations

For a linearized model about an FLRW spacetime, we
have the following commutation relations between the
derivative operators. For any scalar function f,

D½aDb�f ¼ ϵabcω
c _f; ð29Þ

ϵabcDbDcf ¼ 2ωa _f; ð30Þ

hab½Dbf _� ¼ Da _f −
1

3
ΘDaf: ð31Þ

Also for any first order 3-vector Va, we have

hachbd½DcVd�_ ¼ Da _Vhbi −
1

3
ΘDaVb; ð32Þ
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ðDaVaÞ_¼ Da
_Vhai −

1

3
ΘDaVa; ð33Þ

D½aDb�Vc ¼
1

3

�
μ −

1

3
Θ2

�
hc½aVb�; ð34Þ

habðϵbcdDcVdÞ_¼ ϵabcDb
_Vhci −

1

3
ΘϵabcDbVc: ð35Þ

Similarly, for any first order second rank 3-tensor Aab, we
have

D½aDb�Acd ¼ 2

3

�
μ −

1

3
Θ2

�
hðc½aAdÞ

b�; ð36Þ

hachbd½ϵefhcDeAdi
f�_¼ ϵdchaDc

_Ahbieihde

−
1

3
ΘϵcdhaDcAbi

d: ð37Þ

For brevity, we will use the following notation in this paper
(for any 3-vector V and second rank 3-tensor Aab)

divV ¼ DaVa; ðcurlVÞa ¼ ϵabcDbVc; ð38Þ

ðdivAÞa ¼ DbAab; ðcurlAÞab ¼ ϵcdhaDcAd
bi: ð39Þ

Further to the above, there are some important identities of
first order vectors and tensors in perturbed FLRW space-
time, which we list below [16]

DaðcurlVÞa ¼ 0; ð40Þ

DbðcurlAÞab ¼
1

2
curlðDbAabÞ; ð41Þ

ðcurl curlVÞa ¼ −D2Va þDaðDbVbÞ

þ 2

3

�
μ −

1

3
Θ2

�
Va; ð42Þ

ðcurl curlAÞab ¼ −D2Aab þ
3

2
DhaDcAbic

þ
�
μ −

1

3
Θ2

�
Aab: ð43Þ

IV. SOME GEOMETRICAL RESULTS
ON SHEAR AND VORTICITY

In this section we will state and prove several important
geometrical properties of matter shear and viscosity in the
perturbed, conformally flat spacetime. We would like to
emphasize here that throughout this paper we consider the
matter field satisfying the weak energy conditions and that
would imply (μþ p) is strictly greater than zero. We start

by proving a lemma for a general perturbed FLRW
spacetime, which will be used for other results.
Lemma 1. For a perturbed FLRW spacetime, the

spatial variation tensor DaVb for any first order 3-vector
Va is curl free in the linearized regime.
Proof.—From the commutation relation (34), we know

that

ðDcDd−DdDcÞVb ¼
1

3

�
μ−

1

3
Θ2

�
ðhbcVd−hbdVcÞ: ð44Þ

Acting with ϵadc on both sides of the above equation,
symmetrizing on the indices a, b and subtracting the trace,
we get

ϵdchaDcDdVbi ¼ −
1

3

�
μ −

1

3
Θ2

�
ϵhabidVd: ð45Þ

The right-hand side of the above equation is identically
zero as ϵabd is completely antisymmetric. Hence we get the
required result, ðcurlDaVbÞ ¼ 0. ▪
We note that although the above result is a constraint on a

given hypersurface, it is consistently time propagated. To
show this, we note that if Va is a first order 3-vector, then so
is _Vhai. Then using the commutation relation (35), we see
that ðcurlDaVbÞ_ vanishes identically.
Proposition 1. For a linear and conformally flat

perturbation of FLRW spacetime, the shear tensor is
curl free.
Proof.—To prove this, we demand that the new constraint

(28), due to the absence of Weyl, be consistently time
propagated. In other words, we must have ðcurlπÞ_habi ¼0.
Using the commutation relation (37), we then see that
ðcurl _πÞhabi must vanish identically. Now we use the evolu-
tion equation (20), to get

ðcurlDhaqbiÞ þ ðμþ pÞðcurl σÞhabi ¼ 0: ð46Þ

The first termon the left-hand side is zero byLemma 1. Since
the weak energy condition demands that (μþ p) is strictly
greater than zero, we see that the shear tensor must be curl
free. Again, this is a result on a given hypersurface. Ifwe time
propagate this constraint and using (37) and (18), we see
that ðcurlσÞ_habi ¼ 0 is identically satisfied. Hence the shear
tensor being curl free is true at all epochs. ▪
Proposition 2. For a linear and conformally flat

perturbation of FLRW spacetime, the following holds:
(1) For nonvanishing vorticity, the heat flux vector is

purely axial on a given hypersurface, and consistent
time propagation of this constraint gives an implicit
equation of state relating the density and isotropic
pressure.

(2) The vorticity is generated purely by the curl of heat
flux vector for all epochs.
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Proof.—To prove the first point, we take the curl of
constraint (26) to get

1

2
ðcurl div πÞa − 1

3
ðcurlDaμÞ þ 1

3
Θðcurl qÞa ¼ 0: ð47Þ

The first term of the above equation can be written as
2Dbðcurl πÞab [by commutation (41)], which vanishes
because of the new constraint (28). Hence the above
equation becomes

1

3
ðcurlDaμÞ − 1

3
ΘðcurlqÞa ¼ 0: ð48Þ

Now by the relation (30) we see that ðcurlDaμÞ ¼ 2ωa _μ.
Further, using (27), we get ðcurl qÞa ¼ −2ðμþ pÞωa.
Putting all of these in the above equation, and noting that
the vorticity is not vanishing, we get

_μþ Θðμþ pÞ ¼ 0: ð49Þ

Comparing this with the evolution equation (22), we can
easily see that

Daqa ¼ 0: ð50Þ

In other words the heat flux vector has vanishing diver-
gence and hence it is purely axial. To check that this
constraint is consistently time propagated, we impose the
condition

ðDaqaÞ_¼ 0: ð51Þ

Using the commutation relation (33), we see that this gives
Da _qhai ¼ 0. Now using the evolution equation (21) we get

D2pþDaDbπ
ab þ ðμþ pÞDa _ua ¼ 0: ð52Þ

Now if we take the divergence of the constraint (26), we get

DaDbπ
ab ¼ 2

3
D2μ: ð53Þ

Substituting the above in Eq. (52) we get the implicit
equation of state as a second order differential equation,

D2

�
pþ 2

3
μ

�
þ ðμþ pÞDa _ua ¼ 0: ð54Þ

In other words, for the vorticity to remain nonzero at all
epochs, the above equation of state relating the energy
density and isotropic pressure must be satisfied.
The proof of the second point is obvious from the

constraint equation (27). To see, whether this constraint is
identically satisfied at all epochs, we take a dot of this
constraint and use the density evolution equation (22),

vorticity evolution equation (19), and heat flux evolution
equation (21). One can then easily check that this constraint
is consistently time propagated and hence the vorticity is
purely generated by the curl of the heat flux vector for all
epochs. ▪
Proposition 3. If the spacetime is perturbed in a

conformally flat way about the FLRW background, then
the spatial variation tensor of the vorticity is purely
antisymmetric at all epochs. The curl of the vorticity is
then generated by the heat flux vector and its Laplacian.
Proof.—From the constraint equations (24), (25) and

using the result from Proposition 1, we can immediately see
that Daω

a and Dhaωbi vanish identically on a given epoch.
These relations can then be time propagated to check that
they remain true for all epochs. Since both the trace and the
trace-free symmetric parts of the spatial variation tensor of
the vorticity vanish at all epochs, it follows that this tensor
must be purely antisymmetric. We now take the curl of the
constraint equation (27) to get

ðμþ pÞðcurlωÞa ¼ −
1

2
ðcurl curlqÞa: ð55Þ

Now using the identity (42) and the result from Proposition
2, we get

ðμþ pÞðcurlωÞa ¼ 1

2
D2qa −

1

3

�
μ −

1

3
Θ2

�
qa: ð56Þ

▪
It is interesting to see that there exists a class of solutions

with nonzero heat flux, which are the solution of the
following second order differential equation

1

2
D2qa −

1

3

�
μ −

1

3
Θ2

�
qa ¼ 0; ð57Þ

for which the vorticity can be nonzero but curl free.

V. ALTERNATIVES TO GRAVITATIONAL
WAVES: HOW SILENT IS “SILENT”?

We note that for gravitational waves to exist in a given
spacetime, both the electric and magnetic parts of the Weyl
tensor, Eab and Hab, must be nonzero with nonzero curl.
These quantities generate a tensor wave with a closed wave
equation, in a similar fashion as the electric field and the
magnetic field with nonzero curl generate electromagnetic
vector waves in electromagnetism. Therefore any space-
time, where either Eab or Hab or their curl vanishes
identically, will be devoid of any gravitational waves. In
such cosmologies, that are commonly termed as silent
universes (see [4] and the references therein), any infor-
mation about change in local curvature of the manifold
cannot causally travel via gravitational waves.
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Obviously, conformally flat spacetimes fall in the cat-
egory of silent universes, as in this case the complete Weyl
tensor is identically zero, and the Riemann tensor is entirely
specified by the matter variables. Therefore any informa-
tion about local change of curvature must causally travel
via propagation of matter disturbances. The question is, can
we quantify the process via which any information about
local change of spacetime curvature causally travels in
conformally flat models? In this section we transparently
demonstrate two such processes, a closed tensor wave
equation for matter shear and a closed vector wave equation
for vorticity, that can carry such information causally.
Proposition 4. In a conformally flat perturbation of

FLRW spacetime, the shear tensor obeys a closed and
transverse-traceless tensor wave equation, which is given by

□σhabi ≡ σ̈habi −D2σhabi

¼ −Θ _σhabi þ
�
1

3
Θ2 −

7

6
μþ 1

2
p
�
σhabi: ð58Þ

Proof.—Since in this case we are only concerned with
the tensor modes, we use the standard procedure of
neglecting all first order vector perturbations, namely the
gradient of background scalars together with the acceler-
ation, heat flux, and vorticity. Since the shear tensor is curl
free, ðcurl curlσÞab ¼ 0, and Eq. (43) becomes

D2σab ¼
3

2
DhaDcσbic þ

�
μ −

1

3
Θ2

�
σab: ð59Þ

Now, the first term on the right-hand side is linked to
vorticity, heat flux, and gradient of expansion by constraint
(23). Neglecting that term we have

D2σab ¼
�
μ −

1

3
Θ2

�
σab: ð60Þ

Furthermore, taking the dot of shear evolution equation (18)
and neglecting the acceleration term, we get

σ̈habi ¼ 1

2
_πhabi −

2

3
_Θσab −

2

3
Θ
�
1

2
πab −

2

3
Θσab

�
: ð61Þ

Using the evolution equation (20) and neglecting the heat
flux term, we have

_πhabi ¼ −ðμþ pÞσab − Θ
3
πab: ð62Þ

Plugging this in (61), and noting that πab ¼
2_σhabi þ 4

3
Θσab, we get

σ̈habi ¼ −
1

6
ðμ − 3pÞσab − Θ _σhabi: ð63Þ

Subtracting Eq. (60) from (63), we get the required tensor
wave equation (58). ▪

It is interesting to note that a similar shear wave exists,
even when the perturbations are not conformally flat, but
the matter is taken to be perfect fluid, as proved in [15].
What we showed here is that these waves do not go away,
when we take a general form of matter perturbation and
restrict the Weyl tensor to be identically zero. Also, when
the expansion of the spacetime is positive, these waves get
damped as they move towards the causal future.
Proposition 5. In a conformally flat perturbation of

FLRW spacetime, if the acceleration is curl free, then the
vorticity vector obeys a closed vorticity wave equation,
given by

□ωhai ≡ ω̈hai −D2ωhai ¼
�
μþ pþ 4

9
Θ2

�
wa: ð64Þ

Proof.—The proof of this proposition crucially depends
on the result of Proposition 1, that is the shear tensor being
curl free. In that case we can use (41) to write

0 ¼ DbðcurlσÞab ¼
1

2
curlðDbσabÞ; ð65Þ

which can be further simplified using the constraint (23),
and we get

1

3
ðcurlDaΘÞ −

1

2
ðcurl curlωÞa −

1

2
ðcurl qÞa ¼ 0: ð66Þ

Now using the commutation (30) for the first term on the
left-hand side, the identity (42) for the second term and the
constraint (27) for the third term, we get

D2ωa ¼
�
2

9
Θ2 −

2

3
μ

�
ωa: ð67Þ

Furthermore, when the curl of the acceleration term
vanishes, we have

_ωhai ¼ −
2

3
Θωa: ð68Þ

Taking the dot of the above equation and using the
evolution equation (17), we get

ω̈hai ¼ 1

3
ð2Θ2 þ μþ 2pÞωa: ð69Þ

Subtracting (67) from (69), we get the required result. ▪

VI. HOW THE HEAT TRANSPORT
EQUATION IS MODIFIED

Until now, we discussed in detail how the heat flux and the
anisotropic stress are affected by the absence of the Weyl
tensor in an almost FLRW but conformally flat spacetime.
However, it is well understood that the inclusion of the heat
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flux term in the system of field equations is devoid of any
physical meaning until a specific heat transport equation is
assumed. This is indeed a tricky issue as when we use the
standard Eckart theory, that makes the simplest possible
assumption about the entropy being a linear function of the
dissipative quantities, we get the usual form of heat con-
duction equation, which is a parabolic second order partial
differential equation. As any parabolic equation, this corre-
sponds to infinite speed of propagation of heat flow. Apart
from this causality violation, theEckart theory has in addition
the pathology of unstable equilibrium states.
Hence we require a heat transport equation that is derived

from a causal dissipative theory (see [19] and all the
references therein). The basic idea here is to obtain a
hyperbolic equation that obeys the causality condition and
also the relaxation time required for the system to return to
a steady state. Therefore we use the hyperbolic Cattaneo
type equation for heat transfer, which is given as

τ _qhai ¼ −κðDaT þ T _uaÞ − 1

2
κT2∇b

�
τub

κT2

�
qa; ð70Þ

where τ, κ, and T are the relaxation time, thermal
conductivity, and the temperature respectively. Using the
equation (21), we get for a conformally flat almost FLRW
spacetime

DapþDbπ
ab þ 4

3
Θqa þ

�
μþ p −

κ

τ
T

�
_ua

¼ κ

τ
DaT þ 1

2

κ

τ
T2∇b

�
τub

κT2

�
qa: ð71Þ

We are now in the position to state and prove the following
important proposition:
Proposition 6. In a conformally flat perturbation of

FLRW spacetime, if the vorticity is strictly nonzero, then on
the small enough neighborhood (where the relaxation time
and heat conductivity can be taken to be constants) in
constant time 3-spaces, the temperature obeys the Poisson
equation

D2T þ ðDa _uaÞT ¼ 0: ð72Þ

Proof.—We note that for a small enough neighborhood
on a constant time slice, where the relaxation time and heat
conductivity can be taken to be constants, the last term in
the heat transport equation can be simplified as

1

2

κ

τ
T2∇b

�
τub

κT2

�
qa ¼ 1

2
Θqa −

_T
T
qa: ð73Þ

Furthermore, since the background spacetime is homo-
geneous and isotropic we have T and _T as the zeroth order
quantities whileDaT and Da _T are the first order quantities.
Now, since the vorticity is strictly nonzero, the heat flux

vector and also its time derivative projected onto the
3-surface are purely axial (by Proposition 2), that is

Daqa ¼ Da _qhai ¼ 0: ð74Þ

Hence we can take the divergence of the heat transport
equation (70), and neglecting the second order quantities
we obtain the required Poisson’s equation (72) for the
temperature variation on the time slice. ▪
It is interesting to note that, if the acceleration vector is

also purely axial (divergence free) on this neighborhood,
then the temperature variation just follows the Laplace
equation D2T ¼ 0, just like the nonrelativistic case.

VII. DISCUSSION

Geometrical properties of general conformally flat
spacetimes are still under active investigations. The aim
is to understand transparently how different geometrical
and thermodynamical quantities of spacetime interact in the
absence of free gravity, that is generated by the Weyl tensor.
Taking the problem another way round, this understanding
will definitely help us in recognizing the effects of free
gravity with better clarity. In this paper we tried to shed
some light on this problem by considering a linearized but
conformally flat perturbation of FLRW background, which
is the well-known and simplest nontrivial conformally flat
solution of Einstein’s field equations.
Working in the linearized regime, we transparently

demonstrated some interesting features of matter shear
and vorticity and about how they are powered by different
thermodynamic quantities of matter, like energy density,
heat flux, isotropic pressure, and anisotropic stress. These
results are novel, as they clearly show the role vorticity
plays in the conformally flat scenarios, as hardly any
physically realistic and rotating conformally flat solutions
have been found until now. Although these results are only
valid in the linearized regime, they give an indication as to
how these quantities can behave in a more general setting of
conformally flat spacetimes.
The most important point that emerged from this inves-

tigation is that both the matter shear and the vorticity obey a
transverse traceless tensor wave equation and a vector wave
equation respectively. These shear and vorticity waves
actually replace the gravitational waves, that these space-
times are devoid of, in the sense that any information about
local change in the curvature of the spacetime can be
propagated causally via these waves. Presence of these
waves makes the dynamics of relativistic and conformally
flat fluid flows extremely interesting and can shed new light
on the general conformally flat solutions of the Einstein field
equations. Furthermore, we worked out explicitly how the
causal Cattaneo type heat transport equation getsmodified in
this scenario of conformally flat almost FLRW spacetimes,
and showed that in small enough neighborhoods of constant
time slices, the temperature obeys a Poisson equation.
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