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We explore some (especially, thermodynamical) properties of the dyonic Kerr-Sen-AdS4 black hole and
its ultraspinning counterpart, and check whether or not both black holes satisfy the first law and
Bekenstein-Smarr mass formulas. To this end, new Christodoulou-Ruffini-like squared-mass formulas for
the usual dyonic Kerr-Sen-AdS4 solution and its ultraspinning cousin are deduced. Similar to the
ultraspinning Kerr-Sen-AdS4 black hole case, we demonstrate that the ultraspinning dyonic Kerr-Sen-AdS4
black hole does not always violate the reverse isoperimetric inequality (RII) since the value of the
isoperimetric ratio can either be larger/smaller than, or equal to unity, depending upon the range of the
solution parameters, as is the case only with an electric charge. This property is apparently distinct from that
of the superentropic dyonic Kerr-Newman-AdS4 black hole, which always strictly violates the RII,
although both of them have some similar properties in other aspects, such as the horizon geometry and
conformal boundary.
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I. INTRODUCTION

Recently, a new class of ultraspinning anti–de Sitter
(AdS) black holes [1–3], in which one of their rotation
angular velocities is boosted to the speed of light, has
attracted a lot of attention. This class of black hole has a
finite horizon area but with a noncompact horizon topology
because there are two punctures at the north and south poles
of its spherical horizon. Interestingly, the ultraspinning
black holes violate the reverse isoperimetric inequality
(RII) [4,5], and this means that the Schwarzschild-AdS
black hole has the maximum upper entropy. Because the
ultraspinning black hole can exceed the maximum entropy
bound, it is therefore often called a “superentropic” black
hole. Moreover, it is pointed out [1] that one can obtain the
corresponding superentropic black hole solution by taking
a simple ultraspinning limit from its usual rotating AdS
black hole. Such a solution generating trick is very
simple: first, rewrite the metric of the rotating AdS black
hole in the rotating frame at infinity, then boost one of
the rotation angular velocities to the speed of light, and
finally compactify the corresponding azimuthal direction.

Since then, a dozen of new superentropic black hole
solutions [6–10] have been constructed from the known
rotating AdS black holes. Very recently, it has been sug-
gested that the superentropic black hole can also be obtained
by running a conical deficit through the usual rotating AdS
black hole [11]. On the other hand, various aspects of the
superentropic black holes, including thermodynamic prop-
erties [1,6,8–10,12–15], horizon geometry [3,6,8], Kerr/
conformal field theory (CFT) correspondence [7–9], geo-
desic motion [16], etc., have also been extensively studied.
Quite recently, we have studied some interesting

properties of the Kerr-Sen-AdS4 black holes and their
ultraspinning cousin in the four-dimensional gauged
Einstein-Maxwell-dilaton-axion (EMDA) theory [17].
However, the black hole solution studied there only carries
an electric charge and is just a special and relatively simple
case of the four-dimensional gauged EMDA theory. It is
then natural for us to extend that work to the more general
dyonic case, which serves as our motivation of the present
work. First, we shall present the dyonic generalization of
the Kerr-Sen black hole solution and then include a nonzero
negative cosmological constant into it to obtain a dyonic
Kerr-Sen-AdS4 black hole. After that, we will turn to
investigate its ultraspinning counterpart. In the meanwhile,
we will mainly study their thermodynamical properties and
verify that all the thermodynamical quantities obtained
for them perfectly obey both the extended law and the
Bekenstein-Smarr mass formulas.
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The organization of this paper is outlined as follows. In
Sec. II, we first give a brief introduction of the four-
dimensional ungauged and gauged EMDA theories and
summarize the current already-known exact rotating
charged black hole solutions in these supergravity theories.
In Sec. III, we present the dyonic Kerr-Sen black hole
solution and its AdS4 extension, and then turn to explore its
thermodynamics. In Sec. IV, with the ultraspinning dyonic
Kerr-Sen-AdS4 black hole solution in hand, its thermody-
namical properties, horizon topology and conformal boun-
dary, RII, etc., are subsequently discussed. To this end, we
derive new Christodoulou-Ruffini-like squared-mass for-
mulas for the dyonic Kerr-Sen-AdS4 black hole and its
ultraspinning cousin. By differentiating them with respect
to their individual thermodynamical variable, we get the
expected thermodynamical quantities which obey both the
first law and the Bekenstein-Smarr mass formulas without
employing the chirality condition (J ¼ Ml). After that, we
impose the chirality condition and derive the reduced form
of the mass formulas. Finally, we show that this ultra-
spinning dyonic Kerr-Sen-AdS4 black hole does not always
obey the RII, since the value of the isoperimetric ratio can
either be larger/smaller than, or equal to unity, depending
upon where the solution parameters lie in the parameters
space. This property is very similar to that of the ultra-
spinning Kerr-Sen-AdS4 black hole [17]; however, it
signals a remarkable difference from the superentropic
dyonic Kerr-Newman-AdS4 black hole. Finally, the paper
is ended up with our summaries in Sec. V.

II. EMDA SUPERGRAVITY THEORIES AND
THEIR ALREADY-KNOWN ROTATING

CHARGED SOLUTIONS

A. Brief introduction to ungauged and gauged
EMDA supergravity theories

In 1992, Sen [18] presented a stationary and axially
symmetric solution that describes a four-dimensional black
hole beyond the Einstein-Maxwell theory. It is the first
exact rotating charged solution in the low-energy effective
field theory for the heterotic string theory. The bosonic
sector of the four-dimensional low-energy heterotic string
theory contains the metric field gμν, theUð1ÞAbelian gauge
field Aμ, the dilaton scalar field ϕ, and the three-order
totally antisymmetric tensor field Hμνρ. Its Lagrangian
reads

Ľ ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − e−ϕF2 −

1

12
e−2ϕH2

�
; ð1Þ

where R is the Ricci scalar, Fμν is the Faraday-Maxwell
electromagnetic tensor defined by F ¼ dA, F2 ¼ FμνFμν,
ð∂ϕÞ2 ¼ ð∂μϕÞð∂μϕÞ, and H2 ¼ HμνρHμνρ.
In order to construct exact black hole solutions with a

nonzero cosmological constant, the three-form field must

be dualized to an axion pseudoscalar field χ via the relation
H ≡ dB − A ∧ F=4 ¼ −e2ϕ ⋆ dχ, where B is an antisym-
metric two-form potential and the star operator represents
the Hodge duality. Then the resulted theory is also known
as the EMDA supergravity theory, and accordingly, the
above Lagrangian can be rewritten in a different but
completely equivalent form,

L̂ ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 1

2
e2ϕð∂χÞ2 − e−ϕF2

�

þ χ

2
ϵμνρλFμνFρλ; ð2Þ

where ϵμνρλ is the four-dimensional Levi-Civita antisym-
metric tensor density. From the equation of motion derived
for the Abelian gauge potential A, one can define its dual
potential B by e−ϕ ⋆ F þ χF ¼ −dB. It is very convenient
to use them to compute the electrostatic and magnetostatic
potentials.
In the gauged version corresponding to the above EMDA

theory, the corresponding Lagrangian has the following
form:

L ¼ L̂þ Vðϕ; χÞ
¼ L̂þ ffiffiffiffiffiffi

−g
p ½4þ e−ϕ þ eϕð1þ χ2Þ�=l2; ð3Þ

with l being the cosmological scale or the reciprocal of the
gauge coupling constant. Since the above Lagrangian is
supplemented by a potential term related to the dilaton and
axion scalar fields, it is no longer possible to reexpress this
Lagrangian into a dualized version in terms of the three-
form field that appeared in the ungauged version again.
The origin of the kinetic terms of matter fields and the

scalar potential in the Lagrangian (3) of four-dimensional
EMDA gauged supergravity can be attributed to the S7

reduction of 11-dimensional supergravity, which gives rise
to SO(8) gauged N ¼ 8 supergravity in four dimensions.
A successive consistent truncation leads to N ¼ 2, D ¼ 4
U(1) Fayet-Iliopoulos gauged supergravity that admits
a prepotential formalism [19], of which the well-known
STU model [20,21] endows with the prepotential F ¼
−X1X2X3=X0. Further completion of the Uð1Þ2 truncation
of this STU model (by setting the charge parameters to be
pairwise equal), one arrives at the SUð1; 1Þ=Uð1Þ model
whose prepotential is given by F ¼ −iX0X1, sometimes
also known as “−iX0X1 supergravity” [22]. Finally, the
D ¼ 4 EMDA gauged supergravity is obtained by setting
one of the gauge fields (or charge parameter) to zero. See
Ref. [22] for a relatively recent review, and particularly
Fig. 1 therein that provides a schematic diagram to sketch
the consistent reductions.
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B. Present status of stationary and axially symmetric
solutions to the theories

It is well known that the most general stationary and
axially symmetric class of type D solution of the four-
dimensional Einstein-Maxwell equations with an aligned
electromagnetic field is given by the seven-parameter family
of the Plebański-Demiański solution [23], which contains
the mass, NUT charge (dual mass), electric and magnetic
charges, rotation and acceleration parameters, and a nonzero
cosmological constant. Until now, no analogous extension
of this general seven-parameter Plebański-Demiański sol-
ution has been found yet beyond the Einstein-Maxwell
framework, including the gauged EMDA theory that we are
interested in here.
Soon after Sen [18] gave the first rotating charged

black hole solution in the above EMDA theory, a lot
of intention has been paid to including more parameters
into it. In the ungauged EMDA theory, the existing
methods to generalize the nonextremal Kerr-Sen solution
can be roughly classified into the following three
categories:
(1) The brute force solving approach. As a representa-

tive of this method, the work [24] adopted a suitable
ansatz for the line element but a very restrictive one
for the U(1) gauge potential, namely, the non-null
electromagnetic field is not the most general aligned
one. The solution presented in Ref. [24] can be
thought of as a very special dyonic generalization of
the Kerr-Sen solution.

(2) Three different solution generating methods
that correspond to different coset (potential) spaces
depending upon dimensional reduction from dis-
tinct superstring and supergravity theories as
follows:
(a) The Hassan-Sen method [25]: The Kerr-Sen

solution was initially generated [18] from the
famous Kerr solution via this approach by using
a 9 × 9 coset matrix. Later, the same method
was subsequently applied in Refs. [26,27] to
generate accelerating, rotating, charged black
holes in the low-energy heterotic string theory,
respectively, from some type D (Plebański-
Demiański) metrics and its special case,
namely, the accelerating Kerr solution. How-
ever, it should be pointed out here that it is a
very difficult or rather challenging task to
further include a nonzero cosmological con-
stant into the so-obtained accelerating, rotat-
ing, charged solution.

(b) The Spð4;RÞ=Uð2Þ potential space method
[28,29]. Starting from the Kerr-NUT solution,
a new rotating dyonic black hole solution was
generated in Ref. [30] by using the symmetry
of this potential space. Its solution generat-
ing process is completely equivalent to the

Hassan-Sen method when employed to the
Kerr-NUT (or only Kerr) solution first and
then followed by implementing a necessary
gauge transformation and the generalized
electromagnetic duality transformation [30] to
the obtained gauge potential. After being reex-
pressed in terms of observable physical quan-
tities, namely, the mass, NUT charge, electric
and magnetic charge, as well as rotation param-
eters, the resulted solution can be thought of as
a dyonic NUT extension of the Kerr-Sen sol-
ution, which shall be named as the dyonic Kerr-
Sen-NUT solution hereafter. However, the
gauge potential had not been explicitly given
in Ref. [30], and its spatial component still
needs to be worked out via the dual of the
magnetic scalar potential.

(c) Subgroupof larger coset spaces:Oð4; 4Þ=Oð1; 1Þ4
[31] and SOð4; 4Þ=SLð2;RÞ4 [22,32]. The coset
matrix representation of the EMDA theory can be
viewed as a subset of these more complicated
coset matrix representations of the four-dimen-
sional STU supergravity theory, and the dyonic
Kerr-Sen-NUT solution [30] is just a special
case of the pairwise equal charge parameters that
was introduced in Refs. [22,31]. The charging
parameters used in [31] are two electric and two
magnetic ones, and the seed metric adopted in
the main context of that paper is the Kerr
solution, but in the Appendix, the authors had
already considered the Kerr-NUT solution and
the most general Plebański-Demiański metric as
the seed solution too. In particular, they had
presented the explicit expressions for the ob-
tained solutions in the case of the pairwise equal
charge parameters and mentioned that they
failed to make a generalization so as to include
a nonzero cosmological constant when a non-
vanishing acceleration parameter is turned on.
On the other hand, the charging parameters
chosen in [22] are enlarged to four electric
and four magnetic ones, but their seed metric
is only the Kerr-NUT solution. Incidentally, it
should be pointed out that the accelerating Kerr-
Sen and accelerating Kerr-NUT-Sen solution
generated in Ref. [27] are just special cases of
those were previously obtained in Ref. [31] to
possess the pairwise equal charge parameters,
although they are rederived by using a simpler
Hassan-Sen method.

(3) The Belinsky-Zakharov inverse scattering tech-
nique [33] was extended in [34] to act on the
Spð4;RÞ=Uð2Þ coset space to get the dyonic Kerr-
Sen-NUT solution that had already been obtained
in Ref. [30].
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In the case of the four-dimensional gauged STU super-
gravity theory, no solution generating technique can be
used to get the rotating charged AdS solution, of which
some subclasses had been already constructed [31,35]
only in the special case of the pairwise equal charge
parameters,1 and in the consistent truncation cases
with single-charge [37,38] and two-charge [39], respec-
tively. However, they are not written in the simple
or concise expressions, but expressed in the compli-
cated forms in terms of charging parameters [31,35].
The most general rotating charged AdS4 solution
with generic unequal values of four pairs of electro-
magnetic charging parameters that generalizes the
generic Chow-Compère solution [22] still remain elu-
sive till now, let alone further introducing a nonzero
acceleration parameter. The latter generic solution to
four-dimensional gauged STU supergravity theory
should contain 13 parameters that represent the mass,
NUT charge, rotation and acceleration, four electric and
four magnetic charge parameters, and a nonzero cos-
mological constant.

III. DYONIC KERR-SEN BLACK HOLE
AND ITS AdS4 EXTENSION

A. A new simple form of dyonic Kerr-Sen solution

Although the dyonic NUT generalization of the Kerr-
Sen black hole solution was already given in Ref. [30]
sixteen years ago, we feel that its expressions for the
solution are not suitable to our aim here. In particular, the
angular component for the U(1) gauge potential was not
explicitly given there. The solution contains a minimal set
of five physical quantities, which correspond to the mass,
NUT charge, electric and magnetic charges, as well as
rotation parameter, respectively, while the dilaton scalar
and axion pseudoscalar charges are not independent
parameters but related to these five parameters mentioned
above. In this paper, we will consider a slightly simpler
case without the NUT charge, namely, the dyonic exten-
sion of the Kerr-Sen solution. In other words, we shall
extend our previous work [17] to a more general case by
adding only a nonzero magnetic charge to the Kerr-Sen
black hole.
Written in terms of the Boyer-Lindquist coordinates, the

line element, the Abelian gauge potential and its dual, as
well as the dilaton scalar and axion pseudoscalar fields of
the dyonic Kerr-Sen black hole are given in the following
exquisite forms:

dŝ2¼−
Δ̂ðrÞ
Σ̂

X̂2þ Σ̂
Δ̂ðrÞdr

2þ Σ̂dθ2þ sin2θ

Σ̂
Ŷ2;

Â¼ qðr−p2=mÞ
Σ̂

X̂−
pcosθ

Σ̂
Ŷ;

B̂¼pðr−p2=mÞ
Σ̂

X̂þqcosθ

Σ̂
Ŷ;

eϕ̂¼ r2þða cosθþkÞ2
Σ̂

; χ̂¼ 2
kr−dðacosθþkÞ
r2þðacosθþkÞ2 ; ð4Þ

where

X̂¼dt−asin2θdφ̂; Ŷ¼adt− ðr2−2dr−k2þa2Þdφ̂;
Δ̂ðrÞ¼ r2−2dr−2mðr−dÞ−k2þa2þp2þq2;

Σ̂¼ r2−2dr−k2þa2cos2θ;

in which d ¼ ðp2 − q2Þ=ð2mÞ and k ¼ pq=m represent the
dilaton scalar and axion pseudoscalar charges, and the
mass, electric and magnetic charges as well as angular
momentum of the black hole are M ¼ m, Q ¼ q, P ¼ p,
and J ¼ ma, respectively. When the magnetic charge
vanishes (p ¼ 0), the axion charge vanishes too (k ¼ 0),
and then the solution reduces to the Kerr-Sen case
previously considered in our previous work [17] with
b ¼ −d ¼ q2=ð2mÞ. On the other hand, in the special case
when p ¼ q, the dilaton charge will completely vanish
(d ¼ 0). Note that there is a useful quadratic relation:
d2 þ k2 ¼ ðp2 þ q2Þ2=ð4m2Þ. In addition, if wishes, one
can work with another radial coordinate by shifting
r → rþ p2=m, or r → rþ d to make the expressions more
symmetric about ðp; q; d; kÞ (especially in the case when
the NUT parameter is turned on).
It should be emphasized that in the above, we have

chosen a concrete gauge choice so that the temporal
components of both Abelian gauge potentials completely
vanish at infinity; in the meanwhile, their angular compo-
nents simultaneously become p cos θ and −q cos θ there,
respectively. Our arguments for this gauge choice go as
follows.
Generally speaking, the Abelian gauge potential Â at

the infinity has the asymptotic form Â∞ ¼ Φ∞dtþ
pðcos θ � CÞdφ̂. In the standard monopole gauge theory,
the constant C may usually take three different values:
C ¼ 0 on the equator, and C ¼ �1 at the north and south
poles (θ ¼ 0; π) to eliminate the Dirac string singularities at
two poles, respectively. In the static case, the constant C
can take any one of these three values, and this does not
lead to any serious problem. But in the rotating case, if the
constant C takes the above gauge choice at infinity, namely,
C ¼ 0;�1 on the equator and at the north and south poles,
respectively, then it would give rise to an odd result for the
expressions of the electrostatic potential on the horizon:
they are not identical to each other, for instance, on the

1Rotating charged AdS solutions with one parameter less or
more than those of Ref. [35] were successively constructed in
[2,36]. It is declared in [36] that the extra parameter β represents a
scalar hair, but it is unclear to us whether or not it is a redundant
one.
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equator, at two poles, and elsewhere. This obviously
contradicts the common sense that the electrostatic poten-
tial should be a unique constant everywhere on the event
horizon, and it means that the electric charge is not
uniformly distributed on the horizon. To ensure that the
electrostatic potential in the rotating case is equal every-
where on the horizon, one can only set C ¼ 0 so that Âϕ ¼
p cos θ at infinity. On the other hand, any choice of Φ∞
does not change the difference of the electrostatic
potential on the event horizon and that measured by an
observer at infinity: Φ ¼ Φþ −Φ∞. Frequently, two con-
ventional options for the temporal component of the gauge
potential Â are either Φ∞ ¼ 0 or Φþ ¼ 0 (equivalently,
Φ∞ ¼ −Φþ). Similar discussions completely apply to the
dual Abelian gauge potential B̂ too. Here we would like to
work with the temporal gauge choice Φ∞ ¼ Ψ∞ ¼ 0.
However, it should be noted that different choices
of temporal gauge of the U(1) potentials correspond to
different thermodynamical ensembles and therefore
different thermodynamical grand potentials. One can
have a total of four possibilities by fixing any one
combination of the charges, electrostatic and magneto-
static potentials: (Q, P), (Q, Ψ), (P, Φ), and (Φ, Ψ).
Taking into account of these, our discussions below about
thermodynamics in the dyonic case should correspond to
the thermodynamical ensemble with the static potentials
(Φ, Ψ) fixed.

B. Dyonic Kerr-Sen-AdS4 solution

We now add a nonzero negative cosmological constant
into the above dyonic Kerr-Sen black hole solution and
obtain an exact AdS4 black hole solution to the gauged
EMDA theory. Expressed in terms of the Boyer-Lindquist
coordinates with the frame rotating at infinity, the dyonic
Kerr-Sen-AdS4 black hole solution can be written as
follows:

ds̄2¼−
Δ̄r

Σ̄
X̄2þ Σ̄

Δ̄r
dr2þ Σ̄

Δ̄θ
dθ2þ Δ̄θsin2θ

Σ̄
Ȳ;

Ā¼ qðr−p2=mÞ
Σ̄

X̄−
pcosθ

Σ̄
Ȳ;

B̄¼pðr−p2=mÞ
Σ̄

X̄þqcosθ
Σ̄

Ȳ;

eϕ̄¼ r2þðacosθþkÞ2
Σ̄

; χ̄¼ 2
kr−dðacosθþkÞ
r2þðacosθþkÞ2 ; ð5Þ

where a bar is designed to distinct the present expressions
from their corresponding ones in the ungauged case. Note
that Σ̄ ¼ Σ̂ ¼ r2 − 2dr − k2 þ a2cos2θ as before, but now
we have

X̄ ¼ dt−
asin2θ
Ξ

dφ̄; Ȳ ¼ adt−
r2 − 2dr− k2 þ a2

Ξ
dφ̄;

Δ̄r ¼
�
1þ r2 − 2dr− k2

l2

�
ðr2 − 2dr− k2 þ a2Þ

− 2mðr− dÞ þp2 þ q2;

Δ̄θ ¼ 1−
a2

l2
cos2θ; Ξ¼ 1−

a2

l2
:

Clearly, the above solution (5) simply reduces to the dyonic
Kerr-Sen black hole solution (4) when the cosmological
constant vanishes.
Since the gauged EMDA theory is a successive con-

sistent truncation of the four-dimensional gauged STU
supergravity, therefore, similar to the purely electric-
charged case as mentioned in our previous paper [17],
the above AdS4 black hole solution can be thought of as a
special case of those obtained in Refs. [31,35], where more
general solutions with the pairwise equal charge parameters
have been constructed in the gauged −iX0X1 supergravity
model. However, the solution presented here is slightly
simpler than those given there especially by the radial
structure function and is more convenient for further
investigations.

C. Thermodynamics

Now we would like to explore thermodynamics of the
dyonic Kerr-Sen-AdS4 black hole (5). One can compute all
associated thermodynamic quantities via the standard
method and express them as follows:

M̄¼m
Ξ
; J̄¼ma

Ξ2
; Q̄¼ q

Ξ
; P̄¼p

Ξ
;

S̄¼ π

Ξ
ðr2þ−2drþ−k2þa2Þ; Ω̄¼ aΞ

r2þ−2drþ−k2þa2
;

Φ̄¼ qðrþ−p2=mÞ
r2þ−2drþ−k2þa2

; Ψ̄¼ pðrþ−p2=mÞ
r2þ−2drþ−k2þa2

;

T̄¼ Δ̄0
rþ

4πðr2þ−2drþ−k2þa2Þ

¼ ðrþ−dÞð2r2þ−4drþ−2k2þa2þ l2Þ−ml2

2πðr2þ−2drþ−k2þa2Þl2 ; ð6Þ

where the location of the event horizon rþ is the largest root
of equation Δ̄rþ ¼ 0.
In the above, we have only listed the final expressions for

these thermodynamic quantities while omitting the com-
puting process. In particular, we have adopted the con-
formal completion method provided in Ref. [40] (especially
its subsection IV.A is very useful and relevant to our aim) to
compute the conserved charges (mass and angular momen-
tum) given in Eqs. (6) and (13) in the rotating and rest
frames at infinity, respectively. On the other hand, due to
good falloff behaviors of the vector and scalar fields, the
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electric and magnetic charges can be computed by the
Gauss-type law integral

Q ¼ 1

4π

Z
⋆ dĀ ¼ 1

4π

Z
dB̄;

P ¼ 1

4π

Z
⋆ dB̄ ¼ −1

4π

Z
dĀ: ð7Þ

In addition, by virtue of the specific gauge choice argued in
the last section, the electrostatic and magnetostatic poten-
tials are simply given by

Φ̄ ¼ ðAμχ̄
μÞjr¼rþ ; Ψ̄ ¼ ðBμχ̄

μÞjr¼rþ ; ð8Þ

where χ̄ ¼ ∂t þ Ω̄∂φ̄ is the Killing vector normal to the
event horizon. Similarly, one can compute their corre-
sponding thermodynamic expressions in the rest frame at
infinity also.
It is not difficult to check that the thermodynamic

quantities (6) obey the Bekenstein-Smarr mass formula

M̄ ¼ 2T̄S̄þ 2Ω̄J̄ þ Φ̄Q̄þ Ψ̄P̄ − 2V̄P̄; ð9Þ

where V̄ is the thermodynamic volume,

V̄ ¼ 4

3
ðrþ − dÞS̄

¼ 4π

3Ξ
ðrþ − dÞðr2þ − 2drþ − k2 þ a2Þ; ð10Þ

which is conjugate to the pressure P̄ ¼ 3=ð8πl2Þ and can be
alternatively evaluated via the method put forward in
Ref. [4] (see III.B therein),

V̄ ¼ l2

3

Z
rþ

d
dr

Z
2π

0

dφ̄
Z

π

0

dθ
ffiffiffiffiffiffi
−ḡ

p
Vðϕ̄; χ̄Þ; ð11Þ

where the lower limit of r-integration must be taken to be
r ¼ d. However, the first law becomes a differential
identity only,

dM̄ ¼ T̄dS̄þ Ω̄dJ̄ þ Φ̄dQ̄þ Ψ̄dP̄þ V̄dP̄ þ J̄dΞ=ð2aÞ:
ð12Þ

The reason for this is that we have worked with a frame
rotating at infinity.
One can transform the above dyonic Kerr-Sen-AdS4

solution into the frame rest at infinity via a simple
coordinate transformation: φ̄ → φ̃ − al−2t. After a cum-
bersome computation (using the method mentioned above)
for those thermodynamic quantities in this rest frame, it is
easy to observe that only the mass, the angular velocity, and
the thermodynamic volume are different from those given
in Eq. (6) and related by the following expressions:

M̃¼ M̄þ a
l2
J̄¼ m

Ξ2
; Ω̃¼ Ω̄þ a

l2
; Ṽ¼ V̄þ4π

3
aJ̄: ð13Þ

Now it is easy to verify that thermodynamic quantities
can indeed fulfil both the standard forms of the first law and
the Bekenstein-Smarr mass formula simultaneously,

dM̃ ¼ T̄dS̄þ Ω̃dJ̄ þ Φ̄dQ̄þ Ψ̄dP̄þ ṼdP̄;

M̃ ¼ 2T̄S̄þ 2Ω̃J̄ þ Φ̄Q̄þ Ψ̄P̄ − 2ṼP̄: ð14Þ
In addition, one can show that the above differential and
integral mass formulas can be derived from the following
Christodoulou-Ruffini-like squared-mass formulas:

M̃2 ¼
�
1þ 8P̄S̄

3

���
1þ 8P̄S̄

3

�
S̄
4π

þ πJ̄2

S
þ P̄2 þ Q̄2

2

�
:

ð15Þ

When the magnetic charge P vanishes, all the above
thermodynamic formulas can consistently reduce to those
obtained in Ref. [17] for the purely electric-charged Kerr-
Sen-AdS4 case.

IV. ULTRASPINNING DYONIC KERR-SEN-ADS4
BLACK HOLE

A. The ultraspinning dyonic solution

Following [17], we redefine φ ¼ φ̄=Ξ and then just need
to set a ¼ l in the above dyonic Kerr-Sen-AdS4 black hole
solution (5) to construct its corresponding ultraspinning
version as follows:

ds2¼−
ΔðrÞ
Σ

X2þ Σ
ΔðrÞdr

2þ Σ
sin2θ

dθ2þsin4θ
Σ

Y2;

A¼qðr−p2=mÞ
Σ

X−
pcosθ
Σ

Y;

B¼pðr−p2=mÞ
Σ

Xþqcosθ
Σ

Y;

eϕ¼ r2þðlcosθþkÞ2
Σ

; χ¼2
kr−dðlcosθþkÞ
r2þðlcosθþkÞ2 ; ð16Þ

where

X¼ dt− lsin2θdφ; Y ¼ ldt− ðr2− 2dr− k2þ l2Þdφ;
ΔðrÞ ¼ ðr2 − 2dr− k2þ l2Þ2l−2− 2mðr−dÞþp2þq2

¼ ½ðrþq2=mÞðr−p2=mÞþ l2�2l−2− 2mðr−p2=mÞ;
Σ¼ r2− 2dr− k2þ l2cos2θ

¼ ðrþq2=mÞðr−p2=mÞþ l2cos2θ:

Note that in the above ultraspinning dyonic solution,
the period of φ is now assumed to take a dimensionless
parameter μ rather than 2π.
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With an exact solution of the ultraspinning dyonic Kerr-
Sen-AdS4 black hole in hand, the remaining main task of
this work is to study its various interesting basic properties,
such as its thermodynamical properties, the horizon top-
ology and conformal boundary, the RII, etc.

B. Various mass formulas

First, let us focus on thermodynamics of the ultra-
spinning dyonic Kerr-Sen-AdS4 black hole. As before,
one can obtain the following expressions of its fundamental
thermodynamic quantities through the standard method:

M¼ μ

2π
m; J¼ μ

2π
ml¼Ml; Q¼ μ

2π
q; P¼ μ

2π
p;

S¼ μ

2
ðr2þ− 2drþ − k2þ l2Þ; Ω¼ l

r2þ− 2drþ − k2þ l2
;

Φ¼ qðrþ−p2=mÞ
r2þ− 2drþ − k2þ l2

; Ψ¼ pðrþ−p2=mÞ
r2þ− 2drþ− k2þ l2

;

T ¼ Δ0ðrþÞ
4πðr2þ − 2drþ− k2þ l2Þ

¼ rþ−d
πl2

−
m

2πðr2þ − 2drþ− k2þ l2Þ ; ð17Þ

in which the location of the event horizon rþ is now
determined by the largest root of equation ΔðrþÞ ¼ 0.
As mentioned in the last section, one good way to

compute the mass and angular momentum in the ultra-
spinning case is to adopt the conformal completion
technique that is explicitly elucidated in Ref. [40] since
the line element of the conformal boundary is not a
diagonal metric. It is worthy to point out that all of the
thermodynamic quantities given in Eq. (17) are obtained by
applying the same method as mentioned above. Because a
detailed discussion about the computation of all the
thermodynamic quantities for the ultraspinning AdS sol-
ution had already addressed in subsection II. A of our
previous work [14], so we omit the computing process here.
Note that there is a chirality condition (J ¼ Ml) that

constrains the angular momentum and the mass, and the
angular velocity Ω is that of the event horizon because the
ultraspinning dyonic black hole is rotating at the speed of
light at infinity.
Now it can be shown that the above thermodynamical

quantities completely fulfil both the first law and the
Bekenstein-Smarr mass formulas,

dM ¼ TdSþΩdJ þΦdQþ ΨdPþ VdP þ Kdμ; ð18Þ

M ¼ 2TSþ 2ΩJ þΦQþΨP − 2VP; ð19Þ

in which the thermodynamic volume and a new chemical
potential,

V¼ 4

3
ðrþ−dÞS¼ 2

3
μðrþ−dÞðr2þ−2drþ−k2þ l2Þ; ð20Þ

K ¼ m
l2 − ðrþ þ q2=mÞðrþ − p2=mÞ

4πðr2þ − 2drþ − k2 þ l2Þ ; ð21Þ

are conjugate to the pressure P ¼ 3=ð8πl2Þ and the
dimensionless parameter μ, respectively. Note that V can
be also computed as

V ¼ l2

3

Z
rþ

d
dr

Z
μ

0

dφ
Z

π

0

dθ
ffiffiffiffiffiffi
−g

p
Vðϕ; χÞ; ð22Þ

where the upper limit of φ-integration is changed to φ ¼ μ,
while the lower limit of r-integration still is r ¼ d.
Presumably, the chemical potential K might be obtained
alternatively in the context of an angular gravitational
tension [41] associated to the rotational symmetry of the
black hole or in term of the thermodynamic length [42]
related to the conical defect.
In the subsection II. E of our previous work [14] (and

then III. C of Ref. [17]), we have made, for the first time, an
attempt to relate the thermodynamic quantities of the
ultraspinning solution to those of its usual rotating AdS
solution. This is based upon such a naive belief that the
ultraspinning solution is obtained by taking the a → l limit,
so were their thermodynamic quantities also. Similar to
what was done in Refs. [14,17], now we simply generalize
to the dyonic case, and proceed to assume the following
simple relations:

M ¼ μΞM̄
2π

; J ¼ μΞ2J̄
2π

; Q ¼ μΞQ̄
2π

; P ¼ μΞP̄
2π

;

Ω ¼ Ω̄
Ξ
; S ¼ μΞS̄

2π
; V ¼ μΞV̄

2π
;

T ¼ T̄; Φ ¼ Φ̄; P ¼ P̄; ð23Þ

and take the ultraspinning limit a → l. Then we can find
that the above thermodynamic quantities presented in
Eq. (17) for the ultraspinning dyonic Kerr-Sen-AdS4 black
hole can also be obtained straightforwardly from those of
its corresponding usual black hole in a frame rotating at
infinity.
In Ref. [17], a new Christodoulou-Ruffini-like squared-

mass formulas was derived for the ultraspinning Kerr-Sen-
AdS4 black hole. Now we expect to generalize it to the
ultraspinning dyonic case. Rewriting the event horizon
equation (Δrþ ¼ 0) as

S2

πl2
þ πðP2 þQ2Þ ¼ μMðrþ − dÞ; ð24Þ

then exploiting 3=l2 ¼ 8πP, we can obtain rþ ¼
dþ ½8PS2 þ 3πðP2 þQ2Þ�=ð3μMÞ. Now, we substitute
it into the entropy S ¼ μðr2þ − 2drþ − k2 þ l2Þ=2 and
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use d ¼ πðP2 −Q2Þ=ðμMÞ and k ¼ 2πPQ=ðμMÞ as well
as the chirality condition (J ¼ Ml) to get a useful identity,

M2 ¼ 8PS
3μ

�
4P
3

S2 þ πðP2 þQ2Þ
�
þ μJ2

2S
; ð25Þ

which is our expected Christodoulou-Ruffini-like squared-
mass formulas for the ultraspinning dyonic Kerr-Sen-AdS4
black hole. We point out that this squared-mass formu-
las (25) consistently reduces to the one obtained in the
ultraspinning Kerr-Sen-AdS4 black hole case [17] when the
magnetic charge P is turned off.
Supposing temporarily that there exists no chirality

condition (J ¼ Ml) at all, then it is clear from Eq. (25)
that the thermodynamical quantities S, J, Q, P, P, and μ
can be treated as independent thermodynamical variables
and consist of an entire set of extensive variables for the
fundamental functional relation M ¼ MðS; J;Q; P;P; μÞ.
In this way, as is done in Refs. [14,17,43–46], the differ-
entiation of the above squared-mass formula (25) with
respect to one formal variable of the whole set
(S; J;Q; P;P; μ) and simultaneously fixing the remaining
ones, respectively, lead to their corresponding conjugate
quantities as expected. Subsequently, one can obtain the
differential first law (18) and the integral Bekenstein-Smarr
relation (19) with the conjugate thermodynamic potentials
correctly reproduced by the ordinary Maxwell relations.
Let us now demonstrate the above conclusion in more

detail. Differentiating the squared-mass formula (25) with
respect to the entropy S yields the conjugate Hawking
temperature,

T ¼ ∂M
∂S

����
ðJ;Q;P;P;μÞ

¼ 8P
3μM

�
8P
3

S2 þ πðP2 þQ2Þ
�
−
M
2S

¼ rþ − d
πl2

−
m

2πðr2þ − 2drþ − k2 þ l2Þ ; ð26Þ

and the corrected angular velocity, the electrostatic and
magnetostatic potentials, which are conjugate to J, Q,
and P, respectively, can be computed as

Ω ¼ ∂M
∂J

����
ðS;Q;P;P;μÞ

¼ μJ
2MS

¼ l
r2þ − 2drþ − k2 þ l2

; ð27Þ

Φ¼ ∂M
∂Q

����
ðS;J;P;P;μÞ

¼ 8πPQ
3μM

S¼ qðrþ−p2=mÞ
r2þ−2drþ−k2þ l2

; ð28Þ

Ψ¼ ∂M
∂P

����
ðS;J;Q;P;μÞ

¼ 8πPP
3μM

S¼ pðrþ−p2=mÞ
r2þ−2drþ−k2þ l2

: ð29Þ

Similarly, by the differentiation of the squared-mass for-
mula (25) with respect to the pressure P and the dimen-
sionless parameter μ, one can obtain the thermodynamical
volume and a new chemical potential,

V ¼ ∂M
∂P

����
ðS;J;Q;P;μÞ

¼ 4S
3μM

�
8P
3

S2 þ πðP2 þQ2Þ
�

¼ 4

3
ðrþ − dÞS; ð30Þ

K ¼ ∂M
∂μ

���
ðS;J;Q;P;PÞ

¼ M
2μ

−
8PS
3μ2M

�
4P
3

S2 þ πðP2 þQ2Þ�

¼ m
l2 − ðrþ þ q2=mÞðrþ − p2=mÞ

4πðr2þ − 2drþ − k2 þ l2Þ : ð31Þ

All the above conjugate quantities correctly reproduce
those expressions previously presented in Eqs. (17), (20),
and (21). Using all these thermodynamical conjugate pairs,
it is trivial to check that both the differential first law (18)
and the integral mass formula (19) are completely satisfied
at the same time.

C. Chirality condition and reduced mass formulas

Now we would like to discuss in details about the impact
of the chirality condition (J ¼ Ml) on the thermodynamical
relations of the ultraspinning dyonic Kerr-Sen-AdS4 black
hole. By virtue of the existence of the chirality condition
(J ¼ Ml), three thermodynamical quantities (M, J, P) are,
in fact, not truly independent of each other, and there is a
constraint relation among them,

J2 ¼ 3M2=ð8πPÞ; ð32Þ

which implies that the above ultraspinning dyonic black
hole is actually a degenerate thermodynamical system and
there are no enough parameters to hold completely fixed
when performing the differential operations in the last
subsection. Once taking into account this chirality con-
dition physically, the differential first law (18) and the
integral Bekenstein-Smarr formula (19) should be con-
strained by Eq. (32), and actually depict a degenerate
thermodynamical system.
Choosing J as a redundant variable (although it is a real

observable quantity)2 and eliminating it from the differ-
ential and integral mass formulas with the help of
l2 ¼ 3=ð8πPÞ, the first law (18) and the Bekenstein-
Smarr relation (19) now boil down to the following
nonstandard forms:

ð1 −ΩlÞdM ¼ TdSþ V 0dP þΦdQþ ΨdPþ Kdμ;

ð1 −ΩlÞM ¼ 2ðTS − V 0PÞ þΦQþΨP; ð33Þ

where

2Alternately, one can try to eliminate P rather than J via
Eq. (32) also.
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V 0 ¼ V −
JΩ
2P

¼ V −
4π

3
ΩMl3:

It is clear that the thermodynamic quantities in the above
formulas cannot comprise the ordinary canonical conjugate
pairs due to the existence of a factor ð1 −ΩlÞ in front of dM
and M.
Meanwhile, the squared-mass formula (25) reduces to

M2

�
1 −

μ

16πPS

�
¼ 8PS

3μ

�
4P
3

S2 þ πðP2 þQ2Þ
�
: ð34Þ

In this way, one actually regards the enthalpy M as the
fundamental functional relation M ¼ MðS;Q; P;P; μÞ.
Resembling the strategy employed in the last subsection,
one can deduce the above nonstandard differential and
integral mass formulas from Eq. (34) by using the standard
Maxwell rule.

D. Horizon geometry and conformal boundary

From now on, we shall concentrate on other basic
properties, such as the horizon geometry and conformal
boundary, and RII of the ultraspinning dyonic Kerr-Sen-
AdS4 black hole, as well as bounds on the mass and horizon
radius in the extremal case. It is suggestive to recast the
metric (16) into another helpful form,

ds2 ¼ −
ΔðrÞΣdt2

½2mðr − dÞ − p2 − q2�l2 þ
Σdr2

ΔðrÞ þ
Σdθ2

sin2θ

þ 2mðr − dÞ − p2 − q2

Σ

�
l sin2θdφ − dt

þ ðr2 − 2dr − k2 þ l2ÞΣ
½2mðr − dÞ − p2 − q2�l2 dt

	
2

: ð35Þ

To ensure that the spacetime outside the event horizon has
the correct Lorentzian signature, the following inequalities
must be simultaneously satisfied:

Σ ≥ 0; ΔðrÞ ≥ 0;

2mðr − dÞ − p2 − q2 ¼ 2mðr − p2=mÞ ≥ 0: ð36Þ
Given that the mass parameter of the ultraspinning dyonic
black hole is absolutely positive (m > 0), it is immediately
required that

r ≥ p2=m: ð37Þ
And this also meets the requirement: Σ ¼ ðrþ q2=mÞ×
ðr − p2=mÞ þ l2 cos2 θ ≥ 0. Then it can be checked that
gφφ ¼ 2ml2ðr − p2=mÞ sin4 θ=Σ ≥ 0 is strictly guaranteed
outside the event horizon, and thus the geometry is free of
any closed timelike curve (CTC). Finally, the condition
ΔðrÞ ≥ 0 results in the following inequalities:

½ðrþq2=mÞðr−p2=mÞþ l2�2 ≥ 2mðr−p2=mÞl2 ≥ 0: ð38Þ

Only when the above two requirements (37) and (38) are
met, the spacetime outside the event horizon is Lorentzian
and free of CTC.
To explore the geometry of the event horizon, let us study

the constant (t, r) surface on which the induced metric is

ds2h¼
Σþ
sin2θ

dθ2þðr2þ−2drþ−k2þ l2Þ2
Σþ

sin4θdφ2; ð39Þ

where Σþ ¼ r2þ − 2drþ − k2 þ l2cos2θ. It is clear that
this metric is singular at θ ¼ 0 and θ ¼ π. Let us first
examine whether the metric is ill-defined at θ ¼ 0, and
analyze it in the limit θ → 0. In the small angle case (θ ∼ 0),
we can introduce a new variable κ ¼ lð1 − cos θÞ. Using
sin2 θ ≃ 2κ=l, the two-dimensional cross section (39) for
small κ can be written as

ds2h ¼ ðr2þ − 2drþ − k2 þ l2Þ
�
dκ2

4κ2
þ 4κ2

l2
dφ2

�
: ð40Þ

The above metric (40) naturally reduces to what was
considered [17] in the ultraspinning Kerr-Sen-AdS4 black
hole case when the magnetic charge parameter vanishes
(p ¼ 0), and is clearly a metric of constant, negative
curvature on a quotient of the hyperbolic space H2. Due
to the symmetry, one can perform a similar analysis in the
θ ∼ π case and get the same result in the θ → π limit.
Apparently, the space is free from pathologies near the
north and south poles. Topologically, the event horizon is a
sphere with two punctures and sometimes is called the
black spindle [16]. This indicates that the above ultra-
spinning dyonic Kerr-Sen-AdS4 black hole owns a finite
area but noncompact horizon.
Next, we wish to study the conformal boundary of the

ultraspinning dyonic Kerr-Sen-AdS4 black hole. After
multiplying the metric (16) with the conformal factor
l2=r2 and taking the r → ∞ limit, the boundary metric reads

ds2b ¼ −dt2 þ 2lsin2θdtdφþ l2dθ2=sin2θ; ð41Þ
which is the same one as those of the superentropic
Kerr-Newman-AdS4 black hole [6] and the ultraspinning
Kerr-Sen-AdS4 black hole [17]. Obviously, the coordinateφ
is null on the conformal boundary. In the small κ ¼ lð1 −
cos θÞ limit, the conformal boundary metric (41) can be
reexpressed as

ds2b ¼ −dt2 þ 4κdtdφþ l2dκ2=ð4κ2Þ; ð42Þ
which is interpreted in [3] as an AdS3 written as a Hopf-like
fibration over H2. It follows that the metric has nothing
pathological near two poles: θ ¼ 0 and θ ¼ π.
To end this subsection, it needs to point out that the

boundary metric (42), which is a negative curvature
maximally symmetric spacetime that solves the Einstein-
Λ in three dimensions, is locally isomorphic to AdS3, but
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not globally identified as AdS3, since the coordinate φ is a
periodic one. In other words, the global identification of
this coordinate φ makes the whole spacetime topologically
different from AdS3.

E. Bounds on the mass and horizon radii
of extremal ultraspinning dyonic black holes

In Ref. [17], we have discussed the bounds on the mass
and horizon radius of the extremal ultraspinning Kerr-Sen-
AdS4 black hole. Here we would like to seek some similar
inequalities for its dyonic counterpart. In the extremal
dyonic black hole case, two roots of the horizon equation
ΔðrÞ ¼ 0 coincide with each other, and its location is
determined by ΔðreÞ ¼ Δ0ðreÞ ¼ 0, whose explicit expres-
sions are given by
�
r2eþ

q2−p2

m
re−

q2p2

m2
þl2

�
2

¼2ml2
�
re−

p2

m

�
;

�
r2eþ

q2−p2

m
re−

q2p2

m2
þl2

��
2reþ

q2−p2

m

�
¼ml2; ð43Þ

from which one can get a quadratic equation and a cubic
equation about the radius re,

r2e þ
q2 − 5p2

3m
re −

m2l2 þ p2ðq2 − 2p2Þ
3m2

¼ 0; ð44Þ
�
re −

p2

m

��
re þ

q2 − p2

2m

�
2

−
ml2

8
¼ 0: ð45Þ

Using Eq. (44), one can eliminate the r3e and r2e terms from
Eq. (45) to arrive at the expression for the extremal horizon
radius,

re ¼
p2

m
− 8ml2

p2 þ q2 − 9m2=16
ðp2 þ q2Þ2 þ 12m2l2

; ð46Þ

and resubmit it into Eqs. (44) and (45) to obtain an
important equality relating the solution parameters,

�
l2 þ 27

256
m2 −

1

4m2

�
p2 þ q2 −

9

8
m2

�
2
�
2

¼ −
1

4m2

�
p2 þ q2 −

9

16
m2

�
3

; ð47Þ

which will give a stringent restriction on the parameters
range allowed by the extremal dyonic solution.
In order to analyze the parameters equation (47),

it is convenient to include two new variables: the
rescaled mass y ¼ m=l and the rescaled scalar charge x ¼
ðp2 þ q2Þ=ð2mlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k2

p
=l to rewrite Eq. (47) as a

quadratic equation of y,

27

64
y2 þ 1

4
xðx2 − 9Þy − ðx2 − 1Þ2 ¼ 0; ð48Þ

which admits two real roots,

y� ¼ 8

27
½xð9 − x2Þ � ðx2 þ 3Þ3=2�: ð49Þ

Meanwhile, we would like to introduce also two shifted
radii3

ρe ¼ re −
p2

m
¼ 9y − 32x

8ðx2 þ 3Þ l;

Re ¼ re − d ¼ lxþ 9y − 32x
8ðx2 þ 3Þ l: ð50Þ

In Fig. 1, we plot the rescaled mass and rescaled shifted
radii as functions of the rescaled scalar charge in the
physical range x ∈ ½0;∞Þ. For the positive mass and

FIG. 1. On the basis of the reasonable range of the positive
mass and cosmological scale (m > 0 and l > 0), the negative root
y−, and accordingly ρ−e and R−

e should be excluded from our
discussions on the ground of physical reason. In the interval
x ∈ ½0;∞Þ, the root yþ is a monotonic increasing function of
x, ρþe is monotonic decreasing but Rþ

e is monotonic increasing
with increasing x. The origin x ¼ 0 is equivalent to p ¼ q ¼ 0,
which corresponds to the extremal ultraspinning Kerr-AdS4 black
hole case. (a) Scaled mass vs rescaled scalar charge and (b)
Shifted radii vs rescaled scalar charge with l ¼ 1.

3This suggests to adopt the radial coordinate ρ ¼ r − p2=m or
R ¼ r − d.
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cosmological scale (m > 0 and l > 0), only the root yþ is
admissible, and acquires a minimal value: 8

ffiffiffi
3

p
=9 at x ¼ 0

(p ¼ q ¼ 0). At the same time, ρþe and Rþ
e intersect at the

Hawking-Page phase transition scale rHP ¼ l=
ffiffiffi
3

p
when

x ¼ 0. This implies that the extremal mass has the lowest
bound,

m ¼ me ≥
8l

3
ffiffiffi
3

p ; ð51Þ

but rHP ¼ l=
ffiffiffi
3

p
becomes, respectively, the upper and lower

bounds of the shifted horizon radii,

ρþe ≤
lffiffiffi
3

p ≤ Rþ
e : ð52Þ

The above bounds on the extremal mass and horizon radii
are in complete accordance with the results previously
obtained in the extremal ultraspinning Kerr-Sen-AdS4 case
[17]. In particular, the detailed discussion made in this
subsection further confirms the conclusion in the Note
added of our previous paper [17].

F. Reverse isoperimetric inequality

It has been conjectured [4] that the AdS black holes fulfil
the following RII:

R ¼
�ðD − 1ÞV

AD−2

�
1=ðD−1Þ�AD−2

A

�
1=ðD−2Þ

≥ 1; ð53Þ

with AD−2 ¼ 2π½ðD−1Þ=2�=Γ½ðD − 1Þ=2� being the area of
the unit (D − 2)-sphere and A ¼ 4S the horizon area.
Equality is attained for the Schwarzschild-AdS black hole,
which implies that the Schwarzschild-AdS black hole has
the maximum entropy. In other words, for a given entropy,
the Schwarzschild-AdS black hole owns the least volume.
Now, we would like to directly check whether or not the

ultraspinning dyonic Kerr-Sen-AdS4 black hole obeys this
RII. We have already known that the area of the unit
two-dimensional sphere, the thermodynamic volume, and
the horizon area are A2 ¼ 2μ, V ¼ 4ðrþ − dÞS=3, and
A¼ 4S¼ 2μðr2þ−2drþ−k2þ l2Þ, respectively. Therefore,
the isoperimetric ratio is

R ¼
�
rþ − d
2μ

A

�
1=3

�
2μ

A

�
1=2

¼
� ðrþ − dÞ2
ðrþ − dÞ2 − d2 − k2 þ l2

�
1=6

: ð54Þ

Clearly, the ratio of R is uncertain. If 0 ≤ d2 þ k2 < l2

(namely, 0 ≤ p2 þ q2 < 2ml), then R < 1, which implies
that the ultraspinning dyonic Kerr-Sen-AdS4 black hole
violates the RII, and is superentropic. Otherwise if
d2þk2 ≥ l2 (or p2 þ q2 ≥ 2ml), one then obtains R ≥ 1.

In this case, the ultraspinning dyonic Kerr-Sen-AdS4 black
hole obeys the RII and is subentropic. Because the value
range of R crucially depends upon the values of the
solution parameters (p, q, m, and l), one can find that
the ultraspinning dyonic Kerr-Sen-AdS4 black hole is not
always superentropic, similar to the purely electric-charged
case that describes the ultraspinning Kerr-Sen-AdS4 black
hole [17]. Only when the parameters obey the inequality
p2 þ q2 < 2ml does it violate the RII, while the super-
entropic dyonic Kerr-Newman-AdS4 black hole always
violates the RII [1]. As far as this point is concerned, these
dyonic AdS4 black holes exhibit one remarkable different
property.

V. CONCLUSIONS

In this paper, we have extended our previous work [17]
to a more general dyonic case and investigated some
interesting properties of the dyonic Kerr-Sen-AdS4
black hole and its ultraspinning counterpart in the four-
dimensional gauged EMDA theory. To this end, we first
presented an exquisite form for the dyonic Kerr-Sen black
hole solution and found its generalization by including a
nonzero negative cosmological constant, namely, the
dyonic Kerr-Sen-AdS4 black hole. Then by applying a
simple a → l limit procedure, we obtained its ultraspinning
cousin. All the expressions of these solutions, namely, their
metric, the Abelian gauge potential, and its dual potential,
as well as the dilaton scalar and axion pseudoscalar
fields are very convenient for exploring their thermody-
namical properties. We presented all necessary thermody-
namic quantities and demonstrated that they obey both the
differential and integral mass formulas. Furthermore, we
displayed new Christodoulou-Ruffini-like squared-mass
formulas for these four-dimensional AdS4 black holes,
from which all expected thermodynamic conjugate partners
can be computed by differentiating these squared-mass
formulas with respect to their corresponding thermody-
namic variables and are demonstrated to constitute the
ordinary canonical conjugate pairs in the standard forms of
black hole thermodynamics.
In particular, we have utilized the method advocated in

Refs. [14,17] to show that all thermodynamical quantities
of the ultraspinning dyonic Kerr-Sen-AdS4 black hole can
be obtained via taking the same ultraspinning a → l limit to
those of their corresponding predecessor in the rotating
frame at infinity. After that, we have discussed in detail
about the impact of the chirality condition on the actual
thermodynamics of this ultraspinning dyonic black hole.
To a certain extent, these aspects resemble those of the
superentropic dyonic Kerr-Newman-AdS4 and the ultra-
spinning Kerr-Sen-AdS4 black hole.
Paralleling to the work done in Ref. [17], we have

discussed some bounds on the mass and horizon radius of
the extremal ultraspinning dyonic Kerr-Sen-AdS4 black
hole. Our results further confirm those established for the
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ultraspinning Kerr-Sen-AdS4 black hole [17] and repro-
duce its conclusion when the magnetic charge parameter
vanishes.
Like the purely electric-charged case of the ultraspinning

Kerr-Sen-AdS4 black hole [17], we have also found that the
ultraspinning dyonic Kerr-Sen-AdS4 black hole is not
always superentropic, since the RII is violated only when
p2 þ q2 < 2ml. Once p2 þ q2 ≥ 2ml, the ultraspinning
dyonic Kerr-Sen-AdS4 black hole will be subentropic.
This black hole resembles the ultraspinning Kerr-Sen-
AdS4 black hole which does not always violate the RII
[17], but is in sharp contrast with the superentropic dyonic
Kerr-Newman-AdS4 black hole that always violates the RII
[1]. A most related issue is to investigate whether or not the

RII is violated in the reduced form of extended thermo-
dynamic phase space, as did in Ref. [15].
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