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We present a 3þ 1 formulation of the effective field theory framework called the standard model
extension in the gravitational sector. The explicit local Lorentz and diffeomorphism symmetry breaking
assumption is adopted, and we perform a Dirac-Hamiltonian analysis. We show that the structure of the
dynamics presents significant differences from general relativity and other modified gravity models. We
explore Hamilton’s equations for some special choices of the coefficients. Our main application is
cosmology, and we present the modified Friedmann equations for this case. The results show some
intriguing modifications to standard cosmology. In addition, we compare our results to existing frameworks
and models, and we comment on the potential impact to other areas of gravitational theory and
phenomenology.
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I. INTRODUCTION

It is generally expected that general relativity (GR) and
the standard model (SM) of particle physics are not the
ultimate descriptions of nature, but rather low-energy
effective field theories which accurately describe physics
at energy scales available to us. This point of view is
motivated by the expectation that there exists a single
unified theory encompassing all the known fundamental
interactions. This implies the existence of a renormalizable
quantum theory of gravity which has GR as its low-energy
limit. GR, being an effective field theory, is then expected
to hold up to some ultraviolet (UV) cutoff scale, normally
taken to be the Planck energy, EPl ≈ 1019 GeV. Any theory
attempting to bridge GR and SM should, on dimensional
grounds, contain all the characteristic constants of the
constituent theories. As EPl represents the UV cutoff scale
of GR, new physics should appear close to this energy, and
a promising avenue to find new physics is to search for
deviations from fundamental principles of GR.
Local Lorentz invariance is one of the fundamental

symmetries of relativity as well as particle physics, stating
that any local experiment is independent of both orientation
and velocity of both the experiment and observer, and it is a
key ingredient of GR. As such, precision tests of local
Lorentz symmetry are an excellent way to test for new
physics [1,2].

The standard model extension (SME) is a general
effective field theory framework for testing Lorentz and
CPT symmetries [3,4]. It has become a standard frame-
work for constraining Lorentz violation in a systematic way
(for a list of all current measurements, see Ref. [5]). The
SME contains GR and the standard model of particle
physics, as well as generic Lorentz-violating terms up to
arbitrary order. The terms are constructed by contracting
operators built from known fields with coefficients for
Lorentz violation, the latter of which control the degree of
symmetry breaking and can be constrained by experiments.
In principle the SME contains an arbitrary number of

terms, but is frequently truncated at low order in mass
dimension of the field operators used. A much-studied
truncation is called the minimal SME and contains oper-
ators of mass dimension three or four.
Whereas many limits have to date been set in the matter

sector of the SME, gravitational-sector coefficients have
also been constrained. These include analysis with short-
range gravity tests [6], gravimeters [7], solar-system tests
[8,9], pulsars [10], gravitational waves [11], and others [12].
Much of the theoretical phenomenology that experi-

ments and observations have used is based on weak-field
gravity analysis [13–17]. So-called “exact” results beyond
this regime in the SME gravity sector have just begun to be
explored [18–23]. The aim of this work is in part to extend
results to situations where weak gravitational fields cannot
be assumed, for example in cosmology. Furthermore, we
begin a study of the 3þ 1 formulation of this framework,
which allows for a Dirac-Hamiltonian analysis [24]. Note
that this type of analysis has been performed for vector and
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tensor models of spontaneous Lorentz violation [25–28]
and other related models [29], but as of yet has not been
attempted for the SME, and we seek to fill this gap in this
work. Primarily we shall adopt the explicit symmetry
breaking scenario, though some of our results can be
extended to spontaneous symmetry breaking. Ultimately,
we aim to push the application of the SME framework in a
new direction in order to explore more broadly the
consequences of Lorentz violation in gravity.
The SME as a framework for testing Lorentz symmetry

naturally contains specific models of Lorentz violation as
subsets. Much work in the literature has involved the study
of such models, particularly in the gravity context [30–36].
The connection between the coefficients for Lorentz
violation in the SME and proposed models in the literature
has been established for some quantum gravity approaches
[37,38], massive gravity models [39], noncommutative
geometry [40], as well as vector and tensor models of
spontaneous Lorentz symmetry breaking. In this paper, we
use our results to match to yet another model which
involved explicit Lorentz breaking.
The paper is organized as follows: in Sec. II we give an

overview of the key features of the SME. The details of the
3þ 1 decomposition are presented in Sec. III, starting with
a geometric overview followed by the discussion of the
SME action terms. In Sec. IV we perform a Hamiltonian
analysis, starting with general features, and we then focus
on two special cases. As an application of the results, we
study cosmological solutions in Sec. V. We connect our
results to existing frameworks and models in Sec. VI.
Finally we discuss our results and conclusions in Sec. VII,
along with remarks on future work.
Notational conventions in this paper match prior work as

much as possible [4,13]. Greek letters are used for
spacetime indices and latin letters i; j; k;…, for spatial
indices. For local Lorentz frame (vierbein) indices we use
the latin letters a; b; c;…, when needed. The metric gμν
signature matches the standard GR choice ð−þþþÞ, and
we use units where ℏ ¼ c ¼ 1. One important notational
difference in this work is that we use here ∇μ for the
spacetime covariant derivative, reserving Dμ for covariant
derivatives defined on constant-time spatial hypersurfaces.

II. BASIC FRAMEWORK

In Riemann spacetimes, the lowest order terms in the
GRþ SME gravitational Lagrange density can be written
as

LSME ¼
ffiffiffiffiffiffi−gp
2κ

ðR − 2Λþ ðkRÞαβγδRαβγδÞ þ L0: ð1Þ

In this expression, Rαβγδ is the Riemann curvature tensor, Λ
is the cosmological constant, ðkRÞαβγδ are the SME coef-
ficient fields [4], and κ ¼ 8πGN , where GN is the gravi-
tational constant. A generic Lagrangian L0 appears in the

case when the coefficients arise dynamically, as in sponta-
neous Lorentz-symmetry breaking. The coefficients
ðkRÞαβγδ can be written as a scalar u, two tensor sμν, and
four tensor tαβγδ through a Ricci decomposition. So we can
write

ðkRÞαβγδRαβγδ ¼ −uRþ sμνðRðTÞÞμν þ tαβγδWαβγδ; ð2Þ

where ðRðTÞÞμν is the trace-free Ricci tensor, and Wαβγδ is
the Weyl curvature tensor. The coefficients u and sμν can be
moved to the matter sector by field redefinitions at first
order in these coefficients [18], so it is important to
consider also the matter sector when calculating physically
measurable results. In this work we choose our conventions
such that these coefficients reside in the gravity sector.
The action obtained from integrating (1) over

R
d4x has

several features that play a key role in the analysis to follow.
The relevant symmetries in spacetime are the four-dimen-
sional diffeomorphism symmetry group and local Lorentz
transformations. First, the action is invariant under general
coordinate transformations; i.e., it is observer diffeomor-
phism invariant. This means specifically that the curvature
tensors and the coefficients ðkRÞαβγδ transform under
observer transformations (change of coordinates) as ten-
sors; however, for particle diffeomorphisms the curvature,
metric, and other fields transform as tensors but the
coefficients ðkRÞαβγδ remain fixed. Therefore, the action
associated with (1) breaks particle diffeomorphisms.
In the standard vierbein formalism where the metric is

reduced to Minkowski form ηab at each point with a set of
four vectors eμa via ηab ¼ eμaeνbgμν, similar considerations
apply for local Lorentz transformations Λa

b. Therefore, we
distinguish observer local Lorentz transformations, under
which local tensors Rabcd transform as well as the coef-
ficients ðkRÞabcd. In contrast, under particle local Lorentz
transformations, the coefficients remain fixed, and there-
fore the action also breaks local Lorentz transformations.
Note that the details of these transformations can involve
the notion of a background vierbein, and so care is required,
as discussed in Ref. [39].
The action formed with (1) can be interpreted as explicit

symmetry breaking, where the coefficients are nondynam-
ical, or through spontaneous Lorentz symmetry breaking.
In the latter case, the underlying model retains the particle
local Lorentz and diffeomorphism symmetries because the
coefficients are dynamical fields. There must then be a
dynamical mechanism, such as a potential function of the
fields, that triggers a vacuum expectation value hðkRÞabcdi
of the fields [30]. Upon specifying the vacuum one can still
obtain an effective model of the form (1). Indeed, this has
been demonstrated for a variety of models with vector and
tensor couplings to curvature. These results have been
discussed extensively elsewhere in the literature, particu-
larly for spontaneous symmetry breaking [33,34].
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For either Lorentz and diffeomorphism symmetry break-
ing scenario, there are conservation equations which hold
based on the action formed from (1). The field equations for
the metric gμν obtained from the action take the form

Gμν ¼ ðTustÞμν þ κðTMÞμν; ð3Þ

where the explicit form of ðTustÞμν can be found in Ref. [4]
and ðTMÞμν is the energy-momentum tensor obtained from
the matter sector. As a consequence of the traced Bianchi
identities ∇μGμν ¼ 0, four conservation laws which must
hold are given by

∇μðTustÞμν ¼ −κ∇μðTMÞμν: ð4Þ

That these conservation laws hold will be a key point in this
work. There are also six conservation laws associated with
local Lorentz symmetry breaking, which we do not display
here for brevity. In generality, the recentworks ofBluhm and
collaborators clarify the differences between explicit and
spontaneous local Lorentz and diffeomorphism symmetry
breaking [39,41], and the intricacies of the conservation
laws. Note that alternatives to Riemann geometry exist, such
as Riemann-Finsler geometry which has recently garnered
attention as an additional avenue of pursuit in Lorentz
violation theory and phenomenology [42].

III. 3 + 1 VARIABLES AND DECOMPOSITION

A. 3 + 1 basics

We start with a four-dimensional manifold M with
associated metric gμν. Following standard methods [43–46],
we decomposeM into constant-time spatial hypersurfaces Σt
with associated timelike normal vector nμ (normalized to
nμnμ ¼ −1). In a commonly used coordinate representation
the components are nμ ¼ ð−α; 0; 0; 0Þ, where α is the
Arnowitt-Deser-Misner (ADM) lapse function. Referring to
Fig. 1, tμdt is a vector connecting points on neighboring
hypersurfaces with fixed spatial coordinates xi (cf. Fig. 2.4
in [47]). The shift vector is βi, which arises from the dif-

ference between tμ and nμ, while the inverse spatial metric γμν

is given by

γμν ¼ gμν þ nμnν: ð5Þ

Using nμ and γμν, the four-dimensional curvature Rαβγδ is
decomposed into a three-dimensional spatial curvatureRαβγδ

and extrinsic curvatureKμν. The extrinsic curvature is defined
in terms of the Lie derivative along nμ as

Kμν ¼ −
1

2
Lnγμν: ð6Þ

A spatial covariant derivative Dμ is obtained from
γ-projection of the covariant derivative of a tensor. For a
tensor with mixed indices Tμ

ν, for example, it is given by

DμTα
β ¼ γδμγ

α
ϵγ

ζ
β∇δTϵ

ζ: ð7Þ

It will be useful also to use the “acceleration” aμ ¼ nν∇νnμ,
which is orthogonal to nμ. The three-dimensional curvature
Rα

βγδ is defined by the commutator of the spatial covariant
derivatives as

½Dα;Dβ�vδ ¼ −Rϵ
δαβvϵ ð8Þ

and satisfies Rϵ
δαβnϵ ¼ 0, where vϵ is assumed spatial

(nϵvϵ ¼ 0). Some more key results in the 3þ 1 decom-
position are included in Appendix A.
When necessary we will refer specifically to the space-

time metric in standard ADM form expressed as a line
element,

ds2 ¼ −ðα2 − βjβjÞdt2 þ 2βjdtdxj þ γijdxidxj: ð9Þ

This form makes plain that the principle variables for
gravity are the 10 degrees of freedom α, βj, and γij.

B. GR and the SME action

1. GR action

Of principle importance in what follows is that in the
SME action, spacetime covariant derivatives occur
which act on the coefficients for Lorentz violation, and
do not generally vanish. To see this, we decompose the
Lagrangian (1) using the 3þ 1 curvature projections in
Appendix A. For reference, we examine first the GR
Lagrange density which is

LGR ¼
ffiffiffiffiffiffi−gp
2κ

½Rþ KαβKαβ − K2 − 2∇αðnαK þ aαÞ�: ð10Þ

Note here that the last terms form a three-dimensional
surface term in the action that normally does not affect the

FIG. 1. The ADM variables connecting spatial hypersurfaces Σ
at time t and tþ dt.
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dynamical field equations, and thus they are usually
dropped.1 What is left contains the extrinsic curvature
Kαβ, which can be seen from (6) to have time derivatives of
γμν via the Lie derivative along nμ. Specifically, if one
evaluates the Lie derivative in (6), one obtains the standard
result

Kij ¼ −
1

2α
ð∂tγij −Diβj −DjβiÞ; ð11Þ

and the other components K0μ contain no new time
derivatives other than those in (11). The spatial curvature
term in (10) contains no such time derivatives, depending
only on the curvature in each spatial hypersurface.
The presence of the time derivatives determines the

dynamical variables used for a Hamiltonian formulation; in
GR, only time derivatives of γij occur, and thus these six
components are the only dynamical degrees of freedom in
the Hamiltonian formulation.2 The other metric degrees of
freedom α and βj are nondynamical, corresponding to the 4
gauge degrees of freedom in diffeomorphism symmetry.
This leads to the four primary constraints in a Hamiltonian
analysis of GR. Note also that, while it does not occur in
(11), the acceleration aμ has only spatial derivatives, as it
can be shown that aj ¼ ∂j ln α and a0 ¼ βjaj.

2. SME action and global background coefficients

We next examine the contribution of the ðkRÞαβγδ
coefficients in the SME action. Using the general curvature
expression in Appendix A this term can be manipulated
into the form

LkR ¼
ffiffiffiffiffiffi−gp
2κ

fðkRÞαβγδ½Rαβγδ − 6KαγKβδ

þ 4nαnγðKβϵKδ
ϵ − KβδKϵ

ϵÞ þ 4aβnγKαδ�
− 4ðnαnγðnϵKβδ þ γδϵaβÞ
− 2nαγγϵKβδÞ∇ϵðkRÞαβγδg: ð12Þ

We can see that a term with the covariant derivative of the
coefficients occurs while the remaining terms are express-
ible in terms of the extrinsic curvature Kij or the accel-
eration aμ. In general spacetimes this term ∇ϵðkRÞαβγδ
cannot be made to vanish [4]. Since we are interested in the
dynamical content of the framework we can use the 3þ 1
decomposition to interpret such terms.
Consider first the simpler case of the covariant derivative

of a covariant vector bμ. Using projection and the definition

(7), as well as properties of the Lie derivative along nμ, we
can write this in terms of the spatial covariant derivative, the
Lie derivative, and the extrinsic curvature, as

∇μbν¼Dμbν−nνDμðnλbλÞ−2nðμKνÞλbλ
−nμnνðaλbλÞþnμnνLnðnλbλÞ−nμγβνLnbβ: ð13Þ

It can be checked using (A5) that the spatial covariant
derivative of bν will only contain spatial partial derivatives
∂j of components of bν, the functions α and βj, the extrinsic
curvature Kij, or the three-dimensional connection coef-
ficients ð3ÞΓi

jk, the latter of which contain only spatial
derivatives of γij. Thus Dμ acting in (13) cannot introduce
any time derivatives of the metric functions α and βj. From
a geometrical perspective, this is because the Dμ derivative
describes changes in the three-dimensional hypersur-
face Σt.
Since the acceleration aμ depends on spatial derivatives

of α, we are left with the final two terms in (13) as places
where time derivatives of α and βj might reside. The
projection of nλbλ can be written as

nλbλ ¼
1

α
ðb0 − βjbjÞ; ð14Þ

while its Lie derivative is

LnðnλbλÞ ¼ −
_αðnλbλÞ þ bi

_βi

α2
þ 1

α
nμ _bμ −

1

α
βjDjðnλbλÞ:

ð15Þ

Note the appearance of _α ¼ ∂tα and _βj ¼ ∂tβ
j for the lapse

and shift functions. This implies that in the Hamiltonian
analysis we will generally not obtain the usual four primary
momentum constraints as in GR. The final Lie derivative
term in (13) is proportional to γiνLnbi, which can be shown
not to contain time derivatives of the gravitational variables
α, βj, and γij.
One might immediately suspect that the appearance of _α

and _βj is merely a coordinate artifact and can be removed
by general coordinate transformations. Indeed, the SME
maintains general coordinate invariance of the action.
Under a general coordinate transformation, bμ transforms
as a covariant vector,

b0μ ¼
∂xν
∂x0μ bν; ð16Þ

with other quantities transforming as usual. However, the
quantity nμbμ occurring in (15) is a scalar and is the
projection of the hypersurface normal nμ along the fixed,
a priori unknown, background bμ. The appearance of α and
βj in (14), in a certain sense, describes the unknown

1See Ref. [46] for details on surface terms.
2Note that we adopt the first order derivative form for the

action as much as possible, particularly for time derivatives.
Otherwise, the Hamiltonian formalism gets modified to accom-
modate higher derivatives [48]. This would also occur for models
with higher than second derivatives present.
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orientation of the background and the orientation of the
hypersurface geometry, the latter being tied to the source of
the gravitational fields. If an alternative coordinate system
xμ0 is chosen so that nμ0bμ0 ¼ b00 and we then suppose that
in the new coordinate system bμ0 is now the fixed back-
ground that is independent of the gravitational fields, we
have effectively made a different choice of background, and
because of the explicit breaking of diffeomorphism sym-
metry, we have chosen a different model.3 We return to this
point later when we consider alternative ways of specifying
the background fields.
The vector example can be extended to general tensors;

since our focus is on the SME gravity action, in the minimal
case, it is possible to manipulate the Lagrange density into a
form where time derivative dependencies are more trans-
parent just as in (13). In fact, we can write (12) as

LkR ¼
ffiffiffiffiffiffi−gp
2κ

fðkRÞαβγδ½Rαβγδ þ 2KαγKβδ

− 12nαnγKβϵKδ
ϵ þ 4nαnγKβδKϵ

ϵ þ 8Kαγnβaδ�
þ 8KϵζDλððkRÞαβγδγαϵγβλγγζnδÞ
− 4aϵDζððkRÞαβγδγαζγγϵnβnδÞ
− 4KϵζLnððkRÞαβγδγαϵγγζnβnδÞg: ð17Þ

Any nonstandard time derivative terms will be contained in

the last Lie derivative term. The appearance of _α and _βj

terms can be verified by working out the Lie derivative term
explicitly. We find the relevant piece to be

LkR ⊃
4

ffiffiffiffiffiffi−gp
κα2

KijnδððkRÞiβjδnβ _αþ ðkRÞiljδ _βlÞ: ð18Þ

As in Eq. (15) we obtain a combination of _α and _βj terms,
and we thus expect this to hold for general tensors in the
SME [15].

This rather interesting result, the occurrence of _α and _βj,
is in contrast with GR and many modified models of
gravity. It is somewhat unsurprising in that we are con-
sidering the SME framework interpreted in the context of
explicit diffeomorphism symmetry breaking, which breaks
the gauge symmetry of GR. Other models, such as massive
gravity, which also have explicit diffeomorphism breaking,
modify mass-type terms with no derivatives in them. They
generally do not modify the kinetic structure of the theory
and thus do not introduce such terms. As another example,
for models with curvature contractions in the Lagrangian
such as RαβRαβ, even though they have higher than second
derivatives of the metric, the lapse and shift functions
remain gauge [49]. More varied results exist for other
models with higher than second derivatives [50].

In the case of spontaneous symmetry breaking, where
for example bμ → Bμ is dynamical, there are separate
field equations for Bμ which must also be considered.
The net effect in this case, since the underlying diffeo-

morphism symmetry remains, is that _α and _βj can be
eliminated by a particle diffeomorphism. Or alternatively,
one can see that the dynamics of α and βj become linked
to the field Bμ, as the time derivatives always occur in the
combination in (15), and they thus do not represent
independent degrees of freedom. This point about the
spontaneous-breaking case parallels the reasoning behind
the observation that any diffeomorphism Nambu-
Goldstone modes Ξμ vanish from terms in the action
as ∇μBν [33,34].

3. Local background coefficients

In the explicit breaking case considered above, the
coefficients kαβγδ with spacetime indices are considered
as the fixed background fields independent of the gravi-
tational variables. There are alternative choices that could
change the results. For instance, using the vierbein for-
malism it may be more natural to treat the coefficients in a
different way. From the basic definition of the vierbein, we
can find its 3þ 1 components from the metric (9). The
components eμa are given by

et0̄ ¼ α;

ej0̄ ¼ 0;

etj̄ ¼ eij̄βi;

γij ¼ eij̄ejj̄; ð19Þ

where we use t and i; j;…, for time and space indices while
for the local frame we use a bar over the index. The last
equation merely defines the spatial piece of the vierbein eij̄,
since we have not specified the spatial metric. The explicit
decomposition can be performed once a spatial metric is
chosen. The vierbein in (19) is not unique; one may apply a
local Lorentz transformation Λa

bðxÞ and generally mix
components.
Returning to the vector example above, when using the

vierbein it is natural to consider the local covariant vector
field ba as the fundamental background object which
breaks the spacetime symmetries [4,51]. For instance,
using the vierbein and the vector nμ the projection which
occurs in Eq. (15) can be written

bμnμ ¼ b0̄: ð20Þ

In this case the Lie derivative term in (15) yields

LnðnλbλÞ ¼
∂tb0̄
α

−
1

α
βj∂jðb0̄Þ: ð21Þ3This choice corresponds to Gaussian normal coordinates [45].
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Now we can see that no time derivatives of α and βj occur,
provided that ba is the independent background.

4 It should
be noted that this choice does not make use of a background
vierbein, as discussed in Ref. [39] and may result in more
severe constraints on explicit breaking models via the
conservation laws.
How does all of this play into the dynamical and propa-

gation structure that is known from weak-field studies of the
SME and models of spacetime symmetry breaking? To
answer this we also perform a comparison with what is
known about the weak-field quadratic limit [17], including
generic gauge-violating terms in Sec. VI A. Ultimately in this
work, we look at cases of explicit breaking with both choices
of the background coefficients corresponding to the “global”
background in (14) and the “local” background (20).

IV. HAMILTONIAN ANALYSIS

A. Generalities

Working with the Lagrange density in the form of
Eq. (17), we carry out a Riemann decomposition of
ðkRÞαβγδ into u, sμν, and tκλμν. The Lagrange density for
tκλμν will take the same form as (17) with the replacement of
ðkRÞαβγδ → tαβγδ. For u and sμν we obtain

Lu ¼
ffiffiffiffiffiffi−gp
2κ

½uðRþ KαβKαβ − K2Þ
þ 2ðKLnuþ aμDμuÞ�;

Ls ¼
ffiffiffiffiffiffi−gp
2κ

½sμνRμν − nαnβsαβðKμνKμν − K2Þ
þ 2sαβKαδKβ

δ þ KμνLnsμν − KLnðnμnνsμνÞ
þ 2Kðsμνnμaν þDλðsμνnμγνλÞÞ
− 2Kλ

κDλðsμνnμγνκÞ
þ aκDλðsμνγμλγνκÞ − aλDλðsμνnμnνÞ�: ð22Þ

Note that one can also consider other possibilities such as
substituting u → gμνsμν.
In the Hamiltonian analysis, one first finds the canonical

momentum densities using L ¼ R
d3xL via the standard

variational definition

Πn ¼
δL

δ _ϕn

: ð23Þ

In the present case the ϕn correspond to α, βi, and γij. To
describe the results for the SME actions we show the
canonical momenta for the u, sμν, and tαβγδ terms, assuming
global background coefficients as in Sec. III B 2.

For Πα ¼ δL=δ _α and ðΠβÞi ¼ δL=δ _βi we obtain

Πα ¼
ffiffiffi
γ

p
κα

nμnνðKsμν þ 4KijtiμjνÞ; ð24Þ

Πβ;i ¼
ffiffiffi
γ

p
κα

nμðKsμi þ 4KjktjikμÞ: ð25Þ

Note that no nonzero terms appear here for the case of u;
however, if one chooses u to be composite, such as u ¼ sμμ,
a different result ensues. For the sμν and tκλμν coefficients

the expressions for Πij
γ ¼ δL=δ_γij are lengthy and omitted

here. These expressions contain terms which generally mix
the components of sij and _γij in an anisotropic manner; for
instance,

Πij
γ ⊃

ffiffiffi
γ

p
2κ

ðKγij − Kij − slmγliKjm − slmγljKim þ � � �Þ;

where the first two terms are the GR result and the
displayed remaining terms show a mixing of the compo-
nents of sij and Kij ∼ _γij −Diβj −Djβi.
To construct the Hamiltonian density H ¼ Πnϕn − L,

one needs to express _ϕn in terms of the momenta Πn. Since
obtaining the general expression for _γij involves a lengthy
process of inversion due to the anisotropic components of
the coefficients, we endeavor in this work to begin an
investigation by studying special limiting cases of the
underlying action.

B. Case study 1

We consider a special case with one nonzero component
s00 of sμν in the chosen coordinate system.5 In this case,
using the specific components of the metric (9) the
Lagrange density simplifies to

L1 ¼
α

ffiffiffi
γ

p
2κ

�
Rþ α2 − s00

α2
ðKijKij − K2Þ

þ K

�
2

α4
s00ð _α − αβiaiÞ −

1

α3
ð_s00 − βi∂is00Þ

�

þ 2

α2
s00aiai −

1

α2
ai∂is00

�
þ LM: ð26Þ

When constructing the Hamiltonian, the variables of the
system are the α, βμ, and γμν fields along with their
conjugate momentum densities:

4An alternative way to arrive at Eq. (20) is to define n · b ¼
bμnμ ¼ b⊥ as the time component [52].

5Note that alternative choices exist such as considering the
contravariant coefficients as the fixed background; for example,
nμnνsμν ¼ α2s00 for arbitrary sμν.
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Πij
γ ¼

ffiffiffi
γ

p
2κ

�
α2 − s00

α2
ðKγij − KijÞ

þ 1

2α
γijð∂t − βk∂kÞ

�
s00
α2

��
; ð27Þ

Πβ;i ¼ 0; ð28Þ

Πα ¼
ffiffiffi
γ

p
s00

κα3
K: ð29Þ

From now on we drop the γ label on Πij and abbreviate its
trace as Π ¼ Πijγij, and we drop the β label so
that Πi ¼ Πβ;i.
Examining the momenta, we see that Eq. (28) gives three

primary constraints. Equations (27) and (29), along with
Eq. (11), can be inverted to solve for _γij and _α. Following
standard procedure [52], we first find the base Hamiltonian
density of the system through a Legendre transformation on
the Lagrange density H0 ¼ πij _γij þ πα _α − L. For the base
Hamiltonian density we find

H0 ¼
2κα3ffiffiffi

γ
p ðα2 − s00Þ

�
ΠijΠij −

1

3
Π2

�

þ κα5ðα2 − s00Þ
3

ffiffiffi
γ

p
s200

Π2
α −

2κα4

3
ffiffiffi
γ

p
s00

ΠαΠþ α_s00
2s00

Πα

−
ffiffiffi
γ

p
κα

�
s00aiai −

1

2
ai∂is00

�
−
α

ffiffiffi
γ

p
2κ

R

þ βi
�
Πα

�
αai −

α

2s00
∂is00

�
− 2DjΠ

j
i

�
: ð30Þ

Note that by comparison, in GR, the momentum for α is
absent; thus Eq. (29) is replaced with Πα ¼ 0. The GR
Hamiltonian is

HGR ¼ 2καffiffiffi
γ

p
�
ΠijΠij −

1

2
Π2

�
−
α

ffiffiffi
γ

p
2κ

R − 2βiDjΠj
i: ð31Þ

Examining (31) and (30) it can be seen that taking the limit
of s00 → 0 does not smoothly connect the Hamiltonians.
This is an artifact of the Hamiltonian method; in particular
it results from solving Eq. (29) for γij _γij, which requires
s00 ≠ 0. We return to this point later in the process.
To Eq. (30) we add a term involving the primary

constraint contracted with a Lagrange multiplier to obtain
the augmented Hamiltonian HA ¼ H0 þ ξiΠi. We then
check the consistency condition, or evolution, for this
primary constraint by taking its Poisson bracket with the
augmented Hamiltonian _Πi ¼ fΠi; HAg. This yields a
secondary constraint

_Πi ¼ 2γijDkΠjk − Πα

�
αai −

α

2s00
∂is00

�
≈ 0: ð32Þ

Note that the ≈ symbol here refers to an expression that is
“weakly” equal to zero; i.e.,when the constraints are imposed,
it vanishes [24]. This secondary constraint can also be
observed in the last line of Eq. (30) multiplying the βi.
We continue to check consistency conditions with the

secondary constraint Φi ¼ _Πi. The full expression for the
evolution of Φi is needed, including the explicit time
dependence since there may be additional time dependence
in s00. A lengthy calculation reveals

dΦi

dt
¼ fΦi; HAg þ

∂Φi

∂t
¼ DjðβjΦiÞ þΦjDiβ

j þ Ψ∂is00; ð33Þ
where Ψ is a function of the coordinates and momenta
equal to

Ψ ¼ −
κα3ffiffiffi

γ
p ðα2 − s00Þs00

�
ΠijΠij −

1

3
Π2

�

−
κα5ðα2 − s00Þ

6
ffiffiffi
γ

p
s300

Π2
α þ

κα4

3
ffiffiffi
γ

p
s200

ΠαΠþ α
ffiffiffi
γ

p
4κs00

R

þ
ffiffiffi
γ

p
4κs00α

D2s00 −
ffiffiffi
γ

p
2κα2

D2α

−
ffiffiffi
γ

p
κs00α

aj∂js00 þ
3

ffiffiffi
γ

p
2κα

ajaj: ð34Þ

The implications of (33) are as follows. Examining this
expression the first two terms are linear in the original
constraint Φi, and so are weakly equal to zero—providing
no new constraints. The last terms would appear to give
new constraints, but this depends on the properties of the
background coefficients sμν. If we insisted that the coef-
ficients and their derivatives remain arbitrary we would
have to take the last terms in (33) as new constraints and
again check the consistency using Poisson brackets with
the Hamiltonian. On the other hand, if we merely insist that
in the chosen coordinate system ∂is00 ¼ 0, then (33) will
be weakly equal to zero and no new constraints are needed.
That a constraint on s00 has arisen directly from this
analysis can be traced to the fact that (32) is a modification
of the usual momentum constraint of GR. The term ∂is00
represents an additional kind of “shift” in the momentum
conservation law.
Further insight can be gained by examining the traced

Bianchi identities (4) for the choice of coefficients we have
made. From Ref. [4] we have

∇μðTsÞμν ¼
1

2
Rμλ∇νsμλ −∇μðRμλsλνÞ: ð35Þ

We next reexpress this equation in 3þ 1 form by using
Appendix Eq. (A2), the decomposition of the covariant
derivative as in Eq. (13), and we use Eqs. (27)–(29) to write
the expression in terms of the Hamiltonian variables α, βj,
γij, Πα, and Πij. Examining the case of s00 only then yields
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∇μðTsÞμj ¼
κffiffiffi
γ

p
α
Ψ∂js00; ð36Þ

which contains the same terms as in (33). Therefore, we see
that the Hamiltonian evolution has produced a constraint
that we expect from the field equations.
We will proceed with the assumption that the coefficients

s00 are independent of spatial coordinates:

∂is00 ¼ 0: ð37Þ
Note that this is a coordinate-dependent statement which
may be more properly understood as saying that s00 does
not change within the spatial hypersurface at fixed t.

Hamilton’s equations of motion can now be obtained in
the standard way through the Poisson bracket
_pn ¼ fpn;Hg, where H is the final Hamiltonian with
the primary constraint added. In principle, one adds the
secondary constraint to the Hamiltonian with an additional
three Lagrange multipliers. Since the secondary constraint
can be seen to be already contained in the βj term in the
Hamiltonian (30), it is not strictly necessary to add this
term. This reflects the remaining gauge freedom in this
limit of the framework.
We then find Hamilton’s equations of motion for the

momentum variables to be

_Πα ¼ −
2κα2ðα2 − 3s00Þffiffiffi

γ
p ðα2 − s00Þ2

�
ΠijΠij −

1

3
Π2

�
þ 8κα3

3
ffiffiffi
γ

p
s00

ΠαΠ −
κα4

3
ffiffiffi
γ

p
s200

ð7α2 − 5s00ÞΠ2
α þDkðβkΠαÞ

−
1

2s00
Πα _s00 þ

s00
ffiffiffi
γ

p
κα2

ðaiai − 2DiaiÞ þ
ffiffiffi
γ

p
2κ

R; ð38Þ

_Πi ¼ 2γijDkΠjk − Πααai; ð39Þ

_Πij ¼ −
4κα3ffiffiffi

γ
p ðα2 − s00Þ

�
Πi

kΠjk −
1

3
ΠΠij

�
þ κα3ffiffiffi

γ
p ðα2 − s00Þ

γij
�
ΠklΠkl −

1

3
Π2

�
þ κα5ðα2 − s00Þ

6
ffiffiffi
γ

p
s200

γijΠ2
α

−
κα4

3
ffiffiffi
γ

p
s00

ΠαðΠγij − 2ΠijÞ − 2ΠkðiDkβ
jÞ þDkðΠijβkÞ −

ffiffiffi
γ

p
2κ

�
αRij −

1

2
γijαR −DiDjαþ γijD2α

�

þ
ffiffiffi
γ

p
s00

κα

�
1

2
γijakak − aiaj

�
; ð40Þ

and

_α ¼ −
2κα4

3s00
ffiffiffi
γ

p
�
Π −

αðα2 − s00Þ
s00

Πα

�
þ αβkak

þ α

2s00
_s00; ð41Þ

_βi ¼ ξi; ð42Þ

_γij ¼
4κα3ffiffiffi

γ
p ðα2 − s00Þ

�
Πij −

1

3
Πγij

�

−
2κα4

3
ffiffiffi
γ

p
s00

Παγij þDiβj þDjβi: ð43Þ

Note that we have implemented the condition (37).
At this point it is useful to remark upon the degrees of

freedom in this special case of the SME.6 We began with

up to 10 degrees of freedom in the variables α, βj, and γij.
With our choice of s00 we have three primary constraints
and three secondary constraints, along with six undeter-
mined Lagrange multipliers. According to the standard
recipe [see, for example, Eq. (B11) in Appendix B of
Ref. [52]] one can use the equation

Ndof ¼ Ndof;initial −
1

2
ð# constraintsÞ

−
1

2
ð# undetermined Lagrange multipliersÞ ð44Þ

to determine the number of degrees of freedom. In the case
above, we have 10 − ð1=2Þð6Þ − ð1=2Þð6Þ ¼ 4 degrees of
freedom in our model. In GR, by contrast, there are four
primary constraints, four secondary constraints, and in
principle eight undetermined Lagrange multipliers which
leaves 10 − ð1=2Þ8 − ð1=2Þ8 ¼ 2 degrees of freedom.
Note the appearance of the inverse of s00 in the

expressions above. This does not represent a phase space
singularity, but rather a parameter singularity. Its appear-
ance is tied to the Hamiltonian method, where one inverts,

6Degrees of freedom represent pairs of coordinate and mo-
menta variables freely specifiable on a hypersurface of fixed t
[27].
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for example, Eq. (29), while in contrast results are generally
linear in the parameter s00 in the standard Euler-Lagrange
equations. There is also a denominator in (30) that appears
to have a singular point when α ¼ � ffiffiffiffiffiffi

s00
p

. It is not clear if
anything keeps the field configurations away from this
region of phase space, and this remains to be investigated.
The Hamiltonian and Hamilton’s equations in this

special example. or a related one with different choices
of sμν, can form the basis for future work in a variety of
areas such as studying the initial value formulation of the
system of equations. This could lead to modeling the effects
of SME coefficients in strong field gravity systems, for
example using numerical techniques of integration [47]. In
this paper, we content ourselves with a cosmology appli-
cation in Sec. V.

C. Case study 2

In contrast to the case considered above, we can make an
alternative choice for the background coefficients. In this
example we choose sab to be diagonal and isotropic in the
local Lorentz frame

sab ¼

0
BBB@

s0̄ 0̄ 0 0 0

0 1
3
s 0 0

0 0 1
3
s 0

0 0 0 1
3
s

1
CCCA; ð45Þ

where the nonzero components s0̄ 0̄ and s are left as
arbitrary functions of the spacetime. Using the vierbein
in (19) we can find the components sμν ¼ eμaeνbsab in the
spacetime coordinates of the metric (9). Simplifying the
action for sμν in (22) we obtain an alternative explicit
breaking Lagrangian:

L2 ¼
α

ffiffiffi
γ

p
2κ

�
R
�
1þ 1

3
s

�
þ ðKijKij − K2Þð1 − s0̄ 0̄Þ

þ KLnΩþ ai∂iΩ
�
; ð46Þ

where we use the abbreviation Ω ¼ s=3 − s0̄ 0̄.
In this case the terms involving the time derivatives of α

and βj are absent, and except for the time and space
dependence of the coefficients which we take as arbitrary
for the moment, the Lagrange density resembles that of GR
with scalings of the extrinsic curvature and spatial curva-
ture terms. The canonical momenta are calculated to be

Πij ¼
ffiffiffi
γ

p
2κ

�
ðKγij − KijÞð1 − s0̄ 0̄Þ −

1

2
γijLnΩ

�
; ð47Þ

Πβ;i ¼ 0; ð48Þ

Πα ¼ 0: ð49Þ

Note the appearance of the Lie derivative of the coefficients
directly in the momentum and that we get four primary
constraints for α and βj, as in GR. This is in contrast to
the case of global coefficients in the general analysis of
Sec. IVA, and so (49) is not a limit of Eq. (25). The base
Hamiltonian density for this case is given by

H0 ¼
2καffiffiffi

γ
p ð1 − s0̄ 0̄Þ

�
ΠijΠij −

1

2
Π2

�
þ 2ΠijDiβj

−
α

ffiffiffi
γ

p
2κ

�
1þ 1

3
s

�
R −

1

2ð1 − s0̄ 0̄Þ
ΠΩ0

−
3

ffiffiffi
γ

p
16καð1 − s0̄ 0̄Þ

ðΩ0Þ2 − α
ffiffiffi
γ

p
2κ

ai∂iΩ; ð50Þ

where for convenience we define Ω0 ¼ ð∂0 − βi∂iÞΩ.
The evolution of the primary constraints with respect to

the augmented Hamiltonian

HA ¼
Z

d3xðH0 þ vΠα þ ξiΠiÞ; ð51Þ

where v and ξj are Lagrange multipliers, yields the
following secondary constraints:

fΠα; HAg ¼ −
2κffiffiffi

γ
p ð1 − s0̄ 0̄Þ

�
ΠijΠij −

1

2
Π2

�

þ
ffiffiffi
γ

p
2κ

�
1þ 1

3
s

�
R −

3
ffiffiffi
γ

p
16κð1 − s0̄ 0̄Þα2

ðΩ0Þ2

−
ffiffiffi
γ

p
2κ

D2Ω; ð52Þ

fΠi; HAg ¼ 2DjΠ
j
i −

Π
2ð1 − s0̄ 0̄Þ

∂iΩ

−
3

ffiffiffi
γ

p
8κð1 − s0̄ 0̄Þα

Ω0∂iΩ: ð53Þ

These secondary constraints contain the GR secondary
constraints but they differ in the extra terms involving time
and space derivatives of the coefficients in Ω. The standard
procedure is to check the consistency of these secondary
constraints. Due to the presence of the spatial derivatives in
Ω, we expect a result similar to that for the case 1 model,
whereupon we obtain a lengthy function of the canonical
variables multiplied by terms proportional to ∂iΩ. This is
indeed confirmed by calculation, and so we proceed with
the simplifying assumption that ∂iΩ ¼ 0. This assumption
has the immediate effect of reducing the secondary con-
straints in (53) for Πi to that of the standard ones for GR,
_Πi ¼ 2DjΠ

j
i ≈ 0.

Still allowing for arbitrary time dependence of the
coefficients s0̄ 0̄ and s, we proceed with the calculation
of the secondary constraint evolution. Denoting Φα ¼
fΠα; HAg and Φi ¼ fΠi; HAg, we obtain the following
results for their evolution:
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fΦα;HAgþ
∂Φα

∂t ¼DiðβiΦαÞþ
2ð1þ 1

3
sÞ

ð1−s0̄ 0̄Þ
ΦiDiαþð1þ 1

3
sÞα

ð1−s0̄ 0̄Þ
DiΦiþv

3
ffiffiffi
γ

p
8κα3ð1−s0̄ 0̄Þ

_Ω2þ 9
ffiffiffi
γ

p
64κα2ð1−s0̄ 0̄Þ2

_Ω3

þ 3

8αð1−s0̄ 0̄Þ2
_Ω2Π−

κð_sþ _s0̄ 0̄Þ
2

ffiffiffi
γ

p ð1−s0̄ 0̄Þ2
�
ΠijΠij−

1

2
Π2

�
−

3
ffiffiffi
γ

p
8κα3ð1−s0̄ 0̄Þ

_Ω2βiDiα

−
ffiffiffi
γ

p
8κð1−s0̄ 0̄Þ

��
1þ1

3
s

�
_Ω−

4

3
_sð1−s0̄ 0̄Þ

�
R−

3
ffiffiffi
γ

p
8κα2ð1−s0̄ 0̄Þ

_ΩΩ̈−
3

ffiffiffi
γ

p
16κα2ð1−s0̄ 0̄Þ2

_Ω2 _s0̄ 0̄; ð54Þ

fΦj; HAg ¼ ΦiDjβ
i þDiðβiΦjÞ þΦαDjα: ð55Þ

Examining these expressions reveals two things. First,
from (55), we see that the secondary constraint DiΠi

j is
preserved since its evolution is linear in the secondary
constraints, which weakly vanish. Note in particular in (55)
that terms linear in Φi and Φα appear, in contrast to case
study 1 in Sec. IV B [see Eq. (33)], where there was no
primary constraint Πα nor a secondary constraint Φα.
Second, the Lagrange multiplier v appears in the evolution
equation for the Φα constraint (54). This latter result also
differs from case study 1, where v did not even occur
because there was no Φα constraint, and in GR, v remains
an undetermined Lagrange multiplier.
In this case, the standard procedure is to solve for v from

(54) by demanding that the equation weakly vanish. The
first three terms vanish weakly by the prior secondary
constraints, so this amounts to the v term canceling all
remaining terms. When we solve for v in this manner, we
obtain

v ¼ −
3α _Ω

8ð1 − s0̄ 0̄Þ
−

κα2Π
ð1 − s0̄ 0̄Þ ffiffiffi

γ
p þ βiDiα

−
4κ2α3ð_sþ _s0̄ 0̄Þ
3γð1 − s0̄ 0̄Þ _Ω2

�
ΠijΠij −

1

2
Π2

�

þ
��

1þ 1

3
s

�
_Ω −

4

3
_sð1 − s0̄ 0̄Þ

�
α3R

3 _Ω2

þ αΩ̈
_Ω

þ α_s0̄ 0̄
2ð1 − s0̄ 0̄Þ

: ð56Þ

As can be seen from this equation, there is a problematic
denominator in some of the terms. One would thus demand
that the solution only include cases where _Ω ≠ 0.
Denoting the solution of (56) with capital V, the

expression would then be inserted back into the
Hamiltonian and the final form would be

HF ¼
Z

d3xðH0 þ Vðα; γij; βi;Πij;…ÞΠα þ ξiΠi

þ ζjΦjÞ; ð57Þ
where H0 (50) is evaluated with ∂iΩ ¼ 0 and we have
indicated that V is now a function of the canonical variables

and the coefficients. We have added three additional
Lagrange multipliers ζj for the secondary constraints
Φj ≈ 0. Note that, upon doing this, we end up with one
of Hamilton’s equations specifying _α ¼ Vðα; γij; β;Πij;…Þ,
again in contrast to GR where α is pure gauge. The full
Hamilton’s equations for this case are lengthy and omitted
here, but it would be of interest in future work to study these
types of cases in more detail.
In the result, Eq. (57), we have four primary constraints

(48) and (49), four secondary constraints (52) and (53), and a
total of six Lagrange multipliers ξj and ζj. Note that the
Lagrange multiplier v was solved for, and so does not count
as an undetermined Lagrange multiplier. Using the counting
scheme in Eq. (44), for this case we obtain 10 − ð1=2Þð8Þ −
ð1=2Þ6 ¼ 3 degrees of freedom, one more than GR.
Another choice is to set s and s0̄ 0̄ to be constants. This

choice reduces the Hamiltonian to one where there are
scalings of GR terms, obtainable from (50) by setting the
Ω0, ∂iΩ terms to zero. Indeed, it is this choice that forms the
starting point for the match of explicit breaking models to
the SME, as we discuss in Sec. VI B. For this latter choice,
the number of degrees of freedom reduces to the GR result
of 2.

D. Addition of matter

To apply the results above to physically relevant sit-
uations, we address the addition of the matter sector to the
Hamiltonian analysis. We assume here that the matter
sector does not couple to any coefficients for Lorentz
violation and is minimally coupled to gravity. Depending
on the area of study, the description of matter could be as
basic as a perfect fluid or a set of scalar fields, or more
sophisticated with gauge fields and/or spinors. For this
work we shall leave this specification generic and comment
on how the matter sector feeds into the analysis above.
First note that when performing variations of the matter

action with respect to the spacetime metric gμν, we have

ðTMÞμν ¼
2ffiffiffiffiffiffi−gp δSM

δgμν
: ð58Þ

Upon constructing the Hamiltonian for the matter sector,
we can use (58) and the 3þ 1 decomposition to show that
the following hold in space and time components:
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δHM

δα
¼ α2

ffiffiffi
γ

p ðTMÞ00;
δHM

δβi
¼ −α

ffiffiffi
γ

p ½ðTMÞ00βi þ ðTMÞ0jγij�;
δHM

δγij
¼ −

1

2
α

ffiffiffi
γ

p ½ðTMÞij þ βiβjðTMÞ00 þ 2ðTMÞ0ðiβjÞ�:

ð59Þ

In the Dirac-Hamiltonian analysis, one checks the con-
sistency or evolution of the secondary constraints. If you add
the matter sector, minimally coupled to gravity, certain
combinations of the terms in (59) are involved in these
calculations. For example, in the secondary constraints in
(53), an extra term for the matter sector−δHM=δβi is added,
and its evolution is governed by the expression

�
δHM

δβi
; HA

�
¼ δHM

δα
DiαþDj

�
βj

δHM

δβj

�

þ δHM

δβj
ðDiβ

jÞ − 2γkiDj
δHM

δγjk
; ð60Þ

where HA is the augmented Hamiltonian including the
matter sector. Similar results hold for δH=δα. Finally, we
note that, while we do not address it here, the addition of
evenminimally coupled tensor fields can significantly affect
the constraint structure of the model, as shown in Ref. [52].

V. COSMOLOGICAL SOLUTIONS

In this section we apply Hamilton’s equations for the
case study 1 subset of the SME discussed in Sec. IV B to
search for solutions in a Friedmann-Lemaitre-Robertson-
Walker (FLRW) spacetime [45]. We use the general FLRW
metric in spherical coordinates

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
; ð61Þ

where aðtÞ is the scale factor and k ¼ fþ1; 0;−1g repre-
sents a closed, flat, and open universe, respectively. For this
metric, the lapse and shift can be seen by comparison with
(9) to be α ¼ 1, βi ¼ 0 and the acceleration vanishes ai ¼ 0.
We proceed with evaluating Hamilton’s equations for

this case. Using the result _γij ¼ 2_aγij=a, Eqs. (27) and (29),
we can find the canonical momenta to be

Πij ¼ −
ffiffiffi
γ

p
κ

ð1 − s00Þ
_a
a
γij þ

ffiffiffi
γ

p
4κ

_s00γij;

Πα ¼ −
3s00
κ

ffiffiffi
γ

p _a
a
; ð62Þ

where
ffiffiffi
γ

p ¼ a3r2 sin θ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
. These results allow us to

establish that sinceΠij is proportional to γij, quantities such

as ΠijΠij − 1
3
Π2 will vanish. Indeed, evaluation of the other

set of Hamilton’s equations (38)–(40) for this case yields

_Πij ¼ κð1 − s00Þ
6

ffiffiffi
γ

p
s200

γijΠ2
α −

κ

3
ffiffiffi
γ

p
s00

ΠαðΠγij − 2ΠijÞ

−
ffiffiffi
γ

p
2κ

Gij þ
ffiffiffi
γ

p
2

ðTMÞij;

_Πα ¼
ffiffiffi
γ

p
2κ

Rþ 8κ

3
ffiffiffi
γ

p
s00

ΠαΠ −
κ

3
ffiffiffi
γ

p
s200

ð7 − 5s00ÞΠ2
α

−
1

2s00
Πα _s00 −

ffiffiffi
γ

p ðTMÞ00; ð63Þ

where we have used the matter couplings in (59) and Gij is
the three-dimensional Einstein tensor. With the choice of
metric and βj ¼ 0 the constraint equation (39) is satisfied,
as can be checked directly. Also, note the fact that α is
dynamical in our model, and even though it is fixed to
unity, it still plays a role through the momenta Πα.
For matter we use the usual perfect fluid model for a

homogeneous and isotropic universe, ðTMÞμν ¼ diagð−ρ;
p; p; pÞ, where ρ and p are the energy density and pressure,
respectively. They are related through the equation of state
p ¼ wρ, where w is the barotropic index.
The three-dimensional Ricci scalar and the three-dimen-

sional Einstein tensor are R ¼ 6k=a2 and Gij ¼ −kγij=a2.
Combining with (62) and (63), we obtain two equations:

�
_a
a

�
2

ð1 − s00Þ ¼
κρ

3
−

k
a2

− s00
ä
a
þ _a
a
_s00
2

; ð64Þ

�
ä
a
þ 1

2

�
_a
a

�
2
�
ð1 − s00Þ ¼ −

κp
2

−
k
2a2

þ _a
a
_s00 þ

1

4
̈s00;

ð65Þ

which have been written to match the standard FLRW
equations of GR as closely as possible. Indeed, one
recovers GR in the limit that s00 → 0. The modifications
include terms with first and second time derivatives of s00,
scalings by 1 − s00, and an extra ä term in the first equation.
In principle, one could decouple the equations to obtain one
with only the acceleration ä and one with only the Hubble
factor _a, in the standard Friedmann equation form.
However, s00 is an as yet unspecified function associated
with explicit breaking of the underlying symmetries in the
action (1).
In order to understand the role of s00 in this context more

plainly, we examine the remaining conservation laws
implied by the underlying action. These were given in
Eq. (4) and for this particular subset of the SME in Eq. (35),
Eq. (4) must be satisfied for consistency:

∇μðTsÞμν ¼ −κ∇μðTMÞμν: ð66Þ
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The ν ¼ j component has already been satisfied by the
assumption in (37), and thus we can assume correspond-
ingly that part of the usual matter conservation law is
satisfied, ∇μðTMÞμj ¼ 0. The Hamiltonian method did not
directly involve the ν ¼ 0 component, so we must ensure
that it holds as well in the cosmological solutions here.
After some computation, we obtain for the left-hand side

of (66),

∇μðTsÞμ0 ¼
ä
a

�
3

2
_s00 þ 6s00

_a
a

�
þ 3s00

a
…

a
: ð67Þ

For the matter part, we obtain

∇μðTMÞμ0 ¼ −_ρ − 3
_a
a
ðρþ pÞ: ð68Þ

Consistency of these results, i.e., left-hand side equals
right-hand side, can be verified with Eqs. (64) and (65) by
solving for ρ and p and inserting the expressions into (68),
to recover (67).
We are now in a position to examine the consequences of

different choices for s00. Among the myriad of possible
functional forms for s00, we study two cases here. First,
we look at the case where s00 is determined by demanding
that the matter stress-energy tensor by itself is completely
conserved and thus Eq. (68) vanishes. Second, we look at a
case when Eq. (68) does not vanish, yet the total con-
servation law (66) holds.

A. FLRW example 1

For the first case, we enforce the matter energy-momen-
tum conservation law. Note that if the matter equations of
motion are satisfied (“on shell”) this condition would
necessarily hold. This condition implies that ∇μðTsÞμ0¼0

and thus the following expression must be solved for s00:

−
ä
a

�
3

2
_s00 þ 6s00

_a
a

�
¼ 3s00

a
…

a
: ð69Þ

It turns out that an analytical solution for s00 given by

s00 ¼
ζ

a4ä2
ð70Þ

solves this equation, where ζ is an arbitrary constant. This
solution has intriguing and yet pathological features.
Obviously, if the acceleration ä ¼ 0, as it does in the past
for standard cosmological solutions, it diverges. Also, if we
could assume constant behavior for ä, then the result shows
that the coefficient s00 would naturally decrease with the
expanding universe.
The next step to pursue the case just outlined would be to

insert the solution (70) back into the modified equa-
tions (64) and (65) and attempt to solve the resulting

system of equations for aðtÞ for different choices of sources
ρ and p. However, one finds that the resulting equations
have up to fourth order time derivatives in them, if they are
solved with no approximations made. Furthermore, it is
challenging to approach the equations from a perturbative
point of view, where the dimensionless s00 is “small”
compared to unity, as can be seen from plugging a GR
solution into (70): again when ä approaches zero, this
grows large and conflicts with perturbation theory. In this
work, we do not pursue this solution further and leave it as
an open problem to explore.

B. FLRW example 2

We now turn to the case where we do not impose the
vanishing of ∇μðTsÞμ0. The coefficient s00 remains arbi-
trary, and so for this work we examine the simplest case of a
constant coefficient, _s00 ¼ 0. As a consequence of this
choice, the matter conservation law gets modified and
matter exhibits a modified cosmological evolution in the
presence of s00 ≠ 0. First, we write the Friedmann equa-
tions for this case as

�
_a
a

�
2

¼ κρ

3ð1 − 3
2
s00Þ

−
k

a2ð1 − s00Þ
þ κps00
ð2 − 3s00Þð1 − s00Þ

;

ä
a
¼ −

κðρþ 3pÞ
6ð1 − 3

2
s00Þ

: ð71Þ

These results contain various scalings of the usual GR
terms but also a nonstandard appearance of the pressure in
the first equation.
Using (71) and (68) we obtain the modified conservation

law, or continuity equation, as

_ρþ 3
_a
a
fðw; s00Þρ ¼ 0; ð72Þ

where we have introduced the auxiliary equation fðw; s00Þ
as

fðw; s00Þ ¼
2ð1þ w − s00Þ
2þ s00ð3w − 2Þ ; ð73Þ

which reduces to the proper GR limit, where f → 1þ w as
s00 → 0. We integrate the modified continuity equation to
find that

ρ ¼ ρ0

�
a
a0

�
−3fðw;s00Þ

; ð74Þ

where a0 is the present value of the scale factor. For matter
as a dust w ¼ 0 and f ¼ 1 so there is no modification to the
cosmological evolution ρ ∼ a−3. However, for radiation
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w ¼ 1=3 and the cosmological constant w ¼ −1, the
evolution equation is modified, as occurs in other mod-
ifications to GR [53,54].
This leads to interesting type-dependent evolution of the

different cosmological fluids. We can put together the
Friedmann equations, paralleling the usual methods, by
using dimensionless density parameters ΩX, where X ¼
fm; r;Λ; kg represents the energy density of matter, radi-
ation, cosmological constant, and curvature, respectively.
We divide the first of Eqs. (71) by the square of the present
value of the Hubble constant H2

0 ¼ _a20=a
2
0 and use the

evolution equation (74). The result can be written

H2

H2
0

¼ Ωm0a−3 þ Ωr0a−4ηr þΩΛ0aηΛ þΩk0a−2; ð75Þ

where H ¼ _a=a, ηr ¼ ð1 − 3
4
s00Þ=ð1 − 1

2
s00Þ, and

ηΛ ¼ 3s00=ð1 − 5
2
s00Þ. Note that matter (m) and curvature

(k) behave normally while radiation (r) and the cosmo-
logical constant (Λ) differ from GR, and that the density
parameters in (75) are evaluated at the present epoch t0, as
indicated by the subscript 0. The density parameters here
can be found for each universe constituent from

ΩX ¼ κρ

3H2ð1 − 3
2
s00Þ

2þ ð3w − 2Þs00
2ð1 − s00Þ

; ð76Þ

and for curvature Ωk ¼ −k=½H2ð1 − s00Þ�. Note that scal-
ings by s00 have been absorbed into the definitions of the
ΩX values.
Next we examine the acceleration equation for this case.

Using the same density parameters, the second of equa-
tions (71) can be written

ä
aH2

0

¼ −
1

2
Ωm0a−3 − Ωr0

2ð1 − s00Þ
2 − s00

a−4ηr

þΩΛ0
2ð1 − s00Þ
2 − 5s00

aηΛ : ð77Þ

Here we can see that the scalings appearing cannot be
completely removed by redefining constants.
Equation (77) gives us the deceleration parameter,

q≡ −ðä=aÞH−2, which we can attempt to use to find a
crude constraint on s00. Since the value of q at the present
epoch (t ¼ t0) needs to be negative in order to match the
observed accelerated expansion we can conservatively
write the inequality

−
1

2
Ωm0 − Ωr0

2ð1 − s00Þ
2 − s00

þ ΩΛ0
2ð1 − s00Þ
2 − 5s00

> 0: ð78Þ

Other than showing that s00 is less than order unity, this
result is not particularly useful for placing constraints, since
it is challenging to disentangle the density parameters from

the s00 coefficient. Thus a complete analysis using cos-
mological data [55] should be attempted in the future. To
display what the effects of the modified evolution would
look like, we solve the first Friedmann equation in (75) and
plot in Fig. 2.

VI. CONNECTION TO MODELS AND
FRAMEWORKS

The SME is a test framework, and as such, any action-
based model that describes coordinate-independent Lorentz
violation should in principle be contained in some subset of
terms. In practice, this can be challenging when certain
assumptions are made in the SME to afford tractable
phenomenological analyses [13,31], while these assump-
tions can differ from those made in specific models. We
show here first how the results in this paper match to prior
work in linearized gravity, and then we find a match to
models formulated in the 3þ 1 formalism.

A. Quadratic SME gravity sector

In Refs. [13,14,16,17], results in the linearized gravity
limit have been developed. In particular, a classification of
all possible Lorentz-breaking Lagrangian terms at quadratic
order in the metric fluctuations hμν around a flat back-

ground has been performed. Such terms take the form L ∼
hμνK̂

μνρσhρσ and much phenomenological analysis already
exists, including results at leading order in the coefficients
in propagation studies. In linearized gravity, diffeomor-
phism invariance can be described using the gauge trans-
formation of the metric fluctuations hμν → hμν − ∂μξν−
∂νξμ. The analysis of the quadratic action terms includes
both gauge symmetry breaking and gauge symmetric
terms, though scant phenomenological attention has been
put on the former.

FIG. 2. Evolution of the scale factor for the constant s00 case of
the flat FLRW solutions compared to GR, assuming Ωr0 ¼ 0,
Ωm0 ¼ 0.31, and ΩΛ0 ¼ 0.69. The dashed vertical line represents
the present day.
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We seek here to match the explicit breaking limit of the
SME that we have used in this work to a subset of these
terms in the weak-field limit. This will illuminate how
results in this work may match to those previously
obtained. Curiously, the SME Lagrangian with u, sμν,
and tαβγδ terms can be shown to have both gauge-breaking
and gauge-symmetric terms in the quadratic action limit
when taken in the explicit breaking limit. Furthermore, one
can trace the occurrence of dynamical pieces of the metric
fluctuations hμν that are nondynamical in GR and in gauge-
symmetric models. To see this we first examine the
contributions of the sμν-type term only,

Ls ¼
ffiffiffiffiffiffi−gp
2κ

sμνRμν

¼
ffiffiffiffiffiffi−gp
2κ

�
sμνGμν þ 1

2
sλλR

�
; ð79Þ

where no linear approximations have yet been made.
Next we assume a weak-field expansion around a flat

background for both the metric and sμν:

gαβ ¼ ηαβ þ hαβ;

sαβ ¼ s̄αβ þ s̃αβ: ð80Þ

We keep fluctuations for sαβ for generality at this point, and
we will assume that the partial derivatives of s̄μν vanish.
The Lagrange density (79) is then expanded in the
quadratic action limit (keeping terms of order h2, hs̃, s̃2

and discarding total derivatives). It can then be written as

Ls ≈
1

2κ

��
1þ 1

2
h

�
s̄αβGαβ þ s̃αβðGLÞαβ

þ 1

2

�
1þ 1

2
h
�
ημνs̄μνRþ 1

2
ðημνs̃μν − hμνs̄μνÞRL

�
;

ð81Þ

where curvature terms with the subscript L are linearized
and those without are taken to quadratic order. It turns out
that the first term on the first line of (81) by itself
reproduces the gauge invariant contribution to the SME
quadratic action expansion for the s̄μν term,

1

2κ

�
1þ 1

2
h
�
s̄αβGαβ ¼ 1

4κ
s̄αβhγδGαγβδ; ð82Þ

where Gαγβδ is the linearized double dual curvature tensor
[56]. Thus, if we take the explicit-breaking limit by
discarding the fluctuations s̃μν entirely, we end up with
the sum of the gauge invariant quadratic action terms and
gauge-violating terms.

To summarize so far: in the quadratic action limit

Ls;explicit ¼
1

4κ
ðs̄αβhγδGαγβδ − hμνs̄μνRLÞ; ð83Þ

where the second term is explicitly gauge violating and can
be matched to the general expansion of Ref. [17], and we
have discarded the trace ημνsμν term that merely scales GR.
Among the gauge-violating terms in [17], at mass dimen-
sion four, there are two types of terms which are relevant
for the second term in (83). They are contained in the
general expansion in Table 1 of [17]:

hμνK̂
μνρσhρσ ⊃ hμνðsð4;1Þμρνσαβ þ kð4;1ÞμρνσαβÞ∂α∂βhρσ; ð84Þ

where the μρνσ indices are totally symmetric in the s4;1

coefficients and of Riemann tensor symmetry ½μρ�½νσ� for
the k4;1 coefficients. The match to these terms for the
present case can be obtained using the form

hμνs̄μνRL ¼ 1

2
hμνðs̄μνK̂ρσ þ s̄ρσK̂μνÞhρσ; ð85Þ

where K̂μν ¼ ∂μ∂ν − ημν∂λ∂λ. To complete the match one
has to take the appropriate symmetric and antisymmetric
combinations of the quantity in parentheses in (85).
Finally, we note that the fact that the terms studied in this

paper correspond to the gauge-violating limit of the SME
quadratic expansion explains, in part, why additional
degrees of freedom beyond GR are found, as in Sec. IV
B. For instance, because of the symmetries of the operator
K̂μνρσ for gauge-symmetric terms, it can be shown that no
time derivatives of h00 appear when the Lagrange density is
written in the first-order derivative form ∼∂hK∂h. Any
such terms would correspond to time derivatives of the
lapse function α via α ≈ 1þ h00=2 in the weak-field limit.
For gauge-violating terms, as in Eq. (85), such terms can
appear because the symmetries of the operators K̂μνρσ allow
for them, as they are less restrictive. In the case of s̄00 being
the only nonzero coefficient we have

Ls ⊃
1

4κ
s̄00

�
∂0h00

�
∂0hjj −

1

2
∂jhj0

�
þ � � �

�
: ð86Þ

Despite this interesting feature there are likely severe
constraints on any such models via the traced Bianchi
identities, even in the linearized gravity limit. For example,
for the case (83), the field equations from the first term are
gauge invariant and automatically satisfy the traced Bianchi
identities. The second term, however, would yield a
constraint in the presence of matter given by

1

2
∂μðs̄μνRLÞ ¼ κ∂μðTMÞμν: ð87Þ

Thus one has a Ricci flat restriction which is challenging to
reconcile in the presence of matter, or one has a modified
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conservation law for matter, or one must reject such cases
(“no-go”). We showed in Sec. V that modified behavior of
matter may be an acceptable solution in some cases, such as
cosmology.

B. Match to 3 + 1 models

Matches of specific models of Lorentz violation to the
SME has been accomplished in the gravitational sector for a
variety of models including those with dynamical vectors
and tensors, noncommutative geometry, and massive grav-
ity models [39]. Among the proposals for renormalizable
quantum gravity is the approach known as Hořava-Lifshitz
(HL) gravity [57]. Since this model is based on a 3þ 1
formalism, we should be able to match it to the SME in the
present work. We shall focus on a simpler version of this
model where the action is written in the 3þ 1 form:

LH ¼ α
ffiffiffi
γ

p ðKijKij − λK2 þ ξRþ ηaiai þ � � �Þ; ð88Þ

where the ellipses include possible higher order spatial
derivative terms and the matter sector [58,59]. (For sim-
plicity in the remainder of this section we set the cou-
pling 2κ ¼ 1.)
Note that the insertion of a parameter in front of the

terms that occur in GR is akin to early kinematic
approaches of tests of special relativity and dressed-metric
based approaches for tests of GR [60]. That approach
seems somewhat ad hoc from the SME point of view, since
the SME is based on observer covariant terms added to the
action with coefficients with indices. Nonetheless, we can
possibly accommodate these terms with certain compo-
nents of the SME coefficients in a particular coordinate
system, as has been done for other models [61].
Equation (88) takes a rotationally isotropic form. If we
proceed with the sμνRμν coupling in the isotropic limit
presented in Sec. IV C, assuming the coefficients are
constant in time and space, we obtain

L2 ¼ α
ffiffiffi
γ

p �
R
�
1þ 1

3
s

�
þ ðKijKij − K2Þð1 − s0̄ 0̄Þ

�
: ð89Þ

Note that in the isotropic limit the combinationKijKij − K2

cannot be broken apart with an sμν-type term alone;
however, in the conception of the SME as a limit of
spontaneous symmetry breaking we have the freedom to
add dynamical terms to the action. For example, for the sμν
coefficients we can add general dynamical terms [22],
which are included in Appendix C, to match (88).
We take first the case where s0̄ 0̄ ¼ 0 in (89) and add the

terms labeled 5 and 12 in the Appendix with a distinct set of
coefficients that we denote with a capital Sμν. This yields

LSME;Match ¼ α
ffiffiffi
γ

p �
R
�
1þ 1

3
s

�
þ KijKij − K2

þ a5
1

2
ð∇μSμλÞð∇νSνλÞ

þ a12ðSμν∇μSνλÞðSκρ∇κSρλÞ
�
: ð90Þ

All terms in this Lagrange density are now treated as
nondynamical. We next assume for the last two terms that
the only nonzero coefficient in the local frame is S0̄ 0̄ ¼ 1—
note the precise value of the coefficient needed. Using the
vierbein (19) one can show that this is equivalent to
Sμν ¼ nμnν. This kind of choice has been used to match
HL gravity to vector models [62]. With these assumptions
we arrive at

LSME;Match ¼ α
ffiffiffi
γ

p �
R
�
1þ 1

3
s

�
þ KijKij

− K2

�
1þ 1

2
a5

�
þ
�
a12 þ

1

2
a5

�
aiai

�
:

ð91Þ

It is now clear that if we make the following choice,
λ ¼ 1þ a5=2, ξ ¼ 1þ s=3, and η ¼ a12 þ a5=2, then HL
gravity in the form (88) can be matched to this limit of the
SME. Note that the extra terms added to the SME are of
second order and fourth order in Sμν, and two distinct sets
of coefficients were used in this match. Finally, while we do
not discuss it here, matter couplings proposed in the
literature have also been matched to the matter sector of
the SME in Ref. [39].

VII. DISCUSSION AND CONCLUSION

In this work, we have taken initial steps toward exploring
the SME effective field theory framework description of
local Lorentz and diffeomorphism breaking in the areas
of the 3þ 1 formalism, Dirac-Hamilton analysis of the
dynamics, and cosmology. We have examined conse-
quences of adopting the explicit symmetry breaking para-
digm, which is complementary to existing work assuming
spontaneous symmetry breaking. Furthermore, we have
established results without using the weak-field gravity
approximation.
The key results of this work include a 3þ 1 decom-

position of the SME gravity sector actions in Sec. III B,
including a general analysis of the time derivative terms
that occur, relevant for Hamiltonian analysis. We studied
two example subsets of the SME using the Dirac-
Hamiltonian analysis in Sec. IV. The results of one of
these cases, Hamilton’s equations in (38)–(43), were
studied for FLRW cosmological solutions in Sec. V, where
some novel cosmological evolution was found. Further
analysis for other strong-field gravity solutions can be the
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subject of future work, for instance black hole spacetimes
or other exotic solutions [63]. We also established a link
between the explicit breaking terms in this work and
existing SME studies in linearized gravity, and we further
elucidated the match to Hořava-Lifshitz gravity in Sec. VI.
A set of Hamilton’s equations such as those found in

Sec. IV for a subset of the SME can be used to study the
initial value formulation and develop numerical techniques
to simulate Lorentz-breaking effects on strong-field gravi-
tational systems [64]. Results in this paper can also be
applied to a 3þ 1 and Dirac-Hamiltonian analysis of
spontaneous symmetry breaking scenarios, for example
by using the second order sμν terms in (C1).
One of the notable results of this work is the identi-

fication of subsets of the SME, whereupon in the explicit
breaking limit, extra degrees of freedom, normally gauge in
GR, occur in the Hamiltonian analysis. In light of this, it
would be of interest to investigate approaches to quantum
gravity [44] and the role of the “problem of time” in the
SME framework [65]. Also, we explored the severe
constraints that exist on such a model, due to constraints
imposed by the Bianchi identities coming from the under-
lying geometrical framework [23]. The analysis in this
paper represents a first step toward studying this phenom-
ena, and it remains an open problem to fully understand the
nature of these extra degrees of freedom.
As a preview of future work, we note that the cosmo-

logical solutions in Sec. V can be obtained from an
effective classical Hamiltonian for homogeneous space-
times with the variables aðtÞ and αðtÞ, their conjugate
momenta pa ¼ ∂L=∂ _a and pα ¼ ∂L=∂ _α, and matter var-
iables, where L is the classical Lagrangian. This “mini-
superspace” Hamiltonian takes the form, for vanishing
spatial curvature and up to scalings,

H ¼ κα5ðα2 − s00Þp2
α

3a3s200
− κα4pαpa

3a2s00
þHM; ð92Þ

with matter Hamiltonian HM. This would modify the
widely studied Wheeler-deWitt equation [66], for which
α is nondynamical and a p2

a term is present instead. Indeed,
since the usual Hamiltonian constraint is absent in this
model, the wave function Ψ ¼ Ψða; α;…; tÞ would depend
on time t and evolve according to the Schrödinger equation
i∂tΨ ¼ HΨ. We expect this could offer a new area of
exploration in quantum cosmology and will be studied in
the future.
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APPENDIX A: 3 + 1 FORMALISM

In the 3þ 1 formalism we can express projections of the
curvature tensors in terms of the timelike normal to the
spatial hypersurfaces nμ, the inverse spatial metric γμν,
the extrinsic curvature Kμν, the spatial covariant derivative
Dμ, the Lie derivative along the normal vector Ln, the
acceleration aμ, and the three-dimensional curvature tensor
Rαβγδ. This decomposition is standard in the literature
[43,45], but for completeness we record here some useful
results that can be derived from existing published ones.
First, the basic relations for the 3þ 1 projections of the
four-dimensional curvature tensor are given by

γαμγ
β
νγ

γ
κγ

δ
λRαβγδ ¼ Rμνκλ þ KμκKνλ − KμλKνκ;

γαμγ
β
νγ

γ
κnδRαβγδ ¼ DνKμκ −DμKνκ;

γβμγ
δ
νnαnγRαβγδ ¼ LnKμν þ

1

α
DμDναþ Kβ

μKνβ: ðA1Þ

From these, by taking contractions, we have the following
decomposition of the four-dimensional curvature Ricci
tensor:

Rμν ¼ Rμν þ nμKναaα þ nνKμαaα þ KKμν − LnKμν

þ 2KαμKν
α − aμaν −Dμaν − nμDνK − nνDμK

þ nμDαKαν þ nνDαKαμ

þ nμnνðLnK − KαβKαβ þ a2 þDαaαÞ: ðA2Þ

It is also useful to have a form for the curvature tensors
which includes total spacetime covariant derivatives rather
than Lie derivatives and spatial covariant derivatives. Using
the definitions and properties of spatial covariant deriva-
tives and Lie derivatives, Eqs. (A1) can be manipulated to
the following forms:

R ¼ Rþ KαβKαβ − K2 − 2∇αðnαK þ aαÞ;
Rαβ ¼ Rαβ − 2KαβK þ 2Kα

δKδβ − nαaβK

þ nαKβ
δaδ − nαnβðK2 − KαβKαβÞ

þ∇δ½nαnβðnδK þ aδÞ − nδKαβ − γδβaα

− ðnαγβδ þ nβγαδÞK þ nαKβδ þ nβKαδ�;
Rαβγδ ¼ Rαβγδ − 3ðKαγKβδ − KβγKαδÞ

þ ðKαϵKγ
ϵnβnδ þ symÞ − ðKαγnβnδK þ symÞ

− ðKαγnðβaδÞ þ symÞ
þ∇ϵ½nϵðKαγnβnδ þ symÞ
þ ðγϵðαaγÞnβnδ þ symÞ
− 2ðKαγnðβγδÞϵ þ symÞ�; ðA3Þ

where in the last equation, “sym” refers to the Riemann
symmetric combination of terms involving the indices α, β, γ,
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δ. For instance, for two symmetric tensors AαγBβδ þ sym ¼
AαγBβδ − AβγBαδ − AαδBβγ þ AβδBαγ .
Results using the explicit form for the metric (9) are used

throughout this paper, and some key expressions are
collected here. The three-dimensional connection coeffi-
cients are given explicitly in terms of the metric γij:

ð3ÞΓi
jk ¼

1

2
γilð∂jγkl þ ∂kγjl − ∂lγjkÞ; ðA4Þ

where γil is the inverse of the three metric and satisfies
γilγlk ¼ δik. The components of the spatial covariant
derivative acting on an arbitrary covariant vector vμ are
given by

D0v0 ¼ βiβjð∂ivj − ð3ÞΓk
ijvk þ nμvμKijÞ;

D0vi ¼ βjð∂jvi − ð3ÞΓk
ijvk þ nμvμKijÞ;

Div0 ¼ βjð∂ivj − ð3ÞΓk
ijvk þ nμvμKijÞ;

Divj ¼ ∂ivj − ð3ÞΓk
ijvk þ nμvμKij; ðA5Þ

where nμvμ ¼ ð1=αÞðv0 − βiviÞ.

APPENDIX B: POISSON BRACKET ANALYSIS

In this subsection we collect some key results on Poisson
brackets in field theory for the Dirac-Hamiltonian analysis
that we use in the paper. Some results can be found in
various places in the literature [27,46], but some subtleties
arise in the calculations and it is useful to record them
explicitly here. First, for fields qnðt; r⃗Þ, momenta pnðt; r⃗Þ,
and functions of the fields and momenta fðq; pÞ and
gðq; pÞ, the Poisson bracket definition is formally

ff; gg ¼
Z

d3z

�
δf

δqnðt; z⃗Þ
δg

δpnðt; z⃗Þ −
δf

δpnðt; z⃗Þ
δg

δqnðt; z⃗Þ
�
;

ðB1Þ

where f and g may depend on different spatial points via
their dependence on the fields and momenta. Note also the
equal times for all the fields. As an example, if we examine
a single scalar field and let q1 ¼ ϕðt; r⃗Þ and the conjugate
momenta p1 ¼ Π ¼ Πðt; r⃗0Þ, then we obtain

fϕðt; r⃗Þ;Πðt; r⃗0Þg ¼ δ3ðr⃗ − r⃗0Þ: ðB2Þ

In classical mechanics, the functions f and g are
algebraic functions of the coordinates and momenta. In
field theory, however, one often encounters spatial deriv-
atives in the calculations of Hamilton evolution via Poisson
brackets. Generically, for a partial spatial derivative ∂i of a
function f of the canonical variables, its Poisson bracket
with another function g can be shown to obey

f∂if; gg ¼ ∂iff; gg; ðB3Þ

where the derivative acts on the space dependence xj of the
result of the bracket of f and g. This result can be extended
to covariant spatial derivatives. For example, for the
quantity which occurs in GR and the SME for the
momentum constraint DiΠi

k, and its Poisson bracket with
the Hamiltonian H, using (B1) and (B3) we find

fγklDiΠil; Hg ¼ fγkl; HgDiΠil þ γklDifΠil; Hg

þ ΠijDifγjk; Hg − 1

2
ΠjlDkfγjl; Hg:

ðB4Þ

It is important to note that we used the fact that Πij is a
three-dimensional tensor density of weight −1 and that the
spatial covariant derivative has a dependence on the spatial
metric γij, resulting in the last two terms.

APPENDIX C: HIGHER-ORDER TERMS

The following terms generalize gravitational couplings
to curvature for the SME for the sμν term with scalar
dimensionless coupling parameters an:

Ls ¼
ffiffiffiffiffiffi−gp
2κ

�
a1sλλRþ a2sμνRμν

þ a3
1

2
ð∇μsνλÞð∇μsνλÞ þ a4

1

2
ð∇μsμλÞð∇λsββÞ

þ a5
1

2
ð∇μsμλÞð∇νsνλÞ þ a6

1

2
ð∇μsννÞð∇μsλλÞ

þ a7sμνsκλRμκνλ þ a8sμνsμλRνλ

þ a9sλλsμνRμν þ a10sμνsμνRþ a11sλλsμμR

�
: ðC1Þ

The first two terms are just the originally proposed SME
couplings, linear in the coefficients sμν. The remaining
terms are second order in the coefficients sμν [22]. Since sμν
are dimensionless and normally assumed small compared
to unity, these terms represent a step beyond the minimal
SME, which assumes first-order terms in the coefficients,
and they are a special case of the terms outlined in Table V
and Table VII in Ref. [23].
Many of these terms for a symmetric two-tensor have

been proposed in modified gravity models in the literature
in different contexts [60]. Also, other possible terms are
omitted due to equivalence via integration by parts. For
example,
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0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð∇γsαβ∇βsαγ −∇βsαβ∇γsαγ

− sαβsγδRαδβγ þ sαδsαβRδβÞ: ðC2Þ

Note also that one can add general potential terms for a
symmetric two-tensor of the form Vðsμμ; sμνsμν; � � �Þ for the
case of spontaneous symmetry breaking, as detailed else-
where [35]. In the particular case of the match to 3þ 1

models in Sec. VI B, the possibility exists of using a term
quartic in the coefficients sμν:

ΔLs ¼ a12

ffiffiffiffiffiffi−gp
2κ

ðsμν∇μsνλÞðsκρ∇κsρλÞ: ðC3Þ

An analysis of these and other possible terms in the SME is
forthcoming.
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