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Light deflection by squashed Kaluza-Klein black holes in a plasma medium
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We study motions of photons in an unmagnetized cold homogeneous plasma medium in the five-
dimensional charged static squashed Kaluza-Klein black hole spacetime. In this case, a photon behaves as a
massive particle in a four-dimensional spherically symmetric spacetime. We consider the light deflection by
the squashed Kaluza-Klein black hole surrounded by the plasma in a weak-field limit. We derive
corrections of the deflection angle to general relativity, which are related to the size of the extra dimension,
the charge of the black hole and the ratio between the plasma and the photon frequencies.
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I. INTRODUCTION

The direct detection of gravitational waves generated
by the coalescence of black hole binaries [1] and the
successful imaging of immediate vicinity of a supermassive
black hole candidate in the center of the galaxy M87 [2]
mean that researches of black holes have entered a new
stage. Motivated by these astrophysical observations, we are
interested in performing in-depth studies of the optical
features of higher-dimensional black hole solutions.
Recently, verifications of extra dimensions and braneworld
black holes by observations of black hole shadow have been
studied [3-6]. In this paper, we focus on the light deflection
by higher-dimensional black holes surrounded by a plasma
in the spacetime with compact extra dimensions.

Higher-dimensional black hole spacetimes are actively
discussed in the context of string theories and braneworld
models. If higher-dimensional black hole solutions have
compactified extra dimensions, we can regard such black
hole solutions as candidates of realistic models, since our
observable world is effectively four dimensional. We call
these Kaluza-Klein black holes. In four-dimensional general
relativity, the gravitational field in vacuum with spherical
symmetry is uniquely described by the Schwarzschild
metric. However, in a higher-dimensional spacetime with
Kaluza-Klein structure, even if we impose asymptotic flat-
ness in a four-dimensional section, the metric is not
determined uniquely. A family of five-dimensional squashed
Kaluza-Klein black hole solutions [7-12] asymptote to
effective four-dimensional spacetimes with a twisted S' as
an extra dimension at infinity and represent fully five-
dimensional black holes near the squashed S* horizons.
Then squashed Kaluza-Klein black hole solutions with a
twisted compactified extra dimension would describe the
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geometry around the compact objects. Several aspects of
squashed Kaluza-Klein black holes are discussed, for exam-
ple, multiblack holes [13—15], stabilities [16,17], quasinor-
mal modes [18-20], thin accretion disk [21], x-ray reflection
spectroscopy [22], gyroscope precession [23,24], strong
gravitational lensing [25-29] and black hole shadow [30,31].

The gravitational lensing combines a wide range of
phenomena connected with the deflection of light rays by a
gravitational field. Most gravitational lensing deals with
geometrical optics in vacuum and uses a notion of the
deflection angle [32,33]. A basic assumption is the
approximation of a small deflection angle of a photon
which is well satisfied in some astrophysical situations
related to the gravitational lensing. Since the photon
trajectories and deflection angles of photons in vacuum
do not depend on the photon frequency or its energy, the
gravitational lensing in vacuum is achromatic. Then it is
interesting to consider how the light trajectory and its
deflection angle change in the presence of a plasma since
light rays propagate through plasmas around compact
objects, galaxies and galaxy clusters in the Universe.
Self-consistent approaches for the geometrical optics in
an arbitrary medium in a curved spacetime are discussed in
the references [34,35]. One of the most interesting effects
of this kind is a chromatic gravitational deflection of light.
In an unmagnetized cold homogeneous plasma medium,
the refractive index of a plasma and the propagation of light
rays depend on the photon frequency. Then the gravita-
tional deflection of light is different from the vacuum case
and its deflection angle depends on the ratio between the
plasma and the photon frequencies [36,37]. Since the effect
of difference in gravitational deflection angles is significant
for photons of longer wavelengths, the modifications of
gravitational lensing due to the presence of the plasma is
negligible in the visible spectrum. Then there are some
astrophysical observations in the radio spectrum which
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would detect such plasma effects in low-frequency bands
[38—45]. Motivated by these observations, the influence of
plasma media on the trajectory of light rays and the
deflection angles of photons around compact objects have
been studied in a variety of spacetimes including vacuum,
electrovacuum and with a vast array of scalar fields or
effective fluids at both finite and infinite distances in both
weak and strong-field limits [46-77].

In this paper, we investigate motions of photons and
its deflection angles in a weak-field limit in the five-
dimensional charged static squashed Kaluza-Klein black
hole spacetime in the presence of a plasma. To the best our
knowledge, photon motions around compact objects in
plasma media have not been discussed in asymptotically
Kaluza-Klein spacetimes. In the present work, we extend
the derivations of weak deflection angles of photons in an
unmagnetized cold homogeneous plasma medium in four-
dimensional black hole spacetimes to the case of the five-
dimensional squashed Kaluza-Klein black hole surrounded
by such plasma.

This paper is organized as follows. In Sec. II, we review
the properties of five-dimensional charged static Kaluza-
Klein black hole solutions with squashed horizons. In
Sec. III, we consider photon motions in a homogeneous
plasma medium in squashed Kaluza-Klein geometry and
show that there is a stable circular orbit of a photon with no
momentum in the direction of the extra dimension. In
Sec. IV, we study the light deflection by the squashed
Kaluza-Klein black hole surrounded by the homogeneous
plasma in a weak-field limit. It is shown that the asymp-
totically Kaluza-Klein structure, the Maxwell field and the
plasma modify the deflection angle of photon in the black
hole geometry. Section V is devoted to summary and
discussion.

II. SQUASHED KALUZA-KLEIN
BLACK HOLES

We consider the charged static Kaluza-Klein black holes
with squashed S3 horizons, which are exact solutions of the
five-dimensional Einstein-Maxwell theory [9]. The metric
and the Maxwell field are given by

KZ
ds? = —Fdi> + - dp* + p>K*(d6? + sin*0d¢?)

2

+ =5 (dy +cos 0, (1)
V30
Aﬂdx” = jdt, (2)
with
2M  Q?
Fo1-M 2 g g
p p

where the parameters M, Q, r, and p, are related as
r3, = 4(p3 + 2Mpy + Q). The coordinates run the ranges
of —co <1 <0,0<p<0,0<0<7,—7<¢<rmand
0 <y < 4x. The squashed Kaluza-Klein black hole solu-
tion is asymptotically locally flat, i.e., the metric asymp-
totes to a twisted constant S' fiber bundle over the
four-dimensional Minkowski spacetime. The parameters
M, Q and r, denote the Komar mass, the charge of the
black hole and the size of the compactified extra dimension
at infinity, respectively.

In this paper, to avoid the existence of naked singularities
on and outside the horizon, we restrict ourselves to the
ranges of parameters such that

M>Q>0, Feo >0, (4)

with the relation

2 +4(M? - Q%) -2M

In these parameters, the outer and the inner horizons are
located at p = M + /M?* — Q%> and p = M — \/M? — Q?,
respectively. The parameter p, gives the typical scale of
transition from five dimensions to effective four dimensions
[78]. In the limit p, — 0, equivalently r, — 20, we obtain
the metric (1) with K =1 which represents the four-
dimensional Reissner-Nordstrém black hole with a twisted
constant S' fiber. We expect the appearance of the higher-
dimensional corrections, which are related to the parameter
pPo, to the photon motions and the deflection angle of
photon of four-dimensional relativity.

III. PHOTON MOTIONS IN
A PLASMA MEDIUM

We consider motions of photons in the five-dimensional
squashed Kaluza-Klein black hole spacetime in the pres-
ence of an unmagnetized cold plasma medium. The
Hamiltonian for the photon in the metric (1) is

1

H =3 (9" Pupy + @2)
_(_pt il,z Pi
2 F K2 P /)2K2
(Pg — pycosO)* 4K? 5
Y s TR vte) O

with H = 0, where p, are the canonical momenta con-
jugate to the coordinates x* and @, is the electron plasma
frequency defined by w? = >N, /(egm, ), where e, N,, m,
and ¢, are the charge, the number density and the mass of
the electron in the plasma, and the vacuum permittivity,
respectively [35,46,50,59]. Note that we ignore the self-
gravitation of the plasma. In this paper, we consider a
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Effective potentials (13) in various w, for L/M =4, r,/M = 0.1, Q/M = 0.03 and p,/M =~ 0.0008 (left panel). w, = 0.94

(dotted curve), w, = 0.97 (dashed curve) and w, = 1 (solid curve). The same ones in various Q/M for L/M =4, r,/M = 1 and
w, = 1 (right panel). Q =0 (py/M ~0.1, dotted curve), Q/M = 0.35 (py/M ~0.06, dashed curve) and Q/M = 0.5 (p, =0,

solid curve).

homogeneous plasma with the electron number density
N, =const and the positive refractive index n =

1 — w>F/w?,. From the Hamilton’s equations, we can
obtain three constants of motion as
®We ==pp  L:=py and p,, (7)
where w is the photon frequency measured by an observer
at infinity, L and p,, are angular momenta of the photon in
the ¢ and the y direction, respectively.
Here, we assume that the photon has no momentum in
the direction of the extra dimension, i.e., p,, = 0.! Then the
effective Hamiltonian for the photon is

I( p} F P} Py
Hoop=— | =L 2 [ 2 , 8
eff 2( Frrelr T et krnte T ®

where w, = const and H.; = 0. We see that this effective
Hamiltonian has the same form in the case of the four-
dimensional spherically symmetric spacetime filled with a
homogeneous plasma where the plasma frequency w, acts
like an effective mass for a photon [36,37]. Then we can
concentrate on orbits with 8 = z/2 and py, =0 on the
assumption of p,, = 0. The Hamilton’s equations in these
conditions are given by

dt o

i F ®)
dp F

azﬁpw (10)
deg L

d_/1:p2K2’ (11)

'Since the size of compactified dimension y is very small, it
would be expected that the momenta of massive and massless
particles conjugate to y are hardly excited [79].

where A is the curve parameter along the photon trajectory.
The photon frequency satisfies the condition o,, > @, for
the propagation of the photon through the plasma in the
squashed Kaluza-Klein spacetime (1).

Substituting Eq. (10) into the Hamiltonian (8), we
obtain the energy conservation equation under the above

conditions:
P (dp\? )
1+— ) — Vg = , 12
< +p)<d/1> + Vet = 05 (12)

where the effective potential is given by

Vg = (1 —"—+= : . 13
" ( p +p2 v +P(P+P0) (13)

Typical shapes of the potential V4 are shown in Fig. 1.
We see that there is a stable circular orbit of a photon at
the local minimum of the effective potential. Then the
squashed Kaluza-Klein black holes in a homogeneous
plasma medium, where a photon can be stably bounded
around the black hole, make a remarkable contrast with the
higher-dimensional asymptotically flat black holes in such
medium, which have no stable bound state of photon [77].2
From the left panel of Fig. 1, we find that the stable circular
orbit radius decreases and the unstable one increases with
increasing w, for fixed L/M, r,/M and Q/M. From the
right panel of Fig. 1, we observe that the stable circular
orbit radius increases and the unstable one decreases with
increasing Q/M for fixed L/M, r,/M and w,. Then the
presence of a homogeneous plasma increases the radius of
critical photon orbits around the Kaluza-Klein black hole
similar to the case of the four-dimensional black hole
surrounded by such plasma [37].

There exist stable bound orbits of massless particles with
nonvanishing angular momenta in two independent angular
directions around an asymptotically flat black ring [80].
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From dV/dp = 0 and V. = w%, we have o, and L
in circular motions with p = R = const, p, =0 and
6 =rx/2 as

@2 (po +2R) (R? =2MR + 0*)?
R%*[R(po(R—4M)+2R(R—=3M)) + Q*(3py +4R)]’
(14)

o

20;R(py + R)*(MR - 0°)
R(po(R—4M) +2R(R —3M)) + Q*(3py +4R)"
(15)

12 =

Using Egs. (9), (11), (14) and (15), the period of a circular
orbit is given by

0
R=m-"24
6

oM 22407 1
V(OM + []30) Q cos <— cos™

In a weak-field limit, the photonsphere radius (18) becomes

Mp, — 4Q?

R_3M<1+ e ) (19)

The second term in the right-hand side is the corrections by
the extra dimension and the Maxwell field.

In the limit py, — 0, the metric (1) locally has the
geometry of the Reissner-Nordstrom black string and
Eq. (12) reduces to the energy conservation equation of
the photon moving around the four-dimensional Reissner-
Nordstrom black hole surrounded by a homogeneous
plasma [76]. In such limit, the energy conservation equa-
tion (12) with the replacements w, — 1, o, — E describes
the geodesic motions of massive test particles with the
energy E measured by an observer at infinity in the four-
dimensional Reissner-Nordstréom spacetime [81]. This is
consistent with a correspondence between motions of the
photon with the frequency w,, in an unmagnetized cold
homogeneous plasma characterized by the frequency @, in
a given four-dimensional spacetime and timelike geodesics
of the massive test particle on the same background
[37,82]. In the limit Q — 0, Eq. (12) and the effective
potential (13) with the replacements w, —» 1, w,, = E
describe timelike geodesics of the massive particles with
the energy E in the five-dimensional static squashed
Kaluza-Klein spacetime [23]. Then some results for pho-
tons in a homogeneous plasma shown in the present
paper would be applied to the geodesic motions and the
deflection angles of neutral massive particles with p,, =0
and 0 ==7x/2 in the five-dimensional charged static
squashed Kaluza-Klein spacetime (1).

. dt . R3(2R +,00)

We see that the orbital period is modified by the extra
dimension and the Maxwell field. In the large R limit, we have

R3
T - 2m\|—. 17
- o /N (17)

This means Kepler’s third law.

In the absence of the plasma w, = 0, Eq. (12) with the
effective potential (13) describes null geodesics in the five-
dimensional charged static squashed Kaluza-Klein space-
time [27]. In this case, an unstable circular orbit of the
photon exists at a photonsphere radius. From the denom-
inator of the angular momentum (15), we obtain the
photonsphere radius in the metric (1) as

| (216M(M2 — Q%) + 18py(6M> =70 — Mpy) —p8>) (18)

((6M + po)* = 240%)*2

[

IV. DEFLECTION ANGLE OF PHOTON
IN A PLASMA MEDIUM

We consider light propagation around the squashed
Kaluza-Klein black hole (1) in a homogeneous plasma
medium by direct integrations of the photon orbit equation
with the conditions p, =0 and ¢ = z/2. Substituting
Eq. (11) into Eq. (12) and introducing a new coordinate
u = p~', the energy conservation equation becomes

du\? 1 20’M 2(Q% -2M
dut 1 20 MEpo, (0@ = 2Mp0))
d¢ b b

b2
22
+ (2M - d §QPO> u3 - Q2u4, (20)
with
L2
b2 e Pt (1)
2
Wy
62 = m . (22)

Taking the derivative of Eq. (20) with respect to the
coordinate ¢, we obtain the photon orbit equation as

d>u  26°M + p, c*(Q* —2Mpy)
A= T\ Ju
¢ 2 b

22
+3 (M - %) W2 —20%83, (23)
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To solve Eq. (23), we assume that the solution u can be expressed in powers of parameters as

M* 0 p . Mp
u=uy +;M1 +?M2 +ﬁu3 +ZOM4 +b—glx[5 +b—20M
+O(M?, i, M?po, MQ*, Mpjg, O°po), (24)

where u; (i = 0,1, ..
of u;, we obtain the orbit of the photon as

_cos¢

u(¢)

., 6) are functions of ¢. Substituting the ansatz (24) into Eq. (23) and solving the differential equations

(262 + 3)M — M cos(2¢) + po

b 2b?

+ L [((86%(c® + 6) + 37)M? + 24Mpy (6 + 1) + 2p3 — (86% + 9)0?) cos ¢

1653

+(3M? + Q%) cos(3¢) + 4(3M? (46> + 5) + (26% + 3)(2Mpy — 0?))¢h sin ]

+ O(M3, pi. M?po, MQ?, Mp3, Q%py),

where b is the impact parameter which represents the
minimum value of p-coordinate for the undeflected light
ray, i.e., M = Q = py = 0. We note that the integration
constants are chosen such that Eq. (25) has a symmetry
u(¢) = u(—¢) and satisfies the energy conservation equa-
tion (20) up to the second order in the parameters M, Q and
po- By taking some limits, we obtain particle trajectories in
some four-dimensional spacetimes. When p, = 0, w, = 0,
Eq. (25) represents the orbit of the photon in the braneworld
black hole spacetime with the tidal charge ¢ which reduces
to the four-dimensional Reissner-Nordstrom spacetime in
the limit ¢ — Q? [83]. When p, = 0, Q = 0, Eq. (25) with
the replacements ¢ — ¢ — /2, 6> — (1 —v?)/v? repre-
sents the orbit of the neutral massive particle with the
velocity v measured by an observer at infinity in the four-
dimensional Schwarzschild spacetime [59].

We consider the photon which comes from far away at
the distant past, ¢p = —n/2 — 6¢p/2, and is deflected by the
black hole then travels towards far away at the distant
future, ¢p = /2 + 6¢/2, where 6¢ is a deflection angle.
Since Eq. (25) has a symmetry u(¢) = u(—¢), we solve
u(z/2+6¢/2) =0 up to the first order in 5¢p. Then we
obtain the deflection angle of photon in a weak-field
limit as

2M Po 1
op=—14+—+—
¢ b ( +2M+1—a)§/a)§o>

3zM? 4
4p?
2Mpy — Q?
n Pon

3M

+

1 —w2/wk

where the parameter p, is given by Eq. (5) and we use
Eq. (22) to represent the deflection angle in terms of the

(25)

frequency ratio w, /w,. The deflection angle in terms of the
distance of closest approach is shown in the Appendix.

We see that the gravitational deflection angle (26)
depends upon the photon frequency w,, and is modified
by the squashed Kaluza-Klein geometry, the Maxwell field
and the homogeneous plasma through the extra dimension
size r,, the black hole charge Q and the plasma frequency
w,, respectively. We find that the deflection angle decreases
with increasing b/M for fixed ro,/M, Q/M and w,/w,,
while it increases with increasing ro,/M for fixed b/M,
Q/M and w,/w.,. We show the behaviors of the deflection
angle 6¢ versus b/ M in Fig. 2. From the left panel of Fig. 2,
we see that ¢ increases with increasing w,/w, for fixed
b/M, roo/M and Q/M. Then the presence of plasma
changes the deflection angle with the difference from the
case of no plasma, w, = 0 or w,/w,, < 1, being strongest
for photons of smaller frequency or longer wavelength as
s approaches w,. From the right panel of Fig. 2, we
observe that 6¢p decreases with increasing Q/M for fixed
b/M, ro/M and w,/w.. Then the effect of the difference
in gravitational deflection angles is significant for smaller
charges of the black hole, larger sizes of the extra
dimension and larger ratios between the plasma and the
photon frequencies.

By taking some limits in Egs. (26) and (A3), we obtain
second-order deflection angles in some four-dimensional
spacetimes. First, when p, =0, equivalently r = 20,
Egs. (26) and (A3) with the replacement w?2/w2, — 1—2v°
coincide with the deflection angles of neutral massive
particles with the velocities v measured by an observer
at infinity in the four-dimensional Reissner-Nordstrom
spacetime [84]. Second, when r, =20, w,=0 or
w,/ws, < 1, Egs. (26) and (A3) represent the deflection
angles of photons in the four-dimensional Reissner-
Nordstrom spacetime [85]. Third, when r,, =20, then
taking the limit Q — 0, Eqgs. (26) and (A3) represent the
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FIG. 2. Deflection angles (26) in various ®,/ws, for roo/M = 0.1, Q/M = 0.03 and p,/M ~0.0008 (left panel). w, = 0 (dotted
curve), w2 /w%, = 0.5 (dot-dashed curve), w2 /w2, = 0.7 (dashed curve) and w2 /w2, = 0.8 (solid curve). The same ones in various Q/M
for roo/M =1 and @2/w? = 0.5 (right panel). Q = 0 (p,/M =~ 0.1, dotted curve), Q/M = 0.3 (p,/M =~ 0.08, dot-dashed curve),
Q/M = 0.4 (py/M ~0.04, dashed curve) and Q/M = 0.5 (py = 0, solid curve).

deflection angles of photons in a homogeneous plasma
medium in the four-dimensional Schwarzschild spacetime
[59]. Lastly, when ro, =20, w, =0 or w,/w,, < 1, then
taking the limit Q — 0, Egs. (26) and (A3) represent the
deflection angles of photons in the four-dimensional
Schwarzschild spacetime [86,87].

We consider the angular positions of the images deter-
mined by the Einstein rings as one of the observational
effects in a gravitational lensing [37]. Using the deflection
angle (26) and the lens equation in the case of a perfect
alignment of the source, the lens and the observer, we
obtain the Einstein ring gk in the squashed Kaluza-Klein
spacetime in the presence of the plasma as

1 D
eKK:\/2M<1+&+ > LS (27)

2M 1 —a)g/a)go DLDS’

where D; g is the distance between the lens and the source,
Dy is the distance between the observer and the lens, Dy is
the distance between the observer and the source, and we
use the relation 5¢ ~ b~! in order to express the small angle
Oxx = b/D; in the weak-field approximation [59,63].
Then the relative change in the position of the Einstein

rings between Ogy and Ogy, := \/4MD;s/(D; D) in the

four-dimensional Schwarzschild spacetime is given by

Abkk _ Oxk = Osen

9Sch 9SCh

1 Po 1
S [ IR S V)
\/2( +2M+1—w§/a)<2x,) (28)

For w,/w, < 1, OQ/M <« 1, roo/M < 1, we obtain the
relative change in the position of the images as

Abgg

HSch

8 — 8, + 65, (29)

with

w; 5w & T
402, 27T 16M?” 3T eaM?

8 = (30)

First, we consider the correction §; by the plasma. We see
that the correction 6, coincides with that in a homogeneous
plasma medium in the four-dimensional Schwarzschild
spacetime [37]. Then, for the photon frequency @,/ (27) =~
3 x 10% Hz and the electron number density N, ~ 5 x 10'°
m~3, we can estimate that §; is of order 10> with a value of
Oscn =~ 1 arcsec, which would be detected in near future
observations [37,59]. Second, we consider the correction
0, by the black hole charge. For example, a theoretical
uppermost limit on the charge of the supermassive black
hole Sgr A* with the mass ~4 x 10% M is <7 x 10* C
by considering an extremal charged black hole, while an
observational upper limit is <3 x 10% C by the mass
difference between the proton and the electron in a plasma
around the Sgr A*, where My =~ 2 x 10°° kg is the mass of
the Sun [88]. Using these constraints, we can estimate that
8, <0.06 for the theoretical limit and 8, < 10738 for the
observational limit. Then we see that, though a black hole
charge could modify a gravitational lensing theoretically,
the correction &, for a supermassive black hole would not
appear to be relevant for present and near future observa-
tions. Lastly, we consider the correction d; by the com-
pactified extra dimension. If the size of the extra dimension
is o, ~ 0.1 mm [23], we can estimate that §; ~ 107" for
the Sgr A*, 55 ~ 1078 for a stellar black hole with the mass
~10 My [63], and 83 ~ 107> for a primordial black hole
with the mass of the Earth ~3 x 107 M [89]. Then we
see that it would be difficult to detect d; for supermassive
and stellar black holes in present and near future observa-
tions, while it would be challenging to detect §; for
primordial black holes in future observations of a gravi-
tational lensing [89-92].
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V. SUMMARY AND DISCUSSION

We consider motions of photons around a spherical
compact object in an unmagnetized cold homogeneous
plasma medium. We assume that the five-dimensional
charged static squashed Kaluza-Klein black hole metric
describes the geometry of the region outside the compact
object and a photon has no momentum in the direction of the
extra dimension. We show that the five-dimensional
squashed Kaluza-Klein spacetime in the presence of a
homogeneous plasma admits stable circular orbits of pho-
tons similar to the four-dimensional spherically symmetric
black holes surrounded by such plasma. We solve the photon
orbit equation in the plasma medium in the squashed
Kaluza-Klein spacetime and derive the deflection angle of
photon in a weak-field limit with corrections by the extra
dimension, the Maxwell field and the plasma. Some known
deflection angles in four-dimensional spacetimes are
obtained by taking limits in our deflection angle of photon.
We see that, for fixed values of the photon frequency and the
black hole mass, the deflection angle of photon increases
with increasing the extra dimension size and the plasma
frequency, while decreases with increasing the impact
parameter and the black hole charge. The variations of these
parameters provide specific signatures on the optical fea-
tures of the squashed Kaluza-Klein black hole solutions in
the plasma medium which would open the possibility of
testing such higher-dimensional models by using astro-
nomical and astrophysical observations. We consider
the difference between angular positions of images in
the squashed Kaluza-Klein spacetime and in the four-
dimensional Schwarzschild spacetime, and estimate its
corrections by the plasma, the black hole charge and the
extra dimension. We see that the correction by the plasma
would be detectable in near future observations, while the
other two corrections for supermassive and stellar black
holes would not appear to be relevant for present and near
future observations. However, it would be expected that the
correction by the extra dimension might be detected in future
observations of a gravitational lensing by primordial black
holes. If a precise observation of a gravitational lensing by an
astrophysical black hole agrees with the expected value of
general relativity, it requires a rigorous upper limit of the size
of the extra dimension, or it excludes the squashed Kaluza-
Klein metric for describing the geometry around such a
black hole.

We note that the exterior spacetimes of standard general
relativistic spherical compact objects are described by the

|

L4+ D((0? + M = 0) + 12Mpy (0 + 1) +pf

Schwarzschild metric. However, in higher-dimensional
spacetime models with Kaluza-Klein structures, the
Schwarzschild metric is no longer the exterior metric of
a static compact object. Even if we impose asymptotic
flatness to the four-dimensional part of the spacetime, there
are various possibilities of fiber bundle structures of the
extra dimensions as the fiber over the four-dimensional
base spacetime. For example, the direct product of four-
dimensional Schwarzschild spacetime with a small S' is a
possible metric to describe the exterior of the compact
object. In this case, no higher-dimensional correction of
light deflection appears without a momentum of the photon
in the direction of the extra dimension. In contrast, it is
interesting that the correction exists even if the photon
moves along the four-dimensional spacetime in the
squashed Kaluza-Klein geometry.

Since the asymptotically Kaluza-Klein structure, the
Maxwell field and the homogeneous plasma modify the
unstable circular orbits of photons in the four-dimensional
Schwarzschild spacetime, shadows of black holes would be
influenced by such corrections. Moreover, generalizations
of the present study to light deflections in inhomogeneous
plasma media [37,49,61] in another class of Kaluza-Klein
type metrics [93,94] would be interesting. We leave the
analysis of these topics for the future.
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APPENDIX: DEFLECTION ANGLE
OF PHOTON IN TERMS OF DISTANCE
OF CLOSEST APPROACH

While the deflection angle is given in terms of the impact
parameter b, it would be useful to represent the deflection
angle in terms of the distance of closest approach p .
Substituting ¢) = 0 and u = pi} into Eq. (25), the relation
between the distance of closest approach and the impact
parameter is given by

11 <1+2M(02+1)+p0

P b 2b

Solving this equation for b~ up to the second order in p

min’

8b? ) '

(A1)

we have
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~

S| =

Pmin

1 (1 2M(6* 4+ 1) + po

) . (A2)

2,0 min

Then we obtain the deflection angle in terms of the distance of closest approach as

am 2 1520
5¢:(1+6+”°> + =

40 | (20 +3)(2Mp, - Q%)
5 15M?

Pmin 2 4M 4pmm
4M? 1+ o’ (6 +3) N po(2M (262 + 3) + po)
prznin 2 8M2

) Lo, (A3)
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