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We develop a model-independent procedure to single out static and spherically symmetric wormhole
solutions based on the general relativistic Poynting-Robertson effect and the extension of the ray-tracing
formalism in generic static and spherically symmetric wormhole metrics. Simulating the flux emitted by the
Poynting-Robertson critical hypersurface (i.e., a stable structure where gravitational and radiation forces
attain equilibrium) or also from another x-ray source in these general geometrical environments toward a
distant observer, we are able to reconstruct, only locally to the emission region, the wormhole solutions
which are in agreement with the high-energy astrophysical observational data. This machinery works only
if wormhole evidences have been detected. Indeed, in our previous paper we showed how the Poynting-
Robertson critical hypersurfaces can be located in regions of strong gravitational field and become valuable
astrophysical probe to observationally search for wormholes’ existence. As examples, we apply our method
to selected wormhole solutions in different extended theories of gravity by producing light curves, spectra,
and images of an accretion disk. In addition, the present approach may constitute a procedure to also test the
theories of gravity. Finally, we discuss the obtained results and draw conclusions.
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I. INTRODUCTION

The recent and future great amount of high-energy
astrophysical observational data (e.g., International Gamma-
Ray Astrophysics Laboratory [1], Swift [2], XMM-
Newton [3,4], Event Horizon Telescope [5,6], Advanced
Telescope for High-Energy Astrophysics [7], enhanced
x-ray timing and polarimetry mission [8], Imaging x-ray
Polarimetry Explorer [9], Laser Interferometer Gravitational-
Wave Observatory, and Virgo [10,11]) is triggering the
attention of all the scientific community in developing more
andmore advancedmodels and in proposingnew strategies to
test gravity in strong field regimes. A particular attention is

reserved towormholes (WHs),which are exotic astrophysical
objects endowed with no horizons and singularities, and a
characteristic traversable bridge (WH neck) connecting two
different universes or extremely far regions of spacetime [12].
The study of these objects permits one to have more

insight into the fundamental physics and entails important
implications, like understanding how gravity shapes space-
time topology, learning more about the exotic matter and
how quantum mechanics effects couple with gravity in
strong field regimes, having natural laboratories for testing
quantum gravity models, and the intriguing possibility for
undertaking interstellar travels.
Both in general relativity (GR) and in extended or

alternative theories of gravity [13], there exists a restricted
class of WH solutions which have the peculiar propriety to
be black hole (BH) mimickers, meaning that they possess
geometrical proprieties, which make them observationally
similar to BHs [14–16]. This can be one of the reasons why

*vittorio.defalco@physics.cz
†emmanuele.battista@kit.edu
‡capozziello@unina.it
§mariafelicia.delaurentis@unina.it

PHYSICAL REVIEW D 103, 044007 (2021)

2470-0010=2021=103(4)=044007(17) 044007-1 © 2021 American Physical Society

https://orcid.org/0000-0002-4728-1650
https://orcid.org/0000-0002-9945-682X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.044007&domain=pdf&date_stamp=2021-02-02
https://doi.org/10.1103/PhysRevD.103.044007
https://doi.org/10.1103/PhysRevD.103.044007
https://doi.org/10.1103/PhysRevD.103.044007
https://doi.org/10.1103/PhysRevD.103.044007


no observational evidence of their existence has been found
so far. To this end, there are international efforts in
providing feasible observational procedures to detect their
signature, like analyzing the quasinormal-mode spectrum
in the gravitational wave emission [17,18]; producing
numerical images of a thin accretion disk forming around
WHs [19]; the influence of gravitational fluxes, propagat-
ing from one universe to the other one through the WH
neck, and influencing the accelerations of stellar objects
[20]; the presence of strong tidal effects close to the WH
neck, strongly depending on their geometries [21]; and the
absence of chaotic motions near strong gravitational field
regions due to the lack of an horizon [22,23]. Recently, we
have proposed another strategy for the detection of WHs’
existence through the general relativistic Poynting-
Robertson (PR) effect. This method is based on the analysis
of possible metric changes in the vicinity of a BH event
horizon through the fit of observational data using the flux
emitted by the PR critical hypersurface, located in such
strong field regime regions, toward a distant observer [24].
The general relativistic PR effect is an important phe-

nomenon involving the motion of relatively small test
particles (e.g., dust grains, accreting matter elements,
meteors, or comets) around compact objects (like neutron
stars or BHs), which are affected not only by the gravi-
tational pull but also by a radiation field from an emitting
source (e.g., a boundary layer around an neutron star, a hot
corona around a BH, or a type-I x-ray burst on the neutron
star surface). Besides having the radiation pressure oppo-
site in direction to the gravitational attraction, there is also
the radiation drag force, arising during the process of
absorption and reemission of radiation from the test particle
[25–30]. The latter force, known in the literature as the PR
effect [31,32], removes very efficiently energy and angular
momentum from the test particle, being therefore a full-
fledged dissipative effect in GR.
The PR effect in GR is steadily acquiring a prominent

role in high-energy astrophysics, as can be seen from the
increasing numbers of theoretical and applicative works on
such topics. Among the recent works, it is worth citing its
description in two-dimensional (2D) [33,34] and three-
dimensional (3D) spaces [35–38], its treatment under a
Lagrangian point of view [39–42], the proof that the critical
hypersurfaces are stable configurations, and different mod-
els of accretion disk dynamics affected by intense thermo-
nuclear explosions [43–46].
In this work, we want to complement our previous

analysis [24], where we developed an astrophysical strategy
to search for the WH existence. Indeed, we proved that if
metric changes occur in the transition surface layer (located
between the BH event horizon and the photon sphere), then
a WH could exist. In light of this hypothesis, we aim at
distinguishing among the various WH solutions the most
suitable for fitting the observational data. To this end, we
extend the ray-tracing treatment to generic Morris-Thorne-
like metrics, which represent the new geometrical

framework of our current analysis. On the other hand,
since the WH metric parameters strictly depend on the
underlying gravity theory (see, e.g., [47–52]), this approach
could be also considered as a further method to test
extended or alternative gravity models.
The paper is organized as follows: In Sec. II, we

introduce the Morris-Throne-like metric, and we derive
the ray-tracing equations in such generic WH spacetimes;
in Sec. III, the general relativistic PR effect and its critical
hypersurface equations are recalled; in Sec. IV, we develop
the equations to calculate the flux from an emitting source
toward a distant observer; in Sec. V, applications to some
WH solutions in GR and extended or alternative theories of
gravity are considered; in Sec. VI, we discuss our results
and draw conclusions.

II. RAY TRACING IN SPHERICALLY
SYMMETRIC AND STATIC WORMHOLE

SPACETIMES

A. Morris-Thorne metric structure

A static and spherically symmetric WH can be generally
described by a Morrison-Thorne-like metric [53], which in
spherical coordinates ft; r; θ;ψg and geometrical units
G ¼ c ¼ 1 reads as (see Fig. 1)

ds2¼ gαβdxαdxβ

¼−e2ΦðrÞdt2þ dr2

1−bðrÞ=rþ r2ðdθ2þ sin2θdψ2Þ; ð1Þ

where ΦðrÞ and bðrÞ denote the redshift and shape
functions, respectively. Equation (1), representing a family
of metrics depending on the functions ΦðrÞ and bðrÞ, is
valid both in GR and in extended or alternative theories of
gravity. This class of metrics may also depend on other
parameters, which can be closely determined with the help
of specific constraints in different extended theories of
gravity (see Sec. V for further details). In the WH case, we
use the Arnowitt-Deser-Misner mass M, which represents
the total mass of the system contained in the whole
spacetime (see Ref. [12] for more details).

1. Geometrical proprieties

We briefly recall the relevant geometrical proprieties of
the Morris-Thorne-like metrics [53]. The absence of
horizons and singularities requires ΦðrÞ and bðrÞ to be
smooth functions in R and ΦðrÞ to be everywhere finite;
furthermore, the condition 1 − bðrÞ=r ≥ 0 allows one to
define a finite proper radial distance; the flaring outward
condition requires that b0ðrÞ < bðrÞ=r near and at the
throat, defined as the minimum radius such that rmin ¼
b0 and bðrminÞ ¼ b0; the asymptotic flatness entails
bðrÞ=r → 0 and ΦðrÞ → 0 for r → þ∞. Traversability
of WHs is subjected to the fulfillment of the flaring
outward condition [54–57] which, depending on the
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underlying theory of gravity, can be achieved by consid-
ering exotic matter [58–60] or topological defects [61–63].

2. Conserved quantities and geodesic structure

The metric (1) depends on the radial coordinate r only;
therefore, there exist the timelike Killing vector ∂t and (for
closed orbits only) the spacelike Killing vector ∂ψ ; the
associated conserved quantities along all types of trajecto-
ries are, respectively, the energy E and the angular
momentum Ld with respect to any direction d [64].
The spherical symmetry of the background geometry

guarantees that the geodesic motion of particles and
photons lies in one single plane termed the invariant plane
[64]. Therefore, we can investigate the dynamics of a
photon in the invariant plane θ ¼ π=2, i.e., the equatorial
plane in the coordinate system ft; r; θ;ψg (see Fig. 1).

B. Ray-tracing equations

We derive the ray-tracing equations to describe the
effects related to photon geodesics in metric (1), which
are light bending, travel time delay, and solid angle [64].
We consider the WH reference frame fx; y; zg, which is
centered at the origin of the WH location and having the x
and y axes lying in the equatorial plane and the z axis
orthogonal to the equatorial plane; see Fig. 1. To describe
the photon emission, it is useful to employ spherical
coordinates, where the radius r joins the center of the
coordinates with any point in the space, the azimuthal angle
φ measured clockwise from the x axis in the equatorial
plane, and the latitudinal angle θ measured from the x axis.
We consider also a static and not rotating observer located
at infinity, who is inclined by an angle iwith respect to the z
axis, and the z0 axis points in the observer’s direction. The
azimuthal angle ψ is measured from the emission point to
the z0 axis, and it is known in the literature as the light-
bending angle [64–66].

The photon four-velocity is given by kα ¼ dxα=ds,
where s is the affine parameter along the photon trajectory
and s → r as r → ∞ [65]. From the conservation laws (see
Sec. II A 2), we have

kt ¼ −E; kθ ¼ 0; kψ ¼ Ld: ð2Þ

1The photon impact parameter bph ≡ Ld=E is naturally
conserved along the photon trajectory. For determining kr,
we exploit the other conserved quantity, given by the
module of the null geodesics four-velocity, namely,
kαkα ¼ 0. Without loss of generality, we can set E ¼ 1,
because one could consider the photon four-momentum for
unity energy (i.e., k̃α ¼ kα=E). Therefore, we obtain

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttk2t − k2ψgψψ

grr

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

bðrÞ
r

��
e−2ΦðrÞ −

b2ph
r2

�s
: ð3Þ

1. Impact parameter

Equations (2) and (3) permit one to explicitly calculate the
impact parameter bph in terms of the emission angle αE,
which is formed between the emitted photon four-velocity
and the local radial direction (see Fig. 1). Using the
conditions tan αE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkψkψÞ=ðkrkrÞ

p
and sin αE ¼ tan αE=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 αE
p

[64,65], we obtain

FIG. 1. Left panel: ray-tracing geometry. Middle panel: symmetrization process. Right panel: periastron geometry.

1The angular momentum Ld is conserved in the plane x − y
along the direction d orthogonal to the invariant plane, where the
photon trajectory lies. A similar argument is valid also for the
angular momentum Ld;p related to timelike trajectories.
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bph ¼
R sinαE
eΦðRÞ ; ð4Þ

where R is the radius at which the photon is emitted.

2. Light bending

We describe how the photon trajectory is deflected when
it is emitted in the WH spacetime. This is described by the
parameter ψ ; see Fig. 1. We set ψ ¼ 0 at the emission point
R and a generic angle ψ at the observer location at infinity.
The light-bending angle ψ is described by the following
elliptic integral [64,65]:

ψ ¼
Z

ψ

0

dΨ ¼
Z

∞

R

dΨ
dr

dr ¼
Z

∞

R

kψ

kr
dr

¼
Z

∞

R

bph
r2

��
1 −

bðrÞ
r

��
e−2ΦðrÞ −

b2ph
r2

��−1=2

dr: ð5Þ

This equation is valid for 0 ≤ αE ≤ π=2 [65,66]. For every
αE we can determine the corresponding ψ by solving the
integral (5), and, vice versa, for every ψ we can determine
the corresponding αE by inverting Eq. (5) through a
numerical interpolation method [67].

3. Turning points and symmetrization processes

The photon trajectories reach the observer at infinity
only if their impact parameters bph are greater than the
critical impact parameter bc, i.e., bph ≥ bc. However,
photons endowed with an impact parameter bph < bc fall
inside the WH throat and end up in the opposite universe of
their origins. In this work, we do not analyze the possible
destiny of a photon crossing the WH throat, and we
assume that it is not visible to the observer at infinity.
In our numerical simulations, we would like to give
more emphasis to the WH geometrical background.
Nevertheless, if an observer at infinity detected something
coming from inside the WH throat, this would be a clear
and distinctive signature of a WH existence and can be
better worked out through the gathered observational data.
We consider the null geodesic equation

gαβ
dxα

ds
dxβ

ds
¼ 0 ⇒

E2

e2ΦðrÞ −
_r2

1 − bðrÞ
r

−
L2
d

r2
¼ 0: ð6Þ

The effective potential VðrÞ is given by [68]

E2 ≡ VðrÞ ¼ L2
d

r2
e2ΦðrÞ þ

�
e2ΦðrÞ

1 − bðrÞ=r
�
_r2: ð7Þ

The photon innermost stable circular orbit (ISCO), or
also known as photon sphere rps, is determined by
imposing both that _r ¼ 0 (circular orbit) [64,68]:

VðrÞ ¼ L2
d

r2
e2ΦðrÞ; ð8Þ

and that ½dVðrÞ=dr�r¼rps ¼ 0 (stable and innermost):

rpsΦ0ðrpsÞ − 1 ¼ 0; ð9Þ

where Φ0ðrÞ ¼ dΦðrÞ=dr. Therefore, the critical impact
parameter bc is determined by substituting the value of rps
in Eq. (4) and imposing αE ¼ π=2:

bc ¼
rps

eΦðrpsÞ : ð10Þ

To calculate the maximum emission angle αmax for which
the photons do not fall inside the WH throat, we substitute
Eq. (10) in Eq. (4), obtaining thus [66]

αmax ¼ π − arcsin

�
bc

eΦðRÞ

R

�
; ð11Þ

which is valid for R > rps. Instead, for emission radii
R ≤ rps, the maximum emission angle is [24]

αmax ¼ arcsin

�
bc

eΦðRÞ

R

�
: ð12Þ

We note that, in the BH case, the gravitational pull is so
strong under the photon sphere that the emission of light is
restricted to the so-called cone of avoidance, which shrinks
more and more toward the event horizon [24,68]. In the
WH case, it is not known a priori where and how the cone
of avoidance extends through the WH neck up to the WH
throat, because this behavior strongly depends on the
explicit expression of the function ΦðrÞ. However, if
ΦðrÞ is a monotone increasing function, as occurs in the
BH case, we can apply Eq. (12) all the way down to theWH
throat b0, and the cone shrinks more and more, until it
reaches its maximum at b0.
We distinguish between direct photons, where

0 ≤ αE ≤ π=2, and photons endowed with one turning
point, where π=2 ≤ αE ≤ αmax [24,66]. For photons show-
ing a turning point, the bending angle ψE, associated to the
emission angle αE, cannot be straightforwardly calculated
through Eq. (5), because it is valid only for 0 ≤ αE ≤ π=2.
However, by employing a symmetrization process with
respect to the emission angle αp ¼ π=2, we can determine
0 ≤ αS ≤ π=2, given by αS ¼ π − αE. The angle αp is
associated to the periastron p, which is the minimum
distance between the photon trajectory and the WH; see
Fig. 1. This value depends on both the emission radius R
and the emission angle αE and can be calculated by
imposing dr=dψ ¼ 0 [i.e., considering the integrating
function of Eq. (5) equal to zero] [64,66,68]:
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p2 − b2phe
2ΦðpÞ ¼ 0; ð13Þ

with the further condition that p ≥ rps. Therefore, we can
calculate the periastron bending angle ψp ¼ ψpðp; αpÞ.2
Using Eq. (5), we calculate ψS, and, employing another
symmetrization process with respect to the periastron
bending angle ψp, we finally determine the desired bending
angle ψE ¼ 2ψp − ψS, associated to αE.

4. Time delay

A photon following its null geodesic in the metric (1)
from a generic emission point at distance R to the observer
location at infinity will take an infinite travel time. To avoid
such singularity, we consider the relative time delay
between a photon emitted at radius R with a generic impact
parameter bph, TðbphÞ, and another photon emitted always
at distance R (but of course at different azimuthal position
φ) with a radial impact parameter, i.e., bph ¼ 0; see Fig. 1.
Therefore, the nonsingular photon travel time delay reads
as [69,70]

ΔtðbphÞ¼
Z

t̄

t0

dTðbphÞ−dTð0Þ

¼
Z

∞

R

�
dTðbphÞ

dr
−
dTð0Þ
dr

�
dr

¼
Z

∞

R

�
kt

kr

����
bph

−
kt

kr

����
bph¼0

�
dr

¼
Z

∞

R

e−ΦðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−bðrÞ=rp

��
1−

b2ph
r2

e2ΦðrÞ
�
−1=2

−1

�
dr:

ð14Þ

This formula is valid for 0 ≤ αE ≤ π=2. However, if we
have photons endowed with turning points π=2 ≤ αE ≤
αmax and an impact parameter bph ≥ bc, we make use of the
periastron p; see Eq. (13). Indeed, we split the calculation
of the total time delay in the following three parts along the
photon trajectory (see Fig. 1):

(i) time delay between ½π=2; αE�, given by3

ΔtE−pðbphÞ

¼
����
Z

p

R

e−ΦðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞ=rp

�
1 −

b2ph
r2

e2ΦðrÞ
�−1=2

dr

����;
ð15Þ

(ii) then using the symmetrization process we determine
αS ¼ π − αE ∈ ½0; π=2�. Since the integrating func-
tion of Eq. (14) is symmetric with respect to
αp ¼ π=2, we have that Δtp−S ¼ ΔtE−p;

(iii) finally, we consider the last part of the orbit, which
gives the time delay from αS to the observer at
infinity, ΔtS (as that of a photon with zero-turning
points), which can be calculated through Eq. (14).

Summing up these three pieces, we obtain the proper
formula of the travel time delay with turning points

ΔtðbphÞ ¼ ΔtSðbphÞ þ 2ΔtE−pðbphÞ: ð16Þ

5. Solid angle

We consider the emission reference frame fx; y; zg and
the observer reference frame fx0; y0; z0g, where the two
systems are rotated by the observer inclination angle i
around y ¼ y0. We use spherical coordinates in both
systems, and we differentiate them by labeling those
belonging to the observer reference frame by primes. In
this case, it is more convenient to use the spherical
coordinates fr;ψ ;φg in the emission reference frame
fx; y; zg, where r is the radius, ψ is the polar angle
measured from the z axis, and φ is the azimuthal angle
measured clockwise from the positive x axis in the x–y
plane. The same definitions hold also for the spherical
coordinates fr0;ψ 0;φ0g in the observer reference frame
fx0; y0; z0g (see Fig. 1 for a visual representation).
The solid angle dΩ in the observer reference frame reads

as dΩ ¼ sinψ 0dφ0dψ 0. The observer is located at a distance
D far from the emission point R, i.e., R ≪ D < ∞, which
can be considered as at infinity. The solid angle equation
can be also expressed in terms of the impact parameter bph
by its first-order approximation for infinitesimally small ψ 0
(i.e., bph ≈Dψ 0) as [24,66]

dΩ ¼ bphdbphdφ0

D2
: ð17Þ

In the emission reference frame, Eq. (17) becomes

dΩ ¼ bph
D2

∂φ0

∂φ
∂bph
∂r dRdφ; ð18Þ

where we considered the following dependencies: φ ¼
φðφ0Þ and bph ¼ bphðr;ψÞ. The Jacobian of the trans-

formation is always ∂φ0
∂φ

∂bph
∂r independent of the value of

∂bph
∂ψ , since the photon moves in an invariant plane.
Therefore, Eq. (18) is valid for any emission point [66].
Using the coordinates transformation cosψ ¼ sin i cosφ
that relates the angles in the observer and emission

reference frames, the term ∂bph
∂r ¼ − ∂bph

∂ψ
∂ψ
∂r is calculated

through the light-bending Eq. (5), and the solid angle
equation reads as [66]

2It is important to stress that ψp is an angle that depends on the
selected photon trajectory, because the value of p depends on the
impact parameter bph (or, equivalently, on the emission angle αE)
and the emission radius R; see Fig. 1.

3We prefer to use the module notation to calculate this time,
because a priori we do not know whether p is greater or lower
than R, and a time cannot be negative.
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dΩ ¼
cos i

D2e2ΦðRÞ sin2 ψE

sin2 αE
cos αER∞

R
dr
r2 f½1 −

bðrÞ
r �½e−2ΦðrÞ −

b2ph
r2 �g

−3=2 dRdφ: ð19Þ

This formula is valid for 0 ≤ αE ≤ π=2. For photons
presenting turning points π=2 ≤ αE ≤ αmax, we follow
the same symmetrization processes already explained for
the light-bending case; see Sec. II B 2.

6. Timelike ISCO and image at infinity

In order to understand the WH spacetime geometry and
infer useful information about it, we calculate the ISCO
radius rISCO for a test particle. We follow an analog
procedure for deriving the photon sphere radius; see
Eq. (9). We consider the timelike geodesic equation

gαβ
dxα

dτ
dxβ

dτ
¼ −1

⇒
E2
p

e2ΦðrÞ −
_r2

1 − bðrÞ
r

−
L2
d;p

r2
¼ 1; ð20Þ

where Ep and Ld;p are, respectively, the conserved energy
and angular momentum along the test particle trajectory
and τ is the affine parameter along the test particle
trajectory. Considering the effective potential VpðrÞ for
circular orbits _r ¼ 0, we obtain

E2
p ≡ VpðrÞ ¼ e2ΦðrÞ

�
L2
d;p

r2
þ 1

	
: ð21Þ

Imposing ½dVpðrÞ=dr�r¼rISCO ¼ 0, we obtain

L2
d;p½Φ0ðrÞr − 1� þΦ0ðrÞr3 ¼ 0; ð22Þ

which, solved for the lowest value of Ld;p, permits one to
determine the value of the timelike ISCO radius rISCO.
An emitting source around a WH can be ray traced from

the emission location to the observer screen using the
following coordinates (see Ref. [71,72] for details):

x0 ¼ −bph sinφ0 ≡ −bph
sinφ
sinψE

;

y0 ¼ −bph cosφ0 ≡ −bph
cos i cosφ
sinψE

: ð23Þ

III. GENERAL RELATIVISTIC POYNTING-
ROBERTSON EFFECT IN MORRIS-THORNE-

LIKE WORMHOLE SPACETIMES

In a previous work [24], we derived the equations of
motion of a test particle moving in the gravitational field of
a WH and influenced also by a radiation field, including the
general relativistic PR effect, from a spherical and rigidly

rotating emitting source. The metric (1) can be written in
the emission reference frame fx; y; zg (see Sec. II B 5) by
employing spherical coordinates fr; θ;φg. In this coordi-
nate system, we have

ds2¼−e2ΦðrÞdt2þ dr2

1−bðrÞ=rþ r2ðdθ2þ sin2 θdφ2Þ: ð24Þ

The radiation field is modeled as a coherent flux of
photons, traveling along null geodesics on the background
spacetime (24), and endowed with an impact parameter λ,
whose expression is

λ ¼ Ω⋆
�
gφφ
−gtt

�
r¼R⋆

; ð25Þ

where R⋆ and Ω⋆ are, respectively, the radius and angular
velocity of the emitting surface. The lower label in the right
square bracket indicates that the metric components gφφ, gtt
must be evaluated at r ¼ R⋆. It is important to note that λ is
different from that of Eq. (4).
The local static observer (SO) frames fet̂; er̂; eφ̂; eψ̂g are

our family of fiducial observers. In the SO frames, we can
measure clockwise from the eφ̂ axis the emission angle β,
related to the impact parameter λ, which is

cos β ¼ eΦðrÞ

r
λ: ð26Þ

We assume that the interaction between the radiation and
the test particle is described by Thomson scattering, which
is characterized by a constant momentum-transfer cross
section σ, which, in turn, is independent of the direction and
the frequency of the radiation field. The equations of
motion governing the dynamics of a test particle orbiting
around a WH in the equatorial plane and influenced by a
radiation field, which also includes the general relativistic
PR effect, are given by [24]

dν
dτ

¼ −
sin α
γ

aðnÞr̂

þ A½1 − ν cosðα − βÞ�½cosðα − βÞ − ν�
e2ΦðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − e2ΦðrÞλ2
p ; ð27Þ

dα
dτ

¼ −
γ cos α

ν
½aðnÞr̂ þ kðLieÞðnÞr̂ν2�

þ A½1 − ν cosðα − βÞ� sinðβ − αÞ
e2ΦðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − e2ΦðrÞλ2
p

ν cos α
; ð28Þ

Ur̂ ≡ dr
dτ

¼ γν sin αffiffiffiffiffiffi
grr

p ; ð29Þ

Uφ̂ ≡ dφ
dτ

¼ γν cos αffiffiffiffiffiffiffigφφ
p ; ð30Þ
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Ut̂ ≡ dt
dτ

¼ γ

eΦðrÞ ; ð31Þ

where τ is the affine parameter (proper time) along the test
particle trajectory, U is the test particle four-velocity,
γðU; nÞ≡ γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kνðU; nÞk2

p
is the Lorentz factor,

ν ¼ kνðU; nÞk is the magnitude of the test particle spatial
velocity, and α is the azimuthal angle of the vector νðU; nÞ
measured clockwise from the eφ̂ direction in the SO frame.
Furthermore, A is the luminosity parameter, which can be
equivalently written as A=M ¼ L=LEDD ∈ ½0; 1� with L the
emitted luminosity at infinity and LEDD the Eddington
luminosity. The SO kinematical quantities aðnÞ and
kðLieÞðnÞ denote, respectively, the acceleration and the
relative Lie curvature vector, whose expressions are

aðnÞr̂ ¼ Φ0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞ=r

p
; ð32Þ

kðLieÞðnÞr̂ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bðrÞ=rp

r
: ð33Þ

A. Critical hypersurfaces

An important implication of the dynamical system (27)–
(30) is thepossible existence of a critical hypersurface,which
is the region where there is a perfect balance between the
radiation and gravitational forces and the test particle has a
perpetual stable motion. The contingency of the critical
hypersurface strictly depends on the considered metric (see
discussions in Sec. II.C.2 in Ref. [24] for more details). The
equation defining the critical hypersurface is [24]

aðnÞr̂ þ kðLieÞðnÞr̂ cos2 β −
A sin3 β

r2e2ΦðrÞ ¼ 0: ð34Þ

If a critical hypersurface exists, the test particlemustmove on
it with constant velocity ν ¼ cos β. Equation (34) may admit
no, one, or multiple roots, depending on the specific WH
solution. However, even in this general case, the critical
hypersurface depends continuously on the luminosity param-
eter A, because it is written in terms of both the metric
components (which by definition are smooth functions) and
of the radiation force components (which are also smooth
functions defined on the whole spacetime). This is a
fundamental propriety which allows the formation of such
structures in regions close to the WH throat, where strong
gravitational fields occur. Therefore, the existence of PR
critical hypersurface provides essential information both on
the WH geometry and on those extended theories of gravity
which turn out to be more suited to describe their emission
properties in strong gravitational regimes [24].

IV. RADIATION FLUX EMITTED BY A SOURCE
AROUND A SPHERICALLY SYMMETRIC AND

STATIC WORMHOLE

In this geometrical environment (see Sec. II B), we
consider as emission point a test particle driven by
Eqs. (27)–(31) and having coordinates P ¼ ðr;φÞ. If there
exists the PR critical hypersurface, which is a circular orbit
in the equatorial plane, then we have that r ¼ rcrit is
determined by solving Eq. (34), and φ ¼ ωPRt. At t ¼ 0,
the emission point is closest to the observer direction, and

ωPR ¼ cos β
rcrit

ð35Þ

is the PR angular velocity measured by the observer at
infinity. The photon arrival time Tobs is the sum of the
emission time Tem ¼ φ=ωk and the photon propagation
delay ΔtðbphÞ, i.e., Tobs ¼ Tem þ ΔtðbphÞ [see Eq. (14)].
The observed flux at the emission frequency νem is [66]

Fνem ¼
Z
Ω

ϵ0ξ
q

4π
ð1þ zÞ−4dΩ; ð36Þ

where ϵ0 is the vacuum permittivity, ξ ¼ R=M the local
surface emissivity, q ∈ R the emission index, and
ð1þ zÞ−1 ¼ Eobs=Eem the gravitational redshift, i.e., the
ratio between the observed Eobs and emitted Eem energies.

A. Gravitational redshift

Now, we have all the elements to calculate the gravita-
tional redshift ð1þ zÞ−1 associated to the motion of the test
particle. When the PR critical hypersurface exists, the test
particle moves on it with velocity

Uα ¼ 1

j sin βj
�

1

eΦðrcritÞ ; 0; 0;
cos β
rcrit

	
: ð37Þ

We transform this velocity from the emission reference
frame fx; y; zg to the observer reference frame fx0; y0; z0g
(see Sec. II B 5 and Refs. [64,66]):

Ut0 ¼Ut; Ur0 ¼Ur;

Uθ0 ¼ ∂θ0
∂φUφþ∂θ0

∂θ U
θ; Uφ0 ¼ ∂φ0

∂φUφþ∂φ0

∂θ Uθ: ð38Þ

Since Uθ ¼ 0 and the transformations between these two
reference frames are [66]

sinφ ¼ sin θ0 sinφ0; cos θ0 ¼ sin i cosφ; ð39Þ

the test particle velocity in the observer frame reads as

Uα0 ¼ 1

j sin βj
�

1

eΦðrcritÞ ; 0;
cos β
rcrit

sin i sinφ
sinψ

; Uφ0
	
; ð40Þ
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where the explicit expression ofUφ0 is not necessary for the
calculation of the gravitational redshift, as will be clearer
soon. We used also that θ0 ≡ ψ , corresponding to the light-
bending angle; see Sec. II B 2 and Fig. 1.
The photon velocity is (see Sec. II B for details)

kα ¼

0
B@−1;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2ΦðRÞ − λ2

R2

1 − bðRÞ
R

vuut ;−bph; 0

1
CA: ð41Þ

Since the observer is static, its velocity is

Vα ¼ ð1; 0; 0; 0Þ: ð42Þ

Since Eem ¼ ðUαkαÞem and Eobs ¼ ðVαkαÞobs, the gravi-
tational redshift is [64,66]

ð1þ zÞ−1 ≡ Eobs

Eem

¼ j sin βjrcriteΦðrcritÞ

rcrit þ bph cos βeΦðrcritÞ sin i sinφ
sinψ

: ð43Þ

1. Emission from a disk

Let us consider an accretion disk lying in the equatorial
plane θ ¼ π=2 around a WH and extending from Rin to
Rout. We assume that the matter inside the disk moves on
circular orbits with the Keplerian angular velocity ΩK,
which has a proper expression for eachWHmetric. In order
to estimate the gravitational redshift, we first need to derive
the expression of ΩK .
We consider the timelike geodesic equation (20)

for stable circular orbits (i.e., _r ¼ 0 and dVp=dr ¼ 0).
From Eq. (22), we obtain the test particle’s angular
momentum:

L2
d;p ¼ r3Φ0ðrÞ

1 − rΦ0ðrÞ : ð44Þ

Substituting this expression in Eq. (21), we derive the
expression of the test particle’s energy:

E2
p ¼ e2ΦðrÞ

1 − rΦ0ðrÞ : ð45Þ

The two explicit expressions (44) and (45) of the test
particle’s constants of motion permit one to obtain the test
particle’s velocity components in the following way:

Ut̂ ≡ gttUt ¼
1

eΦðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rΦ0ðrÞp ; ð46Þ

Uφ̂ ≡ gψψUψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0ðrÞ
rð1 − rΦ0ðrÞÞ

s
: ð47Þ

Therefore, the Keplerian angular velocity ΩK for the WH
metric (1) is given by

ΩK ≡ Uφ̂

Ut̂
¼ eΦðrÞ

ffiffiffiffiffiffiffiffiffiffiffi
Φ0ðrÞ
r

r
: ð48Þ

A test particle moving on a circular orbit has the following
velocity field [64,66]:

Uα̂ ¼ Ut̂ð1; 0; 0;ΩK sinφ0Þ

¼ Ut̂

�
1; 0; 0;ΩK

sin i sinφ
sinψ

	
; ð49Þ

where we have used the transformation between the
observer frame and the emission frame [66].
The gravitational redshift for the accretion disk is [66]

ð1þ zÞ−1 ¼ eΦðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rΦ0ðrÞp

1þ bphΩK
sin i sinφ
sinψ

: ð50Þ

V. EXAMPLESOFRAY-TRACINGAPPLICATIONS
TO SOME WH SOLUTIONS

In this section, we apply the general ray-tracing method
of Sec. II to different WH solutions belonging to distinct
extended theories of gravity. We produce light curves and
spectra of a PR critical hypersurface. In order to discuss and
compare the results among the different metrics, we pose
such a ring at the same distance from the origin of the
coordinate system in all WH spacetimes. The PR critical
hypersurfaces are defined in terms of two parameters
ðA; λÞ; see Eq. (34). These cannot be chosen arbitrarily;
on the contrary, they should range in some astrophysically
realistic intervals (see Table I and discussions in Ref. [24]).
In addition, we produce also the image of an accretion disk
around a WH, as seen by an observer at infinity. This step is
important to better inquire about the WH spacetime
geometries.
The WH literature encompasses a plethora of solutions;

however, we focus our attention only on those fulfilling
the following requirements: geometrical proprieties of a
standard WH solution as described in Sec. II A 1 [in
particular, the asymptotic flatness, i.e., bðrÞ=r → 0 and
ΦðrÞ → 0 as r → ∞4] and a non-constant-redshift function

4We have highlighted this propriety, since it is not trivial at all.
Indeed, in the literature there are several WH solutions, which are
not explicitly asymptotically flat. However, this property is
recovered when the solution is smoothly matched with the
Schwarzschild metric at a certain radius.
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[i.e., Φ0ðrÞ ≠ 0 for all r ∈ ½b0;∞�]. The chosen WH
solutions belong to the following theories: classical GR
(see Sec. VA), metric (see Sec. V B), metric-affine (see
Sec. V C), and teleparallel (see Sec. V D). We underline
that this section simply represents an application of the
method outlined in Sec. II and it has the only aim of
showing the potentialities and limits of the PR effect in
distinguishing the WH features among different theories.
Each WH solution generally depends on some free

parameters, which naturally stem out from the underlying
theory. In order to fix them (being an essential step for the
development of the forthcoming numerical simulations),
we impose some external constraints. First of all, we
require that rISCO > rps > b0, where rISCO and rps are
calculated by employing Eqs. (9) and (22), respectively.
Then, since we are interested in the study of BHmimickers,
we impose that rISCO and rps coincide with those of the
Schwarzschild BH metric (being 3M and 6M, respectively;
see Table I). We also recall that the Schwarzschild BH
solution is described by the following redshift and shape
functions [64]:

ΦðrÞ ¼ 1

2
log

�
1 −

2M
r

	
; bðrÞ ¼ 2M: ð51Þ

A. The case of general relativity

Within the GR framework, we examine aWH sourced by
Casimir energy density and pressure and whose metric
satisfies the semiclassical Einstein field equations (see
Ref. [60] for details). The redshift and shape functions
are given by, respectively [60],

ΦðrÞ ¼ 1

2
ðω − 1Þ log

�
rω

rωþ b0

	
;

bðrÞ ¼
�
1 −

1

ω

	
b0 þ

b20
ωr

; ð52Þ

where the positive-definite parameter ω and the WH throat
radius b0 are related by the relation

ω ¼ 90

π3

�
b0
lP

	
2

; ð53Þ

lP being the Planck length. The fundamental radii rps and
rISCO are given by, respectively,

rps ¼
b0
6
ðω − 3Þ; rISCO ¼ b0

3
ðω − 3Þ: ð54Þ

Therefore, we can obtain positive-definite radii provided
that ω > 3, whereas ω ¼ 3, which is the condition leading
to the Casimir stress-energy tensor, gives vanishing radii. In
addition, the requirement rISCO > rps > b0 yields ω > 9. In
order to simplify our calculations, we have considered the
peculiar case ω ¼ 4, where rps and rISCO are naturally in
order but located inside the throat. This implies that in such
spacetime both timelike and null circular orbits can be
stable everywhere outside the WH throat. Moreover,
Eq. (53) permits one to calculate b0, which expressed in
gravitational radii reads as

b0 ¼ 1.3 × 10−38
�
M⊙

M

	
M: ð55Þ

The periastron p can be obtained by looking at the real root
of the cubic algebraic equation

64p3 þ 48p2 þ 4ð3 − 16b2phÞpþ 1 ¼ 0; ð56Þ

jointly with the condition p ≥ rps. The real solution is

p ¼ 1

12

�
−3b0 −

832=3b2=3ph

ð ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27b20 − 64b2ph

q
− 9b0Þ1=3

þ2
ffiffiffi
3

p
3b2=3ph ð

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27b20 − 64b2ph

q
− 9b0Þ1=3

�
: ð57Þ

The condition for which the terms underneath the square
root sign are non-negative leads to the inequality

bph ≤
ffiffiffiffiffi
27

p
b0=8 ≈ 0.65b0. Since the critical impact

TABLE I. Summary of important information related to the different WH solutions presented in this paper. The photon sphere radius
rps and ISCO radius rISCO have been calculated through Eqs. (9) and (22), respectively. The cells in bold refer to the Schwarzschild BH
solution, while the others to the WH solutions.

Theory WH equation Critical hypersurface WH throat Photon sphere ISCO Reference

BH equation BH horizon

Schwarzschild (51) A ∈ ð0; 0.6�, λ ∈ ½0; 6� 2M 3M 6M [64]
GR (52) A ∈ ð0; 0.3�, λ ∈ ½0; 0.8� b0

a b0
6

b0
3

[60]

Metric (63) A ∈ ð0; 0.6�, λ ∈ ½0; 6� M 3M 6M [73]
Affine-metric (65) A ∈ ð0; 0.56�, λ ∈ ½0; 2� M

ffiffiffi
33

p
M Not exist [74]

Teleparallel (72) A ∈ ð0; 0.6�, λ ∈ ½0; 6� M 3M 6M [75]
aFor the WH in GR theory, it is possible to determine the WH throat within the theory itself as b0 ¼ 1.3 × 10−38ðM⊙

M ÞM; see Eq. (55).
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parameter is given by bc ¼ 0.66b0 (i.e., bph ≥ bc), we
obtain no real solution for the periastron p, and this, in turn,
implies that no turning points exist in such WH spacetime.
Since for emissions occurring at distances of the order of

M the throat radius b0 turns out to be extremely small, it is
reasonable to consider the approximation b0 → 0. In this
case, we can tremendously simplify the integrals under-
lying the gravitational effects, being even able to determine
their analytical expressions, which are as follows:

ψ ¼ arctan

�
bphffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − b2ph
q

	
; ð58Þ

ΔtðbphÞ ¼ R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2ph

q
; ð59Þ

ΔtE−pðbphÞ ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2ph

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − b2ph

q
j; ð60Þ

dΩ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2ph

q : ð61Þ

In this case, the critical impact parameter and the periastron
are given by bc ¼ 0 and p ¼ bph, respectively. Finally, by
performing accurate numerical simulations, we have found
that the PR critical hypersurfaces are allowed in the
following parameters range: A ∈ ð0; 0.3�, λ ∈ ½0; 0.8�. A
concise summary of the obtained results is reported in
Table I.

B. Metric theories

In the context of metric theories of gravity, let us
consider fðRÞ gravity which is a generalization or exten-
sion of Einstein’s GR, defined by a generic function f of
the Ricci scalar R [76]. Awide range of phenomena can be
addressed by this theory by adopting different forms of f
[13,77]. In particular, we can take into account models like

fðRÞ ¼ R − μRc

�
R
Rc

	
l
; ð62Þ

where μ, Rc, and l are constants such that μ > 0, Rc > 0,
and 0 < l < 1 (see Ref. [73] and references therein for
more details). These kind of models are particularly
relevant at infrared scales, because they potentially address
problems like clustering of structures and accelerated
expansion of the Hubble flow [77,78]. Specifically, instead
of searching for a new form of exotic matter as fundamental
constituents for dark energy and dark matter, the approach
is devoted to solve the dark side problem through geometry.
In other words, further degrees of freedom related to the
gravitational field are considered instead of choosing
a priori the Hilbert-Einstein action.

Besides these fundamental problems, fðRÞ gravity has
several spherically symmetric solutions which can be
interesting for both BH and WH physics. In particular, a
WH solution can be [73]

ΦðrÞ ¼ −
α

r
; bðrÞ ¼ r

eðr−b0Þ
; ð63Þ

where α > 0. We find that the fundamental radii rps and
rISCO are given by, respectively,

rps ¼ α; rISCO ¼ 2α: ð64Þ

In this case, the model sets no constraints on b0 and, hence,
we can easily choose b0 ¼ M and α ¼ 3M, which permits
us to recover the two fundamental Schwarzschild radii. We
find that bc ¼ 8.15M and p ¼ −3M=Wð−3M=bphÞ, where
WðxÞ is the Lambert W function (also known as
ProductLog in computer algebra framework), which is
the inverse function of xex, i.e., WðxexÞ ¼ x (see
Ref. [79] for further details and its numerical implementa-
tion in numerical codes). Imposing the condition p ≥ 3M,
which implies that the photon can reach the observer at
infinity, we derive that bph ≥ 3e and the function WðxÞ
must be evaluated in the branch W0ðxÞ (see Ref. [79] for
more details). After having performed some numerical
simulations, we have found that the PR critical hyper-
surfaces exist for A ∈ ð0; 0.6�; λ ∈ ½0; 6�. In Table I, a
summary of the obtained results is displayed.

C. Metric-affine theories

Assuming the metricity in a theory of gravity means
accepting the validity of the equivalence principle and then
the coincidence of the causal and geodesic structures of the
spacetime [80]. On the other hand, more general theories
can be formulated by relaxing this strong hypothesis. In this
perspective, one can consider the so-called metric-affine
theories of gravity (i.e., the so-called Palatini formulation
[81]), where metric and affine connections are not related
through the Levi-Civita connection.
Within metric-affine theories, particularly relevant is the

hybrid metric-Palatini gravity [82,83], where a fðRÞ term is
constructed à la Palatini and it is added to the usual (metric)
Einstein-Hilbert Lagrangian, linear in the Ricci scalar R.
Also in these models, it is possible to find out WH
solutions, as shown in Ref. [74]. In this case, we have
the following functions:

ΦðrÞ ¼ Φ0

�
b0
r

	
γ

; bðrÞ ¼ b0

�
b0
r

	
β

; ð65Þ

where γ > 0, β > −1, and Φ0 < 0. In this general frame-
work, we obtain the photon sphere radius

rps ¼ b0ð−Φ0γÞ1=γ; ð66Þ
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whereas the ISCO radius can be obtained by solving the
following algebraic equation:

L2
d;pr

γ þ ðγbγ0Φ0Þr2 þ L2
d;pγb

γ
0Φ0 ¼ 0 ð67Þ

and then minimizing the real solution in terms of Ld;p; see
Sec. II B 6. The degree of Eq. (67) is determined once the
value of γ is known. To differentiate this metric from the
previous examples, we choose γ ¼ 3, obtaining thus for
the photon sphere radius

rps ¼ b0ð−3Φ0Þ1=3; ð68Þ

while for rISCO we should solve the following equation in
terms of the test particle angular momentum Ld;p:

r3 þ 3b30Φ0 þ
3r2b30Φ0

L2
d;p

¼ 0: ð69Þ

For simplicity, we chose β ¼ 1, b0 ¼ M, and Φ0 ¼ −1.
The explicit expression(s) of the real solution(s) of a cubic
algebraic equation can be obtained by exploiting the
Cardano formula [84]. In our case, Eq. (69) admits one
real solution which can written in terms of the delta

function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3L6

d;p þ 4M6
q

. Imposing that the quantity under

the square root be non-negative, we obtain

L6
d;p ¼ −

4M6

3
: ð70Þ

This entails that Ld;p should assume imaginary values,
representing a nonphysical possibility. Therefore, we con-
clude that there are no stable circular orbits in such
WH spacetime. The critical impact parameter and the
periastron are, respectively, bc ¼ 2.01M andp ¼ −

ffiffiffi
3

p
3M=ffiffiffi

3
p

W½−3ðM=bphÞ3�, which implies bph ≥
ffiffiffi
3

p
3e in order to

have meaningful results (see discussions of Sec. V B). After
having performed some numerical simulations, we have
found that the PR critical hypersurfaces exist for
A ∈ ð0; 0.56�, λ ∈ ½0; 2�. In Table I, we report a short
summary of the obtained results.
We note that the PR effect configures as one of the viable

mechanisms allowing for the occurrence of timelike stable
circular orbits in such WH spacetime.

D. Teleparallel theories

As a final example, let us consider teleparallel equivalent
gravity and its possible generalizations [85]. Here the
Lagrangian of the gravitational field is a function of the
torsion scalar T and, instead of using the Levi-Civita
connection, the Weitzenböck connection is adopted. It is
important to stress that the teleparallel formulation of
gravity is equivalent to GR, because the field equations
written in terms of T can be reconciled to those written in
terms of R. Nevertheless, it is important to note that two

FIG. 2. Shapes of the WH solutions on which have been applied the related redshift functions. They are all plotted in M units. The
inset figure in GR theory represents the WH shape plotted in b0 unity with the same legend bar of the main figure.
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main differences exist between fðTÞ and fðRÞ gravity
theories: (i) In the metric formulation of fðRÞ, the field
equations are of fourth order, while in fðTÞ, they remain of
second order as also occurs in GR; (ii) in teleparallel
gravity, the dynamical variables are the tetrad fields, while
in metric formulation, the dynamics is related to tensor
metric gμν.
In particular, we can consider a (modified) teleparallel

model as fðT; TGÞ gravity, where T is the torsion scalar and
TG is the teleparallel equivalent of the Gauss-Bonnet term
(see Refs. [51,86,87] for more details).
Also in this case, it is possible to build up WH solutions.

Considering the model

fðT; TGÞ ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1TG þ T2

q
− T; ð71Þ

where a0 and a1 are dimensionless coupling constants [88],
a WH solution is [75]

ΦðrÞ ¼ −
ξ

r
; bðrÞ ¼ bζþ1

0

rζ
; ð72Þ

where ξ > 0 and ζ > −1. The fundamental radii assume the
same form as those of the metric theory [cf. Eqs. (63) and
(64)], i.e.,

rps ¼ ξ; rISCO ¼ 2ξ; ð73Þ

and hence we choose b0 ¼ M and ξ ¼ 3M, and to ease the
calculations ζ ¼ 2. The critical impact parameter is
bc ¼ 8.15M, whereas the periastron is p ¼ −3M=
Wð−3M=bphÞ, with bph ≥ 3e and WðxÞ evaluated in the
branch W0ðxÞ (see Sec. V B). After some numerical simu-
lations, we have obtained that the PR critical hypersurfaces
exist for A ∈ ð0; 0.6�; λ ∈ ½0; 6�. In Table I, we report a brief
summary of the obtained results.

E. Numerical simulations and discussions

In order to investigate the geometry of the different WH
solutions, we plot in Fig. 2 their shapes on which we
highlight also the behavior of the redshift function (see
Ref. [53] for the spatial geometrical visualization of a WH
embedded in the 3D Euclidean space). The WH solu-
tion obtained in GR theory using the Casimir effect as a
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FIG. 3. The PR critical hypersurface, extending from R ¼ 1.2M to R ¼ 1.3M (except in the GR theory that extends from R ¼ 1.2b0 to
R ¼ 1.3b0), for different WH solutions belonging to the four distinct extended theories of gravity are plotted, considering an observer
inclined by an angle i ¼ 80°. First row: The PR critical hypersurface (yellow surface), the WH throat (dark gray surface), and the photon
sphere (dashed red line) and ISCO (violet dashed line) radii are plotted. Second row: The light curve of the PR critical hypersurface is
plotted. Third row: The spectrum of the PR critical hypersurface is plotted.
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stress-energy tensor gives rise to a micro-WH of few-
Planckian size (i.e., b0 ≈ 0.37lP). Therefore, it is very
challenging to detect it with the actual technologies,
because the metric outside the WH throat at distances of
the order of M is generally flat. However, they are very
intriguing, because they may hide critical information both
on the nature of the spacetime geometry and on gravity at
microscopic levels. The other WH solutions clearly show
that ΦðrÞ and bðrÞ are monotone increasing functions, and
the geometry of the WH neck changes in each WH
solution. This plot permits one to have a fast overview
of the WH solutions to quickly learn their proprieties for
further theoretical and observational speculations.
In Fig. 3, we consider the PR critical hypersurface

extending from Ri ¼ 1.2M to Rf ¼ 1.3M, except in GR
theory where it spans from Ri ¼ 1.2b0 to Rf ¼ 1.3b0. In all
cases (except in GR theory), the PR critical hypersurface is
located under the photon sphere, where possible metric
changes could occur [24]. We consider that the matter on
the PR critical hypersurface moves with constant angular
velocity. For this reason, we fix λ0 ¼ 0.5 at Ri ¼ 1.2M (at
Ri ¼ 1.2b0 in GR theory), and then we let λðrÞ vary with
r ∈ ½Ri; Rf� according to this law:

λðrÞ ¼ eΦðRiÞ

eΦðrÞ

�
r
Ri

	
2

λ0: ð74Þ

In this way, we can calculate the intervals over which the
PR photon impact parameter λ and the luminosity param-
eter A=M range. We obtain the following results.
(1) GR theory: λ ∈ ½0.50; 0.54�, A=b0 ∈ ½0.10; 0.12�;
(2) Metric theory: λ ∈ ½0.50; 0.52�, A=M ∈ ½0.01; 0.02�;
(3) Metric-affine theory: λ∈½0.50;0.54�, A=M ∈ ½0.37;

0.46�;
(4) Teleparallel theory: λ ∈ ½0.50; 0.52�, A=M ∈ ½0.01;

0.02�.
All WH solutions admit physically reasonable luminosity
parameter ranges, except maybe for the WH solution in
metric-affine theory which is relatively high.
The light curves of the PR critical hypersurfaces are

plotted for just one period, the time that the test particle
takes to complete one loop from the starting position. In
these plots, it is possible to examine the dynamical
evolution of the emitted fluxes. We note that all plots
show almost the same trend, similar to a peaked Gaussian at
half period, corresponding to the material on the approach-
ing side toward the observer which is greatly enhanced by
the gravitational field. In all cases (except in GR theory),
the PR critical hypersurface is located under the photon
sphere radius; therefore, only the part of the PR critical
hypersurface which is located inside the cone of avoidance
reaches the observer at infinity. The WH solution in the
metric-affine theory shows some visible differences at the
begin and end of its periodic motion, while the WH

solutions in metric and teleparallel cases exhibit only very
tiny differences, which are almost indistinguishable. The
explanation of such behaviors relies on the evidence that
the redshift functions ΦðrÞ of these two theories are equal
and dominate over their shape functions, albeit they have
different functional forms. Instead, in the metric-affine
case, it is worth noting that the shape function is always
dominated in the blueshifted region, but it contributes at the
begin and end of the period by producing small enhance-
ments in the flux.
Another fundamental enquiry relies on the spectral

analysis, which investigates how the flux changes in terms
of the energy. We note that the spectral profiles of the WH
solutions in metric and teleparallel theories are still very

FIG. 4. Image of an accretion disk seen by a static and no-
rotating observer at infinity inclined by an angle i ¼ 80°. The
disk extends from Rin ¼ 6M to Rout ¼ 100M for WH solutions in
the metric and teleparallel theories; from Rin ¼ 6b0 to Rout ¼
100b0 for the WH solution in the GR theory; and from Rin ¼ 6M
to Rout ¼ 20M for the WH solution in the metric-affine theory,
where the disk is composed by PR critical hypersurfaces in which
λ ¼ 0.3 at all radii. The lateral legend bar indicates the level of
gravitational redshift in each point of the disk, being different for
each WH solution.
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similar and are also defined in the same energy interval, i.e.,
Eobs=Eem ∈ ½0.010; 0.104�. The explanation of such an
analogy resumes the same argument exposed in the light
curve case. In the other cases, alternately, the profiles are
well distinguishable, and, therefore, it is very easy to
recognize them. From such an example, we learn that
for someWH solutions it is difficult to reconstructΦðrÞ and
bðrÞ functions looking only at their PR critical hyper-
surfaces. Other alternative ways to better disentangle two
(or more) similar WH solutions belonging to different or
the same extended theories of gravity could be (i) looking
for other emitting surfaces or (ii) searching for other
strategies which can be combined with that developed
here to cross-check the results and extract new information.
Finally, in Fig. 4, we consider an accretion disk forming

around a WH, where we numerically simulate its appear-
ance on the screen of a static and no-rotating observer at
infinity. For the WH solution in GR theory, we consider a
small accretion disk extending from Rin ¼ 6b0 to
Rout ¼ 100b0; otherwise, if it is too far from the WH
throat, the results become trivial, because the disk would lie
in a quasiflat spacetime. For theWH solutions in metric and
teleparallel theories, a real disk extending from Rin ¼ 6M
to Rout ¼ 100M is considered. Instead, for the WH solution
in metric-affine theory, it is not possible to have an
accretion disk supported uniquely by the background
gravitational field, because stable circular orbits do not
exist (see Sec. V C). However, we consider a disk made by
PR critical hypersurfaces, extending from Rin ¼ 6M to
Rout ¼ 20M and endowed with PR photon impact param-
eter λ ¼ 0.3 in all points of the disk. This case is not
fictitious at all, because it realistically reproduces the
physics occurring in the inner regions of an astrophysical
disk, which are radiation-pressure dominated (see
Refs. [45,89] for further details). With our parameter
choices, we have that the luminosity parameter ranges in

A=M ∈ ½0.003; 0.0067�. This result gives rise to a counter-
intuitive issue, because we expect that the farther we move
from an emitting source (located close to the WH throat),
the stronger the luminosity should be. This controversy can
be better understood if we think that the geometrical
proprieties of the background spacetime are different from
those of classical GR, where the PR effect is normally
framed. In the other cases, we consider that the matter
moves inside the disk with Keplerian angular velocity (see
Table II for a summary of the equations employed for
obtaining the WH image). In all cases, we plot next to each
image a legend bar showing the gravitational redshift in
each point of the accretion disk. This permits one to
understand not only the WH geometrical structure, but
also how the matter interacts and behaves with the gravity
in eachWHspacetime.We immediately note that, also in this
case, theWH solutions in metric and teleparallel theories are
still similar, being hard to spot the differences. Therefore,
although the ray-tracing and imaging procedures are very
powerful and successful diagnostic tools in several cases,
sometimes they should be complemented by alternative
strategies in order to achieve more solid and robust results.

VI. CONCLUSIONS

This paper configures as a followup analysis to our
previous work [24]. Indeed, in our previous publication, we
employed the flux emitted by the PR critical hypersurfaces,
modeled in the BH Schwarzschild metric, through the ray-
tracing equations in GR as a probe to detect possible metric
changes occurring in the transition surface layer, located
between the BH event horizon and the photon sphere. Since
this scenario entails the possible existence of a WH, we are
naturally led to look for a procedure to distinguish among
the different WH solutions which are the most adaptable to
fit and interpret the observational data.

TABLE II. Summary of the accretion disk information around the WH solutions. Critical impact parameter,
Keplerian velocity, periastron, and gravitational redshift are calculated, respectively, through Eqs. (10), (48), (13),
and (50).

Theory bc p ΩK ð1þ zÞ−1
GR 0.66b0 Not exist 4

ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0

R2ð3Rþb0Þ
q

ð R
4Rþb0

Þ3=2 8ð R
4Rþb0

Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 3b0

2ð3Rþb0Þ

q
1þbphΩK

sin i sinφ
sinψ

Metric 8.15M − 3M
Wð−3M=bphÞ

a ffiffiffi
3

p
e−3M=r

ffiffiffiffi
M
r3

q
e−3M=r

ffiffiffiffiffiffiffiffiffiffiffiffi
1−3M=r

p
1þbphΩK

sin i sinφ
sinψ

Affine-metric 2.01M −
ffiffi
33

p
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W½−3ð M
bph

Þ3�3
p ffiffiffi

3
p

e−
M3

r3

ffiffiffiffiffi
M5

r5

q
b

e
−M

3

r3

ffiffiffiffiffiffiffiffiffi
1−3M3

r3

q
1þbphΩK

sin i sinφ
sinψ

Teleparallel 8.15M − 3M
Wð−3M=bphÞ

ffiffiffi
3

p
e−3M=r

ffiffiffiffi
M
r3

q
e−3M=r

ffiffiffiffiffiffiffiffiffiffiffiffi
1−3M=r

p
1þbphΩK

sin i sinφ
sinψ

aWe remind that W is the Lambert (or ProductLog) function [79].
bIt is important to note that in suchWH spacetime there do not exist stable circular orbits; see Sec. V C. Therefore,

the Keplerian angular velocity and the gravitational redshift (for a disk) are not globally defined. However, we are
able to derive their analytical expressions, as those reported in the table, but they can be interpreted only as
expressions valid locally.
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To solve this issue, we have proposed a strategy for
testing static and spherically symmetric WH solutions
described by the general Morris-Thorne-like metric (1)
against the observational data. This method is based on the
following three fundamental steps:
(1) development of general ray-tracing equations in

metric (1), which are light bending (5), travel time
delay (14), and solid angle (19)—see Sec. II B;

(2) employing the general relativistic PR effect model
framed in the general metric (1) [24] to determine the
existence of critical hypersurfaces (34) in strong
field regime regions—see Sec. III;

(3) calculation of the flux (36) emitted by the PR critical
hypersurface (or also by an accretion disk in the
equatorial plane around a WH and located only in
one universe) toward a distant observer. This model
is so general and flexible that it is capable to
perfectly model all different spherically symmetric
and static WH solutions, without using any approxi-
mation. This permits one to fit all observational data
presenting metric changes and to consequently
determine the profile of the unknown functions
ΦðrÞ, bðrÞ relative to the region where the emitting
surface is placed. The observational data can thus
impose tight constraints not only on the WH
solutions, but also on the theories of gravity.

We underline that this work and the previous publication
[24] are conceptually distinct. Moreover, this paper con-
figures as a logical and direct consequence of the previous
article. The fundamental differences between the two
papers can be summarized as follows:
(1) practical intents, because in the first paper we

looked for observational WH existence, while in
this manuscript we have constrained the WH sol-
utions within general gravity frameworks through
the fit of the data;

(2) geometrical approach, because in the first work we
employed only the BH Schwarzschild metric, while
in this manuscript we have dealt with generic static
and spherically symmetric WH metrics;

(3) philosophy and methodology of investigation, be-
cause in the former publication we have considered
only a single specific metric and we based our
conclusions on the dichotomic answer “yes” or “no”
to the question of the WH existence; on the other
hand, in this paper, we have handled a two-param-
eter class of general metrics and we have ontologi-
cally dealt with several WH solutions, which can be
reduced and constrained only through the data,
producing as a final result a “procedure” rather than
a “specific answer.”

The fundamental element of this work is represented
by metric (1), which has a general character and valid both
in GR and in extended or alternative theories of gravity.

The ray-tracing technique combined with the imaging
procedure permits one to infer fundamental information
on the WH solutions through the fit of the observational
data. In some cases, we are not able to identify just one single
WH solution, but we can reconstruct a class of possible WH
solutions. To properly determine the right WH solution, it is
necessary to exploit alternative procedures for extracting the
missing information; see Sec. V E.
This procedure allows one also to provide new tests of

gravity in strong field regimes, understanding thus whether
GR or extended or alternative theories of gravity are
needed. Another advantage of this work is represented
by the general set of ray-tracing equations, which can be
employed to calculate and model the flux from any x-ray
source, regardless of its geometry. The same argument
holds also for any configuration of the observer’s geomet-
rical screen structure and dynamical setup.
To show the potentiality of our approach, we have

applied the general ray-tracing equations (see Sec. II) to
four different WH solutions belonging to distinct extended
theories of gravity, which are GR (see Sec. VA), metric (see
Sec. V B), metric affine (see Sec. V C), and teleparallel (see
Sec. V D). For each WH solution, we have analyzed the
geometry close to the WH neck (see Fig. 2), the light curve
and spectrum of the PR critical hypersurface around a WH
toward a distant observer (see Fig. 3), and the image of an
accretion disk seen by an observer at infinity (see Fig. 4).
We have conducted an accurate study on these WH
solutions, showing how to extract important information
on the WH geometrical proprieties (see Tables I and II for
more details). In particular, the calculus of the photon
sphere and ISCO radii are important a priori checks for
having a quick overview of a WH spacetime’s geodesic
structure.
A limiting case of this model is represented by the fact

that all the ray-tracing equations are elliptic integrals,
which do not admit a solution in terms of elementary
functions [66]. However, the calculation of such integrals
strongly depends also on the functional form of ΦðrÞ and
bðrÞ, but, generally, they give rise to complicate functions,
which are very time consuming. However, following the
same ideas adopted in the Schwarzschild case, it would be
helpful to develop a set of high-accuracy approximate
equations (see Refs. [66,90–92] for more details), which
drastically reduce the computational times. Our ray-tracing
approach could be further complemented by the model-
independent framework developed by Rezzolla and col-
laborators [93], where through a finite set of coefficients it
would be possible to measure possible metric deviations
from GR for all static and spherically symmetric geometries
mimicking that of a BH.
As future perspectives, we aim at extending this treat-

ment also to axially symmetric spacetimes in the equatorial
plane and then in the 3D space.
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