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In this work, we generalize the spontaneous scalarization phenomena in Einstein-Maxwell-scalar models
to a higher spin field. The result is an Einstein-Maxwell-vector model wherein a vector field is
nonminimally coupled to the Maxwell invariant by an exponential coupling function. We show that
the latter guarantees the circumvention of an associated no-hair theorem when the vector field has the form
of an electric field. Different than its scalar counterpart, the new spontaneously vectorized Reissner-
Nordström (RN) black holes are, always, undercharged while being entropically preferable. The solution
profile and domain of existence are presented and analyzed.
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I. INTRODUCTION

The recent developments in black hole (BH) detection
through gravitational wave emission and imaging led to
one of the most important observational advances in BH
history. Never before was it possible to study highly
compact objects with such precision and certainty,
allowing the possibility to discern between alternative
theories of gravity through BH observations. One of the
key differences between these theories is the phenomena
of spontaneous scalarization/vectorization, which can be
contained in the more generic spontaneous tensorization
phenomena.
Spontaneous scalarization has been thoroughly dis-

cussed in the literature, with the most recent development
in extended scalar-tensor-Gauss-Bonnet (eSTGB) gravity
[1–3]. In the latter, the model contains a scalar field
nonminimally coupled to the Gauss-Bonnet gravity cor-
rection term. While this scalarization phenomenon is
induced by gravity, the original spontaneous scalarization
mechanism [4] was induced through the presence of matter.
Alternatively, one can nonminimally couple the scalar

field to the Maxwell invariant introducing the Einstein-
Maxwell-Scalar (EMS) model [5]. The mechanism was
also considered for Kerr BH where scalarization can be
spin-induced [6–9]. In all cases, the phenomena occur due
to a tachyonic instability that emerges for certain BH
configurations. The tachyonic instability induces an expo-
nential growth of the scalar field, and the resulting BH
solution is now immersed in a scalar cloud.
While the eSTGB and Kerr model seems to be more

astrophysically relevant in comparison to the EMS models,
the latter is much simpler to deal with, while still presenting
the same phenomenological behaviors. The properties of the

various types of scalarized EMS BHs have been extensively
studied [10–20].
When considering further generalizations of this mecha-

nism, it is natural to wonder if the spontaneously growing
matter can be a vector or even a tensor. In this paper, we
consider the phenomenon of spontaneous vectorization (SV).
Vector fields and their role in extended theories of

gravity have been discussed before [21,22], and examples
of BHs with vector hair have also been found [23,24]. The
phenomenon of vectorization was later considered in the
extended vector-tensor-Gauss-Bonnet (eVTGB) theory
[25–27] (the vector analogue to the eSTGB theory); in
theories non-minimally coupled to matter [28,29]; and
other theories of gravity [25,30]. The main idea of this
paper is to consider the EMS mechanism used in [5] and
extend it to an Einstein-Maxwell-vector (EMV) model. For
that let us consider the action:

S ¼ 1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
4
−
fðjBj2Þ

4
FμνFμν −

1

4
GμνG�

μν

�
; ð1Þ

where R is the Ricci tensor, the Maxwell field strength
Fμν ¼ ∂μAν − ∂νAμ, and Gμν ¼ ∂μBν − ∂νBμ which rep-
resents the field strength of a (possibly complex) vector
field Bμ. While Aμ and Bμ are both vector fields, for
nomenclature simplicity, from now on, we will refer to Aμ

as Maxwell field and Bμ as vector field.
The vector field is nonminimally coupled to the Maxwell

term through the coupling function fðjBj2Þ, where
jBj2 ¼ BμB�

μ, and

fð0Þ ¼ 1; ð2Þ
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so that we may recover Einstein-Maxwell when we have a
trivial field Bμ. Note that this is a straightforward gener-
alization of the massless scalar case, where a coupling fðϕÞ
is considered.
This paper is organized as follows: Sec. II is dedicated to

an analytical study of the model (1). A no-vector-hair
theorem for a spherically symmetric ansatz is presented and
followed by a small discussion of the flat spacetime case in
Sec. III. The existence line is presented in Sec. IVas well as
the full non-linear model and quantities of interest. The
numerical solutions are presented and studied in Sec. Vand
we conclude in Sec. VI.

II. THE MODEL

The stress-energy tensor for the model described by the
action (1) is

Tμν ¼ fðjBj2Þ
�
Fα
μFνα −

1

4
gμνFαβFαβ

�

þ 1

2

�
Gα

μG�
να þG�α

μ Gνα −
1

2
gμνGμνG�

μν

�

þ 1

4

df
djBj2 F

αβFαβðBμB�
ν þ B�

μBνÞ: ð3Þ

Note that, compared to the scalar case, the need to consider
the scalar gμνBμB�

ν in the coupling fðjBj2Þ introduces the
last term in (3). The fact that it can be negative allows the
possibility of a violation of the weak energy condition.
The massless vector field Bμ equations, which is de-

scribed by a (massless) Proca equation, and the Einstein
equations come as:

∇μGμν ¼ 1

2

df
djB2jF

2Bν; ð4Þ

Rμν −
1

2
gμνR ¼ 2Tμν: ð5Þ

The vector field Bμ, while being massless, due to the
interaction with the electromagnetic field, gains an effective
mass ðμeffÞ

μ2eff ¼
1

2

df
djBj2 F

2; ð6Þ

which, for certain forms of the coupling function and the
electromagnetic field, can be negative. This translates into a
tachyonic instability, i.e., for an initial trivial configuration
of Bμ, corresponding to a Reissner-Nordström (RN) space-
time, a small vector field perturbation, δBμ, grows expo-
nentially and drives the system away from the RN solution.
The result is a spontaneously vectorized RN BH (VRN).
For a purely electric configuration F2 < 0: μ2eff < 0

requires

df
djBj2 > 0; ð7Þ

and the opposite sign for a purely magnetic configuration.
For a deeper study on the several possible coupling
function solutions in the scalarized case see [13] (the same
line of thought can be applied here). Both conditions are
satisfied by a quadratic exponential coupling

fðjBj2Þ ¼ eαjBj2 : ð8Þ

For this coupling, spontaneous vectorization of a purely
electric RN BH occurs for α > 0.
Another important property of the model is that the

Lorenz condition is not implied by the equations. of
motion. If we take the divergence of (4)

∇μBμ ¼ −
∇μðμ2effÞ
μ2eff

Bμ; ð9Þ

which, as we can see, does not correspond to the Lorentz
condition, since μ2eff is now a function.
The metric ansatz of a static, spherically symmetric

spacetime can be described by

ds2¼−σðrÞ2NðrÞdt2þ dr2

NðrÞþr2ðdθ2þsin2θdϕ2Þ;

with NðrÞ¼1−
2mðrÞ

r
; ð10Þ

wheremðrÞ is the Misner-Sharp mass function [31], r is the
areal radius and σðrÞ is a real metric function.
We consider the following spherically symmetric ansatz

for the vector field1

Bðr; tÞ ¼ ½BtðrÞdtþ iBrðrÞdr�e−iωt; ð11Þ

while the Maxwell field will only have an electrical
component

AðrÞ ¼ AtðrÞdt: ð12Þ

III. VECTOR THEOREMS

A. No-vector-hair theorem

For this section, let us follow the work done by Herdeiro
et al. [23] and generalize their results for our current
model.
Theorem: A spherically symmetric, static, asymptoti-

cally flat and electrically charged BH spacetime, regular on

1These are not general ansatz. The A field can, for example,
have magnetic components while the B field can still have a phase
term of the form eiω1θþiω2φ (as the coupling term in (3) restricts
any other angular dependence for B).
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and outside the event horizon, which solves the Einstein-
Maxwell complex-Proca field equations, and for which the
massive Proca field inherits the spacetime spatial sym-
metries but can have an harmonic time dependence of the
type e−iωt with ω ≠ 0, cannot support a nontrivial, finite on
and outside the horizon, Proca field.
To prove this argument, we will follow [32]. If the vector

field is given by (11), the Proca equations. in the metric (10)
are

d
dr

�
r2ðB0

tðrÞ − ωBrðrÞÞ
σðrÞ

�
¼ μ2effr

2BtðrÞ
σðrÞNðrÞ ; ð13Þ

B0
tðrÞ ¼ ωBrðrÞ

�
1 −

μ2effσ
2ðrÞNðrÞ
ω2

�
: ð14Þ

For a BH solution, we assume the existence of an
outermost horizon at r ¼ rH > 0, which requires NðrHÞ ¼
0. Every r > rH surface will then be a timelike surface and
N0ðrHÞ > 0. As the sign of σ is irrelevant to the equations of
motion, we can, without loss of generality, consider
σðrHÞ > 0.
The proof comes as follows: consider that there is a small

enough region close to the horizon, rH < r < r1, for which
μ2eff < 0 (which is always verified for a massless field). This
means that

1 −
μ2effσ

2ðrÞNðrÞ
ω2

> 0; ð15Þ

is guaranteed in this region. Equation (14) then implies that
the sign of B0

t is equal to the sign of Br. If we integrate
Eq. (13) in an interval ½r; rc� ⊂ ½rH; r1� and replace B0

tðrÞ by
Eq. (14), we get

BrðrÞ ¼ −
ω

r2μ2effσðrÞ
Z

rc

r
dr

μ2effr
2BtðrÞ

σðrÞNðrÞ ; ð16Þ

which imposes that the sign of Br must be opposite to the
sign of BtðrÞ.
The theorem is now proven by contradiction. As we will

see ahead, Bt must be zero at the horizon. So, if B0
t > 0

close to the horizon, then Bt > 0 in this region. However, as
we know from the considerations above, B0

t has the same
sign as Br implying that Br > 0 which is the same sign as
Bt, contradicting the equation above. The exact same
reasoning applies if we consider B0

t < 0, meaning that
the only BH solution compatible with the conditions above
is when Bt ¼ 0 ¼ Br: the Reissner-Nordström family of
solutions.
This same theorem can be generalized for the case where

μ2eff > 0 (for example, if we have a massive field2) in the

region rh < r < r1. As long as this region is small enough,
we can always satisfy condition (15). The fact that
NðrHÞ ¼ 0, implies that the left-hand side (lhs) of con-
dition (15) is very close to unity in this region. Since
Eq. (16) is independent of the sign of μ2eff , the rest of the
theorem follows.
Note that, this theorem is not valid for ω ¼ 0. The latter

imposes a solely r dependent vector field. In that case, we
can obtain the equation for Br from the Proca Eq. (4)

∇tGtr ¼ 0 ¼ μ2effB
r: ð17Þ

Since μ2eff is assumed to be nonzero, we have that the radial
component Br must vanish. Then, the only viable vector
field ansatz is

BðrÞ ¼ BtðrÞdt: ð18Þ

B. Flat spacetime electric no go theorem

Let us now consider the real ansatz (18) for the vector
field. By assuming a purely electric field, given by (12), the
electromagnetic equation of motion is

∇μðfFμνÞ ¼ 0 ⇒ A0
t ¼

Q
r2f

: ð19Þ

The virial identity on flat spacetime is

Z
∞

0

dr
1

r2

�
r4B0

t
2 þQ2

f

�
¼ 0: ð20Þ

Since both terms are always positive (for f > 0), we find
that the virial identity can only be respected for the trivial
configuration B0

t ¼ 0 and Q ¼ 0. When Q ¼ 0, the effec-
tive mass term of B vanishes, so B gains gauge freedom and
becomes a typical Maxwell field, allowing us to set Bt ¼ 0.
Alternatively, we can see this through a map to a scalar

field, Φ. If we consider the effective action for this
configuration

S ¼ 1

4π

Z
d4x

�
−
1

2

Q2

fr4
þ 1

2
ð∂rBtÞ2

�
; ð21Þ

and the mapping BtðrÞ → iΦðrÞ, one recovers the effective
action for the static, spherically symmetric EMS model in
flat spacetime

S ¼ 1

4π

Z
d4x

�
−
1

2

Q2

fr4
−
1

2
ð∂rΦÞ2

�
: ð22Þ

This means that the B field with the ansatz (18) acts as a
ghost scalar field. Flat, spherically symmetric spacetime
solutions with a real scalar field ΦðrÞ have been found
for this model in [33] for an arbitrary coupling fðΦÞ.

2If the B vector was massive, μ2eff would instead take the form
μ2eff ¼ μ2B þ 1

2
df

djBj2 F
2, and αmin would be μB dependent.

SPONTANEOUS VECTORIZATION OF ELECTRICALLY CHARGED … PHYS. REV. D 103, 044004 (2021)

044004-3



These solutions are then mapped to purely imaginary BtðrÞ
solutions which do respect the virial identity (20).

IV. SPONTANEOUS VECTORIZATION

A. Bifurcation points

In the absence of backreaction, the EMV model can be
seen as a Reissner-Nordström BH that suffers a perturba-
tion from a vector field Bμ. In this case, the line element is
the same as the RN BH

ds2 ¼ −NðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; with

NðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð23Þ

where M (Q) is the ADM mass (electric charge) of a RN
BH. In this study we will consider the full model (1),
however the coupling function needs to be linearly approxi-
mated in jBj2 as fðjBj2Þ ¼ eαjBj2 ≈ 1þ αjBj2.
The Proca Eq. (4) that describes a nodeless, massless

vector field coupled to the Maxwell invariant and has the
form (18), comes as:

grrffiffiffiffiffiffi−gp ∂r½
ffiffiffiffiffiffi
−g

p ∂rBtðrÞ� þ α
Q2

r4
BtðrÞ ¼ 0; with

μ2eff ¼ −α
Q2

r4
: ð24Þ

A RN solution that supports SV requires an effective mass
μ2eff < 0, and field equation reduces to an eigenvalue
problem in M

r2B00
t þ 2rB0

t þ
αQ2

rðr − 2MÞ þQ2
Bt ¼ 0: ð25Þ

While the equations for Bt are easier to deal with, due to the
divergence at the horizon of gtt the value of BtðrHÞ is not
well defined. At the horizon, the physical vector field obeys
Bt ¼ gttBtðrHÞ ¼ 0 as well as at infinity Btðr → ∞Þ ¼ 0.
Close to the horizon, the vector field can be approximated
as

BtðrÞ ≈ b1ðr − rHÞ − b1
rHðα − 2ÞQ2

2ðr2H −Q2Þ ðr − rHÞ2 þ � � � ;

with M ¼ Q2 þ r2H
2rH

; ð26Þ

The field Eq. (25) has an analytical solution that obeys the
proper boundary conditions Eq. (26)

Bt ¼ z2F1

�
1

4
ð3 − yÞ; 1

4
ð3þ yÞ; 2;−z

�
; ð27Þ

with

z ¼ 4Q2rH
ðQ2 − r2HÞ2

�
Q2rH
r2

−
Q2

r
−
r2H
r
þ rH

�
; and

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4α − 1

p
; ð28Þ

and 2F1 is an hypergeometric function. Observe that
αmin ≥ 1

4
, which occurs for an extremal RN configuration

(first bifurcation point), while Q → 0 implies α → ∞.
Observe that for each value of α and Q, Eq. (26) yields
a value ofM at which the VRN solution bifurcates from the
RN BH. The computation of all bifurcation points for a
range of α gives then the existence line.

B. The full nonlinear model

The set of full nonlinear field equations that result from
the model (1) with the ansatz (10) and (18) are

m0 ¼Nr4B02
t −Q2e

αB2t
Nσ2ð2αB2

t −Nσ2Þ
2Nr2σ2

; σ0 ¼−
B2
t αQ2e

αB2t
Nσ2

r3N2σ
;

A0
t ¼−

Qσe
αB2t
Nσ2

r2
; B00

t ¼B0
t

�
σ0

σ
−
2

r

�
−
αQ2e

αB2t
Nσ2

r4N
Bt: ð29Þ

where the Maxwell potential A0
tðrÞ is under a first integral

that was used to simplify the other field equations. For
notation simplicity, we let the radial dependence fall. Close
to the horizon, the metric functions and vector field can be
approximated by a power series as

m ≈
rH
2
þ

b2
1
r4H
σ2
0

þQ2

2r2H
ðr − rHÞ þ � � � ;

σ ≈ σ0 −
b21r

3
Hσ

3
0αQ

2

ðb21r4H þ σ20ðQ2 − r2HÞÞ2
ðr − rHÞ þ � � � ;

At ≈ −
Qσ0
r2H

ðr − rHÞ þ � � � ;

Bt ≈ b1ðr − rHÞ þ b2ðr − rHÞ2 þ � � � ;

b2 ¼ b1

�
αQ2σ40ðQ2 − r2HÞ

2rHðb21r4H þ σ20ðQ2 − r2HÞÞ2
−

1

rH

�
; ð30Þ

with b1 the value of the vector field derivative and σ0 the
value of the σ function, at the horizon. At infinity, we
impose asymptotical flatness and the metric/field functions
can be approximated by

m ≈M þQ2 þ P2

2r
þ � � � ; σ ≈ 1 −

Q2α

2r2
� � � ;

At ≈Φe −
Q
r
þ � � � ; Bt ≈

P
r
; ð31Þ
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with Φe the electrostatic potential difference at infinity and
P the “vector charge“obtained from the asymptotic decay.

C. Quantities of interest and Smarr law

Two horizon quantities of interest are the Hawking
temperature and the horizon area

TH ¼ 1

4π
N0ðrHÞσ0; AH ¼ 4πr2H; ð32Þ

these, together with the horizon vector field derivative, b1,
and the horizon σ value, σ0, describe the relevant horizon
data.
The variation of the ADM mass is described by the first

law: dM ¼ THdSþΦedQ. The vectorized solutions obey
the Smarr law

M ¼ 1

2
THSH þΦeQþMP; ð33Þ

where MP is the energy stored in the surrounding vector
field, which can be computed through a Komar integral

MP ¼ −
Z
Ω
drdθdϕ

ffiffiffiffiffiffi
−g

p ð2Tt
t − TÞ

¼ −4π
Z

∞

rH

dr
Q2ðαB2

t − Nσ2Þ − r4NB02
t

fNr2σ
; ð34Þ

with T the trace of the stress-energy tensor.
In addition, the solutions satisfy the virial identity, which

is obtained by a Derrick-type [34] scaling argument,

Z
∞

rH

dr

�
ðr − rHÞ

αQ2B2
t

2r3N2fσ
ðN − 1Þ

þ ð2rH − rÞ
2r3σ

�
r4B0

t
2 þQ2σ2

f

��
¼ 0: ð35Þ

The generic vectorized solution unknown in closed
form and a numerical approach is necessary. To solve
the latter, we use an adaptative step 6(5)th order Runge-
Kutta method—we compare the result of a 5th and 6th
order integration and decide if the integration step must be
increased or decreased—(local error of 10−20), the boun-
dary conditions are imposed through a secant shooting
strategy with a tolerance of 10−12 in terms of the unknown
parameters b1 and σ0. In all the presented solutions, the
virial identity gave an error of ∼10−8, while the Smarr law
gave ∼10−4. Both values are limited by machine precision
and converge extremely fast with the decrease of the
local error.
At last, observe that the model possesses the scaling

symmetry r → λr, Q → λQ where λ > 0 is a constant.
Under this scaling symmetry, all other quantities change
accordingly, e.g., M → λM, while the coupling function

fðjBj2Þ remains unchanged. For the physical discussion let
us introduce the reduced quantities

q≡ Q
M

; aH ≡ AH

16πM2
; tH ≡ 8πTHM: ð36Þ

1. Light rings

One of the most important astrophysical properties of
BHs is the presence of a light ring (LR)—since we are
dealing with spherical symmetry, the LR is, in fact, a
sphere: a photon sphere. To find the LR radius, rLR, of a
spherical spacetime, one must consider the null geodesics
(ds2 ¼ 0) of the metric ansatz (10) (the dot represents a
derivative with respect to an affine parameter):

_r2 ¼ E2

σ2
−
l2N
r2

; ð37Þ

where E and l represent the energy and angular momentum
of a photon along the geodesic. The LR is circular,
implying _r ¼ 0 and ̈r ¼ 0. The first condition relates the
energy with the angular momentum of the photon E ¼
l

ffiffiffiffi
N

p
σ=r while the second gives us the condition necessary

to find rLR:

σ

�
−2m0 þ 2m

r

�
þ 2

�
1 −

2m
r

�
ðrσ0 − σÞ ¼ 0: ð38Þ

For the RN metric we have σ ¼ 1 and mðrÞ ¼ M −Q2=2r,
giving us

rRNLR ¼ 3M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
2

: ð39Þ

As demonstrated in [35,36], LR always come in pairs. For a
BH, one of the LR is inside and the other outside the
external horizon.

V. NUMERICAL RESULTS

A. Solutions profile

Let us start by studying the generic behavior of the
metric functions and the vector fields of a fundamental
(nodeless) state VRN BH. In Fig. 1 is represented the radial
dependence of the various field functions for an illustrative
solution with α ¼ 25, Q ¼ 0.25, rH ¼ 1.0, and a charge to
mass ratio q ¼ 0.4271.
A universal feature of the fundamental solutions is the

existence of a bulge of Bt around the event horizon. Since
regularity imposes a null vector field at rH and infinity, the
only nontrivial, nodeless vector field solutions possess a
sharp increase very close to the horizon (b1 > 0), reaches a
maximum and then “slowly“decays as r−1.
Numerical analysis shows that, for a fixed charge and

mass, increasing α corresponds to an increase of the
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magnitude of the field Bt. The distance of the maximum of
Bt relative to the horizon is also observed to increase
slightly along with an increase in α.
Besides, due to the coupling with the Maxwell field,

there will be a modulation of the electric potential that
ultimately creates a nonmonotonic electric field that can
have important implications in the accretion disk formation
(see Fig. 1 right). As a contrast, the electro-vacuum RN
solution, as well as in the scalarized case, is monotonically
crescent and the modulation associated with the latter is
closer to a damping.
One other interesting characteristic of this model is the

presence of a region with negative energy density. Observe
themðrÞ profile in Fig. 1 right. In the latter, there is a valley,
which corresponds to the region where the Bt reaches its
peak. This can be easily understood by observing that the
Komar mass (mass associated with the external vector
field), due to the negative energy density term in the EM
tensor (3), gives a negative contribution to the ADM mass,
violating the weak energy condition.
Regarding the light ring radii, we show some values in

Table I. We can see that there is an increase of the LR radius
when we increase the coupling constant α and that the LR
radii of vectorized BHs are smaller than the corresponding
RN black holes.

B. Domain of existence

Generating several solutions allows us to obtain a region
of the domain of existence for the VRN BH solutions.

The latter is delimited by the existence line—at which
b1 → 0—and a critical line—with b1 → ∞.
Different than the scalar case, all the possible solutions

are undercharged, and in fact, the critical line always has a
smaller q than the existence line (see Fig. 2). For a fixed α
value, one can go from the existence line to the critical line
through an increase in rH, meaning that solutions never
become singular. Meanwhile, b1 and σ0 have a growing
increase at the horizon and diverge at the critical line. We
have also computed the Kretschmann scalar and observed
that the solution is everywhere regular along the domain of
existence, including the critical line.
Concerning the vector charge, P, one observes a mon-

otonic increase along the domain of existence for a fixed α.
While it starts at zero in the existence line, it grows to
almost the double of Q at the critical line.
Through the study of the domain of existence, one also

observes that an increase in α implies a smaller value of the
normalized electric charge for both the existence line and
the critical line. However, the latter has a faster decrease in

TABLE I. Light ring radii for four α values with Q ¼ 0.25 and
rH ¼ 0.52.

α 6 8 10 12

rLR 0.73 0.77 0.79 0.80
rLR=rRNLR 0.77 0.83 0.84 0.88

FIG. 1. Left: graphical representation of the field functions profile and Right: density plot of the electric field strength along the
equatorial plane for α ¼ 25, rH ¼ 1.0 and Q ¼ 0.25.

FIG. 2. Graphical representation of the domain of existence.
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q and hence the domain of existence broadens, tending
to the Schwarzschild case for α → ∞ (q ¼ 0.0134 for
α ¼ 100).
In addition, to study the thermodynamical preference of

vectorized solutions over an equivalent RN BH (see Fig. 3),
we have computed the entropy (left) of both solutions and
the event horizon temperature (right).
From the thermodynamical study, we observe an

entropic preference of the VRN in relation to an equivalent
RN BH, which can be clearly understood by the fact that
the ADM Mass of the vectorized BH is smaller than the
mass contained in the central BH.
Concerning the horizon temperature (see Fig. 3 right), one

observes a smaller horizon temperature for the VRN solution
for an equivalent RN solution. In addition, the temperature
decreases as onegoes further from the existence line, however
never reaching extremality (tH ¼ 0). In comparison with the
scalarized solutions, both solutions are entropically preferable
over an equivalent RN BH. However, while in the scalarized
case a solution with a higher coupling constant has a higher
entropy, here the opposite occurs. For a SV configuration that
allows two coupling constant values, the lower one will be
entropically preferable.
The numerical results show that the vector charge, P,

increases along a fixed α line—starting at zero (RN
solution) and reaching a maximum Pmax at the critical
solution. From the numerical results, Pmax is not very α
sensitive. The black dotted lines in Fig. 3 represent lines of
constant q. We see that, as we lower α, we get further away
from RN and closer to the critical solution (see black
marker). The latter corresponds to a minimum α value for
each q, since not all alpha solutions achieve all possible q.
This behavior also implies that, for the same q, P increases
as α decreases.3

VI. CONCLUSION

In this paper, we constructed electrically charged hairy
black holes through a spontaneous vectorization process of
Reissner-Nordström black holes. To do so, we considered
an extra vector field Bμ that is nonminimally coupled to the
Maxwell field.
Our main objective was to search for stable spherically

symmetric configurations.With that inmind, we first showed
a no-hair theorem for a generic complex vector field ansatz,
along with a flat spacetime no go theorem that was an
extension of the first. Notably, this no-hair theorem does not
work for a vanishing field frequencyω ¼ 0, in which casewe
have a real vector field with only one component.
With the last ansatz, we then attempted to construct the

vectorized BH solutions. An analytical study of the model
showed that, for a nonminimal coupling of the form
fðB2Þ ¼ eαB

2

, we have a lower bound for the coupling
constant α ≥ 1=4.
The numerical results show a family of vectorized

solutions bifurcating from the RN existence line, reaching
a critical solution. Compared to the scalarized RN sol-
utions, the BtðrÞ field has a maximum away from the
horizon and then slowly decays to zero at infinity.
The difference occurs due to the imposition that both at
the horizon and infinity, Bt must be zero.
A caveat to the vectorized solutions is that they violate

the weak energy condition in a small region where the mass
function mðrÞ decreases. Since there is an additional
contribution of the interaction term to the energy in the
vectorized case, a negative Komar mass outside the horizon
emerges, creating a region with negative energy densities.
Another peculiar property of the vectorized solutions is

that they are undercharged, Q=M < 1. The latter behavior
is amplified by an increasing coupling constant, α, tending
toward Schwarzschild when α → ∞.
A thermodynamical study tells us that, despite this pro-

perty, the vectorized solutions are entropically preferred,

FIG. 3. Left: reduced area aH vs reduced charge q and Right: normalized horizon temperature tH vs q for an EMV model. (Blue line)
nonvectorized RN BH, (red lines) vectorized solutions and (dotted lines) constant q lines.

3As there is no clear change in qualitative behavior of the
solutions, it is reasonable to assume, that, P increases monoton-
ically as we get further away from the RN solution by decreasing α.
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having a larger horizon area and smaller temperature than
the corresponding RN black holes.
At last, we would like to point out that this is a new

generalization of the EMS model [5] and, while most of the
behavior can be extrapolated to the VMS model, there is no
guarantee that these solutions are either perturbatively
stable or dynamical preferable. Such questions are a
research topic for a future and more exhaustive work.
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