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We investigate photon surfaces and their stability in a less symmetric spacetime, a general static warped
product with a warping function acting on a Riemannian submanifold of codimension two. We find a one-
dimensional pseudopotential that gives photon surfaces as its extrema regardless of the spatial symmetry of
the submanifold. The maxima and minima correspond to unstable and stable photon surfaces, respectively.
It is analogous to the potential giving null circular orbits in a spherically symmetric spacetime. We also see
that photon surfaces indeed exist for the spacetimes which are solutions to the Einstein equation. The
parameter values for which the photon surfaces exist are specified. As we show finally, the pseudopotential
arises due to the separability of the null geodesic equation, and the separability comes from the existence of
a Killing tensor in the spacetime. The result leads to the conclusion that photon surfaces may exist even in a
less symmetric spacetime if the spacetime admits a Killing tensor.
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I. INTRODUCTION

A photon surface was defined as the geometrical
generalization of the photon sphere of the Schwarzschild
spacetime by Claudel et al. [1]. The surface is a hyper-
surface of a spacetime to which every initially tangent null
geodesic remains tangent, and any global symmetry of the
surface and the spacetime is not assumed in the definition.
Claudel et al. [1] proved that a photon surface is equivalent
to a totally umbilic hypersurface, i.e., a hypersurface on
which the trace-free part of the second fundamental form
vanishes everywhere, in a spacetime of dimension four, and
subsequently, Perlick [2] proved it in a spacetime of
arbitrary dimensions. The works enabled the geometrical
analysis of a photon surface, and there have been various
discoveries concerning a photon surface: similarly to the
black hole uniqueness theorems, uniqueness theorems of
spacetimes possessing photon surfaces have been estab-
lished in Refs. [3–6]; in an accretion problem of radiation
fluid, there is a correspondence, called the sonic point/
photon surface correspondence, between the sonic points
of the flow and photon surfaces [7,8]; throats of pure-
tensional thin shell wormholes and branes of the brane
world model [9,10] were found to be photon surfaces
in Ref. [11].
There are several examples of photon surfaces [1]. In the

Minkowski spacetime, timelike planes and single-sheeted

hyperboloids are photon surfaces. Photon surfaces, or we
may call them photon spheres in this case, have been found
for spherically symmetric black hole spacetimes that are
solutions to the Einstein equation. Similarly, photon sur-
faces exist in the hyperbolically and planar symmetric
counterparts of the spherically symmetric spacetime sol-
utions [7]. However, a photon surface does not exist for
rotating vacuum black hole spacetimes such as the Kerr
spacetime. One may expect that, in spite of the definition
without any explicit requirement of symmetry, photon
surfaces exist only in highly symmetric spacetimes, spe-
cifically spacetimes of cohomogeneity one.
However, Gibbons and Warnick found photon surfaces

for the C-metric, which is the solution to the Einstein
equation and of cohomogeneity two, and its generalizations
including dilaton fields [12]. This work revealed the
existence of photon surfaces in a less symmetric spacetime
of cohomogeneity more than one and allows us to expect
that photon surfaces may exist regardless of the symmetry
of the spacetime.
In this paper, we investigate photon surfaces in a class of

less or nonsymmetric spacetimes and discuss a structure
that enables the spacetimes to have photon surfaces. First,
we show that in the class of spacetimes, the problem of
finding a photon surface reduces to that of solving a one-
dimensional equation given by a pseudopotential. Second,
we explicitly see that there exist photon surfaces in the
electrovacuum cases of the spacetimes. Finally, we show
that the pseudopotential arises due to the separability of the
null geodesic equation and conclude that the existence of a
Killing tensor is crucial for the spacetimes to have photon
surfaces in the present case.
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We consider a spacetime ðM; gÞ with the metric ansatz,

g ¼ −fðrÞdt2 þ hðrÞdr2 þ r2γijðxÞdxidxj; ð1Þ

where we assume fðrÞ; hðrÞ > 0, and investigate photon
surfaces of constant r. [13] The spacetime dimension is
D ≥ 3, and the (D − 2)-dimensional Riemannian metric
γijðxÞ ¼ γijðx1; x2;…; xD−2Þ are arbitrary. The spacetime
can be derived as the generic form of a some class of
warped product. See Appendix A for the derivation of
Eq. (1). The spacetime is static but has no spatial symmetry
in general. If γijðxÞ is the metric of the unit (D − 2)-sphere,
g is the metric of a general static spherically symmetric
spacetime, and therefore, the photon surfaces of constant r
are what we usually call photon spheres.
This paper is organized as follows. In Sec. II, we review a

photon surface and its stability. In Sec. III, we define the r-
photon surface and derive a one-dimensional pseudopo-
tential VðrÞ, which allows us to find the photon surface and
to analyze its stability easily. In Sec. IV, we specifically
consider the Λ-electrovacuum solutions to the Einstein
equation with the ansatz (1) and specify the parameter
ranges in which the r-photon surfaces exist. In Sec. V, we
see that a Killing tensor is responsible for introducing the
one-dimensional pseudopotential VðrÞ, and therefore, the
less symmetric spacetime admits r-photon surfaces in
several cases. Section VI is devoted to the conclusion.
We use units in whichG ¼ 1 and c ¼ 1. The roman indices
a; b;… of tensors are the abstract indices [14].

II. PHOTON SURFACE AND STABILITY

Here we review a photon surface and its stability.

A. Photon surface

A photon surface is a hypersurface on which every null
geodesic initially tangent to it remains tangent. It is defined
by Claudel et al. [1]:
Definition 1 [Photon surface]. A photon surface of a

spacetime ðM; gÞ is an immersed, nowhere-spacelike hyper-
surfaceS of ðM; gÞ such that, for every pointp ∈ S and every
null vector k ∈ TpS, there exists a null geodesic γ∶ð−ϵ; ϵÞ →
M of ðM; gÞ such that _γð0Þ ¼ k; jγj ⊂ S.
There exists an equivalent condition for a timelike

hypersurface to be a photon surface. This is summarized
as the following theorem proven in four dimensions by
Claudel et al. [1] and in arbitrary dimensions by Perlick [2]:
Theorem 1 [Claudel-Virbhadra-Ellis (2001), Perlick

(2005)]. Let S be a timelike hypersurface of a spacetime
ðM; gÞ. Let n be a unit normal to S and let hab ¼ gab − nanb
be the induced metric on S. Let χab ¼ hca∇cnb be the
second fundamental form of S and let σab ¼ χab −
½hcdχcd=ðD − 1Þ�hab be the trace-free part of χab, where

D is the dimension of ðM; gÞ. Then S is a photon surface if
and only if it is totally umbilic, i.e.,

σab ¼ 0 ∀ p ∈ S: ð2Þ

B. Stability

The stability of null geodesics on a photon surface is
defined in Ref. [15]. It represents whether or not a null
geodesic γ on S is attracted toward S if perturbed in the
direction normal to S:
Definition 2 [Stability of null geodesics on a photon

surface]. Let S be a timelike photon surface of ðM; gÞ and n
be a unit normal vector to S. Let γ be a null geodesic on S
passing through a point p ∈ S and k be the tangent vector to
γ. Let X be the deviation vector of γ satisfying the
condition,

Xjp ∝ njp: ð3Þ

The null geodesic γ is said to be stable, unstable, and
marginally stable at p if the acceleration scalar a ≔
gðX;∇kð∇kXÞÞ satisfies

ajp < 0; > 0; and ¼ 0; ð4Þ

respectively.
Two generic formulas for the stability are given in

Ref. [15]. One is written in terms of the Riemann curvature
and can be easily derived fromEq. (4). The other one is given
in terms of the trace-free part of the second fundamental form
and is convenient for the current purpose:
Proposition 1. Let S be a timelike photon surface and

fSyg ∋ S0 ≔ S be the Gaussian normal foliation [15] with
respect to S. Let n and σab be the unit normal field and the
trace-free part of the second fundamental form of each Sy,
respectively. A null geodesic γ on S with the tangent k is
said to be stable, unstable, and marginally stable at p ∈ S if
and only if

kakb∇nσabjp < 0; > 0; and ¼ 0; ð5Þ

respectively.
The Gaussian normal foliation fSyg in the above is a

foliation satisfying the condition,

dn ¼ 0; ð6Þ

for the unit normal field n to each Sy. This is the foliation
obtained by taking the Gaussian normal coordinates since n
is the geodesic tangent orthogonal to the surfaces [15]. Note
that the notion of the stability does not change under the flip
of the normal field, n → −n. The second fundamental form
χab of Sy is given by χab ¼ hca∇cnb with the induced metric
hab ¼ gab − nanb, and therefore, its normal derivative
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∇nχab ¼ nd∇dðhca∇cnbÞ is invariant under the flip.
Similarly, ∇nσab is also invariant.
Note that even if a null geodesic γ on a photon surface S

is stable at a point p ∈ jγj, it can be unstable at another
point q ∈ jγj in general. If every null geodesic on the
photon surface S is stable (unstable) at every point, the
photon surface S itself is said to be stable (unstable) as
follows:
Definition 3 [Stability of a photon surface]. A timelike

photon surface S is said to be
(i) stable if every null geodesic γ on S is stable or

marginally stable at every point p ∈ jγj,
(ii) strictly stable if every null geodesic γ on S is stable at

every point p ∈ jγj,
(iii) unstable if every null geodesic γ on S is unstable or

marginally stable at every point p ∈ jγj,
(iv) strictly unstable if every null geodesic γ on S is

unstable at every point p ∈ jγj, and
(v) marginally stable if every null geodesic γ on S is

marginally stable at every point p ∈ jγj.

III. r-PHOTON SURFACE

Here, we consider a spacetime ðM; gÞwith the metric (1).
We investigate an r-photon surface defined below and
derive its stability condition in what follows.

A. Definition

An r-photon surface is a photon surface of a hypersur-
face r ¼ const in a spacetime with the metric given by
Eq. (1):
Definition 4 [r-photon surface]. Let ðM; gÞ be a space-

time with the metric (1). A hypersurface Sr defined by

Sr ≔ fp ∈ Mjr ¼ constg ð7Þ

is called an r-photon surface if it is a photon surface.

B. Condition for an r-photon surface

For general Sr, its unit normal is given by

n ¼
ffiffiffi
h

p
dr: ð8Þ

The induced metric of Sr is given by

hab ¼ −fðdtÞaðdtÞb þ r2γijðdxiÞaðdxjÞb: ð9Þ

The second fundamental form of Sr and its trace-free part
are given by

χab ¼
1

2
h−1=2½−f0ðdtÞaðdtÞb þ 2rγijðdxiÞaðdxjÞb� ð10Þ

and

σab ¼ −
1

2ðD − 1Þ
ðfr−2Þ0
fr−2

h−1=2½ðD − 1Þfab þ hab�; ð11Þ

respectively, where fab ≔ fðrÞðdtÞaðdtÞb. Theorem 1 gives
the condition for the r-photon surface:
Proposition 2. A timelike hypersurface Sr is an r-

photon surface if and only if

ðfr−2Þ0 ¼ 0 ð12Þ

at r.

C. Stability condition

Let fSrg be a foliation of the spacetime ðM; gÞ with
Eq. (1). Since the unit normal n given in Eq. (8) satisfies the
condition (6), it is a Gaussian normal foliation. With σab
defined on each Sr, we calculate ∇nσab. For a radius r ¼ rp
such that Srp is an r-photon surface, we have

∇nσabjr¼rp ¼−
1

2ðD−1Þ
ðfr−2Þ00
fr−2

h−1½ðD−1Þfabþhab�
����
r¼rp

ð13Þ

by using Eq. (12). For any null vector k ∈ TpSrp,

kakb∇nσab

���
r¼rp

¼ −
1

2
ðfr−2Þ00r2h−1ðktÞ2

���
r¼rp

: ð14Þ

From Proposition 1, this equation implies that any null
geodesic on an r-photon surface is stable, unstable, and
marginally stable at any point if ðfr−2Þ00 > 0,< 0, and ¼ 0,
respectively. Then, according to Definition 3, the stability
condition of an r-photon surface is obtained as follows:
Proposition 3. A timelike r-photon surface Srp is strictly

stable, strictly unstable, and marginally stable if and only if

ðfr−2Þ00
���
r¼rp

> 0; < 0; and ¼ 0; ð15Þ

respectively.
The r-photon surfaces are classified into only the three

types, strictly stable, strictly unstable, and marginally stable
ones, which are not overlapped each other. Therefore, we
simply call them stable, unstable, marginally stable r-
photon surfaces in the following.

D. Pseudopotential

Here we define the pseudopotential

VðrÞ ≔ fðrÞr−2; ð16Þ

which is useful for investigating r-photon surfaces. From
Proposition 2 and 3, the conditions for an r-photon surface
are given as follows:
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Proposition 4. Suppose that hðrpÞ > 0 at r ¼ rp, and
therefore, Srp is timelike. Then Srp is an r-photon surface if
and only if

V 0ðrpÞ ¼ 0: ð17Þ

It is stable, unstable, and marginally stable if and only if

V 00ðrpÞ > 0; < 0; and ¼ 0; ð18Þ

respectively.
r-photon surfaces appear as the extrema of VðrÞ.

Unstable and stable r-photon surfaces correspond to the
local maxima and minima of VðrÞ, respectively.

IV. r-PHOTON SURFACES IN VACUUM
SPACETIMES

We see that r-photon surfaces exist in spacetimes of
solutions to the Einstein equation.

A. Electrovacuum spacetime with the cosmological
constant

The ansatz (1) gives the solution to the electrovacuum
Einstein equation with the cosmological constant given by
the action,

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ðR − 2Λ − FabFabÞ; ð19Þ

where R, Λ, and Fab are the Ricci scalar of ðM; gÞ, the
cosmological constant, and the field strength of the
electromagnetic field, respectively. From the field equation
with the ansatz of the electromagnetic field,

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 2ÞðD − 3Þ

2

r
Q

rD−2 dt ∧ dr; ð20Þ

the metric components of the ansatz (1) are given as
follows [16]:

fðrÞ ¼ h−1ðrÞ ¼ k −
2Λ

ðD − 2ÞðD − 1Þ r
2 −

2M
rD−3 þ

Q2

r2ðD−3Þ ;

ð21Þ

where k is a constant relevant to γij, M is the mass
parameter, and Q is the electric charge parameter. The
(D − 2)-dimensional Riemannian submanifold Σ with the
metric γij is an arbitrary Einstein manifold with the relation
to k, Rij ¼ ðD − 3Þkγij, where Rij is the Ricci curvature
associated with γij. The metric is invariant under an
appropriate simultaneous scaling of the coordinates t, r
and the parameters k,M,Q, Λ. For nonzero k, we can scale
it so that k ¼ �1.

The submanifold ðΣ; γÞ of dimension N ¼ D − 2 can be
a constant curvature space because a constant curvature
space is an Einstein manifold for any N. For N < 4, ðΣ; γÞ
is always a constant curvature space. For N ¼ 1, although
the Ricci curvature is not defined, the metric can always be
written in the form of a flat space, γijðxÞdxidxj ¼ dl2. For
N ¼ 2, 3, the condition Rij ¼ ðD − 3Þkγij implies that
ðΣ; γÞ is a constant curvature space because any sectional
curvature is then constant k. For N ≥ 4, various nontrivial
Einstein manifolds have been found. The variety of
Einstein manifolds in higher N is due to the degrees of
freedom of the Weyl curvature. See Refs. [17–21] for
examples of nontrivial Einstein manifolds.
The solution (21) would be a less symmetric spacetime

in the sense that the (D − 2)-dimensional submanifold
ðΣ; γÞ can be less symmetric than the maximal if D ≥ 6.
If there exist Einstein manifolds without any spatial Killing
vectors, the spacetime can be a static electrovacuum
spacetime with only the timelike Killing vector ∂t.

B. Pseudopotential

Let us focus on a timelike hypersurface Srp . The timelike
condition of Srp is given by

hðrpÞ > 0: ð22Þ

Or, according to Eq. (21), it is equivalent to

fðrpÞ > 0: ð23Þ

For Srp to be an rp-photon surface, the radius rp must be a
real positive solution to Eq. (17). Using the explicit form
of VðrÞ,

VðrÞ ¼ −
2Λ

ðD − 2ÞðD − 1Þ þ
k
r2

−
2M
rD−1 þ

Q2

r2ðD−2Þ ; ð24Þ

Eq. (17) reduces to

kr2ðD−3Þ
p − ðD − 1ÞMrD−3

p þ ðD − 2ÞQ2 ¼ 0: ð25Þ

Once we find an rp-photon surface, we can determine the
stability of Srp by the sign of

V 00ðrpÞ ¼
4ðD − 3Þ

r4p

�ðD − 1ÞM
2rD−3

p
− k

�
: ð26Þ

Let us focus the case D ¼ 3. Then Eqs. (23), (25), and
(26) reduce to fðrpÞ ¼ −Λr2p > 0, k − 2M þQ2 ¼ 0, and
V 00ðrpÞ ¼ 0, respectively. Therefore, we conclude that only
for Q2 ¼ 2M − k ≥ 0 and Λ < 0 (i.e., 3D anti–de Sitter
spacetime), a hypersurface Srp is a timelike rp-photon
surface at any rp and is marginally stable.
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We focus on the case D ≥ 4 in the what follows. In each
case, k ¼ 0 in Sec. IV C, k ≠ 0 &M ¼ 0 in Sec. IV D, and
k ≠ 0 &M ≠ 0 in Sec. IV E, we apply the following
procedure to show the existence of a timelike rp-photon
surface: First, we find a solution to Eq. (25) and restrict
parameters to the range where the solution is real and
positive. The timelike condition (23) further restricts the
allowed range of a dimensionless cosmological constant,

λ ≔ ΛjMj2=ðD−3Þ: ð27Þ

Evaluating the sign of Eq. (26), we determine the stability
of Srp by Proposition 4. Here for later convenience, we
introduce a dimensionless charge for M ≠ 0,

q ≔
jQj
jMj : ð28Þ

The results are summarized in Table I for k ¼ 0, Table II for
k ¼ þ1, and Table III for k ¼ −1. Similar analysis is found
in the context of the stability of a thin shell wormhole
throat [22].

C. k= 0

Suppose that k ¼ 0. Then Eqs. (25) and (26) reduce to

ðD − 1ÞMrD−3
p − ðD − 2ÞQ2 ¼ 0; ð29Þ

V 00ðrpÞ ¼ ðD − 3ÞðD − 1Þ 2M
rDþ1
p

: ð30Þ

Note that if Srp is a timelike rp-photon surface, then it is
stable forM > 0, unstable forM < 0, and marginally stable
for M ¼ 0 because the sign of M coincides with that of
V 00ðrpÞ. In the followings, we consider each case, M ¼ 0

and M ≠ 0, separately.

1. k = 0&M= 0

Suppose that k ¼ 0 and M ¼ 0. Then Eq. (29) leads
to Q ¼ 0. Hence, V becomes constant, V ¼ −2Λ=
½ðD − 2ÞðD − 1Þ�, and satisfies V 0ðrpÞ ¼ 0 and V 00ðrpÞ¼ 0

for any value of rp. The timelike condition of Srp in Eq. (23)

reduces to fðrpÞ¼−2Λr2p=½ðD−2ÞðD−1Þ�> 0, and there-
fore,

Λ < 0: ð31Þ

Finally we conclude that only for k ¼ 0,M ¼ 0,Q ¼ 0, and
Λ < 0, a timelike rp-photon surface exists at any rp > 0 and
is marginally stable.

2. k = 0&M ≠ 0

Suppose that k ¼ 0 and M ≠ 0. Then we obtain the
solution to Eq. (29) in the form

rD−3
p ¼ D − 2

D − 1

Q2

M
: ð32Þ

The positivity of rp requires Q ≠ 0 and M > 0, and thus,
V 00ðrpÞ > 0. The timelike condition of Srp in Eq. (23) leads
to a negative upper bound for λ,

TABLE I. k ¼ 0.

M > 0 M ¼ 0 M < 0

Q ¼ 0 ∄ ∀ r, Eq. (31), marginally stable, ∄
Q ≠ 0 Eqs. (32) and (33), stable ∄ ∄

TABLE II. k ¼ 1.

M > 0 M ¼ 0 M < 0

q ¼ 0 Eqs. (41) and (42), unstable ∄ ∄
0 < q < qc Eqs. (37) and (45) (upper branch), unstable ∄ ∄

Eqs. (37) and (45) (lower branch), stable
q ¼ qc Eqs. (43) and (44), marginally stable ∄ ∄

TABLE III. k ¼ −1.

M > 0 M ¼ 0 M < 0

Q ¼ 0 ∄ ∄ Eqs. (48) and (49), stable
Q ≠ 0 Eqs. (46) and (47), stable Eqs. (35) and (36), stable Eqs. (48) and (49), stable
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λ < −
ðD − 3ÞðD − 1Þ2

2ðD − 2Þ
�
D − 1

D − 2

�
2=ðD−3Þ

q−2ðD−1Þ=ðD−3Þ < 0:

ð33Þ

Finally we conclude that only for k ¼ 0, M > 0, Q ≠ 0,
and Eq. (33), a timelike rp-photon surface exists at the
radius (32) and is stable.

D. k ≠ 0&M = 0

Suppose that k ≠ 0 andM ¼ 0. Then Eq. (25) reduces to

kr2ðD−3Þ
p þ ðD − 2ÞQ2 ¼ 0: ð34Þ

The positivity of rp requires Q ≠ 0 and k ¼ −1. The
positive branch takes the form

rD−3
pþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

p
jQj ð35Þ

and leads to V 00ðrpþÞ ¼ 4ðD − 3Þ=r4pþ > 0 from Eq. (26).
The timelike condition (23) gives a negative upper bound
for Λ,

Λ < −
ðD − 3ÞðD − 1Þ
2ðD − 2Þ1=ðD−3Þ jQj−2=ðD−3Þ < 0: ð36Þ

Finally we conclude that only for k ¼ −1, M ¼ 0, Q ≠ 0,
and Eq. (36), a timelike rp-photon surface exists at the
radius (35) and is stable.

E. k ≠ 0&M ≠ 0

Suppose that k ≠ 0 and M ≠ 0. Then Eq. (25) has roots

rD−3
p� ¼ D − 1

2k
Mð1� γÞ; ð37Þ

where

γ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k

q2

q2c

s
; ð38Þ

qc ≔
D − 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

p : ð39Þ

Using these roots, V 00ðrpÞ in Eq. (26) is formally written as

V 00ðrp�Þ ¼∓ ðD − 3ÞðD − 1Þ 2Mγ

rDþ1
p�

; ð40Þ

where V 00ðrpþÞ corresponds to the upper sign in the right-
hand side and vice versa. In the followings, we consider
each case, k ¼ 1 and k ¼ −1, separately.

1. k = 1

Suppose that k ¼ 1. Then γ is restricted to the range
0 ≤ γ ¼ ð1 − q2=q2cÞ1=2 ≤ 1 (i.e., 0 ≤ q ≤ qc). First, let us
focus on the case γ ¼ 1 (i.e., uncharged case, q ¼ 0). The
branch rp− of the roots (37) vanishes, and therefore, here is
no photon surface. On the other hand, if M > 0, then the
branch

rD−3
pþ ¼ ðD − 1ÞM ð41Þ

is positive definite, and V 00ðrpþÞ < 0 holds. The timelike
condition (23) provides a positive upper bound of λ,

λ <
ðD − 3ÞðD − 2Þ
2ðD − 1Þ2=ðD−3Þ : ð42Þ

Finally we conclude that only for k ¼ 1,M > 0, q ¼ 0, and
Eq. (42), a timelike rpþ-photon surface exists at the radius
(41) and is unstable.
Next, we focus on the case γ ¼ 0 (i.e., q ¼ qc). The roots

(37) are degenerate as

rD−3
p ¼ D − 1

2
M: ð43Þ

The positivity of rp requires M > 0. Since γ ¼ 0, we have
V 00ðrpÞ ¼ 0 from Eq. (40). The timelike condition (23)
provides a positive upper bound of λ,

λ <
ðD − 3Þ2

2

�
2

D − 1

�
2=ðD−3Þ

: ð44Þ

Finally we conclude that only for k ¼ 1, M > 0, q ¼ qc,
and Eq. (44), a timelike rp-photon surface exists at the
radius (43) and is marginally stable.
Next, we focus on the case 0 < γ < 1 (i.e., 0 < q < qc).

If M < 0, both roots (37) are negative and hence unsuit-
able. Suppose that M > 0. Then the roots satisfy
rpþ > rp− > 0. For each branch, V 00ðrpþÞ < 0 and
V 00ðrp−Þ > 0. The timelike condition (23) reduces to upper
bounds of λ,

λ < λ�ðD; qÞ ≔ D − 3

2

�
2

ðD − 1Þð1� γÞ
�
2=ðD−3Þ

×

�
D − 1 −

2

1� γ

�
: ð45Þ

Note that λþ > 0, and on the other hand, λ− ≥ 0 for 1 ≤
q < qc and λ− < 0 for 0 < q < 1. Finally we conclude that
only for k ¼ 1,M > 0, 0 < q < qc, and Eq. (45), a timelike
rpþ-photon surface exists at the radius rpþ ¼ ðD − 1Þð1þ
γÞM=2 and is unstable, and a timelike rp−-photon surface
exists at the radius rp− ¼ ðD − 1Þð1 − γÞM=2 and is stable.
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2. k = − 1

For k ¼ −1, γ is restricted to the range
γ ¼ ð1þ q2=q2cÞ1=2 ≥ 1. We consider each case, M > 0
and M < 0, separately.
Suppose that k ¼ −1 and M > 0. For γ ¼ 1 (i.e.,

uncharged case, q ¼ 0), the roots (37) satisfy rD−3
p− ¼

0 > rD−3
pþ , and hence, here are no photon surfaces. Now,

we focus on the case γ > 1 (i.e.,q ≠ 0). The branch rp− of the
roots (37) becomes

rD−3
p− ¼ D − 1

2
Mðγ − 1Þ > 0; ð46Þ

while the other branch is unsuitable because rD−3
pþ < 0. We

find that V 00ðrp−Þ > 0 from Eq. (40). The timelike condition
(23) provides a negative upper bound of λ,

λ<−
D−3

2

�
2

ðD−1Þðγ−1Þ
�
2=ðD−3Þ�

D−1þ 2

γ−1

�
<0:

ð47Þ

Finallywe conclude that only for k ¼ −1,M > 0,q ≠ 0, and
Eq. (47), a timelike rp−-photon surface exists at the radius
(46) and is stable.
Suppose that k ¼ −1 and M < 0. The branch rpþ of the

roots (37) becomes

rD−3
pþ ¼ D − 1

2
jMjð1þ γÞ; ð48Þ

while the other branch is unsuitable because rD−3
p− < 0. We

find that V 00ðrpþÞ > 0 from Eq. (40). The timelike con-
dition (23) provides a negative upper bound of λ,

λ<−
D−3

2

�
2

ðD−1Þð1þγÞ
�
2=ðD−3Þ�

D−1−
2

1þγ

�
<0:

ð49Þ

Finally we conclude that only for k ¼ −1, M < 0, and
Eq. (49), a timelike rpþ-photon surface exists at the radius
(48) and is stable.

V. PHOTON SURFACE AND THE KILLING
TENSOR

We have seen that, regardless of the spatial symmetry of
the spacetime under consideration, the r-photon surfaces
are given by the equation of the single variable r, Eq. (17),
and further exist in several electrovacuum cases. However,
the reason for this result is quite nontrivial from the
geometrical analysis based on Theorem 1, which we have
adopted so far. In this section, we return to the null geodesic
equation and see that its separability in r is closely related
to the appearance of the pseudopotential VðrÞ and the

existence of r-photon surfaces. We finally conclude that the
less or nonsymmetric spacetime can have the r-photon
surface in several cases due to the existence of a rank-2
Killing tensor relevant to the separability.
The null geodesic equation of the spacetime is given by

the Hamiltonian,

H ¼ 1

2
gabkakb

¼ 1

2
½−f−1ðrÞk2t þ h−1ðrÞk2r þ r−2γijðxÞkikj� ¼ 0; ð50Þ

for a null geodesic tangent k, where γij is the inverse matrix
of γij. Scaling the null vector k as k=E → k by the constant
of motion E ≔ −kt, the equation can be rewritten as

−r2f−1ðrÞ þ r2h−1ðrÞk2r þ γijðxÞkikj ¼ 0: ð51Þ

Since the first two terms are functions of ðr; krÞ and the last
term is that of ðxi; kiÞ, the equation is separated so that

1

2
_r2þ ṼðB2;rÞ¼0; ṼðB2;rÞ≔ 1

2fh
ðB2fr−2−1Þ; ð52Þ

where _r ¼ kr is the derivative of r with respect to an affine
parameter λ and B2 is the separation constant having the
relation

B2 ≔ γijðxÞkikj ≥ 0: ð53Þ

The variable r of a null geodesic is separated and obeys this
one-dimensional equation of motion.
Now we consider a null geodesic γðλÞ which satisfies

_rðλÞ ¼ 0 and ̈rðλÞ ¼ 0 for all λ. From Eq. (52), for γðλÞ, it is
necessary and sufficient to satisfy ṼðB2; rÞ ¼ 0 and
Ṽ 0ðB2; rÞ ¼ 0. It is equivalent to give two of initial
conditions for γðλÞ at λ ¼ 0 by

rð0Þ ¼ rp; ð54Þ

B2 ¼ B2
p; ð55Þ

where rp and B2
p are constants given by ṼðB2

p; rpÞ ¼ 0 and
Ṽ 0ðB2

p; rpÞ ¼ 0 and the remaining initial conditions are
arbitrary. One can easily prove that the two conditions are
equivalently expressed as

rð0Þ ¼ rp; ð56Þ

_rð0Þ ¼ 0 ð57Þ

according to Eq. (52). Furthermore, from the view point of
the hypersurface Srp , these are equivalent to
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γð0Þ ∈ Srp ; ð58Þ

_γð0Þ ∈ Tγð0ÞSrp : ð59Þ

Thus, at every point p on Srp , every null geodesic satisfying
the initial conditions (58) and (59) satisfies _r ¼ 0 and
̈r ¼ 0, i.e., it remains tangent to Srp . According to
Definition 1 and 4, the hypersurface Srp is an r-photon
surface.
In summary, for any constant rp given by the conditions

ṼðB2
p; rpÞ ¼ 0 and Ṽ 0ðB2

p; rpÞ ¼ 0 with some constant B2
p,

the hypersurface Srp is an r-photon surface. In fact, we can
obtain Eq. (17) for rp from these conditions, and therefore,
the above argument is consistent with Proposition 2, which
is derived from the geometrical analysis based on Theorem
1. The analysis based on the geodesic equation determines
a photon surface and the null geodesics on it corresponding
to the impact parameter B2

p while the geometrical analysis
giving Proposition 2 does only a photon surface.
The above analysis tells us that an r-photon surface is

given by the equation in terms of the one-dimensional
pseudopotential VðrÞ, Eq. (17), due to the separation of r in
the geodesic equation. The separation of r in the spacetime
is due to the existence of a rank-2 Killing tensor, a
symmetric tensor Kab satisfying the equation,

∇ðcKabÞ ¼ 0; ð60Þ

where the brackets symmetrize the indices [14]. The
spacetime with the metric ansatz (1) admits a rank-2
Killing tensor,

Kab ¼ r4γab; ð61Þ

where γab ¼ γijðdxiÞaðdxjÞb. (See Appendix B for the
computation of the Killing tensor equation for this Kab.)
The Killing tensor is relevant to the separation of r.
Actually, it satisfies

Kabkakb ¼ r4γijkikj ¼ γijkikj ¼ B2 ð62Þ

for any null geodesic tangent k. Therefore, here we
conclude that the spacetime can have photon surfaces in
several cases regardless of the spatial symmetry because it
admits the Killing tensor. From this point of view, the
spherically symmetric case of the spacetime, which is
known to admit the photon surface (i.e., photon sphere)
in many cases, is the case where the Killing tensor Kab is
reducible to the sum of the products of the Killing vectors
relevant to the spherical symmetry.

VI. CONCLUSION

In this paper, we have investigated r-photon surfaces in
the spacetime given by the metric ansatz, Eq. (1). The
ansatz is a general form of a warped spacetime as shown in
Appendix A. The pseudopotential also implies that stable
and unstable r-photon surfaces appear alternately as in the
cases of light rings in spherically symmetric and rotation-
ally symmetric spacetimes shown in Refs. [23,24]
We have first found that the pseudopotential VðrÞ gives

the radius r and stability of an r-photon surface
(Proposition 4). The local maxima correspond to unstable
r-photon surfaces while the local minima correspond to
stable ones. It is remarkable that the stabilities of null
geodesics on an r-photon surface depend on neither their
directions nor positions on the surface even if the spacetime
is not spatially symmetric.
The r-photon surfaces indeed exist in the case where the

spacetime is the electrovacuum solution to the Einstein
equation with the cosmological constant. Since the space-
time is a solution as far as the (D − 2)-subspace ðΣ; γÞ is an
Einstein manifold, it implies that static photon surfaces
exist in less or non-symmetric electrovacuum spacetimes.
Although many static photon surfaces have been found in
highly symmetric spacetimes so far, our results imply that
the existence of spatial Killing vectors is not crucial.
We have also discussed the relation between photon

surfaces and a Killing tensor. Photon surfaces may exist if
the null geodesic equation is well separable, and the
separability is guaranteed by Killing vectors or Killing
tensors. In the present case, the warped spacetime we have
investigated has a Killing tensor but does not have spatial
Killing vectors in general. Thus, here we conclude that a
static photon surface may exist because of the Killing
tensor rather than the spatial Killing vectors, or in other
words, it does not necessarily require a high degree of
spatial symmetry. The existence of photon surfaces and the
separability of the null geodesic equation has also been
pointed out in Ref. [12]. The authors investigated various
types of the C-metric and found photon surfaces. Although
the C-metric does not admits spatial Killing vectors as
many as a spherically symmetric spacetime, there exists a
conformal Killing tensor, and therefore, the null geodesic
equation is separable. From this fact, one can further expect
that, more generally, a conformal Killing tensor is crucial
for photon surfaces.
We finally make a remark about a possible extension of

the above conclusion. In the Kerr spacetime, there are
spherical photon orbits (SPOs), i.e., orbits of constant
radius with varying polar and azimuthal angles, and the
SPOs of the same radius r form a hypersurface [25]. The
hypersurface of constant r, which we denote here SKerrr , is
similar to a photon surface in the sense that for some null
vector k ∈ TpSKerrr at every point p ∈ SKerrr , there is a null
geodesic which remains tangent to SKerrr . Only the
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difference from the definition of a photon surface
(Definition 1) is the part, “for some null vector
k ∈ TpSKerrr .” Similarly to the fact that a photon surface
is a totally umbilic hypersurface, the surface SKerrr is called a
partially umbilic hypersurface from the geometrical point
of view according to Ref. [26]. Remarkably, although the
Kerr spacetime is of cohomogeneity two, the SPOs exist
due to the separability and the relevant Killing tensor
[27,28]. Therefore, we can expect that for generalized
notions of photon surfaces or photon spheres, the existence
of the Killing tensor would be crucial. Specifically, it is
interesting to investigate the relation between a Killing
tensor and the generalizations of a photon sphere defined
from the different points of view in Refs. [26,29–32].
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APPENDIX A: STATIC WARPED SPACETIME

Here, we see that a spacetime ðM; gÞ with the metric g
given by Eq. (1) can be obtained as a generic static warped
product of some class. Consider a warped product of
manifolds of the form,

M ¼ M1 × FM2; ðA1Þ

whereM1 is a two-dimensional Lorentzian manifold,M2 is
a (D − 2)-dimensional Riemannian manifold, and
F∶M1 → R>0 is the warping function. Letting fyAg and
fxig be coordinates on M1 and M2, respectively, we have

g ¼ gABðyÞdyAdyB þ F ðyÞγijðxÞdxidxj: ðA2Þ

Choosing t ∈ fyAg as the static time and R ∈ fyAg as the
coordinate orthogonal to t, we have

g ¼ gttðRÞdt2 þ gRRðRÞdR2 þ F ðRÞγijðxÞdxidxj: ðA3Þ

If we additionally assume thatF 0ðRÞ ≠ 0, we can transform
the coordinate R to r defined by r2 ¼ F ðRÞ. Then, using
the fact that dr ¼ dðF 1=2Þ ¼ ð1=2ÞF−1=2F 0dR, we obtain

g ¼ gttðRðrÞÞdt2 þ grrðRðrÞÞdr2 þ r2γijðxÞdxidxj; ðA4Þ

where grrðRðrÞÞ ¼ ð4r2=ðF 0Þ2ÞgRR. Defining −fðrÞ ≔
gttðRðrÞÞ and hðrÞ ≔ grrðRðrÞÞ, we obtain Eq. (1).

APPENDIX B: COMPUTATION OF THE
KILLING TENSOR EQUATION

We see that the tensor

Kab ¼ r4γab; ðB1Þ

where γab ¼ γijðdxiÞaðdxjÞb, satisfies the Killing tensor
equation

∇ðcKabÞ ¼ 0: ðB2Þ

The lhs is calculated as

∇ðρKμνÞ ¼ ∂ðρKμνÞ − ΓσðρμKνÞσ − ΓσðρνKμÞσ
¼ ∂ðρKμνÞ − 2ΓσðρμKνÞσ

¼ ∂ðρKμνÞ − 2ΓlðρμKνÞl

¼ 1

3
½∂ρKμν þ ∂μKνρ þ ∂νKρμ� −

2

3
½Γl

ρμKνl þ Γl
μνKρl þ Γl

νρKμl�

¼ 4

3
r3½δrργμν þ δrμγνρ þ δrνγρμ� þ

1

3
r4½∂ργμν þ ∂μγνρ þ ∂νγρμ� −

2

3
r4½Γl

ρμγνl þ Γl
μνγρl þ Γl

νργμl�: ðB3Þ
All the terms vanish if one of the indices ρ, μ, ν is t. Thanks to the symmetrization of the indices, we need the calculations
only for ðρ; μ; νÞ ¼ ðr; r; rÞ; ðr; r; iÞ; ðr; i; jÞ; ði; j; kÞ. The Christoffel symbols we need are

Γl
rr ¼ 0; Γl

ri ¼ r−1δli; Γl
ij ¼ γΓl

ij; ðB4Þ

where γΓl
ij is the Christoffel symbols associated with γij. Then, for ðρ; μ; νÞ ¼ ðr; r; rÞ,

∇ðrKrrÞ ¼
4

3
r3½δrrγrr þ δrrγrr þ δrrγrr� þ

1

3
r4½∂rγrr þ ∂rγrr þ ∂rγrr� −

2

3
r4½Γl

rrγrl þ Γl
rrγrl þ Γl

rrγrl�
¼ 0: ðB5Þ
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For ðρ; μ; νÞ ¼ ðr; r; iÞ,

∇ðrKriÞ ¼
4

3
r3½δrrγri þ δrrγir þ δri γrr� þ

1

3
r4½∂rγri þ ∂rγir þ ∂iγrr� −

2

3
r4½Γl

rrγil þ Γl
riγrl þ Γl

irγrl�
¼ 0: ðB6Þ

For ðρ; μ; νÞ ¼ ðr; i; jÞ,

∇ðrKijÞ ¼
4

3
r3½δrrγij þ δri γjr þ δrjγri� þ

1

3
r4½∂rγij þ ∂iγjr þ ∂jγri� −

2

3
r4½Γl

riγjl þ Γl
ijγrl þ Γl

jrγil�

¼ 4

3
r3γij −

2

3
r4½r−1δliγjl þ r−1δljγil�

¼ 0: ðB7Þ

For ðρ; μ; νÞ ¼ ði; j; kÞ,

∇ðiKjkÞ ¼
4

3
r3½δri γjk þ δrjγki þ δrkγij� þ

1

3
r4½∂iγjk þ ∂jγki þ ∂kγij� −

2

3
r4½Γl

ijγkl þ Γl
jkγil þ Γl

kiγjl�

¼ 1

3
r4½∂iγjk þ ∂jγki þ ∂kγij� −

2

3
r4½γΓl

ijγkl þ γΓl
jkγil þ γΓl

kiγjl�

¼ 1

3
r4½∂iγjk þ ∂jγki þ ∂kγij−ð∂jγki þ ∂iγkj − ∂kγijÞ − ð∂kγij þ ∂jγik − ∂iγjkÞ − ð∂iγjk þ ∂kγji − ∂jγkiÞ�

¼ 0: ðB8Þ

As a result, ∇ðρKμνÞ ¼ 0 and the tensor Kab is a Killing tensor.
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