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We present exact solutions in Einstein-aether theory in a static spherically symmetric background space
with a spacelike aether field, as a difference with the usual selection of timelike aether field. We assume a
coupling between the scalar field and the aether field introduced in the aether coefficients. The exact
spacetimes describe hairy black hole solutions for which the limits of the Schwarzschild, de-Sitter
Schwarzschild and Reissner-Nordström metrics are recovered.
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I. INTRODUCTION

Einstein-Aether gravitational theory is a modification of
Einstein’s general relativity where the kinematic quantities
of a unitary timelike vector field, known as aether, are
introduced in the gravitational action integral [1–8]. The
introduction of the aether field indicates the selection of a
preferred frame which means that there is a violation of the
Lorentz symmetry [9]. Specifically, quadratic quantities of
the kinematic terms of the aether field are introduced
involving no more than two derivatives which lead to a
second-order theory as the case of general relativity. Another
important characteristic of the Einstein-Aether theory is that
it describes the classical limit of Hořava gravity [10–12].
More precisely, every hypersurface-orthogonal Einstein-
Aether solution is a Hořava solution [13]. The equivalence
between the Einstein-Aether and Hořava theories is true in
terms of exact solutions. In what regards however other
generic results,which follow from the direct formof the field
equations, this is not the case [14].
In order to study the effects of Lorentz violation in scalar

field theories, it has been proposed the introduction of a
scalar field in Einstein-Aether action. The most general
gravitational Action Integral with an arbitrary coupling
between the inflaton scalar field and the aether field is given
in [15]. A specific form of this Action Integral was
proposed by Kanno and Soda in [16] where the scalar
field is introduced as a quintessence and the couplings of
the aether with the gravitational field are functions of the
scalar field. This specific model was put forth in order to
study the impact of the Lorentz violation on the inflationary
scenario. Indeed, it was found that in this model the

inflationary stage is divided into two parts; the Lorentz
violating stage and the standard slow-roll stage. In the
Lorentz violating stage the universe expands as an exact
de Sitter spacetime, although the inflaton field is rolling
down the potential. Cosmological studies on isotropic and
anisotropic spacetimes for the Einstein-Aether theory can
be found in [17–28] and references therein.
As far as compact objects are concerned, the dynamics of

the field equations for inhomogeneous spherically symmet-
ric models in Einstein-Aether theory are studied in [29] for a
non-comoving perfect fluid source. Spherically symmetric
spacetimes with a perfect fluid and a scalar field are
investigated in [30] and new exact solutions are presented.
The integrability of the field equations for static spherical
symmetric spacetimes in Einstein-Aether theory with a
perfect fluid is investigated in [31] in addition to applying
the modified Tolman–Oppenheimer–Volkoff approach.
In the case of vacuum, exact black holes solutions in

Einstein-Aether theory are determined in [32], where it is
shown that the theory possesses spin-0, spin-1 and spin-2
metric modes whose speeds depend on the four coupling
coefficients of the aether field. These solutions have
similarities with the Schwarzschild spacetime outside the
horizon for a wide range of couplings. Black hole solutions
with parametrized post-Newtonian (PPN) parameters iden-
tical to those of general relativity are presented in [33]. In
general, Einstein-Aether black holes provide different
evolution of gravitational perturbations from that of a
Schwarzschild black hole [34]. Charged black hole sol-
utions in an n-dimensional spacetime with or without the
cosmological constant term were recently investigated in
[35]. The quasinormal models for Einstein-Aether black
hole solutions are studied numerically in [36,37], while the
matter accretion in Einstein-Aether black hole solutions is
analyzed in [38]. Some rotating spherically symmetric
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spacetimes in Einstein-Aether theory are given in [39]. For
other studies on compact stars in Einstein-Aether gravity we
refer the reader to [40–45] and references therein.
In this work we investigate the existence of exact

solutions in Einstein-Aether scalar field theory for a static
spherically symmetric background space. For the gravita-
tional action we consider the model proposed in [16]. We
require the field equations to admit a pointlike Lagrangian
which indicates that the aether field should be spacelike.
Models with a spacelike aether field have been previously
studied in the context of a small violation of the rotation
invariance in the early universe [46,47] or in theories in
higher dimensions [48–50]. The gravitational field equa-
tions depend on three unknown functions of the scalar field,
two are the coupling functions between the aether and the
scalar fields, while the third function is the scalar field
potential. For certain choices of these functions the system
possesses enough integrals of motion for the exact solution
to be derived. We show that under specific relations among
the constants of integration black hole solutions emerge.
What is more, under taking specific limiting values of the
parameters, one is led to the known solutions of the
Einstein(-Maxwell) equations of general relativity.
The outline of the paper is as follows: In Sec. II the

action integral and the general setting of the gravitational
theory of our consideration is presented. Section III
includes the main result of this work; we present the static,
spherically symmetric spacetime which consists the general
exact solution of the field equations and we give the
conditions under which this solution describes black holes
of the Einstein-Aether scalar field theory. In Sec. IV we
prove the existence of circular orbits for massive particles.
Finally, in Sec. V we summarize our results and we draw
our final conclusions.

II. EINSTEIN-AETHER SCALAR
FIELD THEORY

For the gravitational action integral we consider the
Einstein-Aether scalar field theory

S¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
gμν∇μϕ∇νϕ−VðϕÞþLAether

�
; ð1Þ

where R is the Ricci scalar, g ¼ DetðgμνÞ the metric
determinant, VðϕÞ the potential of the scalar field and
LAether indicates the Aether field Lagrangian density [16]

LAether ¼ Kαβ
μν∇αuμ∇βuν þ λ0ðuμuμ þ εÞ ð2Þ

where

Kαβ
μν ¼ −ðβ1ðϕÞgαβgμν þ β2ðϕÞδαμδβν þ β3ðϕÞδανδβμ

þ β4ðϕÞuαuβgμνÞ: ð3Þ

The function λ0 is a Lagrange multiplier and ε ¼ �1, 0
the constant which serves to fix the measure of the velocity
of the aether field as uμuμ ¼ −ε. On the other hand, the
coupling functions β1ðϕÞ; β2ðϕÞ; β3ðϕÞ and β4ðϕÞ define
the coupling between the aether field and the gravitational
field. In the typical Einstein-Aether theory the Aether field
uμ is assumed to be timelike [2,3] which means ε ¼ 1 in the
Lagrangian density (2). However, there exist modifications
of the theory where null-like, i.e., ε ¼ 0 [51,52], or
spacelike ε¼−1 [48–50] fields are considered. Although
various generic models that include spacelike vector fields
are known to be unstable [53], it is claimed that under
certain conditions stable configurations can be constructed
[54]. A spacelike aether field is what we consider in this
work by the means to extract from the action (1) a valid
pointlike Lagrangian, hence from now on we assume
ε ¼ −1.
By defining Jμα ¼ Kμν

αβ∇νuβ [4], the field equations for
the metric can be written as:

Rμν −
1

2
Rgμν ¼ TAether

μν þ TScalar
μν ð4Þ

with

TAether
μν ¼ 2β1ð∇μuα∇νuα −∇αuμ∇αuνÞ

− 2½∇αðuðμJανÞÞ þ∇αðuαJðμνÞÞ −∇αðuðμJανÞÞ�
− 2β4uαuβ∇αuμ∇βuν þ gμνLAether

þ 2½uβ∇αJαβ þ β4uαuβ∇αuκ∇βuκ�uμuν ð5Þ

and

TScalar
μν ¼ ∇μϕ∇νϕ −

1

2
gμνð∇αϕ∇αϕþ 2VðϕÞÞ ð6Þ

the energy momentum tensors for the aether and scalar
fields respectively. Additionally there also exist the equa-
tion of motion for the scalar ϕ, which is

∇μ∇μϕ −
dV
dϕ

−
dβ1
dϕ

∇νuμ∇νuμ −
dβ2
dϕ

ð∇μuμÞ2

−
dβ3
dϕ

∇μuν∇νuμ −
dβ4
dϕ

uαuβ∇αuμ∇βuμ ¼ 0; ð7Þ

and for the aether field uμ that leads to

∇μJμν þ β4uκ∇κuλ∇νuλ ¼ λ0uν: ð8Þ

When the aether field has the additional property
uα∇αuμ ¼ 0, then the fourth function β4ðϕÞ becomes
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irrelevant since all its contributions are trivial. Under this
condition it can thus be eliminated from the above
equations (see the corresponding relations in [4]).
In cosmological studies the action integral (1), has the

property that the gravitational field equations admit a
pointlike Lagrangian. The latter property is extremely useful
in the application ofwell-known results and techniques from
classical mechanics regarding Noether’s theorem. Solutions
of this type regarding a Friedmann–Lemaître–Robertson–
Walker and a Bianchi I spacetime are presented in [27,28].

A. Static spherically symmetric spacetime

In this work, for the background space we consider the
static, spherically symmetric spacetime with line element

ds2 ¼ −e2ðβðrÞþλðrÞÞdt2 þ NðrÞdr2
þ e2λðrÞ−βðrÞðdθ2 þ sin2 θdφ2Þ ð9Þ

and the spacelike velocity for the aether

uμ ¼ ð0; NðrÞ; 0; 0Þ; ð10Þ

for which additionally it holds that uα∇αuμ ¼ 0. Hence the
function β4ðϕÞ is excluded from our analysis.
With the above conditions we derive the pointlike

Lagrangian

LðN; β; β0; λ; λ0Þ ¼ e3λ

2N

�
−6FðϕÞλ02 þ 3MðϕÞβ02

4
− ϕ02

�

þ Nðeβþλ − e3λVðϕÞÞ; ð11Þ

where the prime denotes total derivative with respect to the
variable r. The functions FðϕÞ, MðϕÞ are defined as

FðϕÞ ¼ β1ðϕÞ þ 3β2ðϕÞ þ β3ðϕÞ − 1; ð12Þ

MðϕÞ ¼ −2½1þ 2ðβ1ðϕÞ þ β3ðϕÞÞ�: ð13Þ

The gravitational field equations (4) are equivalent to the
Euler-Lagrange equations d

drð∂L∂β0Þ−∂L
∂β¼0, ddr ð∂L∂λ0Þ − ∂L

∂λ ¼ 0,

with constraint equation ∂L
∂N ¼ 0. For the scalar field ϕ we

assume that it inherits the Killing symmetries of the
background space, which means that the equation of
motion (7) is given by the Euler-Lagrange equation
d
dr ð∂L∂ϕ0Þ − ∂L

∂ϕ ¼ 0. Last but not least, the field equation (8)
just serves to define the multiplier λ0. Having performed
this consistency check we can concentrate our analysis on
the reduced system described by (11).

III. BLACK HOLE SOLUTIONS

The nonlinear gravitational field equations depend on
three unknown functions, namely the coupling functions
FðϕÞ;MðϕÞ and the scalar field potential VðϕÞ. In the
following we consider specific functional forms of these
unknown functions so as to extract closed-form solutions
for the field equations.

A. The generic FðϕÞ= μϕ2, MðϕÞ= νϕ2, VðϕÞ= 0 case

In the particular case where FðϕÞ ¼ μϕ2, MðϕÞ ¼ νϕ2

and VðϕÞ ¼ 0, with μ; ν constants, the system admits three
linear in the velocities integrals of motion:

I1 ¼
e3λϕ2

N
ð2μλ0 þ νβ0Þ; ð14Þ

I2 ¼
e3λϕ
N

ð3μϕλ0 − ϕ0Þ; ð15Þ

I3 ¼
e3λϕ
N

½ϕðð3μνλ − ν lnϕÞβ0 − ð3μνβ þ 2μ lnϕÞλ0Þ
þ ðνβ þ 2μλÞϕ0�: ð16Þ

The fact that a quadratic dependence of F andM in ϕ gives
rise to these types of conservation laws is also known from
the cosmological case, see the recent [55].
The above conservation laws can be used in conjunction

with the field equations in order to derive the general
solution of the system. We avoid the presentation of the
cumbersome but straightforward procedure and we focus in
the end result which leads to the line element:

ds2 ¼ −
eA1r

½coshð ffiffiffiffiffi
κ1

p
rÞ� 2ð2μ−νÞ

μð1−3νÞ−2ν
dt2 þ ν2eκ3−A1r

½coshð ffiffiffiffiffi
κ1

p
rÞ� 6νð2μþ1Þ

μð3ν−1Þþ2ν

dr2

þ κ4eA2r

½coshð ffiffiffiffiffi
κ1

p
rÞ� 2ðμþνÞ

μð3ν−1Þþ2ν

ðdθ2 þ sin2θdφ2Þ ð17Þ

and the scalar field

ϕðrÞ ¼ eA3rþκ3
2

ffiffiffiffiffi
2ν

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μð3ν − 1Þ þ 2ν

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3κ1κ4μ

p ½cosh ð ffiffiffiffiffi
κ1

p
rÞ� 3μν

μð1−3νÞ−2ν
; ð18Þ

where κ4; κi; Ai, i ¼ 1, 2, 3 are all constants. The latter three
constants, A1, A2, A3, are not independent, but are the
combinations:

A1 ¼
2κ2ν

3μþ 2
þ 2

ffiffiffiffiffi
3ν

p ð2μþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ22νð3μν − μþ 2νÞ þ 3κ1μð3μþ 2Þ

p
ð3μþ 2Þðμð3ν − 1Þ þ 2νÞ ; ð19aÞ
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A2 ¼
2κ2ν

3μþ 2
−
2

ffiffiffiffiffi
3ν

p ðμþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ22νðμð3ν − 1Þ þ 2νÞ þ 3κ1μð3μþ 2Þ

p
ð3μþ 2Þðμð3ν − 1Þ þ 2νÞ ; ð19bÞ

A3 ¼ −
2κ2ν

3μþ 2
−

ffiffiffiffiffi
3ν

p
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ22νð3μν − μþ 2νÞ þ 3κ1μð3μþ 2Þ

p
ð3μþ 2Þðμð3ν − 1Þ þ 2νÞ : ð19cÞ

In order to judge if we have a black hole solution we first
need to make a transformation of the form

κ4eA2r

½cosh ð ffiffiffiffiffi
κ1

p
rÞ� 2ðμþνÞ

μð3ν−1Þþ2ν

↦ r̃2 ð20Þ

to associate the function multiplying the unit sphere part of
the metric, dΩ2 ¼ dθ2 þ sin2 θdφ2, with some radial dis-
tance. The mapping (20) forms an algebraic equation which
cannot be solved for all the values of the constants as
r ¼ rðr̃Þ. However, if we enforce the restriction

A2 ¼ −
2ðμþ νÞ

μð3ν − 1Þ þ 2ν

ffiffiffiffiffi
κ1

p
; ð21Þ

then the transformation

rðr̃Þ ¼ 1

2
ffiffiffiffiffi
κ1

p ln
�
2κ

μð3ν−1Þþ2ν
2ðμþνÞ

4 r̃
−3μνþμ−2ν

μþν − 1
�

ð22Þ

realizes the mapping (20) and the resulting line element
reads

ds2 ¼ −r2−
6μ
μþν

�
1 − 2κ

μð3ν−1Þþ2ν
2ðμþνÞ

4 r
−3μνþμ−2ν

μþν

� A1
2
ffiffiffi
κ1

p þ ν−2μ
μð3ν−1Þþ2ν

dt2

þ eCr
6μν
μþν

�
1 − 2κ

μð3ν−1Þþ2ν
2ðμþνÞ

4 r
−3μνþμ−2ν

μþν

� A1
2
ffiffiffi
κ1

p þ ν−2μ
μð3ν−1Þþ2ν

dr2

þ r2ðdθ2 þ sin2θdφ2Þ: ð23Þ

For simplicity we drop the tilde over r, but it is to be
understood that from now on the r appearing is different
than the one we had in (17). In addition, some constant
scalings in the t variable have been made in order to
simplify the line element. The constant C is a reparamet-
rization of the constant κ3 given by

κ3 ¼ ln
�
ð−1Þ

A1μð3ν−1Þþ2A1ν−6
ffiffiffi
κ1

p ð2μþ1Þν
2
ffiffiffi
κ1

p ðμð3ν−1Þþ2νÞ κ
3μνþμþν

μþν

4

�
þ C: ð24Þ

Finally, the corresponding scalar field is

ϕðrÞ ¼ ð−1Þ
A1μð3ν−1Þþ2A1νþA3μð6ν−2Þþ4A3ν−6

ffiffiffi
κ1

p ðμþ1Þν
4
ffiffiffi
κ1

p ðμð3ν−1Þþ2νÞ

×

ffiffi
2
3

q
ðμþ νÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3μν − μþ 2ν
p

ffiffiffi
μ

p ffiffiffi
ν

p ðμð3ν − 1Þ þ 2νÞ e
C
2

× r
3μν
μþν

�
1 − 2κ

μð3ν−1Þþ2ν
2ðμþνÞ

4 r
−3μνþμ−2ν

μþν

�1
2
ð A3ffiffiffi

κ1
p þ 3μν

μð3ν−1Þþ2νÞ: ð25Þ

B. Distinguishing black hole solutions

In order for the line element (23) to be able to describe a
black hole space-time we need at least to enforce two
further conditions: (i) demand the power of r in the
parenthesis to be negative, i.e.,

−3μνþ μ − 2ν

μþ ν
< 0 ð26Þ

and (ii) at the same time the power of the first parenthesis to
assume the value of an odd positive number

A1

2
ffiffiffiffiffi
κ1

p þ ν − 2μ

μð3ν − 1Þ þ 2ν
¼ 2kþ 1; k ∈ N: ð27Þ

so that the gtt and grr components of the metric can
interchange signs when crossing the Killing horizon. Of
course we also need to impose κ4 > 0, so that such an

horizon exists at a real distance r ¼ rh ¼ 2
μþν

μð3ν−1Þþ2ν
ffiffiffiffiffi
κ4

p ¼
ð2κÞ μþν

μð3ν−1Þþ2ν, where from now on for the simplicity of the

line element we define κ ¼ κ
μð3ν−1Þþ2ν

2ðμþνÞ
4 .

The above two conditions can be satisfied for an infinite
combination of μ and ν values. To demonstrate this, let us
take the case k ¼ 0 in (27), so that

A1

2
ffiffiffiffiffi
κ1

p þ ν − 2μ

μð3ν − 1Þ þ 2ν
¼ 1: ð28Þ

By using the above relation together with (19) and the
necessary condition (21), which is needed for the special
solution (23) to exist, we see that they are all compatible for
every nonzero value of μ > −1 and κ1 > 0 if ν ¼ 2μ. If we
insert the latter however in (26) we see that we obtain the
additional restriction μ > − 1

2
.
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As a result we have a black hole of the form

ds2 ¼ −
�
1 −

2κ

r2μþ1

�
dt2 þ eCr4μ

1 − 2κ
r2μþ1

dr2

þ r2ðdθ2 þ sin2 θdφ2Þ ð29Þ

corresponding to the scalar field

ϕðrÞ ¼ � e
C
2r2μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−μð2μþ 1Þp ð30Þ

with the restriction μ > − 1
2
(and of course μ ≠ 0). Notice

that if μ > 0 the scalar field ϕ is imaginary, which makes its
contribution in the action to be that of a phantom field. On
the contrary, when − 1

2
< μ < 0 we have a solution with a

canonical scalar field.
In addition, we observe that apart from the constant κ,

which can be associated with the mass of the black hole, the
line element (29) carries a dependence on the constant C
that emerges from the matter content, i.e., the scalar field.
We thus deduce that this is a hairy black hole since another
constant appears in addition to the mass (in this particular
case we have not considered an electromagnetic field or a
rotating solution for an additional charge or an angular
momentum respectively). Through the use of curvature
scalars it is a simple task to indeed verify that both κ and C
are essential for the geometry, i.e., they cannot be absorbed
with a diffeomorphism [56]. Take for example the triplet
q ¼ ðq1; q2; q3Þ with q1 ¼ R, q2 ¼ ∇αR∇αR and the
Kretschmann scalar q3 ¼ RαβγδRαβγδ; then the matrix

J ij ¼ ∂qi∂vj with v ¼ ðr; κ; CÞ, i, j ¼ 1, 2, 3, is invertible.
As a result, you can in principle use one of the equations
defined by the qi to solve with respect to r and substitute
in the remaining couple, then two algebraically indepen-
dent relations of the form f1ðq1; q2; q3; κ; CÞ ¼ 0,
f2ðq1; q2; q3; κ; CÞ ¼ 0 will be formed, involving both κ
and C, and with the property of being invariant under local
coordinate transformations. Hence, neither κ nor C can be
eliminated through such a mapping.
We observe that for μ → 0 and by assuming eC → 1, the

spacetime (29) takes the form of the Schwarzschild black
hole, thus for small values of μ and C ¼ 0 the line element
(29) becomes

ds2 ¼ ds2Schwarzschild þ μ

�
−4κ

ln r
r

dt2 þ 4rðr − 3κÞ ln r
ðr − 2κÞ2 dr2

�

þOðμ2Þ ð31Þ

Alternatively, we may introduce the transformation

r ¼ ð2μþ 1Þ 1
2μþ1R

1
2μþ1 to write the line element (29) as

ds2 ¼ −
�
1−

2κ

ð1þ 2μÞR
�
dt2 þ eC

�
1−

2κ

ð1þ 2μÞR
�

−1
dR2

þ ð1þ 2μÞ 2
2μþ1R

2
2μþ1ðdθ2 þ sin2 θdφ2Þ: ð32Þ

The above metric, although it is distinct, it resembles in
some parts solutions expressing non-asymptotically flat
black holes in the context of Einstein-Maxwell-dilaton
gravity presented in [57].
It is interesting to note here that for solution (29) the field

uμ ¼
�
0;

eCr4μ

1 − 2κ
r2μþ1

; 0; 0

�
ð33Þ

diverges on the Killing horizon rh ¼ ð2κÞ 1
2μþ1. This problem

can be eliminated from the aether through an appropriate
coordinate transformation. By performing a reparametriza-
tion of the radial variable R in (32) such that

NðRÞdR ¼ dρ ⇒
e
C
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi			1 − 2κ

ð1þ2μÞRðρÞ
			

r dR
dρ

¼ 1; ð34Þ

both uμ and uμ assume vector components (0,1,0,0) and
thus are everywhere regular. Unfortunately, the explicit
form of RðρÞ that solves (34) cannot be written in terms of
elementary functions to present it explicitly here. It is not
common to have fields which diverge on the horizon, but it
is not unprecedented. In [58] a black hole solution is
presented with a diverging scalar field in the horizon and it
is explained how this cannot produce physical effects in the
geodesic motion of a particle in that particular case. In that
spirit we can also argue that expression (33) does not really
create a problem. In order to couple a relativistic particle
with a vector field in a parametrization invariant manner,
i.e., a Lagrangian which is homogeneous of degree one in
the velocities, we would need to either multiply the square
root Lagrangian Lrel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

p
with scalars of uμ,

which are regular on the horizon (e.g., uμuμ ¼ 1) or by
adding a term similar to that of coupling an electromagnetic
vector field, i.e., _xμuμ, which however does not affect the
dynamics because in this case it is a total derivative:
_xμuμ ¼ NðrÞ_r ¼ _G, where G ¼ R

NðrÞdr (or alternatively
because the corresponding field strength, Fμν ¼
∇νuμ −∇μuν, is zero for our choice of uμ).
At this point we need to make an important discussion.

The line elements we introduced satisfy some minimal
requirements that a black hole solution requires. However
we need to remember that, in Lorentz violating theories,
there exists the possibility of superluminal and in some
cases even instantaneous motion, which makes the actual
definition of a black hole rather challenging [59,60]. Even
though the Killing horizon forms a trapping surface for
ordinary matter it has been shown that, in Lorentz violating
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theories, it is possible to have wave modes with velocities
faster than light. As a result information seems in principle
capable of escaping outside r ¼ rh. For that matter, in
theories where a preferred spacelike foliation exists, the
concept of the universal horizon was discovered [61]. The
latter serves as an ultimate trapping surface which can trap
modes of any speed, even of infinite. In Einstein-aether
theory the situation is a little better in that respect since the
relevant speeds are finite [62] and the casual structure
remains similar to that of General Relativity; thus one can
consider multiple horizons formed by each mode.
In our case however, we need to recognize that we

consider a theory where the aether is spacelike and not
timelike, i.e., we do not have a theory with a preferred
spacelike foliation. In our case the Lorentz symmetry is
violated indirectly through breaking the homogeneity of the
three space with respect to the Euclidean translations. To
see this consider the zero “mass” limit, κ ¼ 0, of (32) which
yields

ds2κ¼0¼−dt2þe−
C
2μ½lnðR̃2μÞ�1μ

R̃2
ðdR̃2þR̃2dθ2þR̃2sin2θdφ2Þ;

ð35Þ

where we performed a transformation R ¼
1

2μþ1
ð2e−c

2μ lnðR̃ÞÞ2μþ1
2μ assuming μ ≠ 0. Inside the parenthe-

sis of (35) we see the line element of the flat three
dimensional space. Due to μ not being zero however, this
is multiplied by a factor that is still invariant under
rotations, but not under translations. As a result the four
dimensional line element is not that of the flat space and
naturally it is not invariant under Lorentz transformations.
We do not know how exactly the choice of a spacelike

aether field we make here might affect the theory in what
regards a possible superluminal motion. What is more,
when the velocity of the various propagating modes is
calculated in the typical Einstein-aether theory, excitations
around a flat space are considered [63]. As we mentioned
however, in our configuration the flat space does not form a
solution to the theory—not unless you completely remove
the aether by taking μ ¼ 0, C ¼ 0. What is more, the aether
is dynamically coupled to the scalar field through the
dependence of the βiðϕÞ, which adds an additional com-
plication. Such a calculation is highly nontrivial and to our
knowledge there is no work that offers a result on this
configuration. Nevertheless we want to see if the remaining
freedom in the theory—due to unspecified parameters we
have—can offer some way out in case there are wave
modes that tend to “break” the Killing horizon of the
space-time.
Let us first write the coupling coefficients βiðϕÞ, which

are expected to enter the expressions for the velocities of
the modes of the theory. For the particular solution given by
(29) and (30) we obtain:

β1 ¼
1

2

�
r
rh

�
4μ

−
1

2
− β3; β2 ¼

1

2
−
1

2

�
r
rh

�
4μ

; ð36Þ

where the β3ðϕÞ remains arbitrary and there is no β4ðϕÞ
since it does not affect the dynamics for our choice of aether
field. In the above relations we chose to substitute the
constant C appearing in (29) and (30) as

C ¼ ln

�
1þ 2μ

r4μh

�
: ð37Þ

In other words we remove the hair by associating C with μ

and rh ¼ ð2κÞ 1
2μþ1, the distance of the Killing horizon. We

make the above choice for the following reason: In (36) we
observe that the couplings depend on the distance. If this
dependence survives inside the velocities it would be
crucial to have such a ratio appearing in the expressions
because we could manipulate the freedom of the rest of the
parameters in order to at least achieve velocities that are
subluminal inside the Killing horizon r ≤ rh, thus the
relative modes would not be able to escape it. Due to
the fact that μ ¼ 0 recovers the general relativity solutions
and in particular the Schwarzschild metric it is reasonable
to assume that at the limit μ → 0, any velocity function
v2i ¼ v2i ððr=rhÞμÞ of a mode, denoted by the index i, that
propagates has the form

v2i ¼ 1þ hðβ3Þμ ln

�
r
rh

�
þOðμ2Þ: ð38Þ

In other words, a propagating mode, when μ ¼ 0, must
travel at most with the speed of light which in our units is
c ¼ 1. Whether vi is to be subluminal inside the horizon
r < rh is now a matter of the relative sign of μ and the
function hðβ3Þ which generally depends on the free
coupling parameter that we have. Note that r → 0 does
not make the velocity infinite. Equation (38) is an approxi-
mate expression in the μ → 0 limit and the latter goes faster
to zero than lnð rrhÞ goes to −∞.
Just as a demonstration of the above, let us make a naive

substitution into the velocities of the wave modes as they
are derived for the typical Einstein-aether theory. As we
stated above, of course we do not expect the following
relations to be applicable in our case since they are derived
under completely different assumptions (timelike aether,
flat background, no scalar field). We just want to use them
as a form of application of our argument about equa-
tion (38). The expressions of these velocities can be found
in the seminal work by T. Jacobson and D. Mattingly [63]
where they use ci for the parameters of the theory instead of
the βi we utilize here. We generally follow the conventions
by Carroll et. al. [64], according to which the βi are
connected to the ci of [63] through the relations
βi ¼ ci

16πGm2, where m2 is the normalization constant for
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the aether. In a crude attempt to introduce the fact that we
use a spacelike aether we set m2 ¼ −1 in these relations.1

At the same time, according to the action we adopted (1),
we have in our units 8πG ¼ 1. Thus, we use the identi-
fication βi ¼ −ci

2
and write the relations obtained in [63] as

v22 ¼
1

2β1 þ 2β3 þ 1
ð39Þ

v21 ¼
β21 þ β1 − β23

ð2β1 þ 2β3 þ 1Þðβ1 þ β4Þ
ð40Þ

v20¼−
ðβ1þβ4þ1Þðβ1þβ2þβ3Þ

ð2β1þ2β3þ1Þðβ1þβ4Þðβ1þ3β2þβ3−1Þ : ð41Þ

The mode with velocity v0 does not propagate in our case
since β1 þ β2 þ β3 ¼ 0, see (36). By using the latter in the
remaining two expressions we have

v22 ¼
�
r
rh

�
−4μ

≃ 1 − 4μ ln

�
r
rh

�
þOðμ2Þ ð42Þ

v21 ¼
4β3h4μ þ h8μr−4μ − r4μ

ð4β3 þ 2Þh4μ − 2r4μ

≃ 1þ 4μ2

β3

�
ln

�
rh
r

��
2

þOðμ3Þ; ð43Þ

where we observe what we wanted to demonstrate with
(38). In order to keep v2 subluminal inside the horizon
r ≤ rh, where lnð rrhÞ ≤ 0, we need to consider μ < 0. At the
same time we see that as μ → 0− the velocity v1 can be kept
smaller that the speed of light by simply requiring β3 < 0.
In fact β3 can also depend on ϕ and through it on the ratio
r
rh
. As a result we can just alternatively choose β3 to make

zero v1 altogether. However we see that even under the
more restrictive assumption β3 ¼ constant we can still
manipulate the expressions successfully.
Of course from the moment we do not have the exact

relations for the particular theory we consider, we cannot be
certain that the propagating modes can truly be controlled
in this manner. However, the fact that the solution is
continuously and smoothly connected to the one from
general relativity as μ → 0, together with the remaining
freedom we have in some of the parameters, indicates that
there is hope that under certain restrictions the black hole
definition does not completely break down. What is more,
the fact that the black hole hair might be important in this
respect, through their removal by associating them with the
rest of the parameters, is particularly interesting.

C. The case of cosmological constant

It is easy to add a cosmological constant Λ to the
previous solution (29). In particular, we observe that the
line element

ds2 ¼ −
�
1 −

2κ

r2μþ1
þ lr2

�
dt2 þ eCr4μ

1 − 2κ
r2μþ1 þ lr2

dr2

þ r2ðdθ2 þ sin2 θdφ2Þ; ð44Þ

where l is a constant, together with the same expression for
the scalar field given by (30), satisfy the field equations
with FðϕÞ ¼ μϕ2, MðϕÞ ¼ νϕ2, VðϕÞ ¼ Λ, with l ¼
− 2μþ1

2μþ3
Λ. That is it forms the solution when a cosmological

constant Λ is also considered.
However we must note that another singularity is added

in this case when r → þ∞ for − 1
2
< μ < 0 since the scalar

curvature is now

R¼ 2

r2
þ2e−C

�
8ðμ−1Þμκ
r3ð2μþ1Þ þð4μ−1Þ

r2ð2μþ1Þ þ
6lðμ−1Þ

r4μ

�
: ð45Þ

This means that in the presence of a cosmological constant
we have to further restrict μ to be positive so that the second
singularity at infinity is avoided. Again, we notice that at
the limit μ → 0, C ¼ 0, the known from general relativity
solution with a cosmological constant is obtained with
R ¼ −12l.

D. The case of electrostatic field

Alternatively (or in addition to the above) one may
consider an appropriate electrostatic field. In this case we
obtain

ds2 ¼ −
�
1 −

2κ

r2μþ1
þ ð1 − 4μ2Þ e

−CQ2

r2

�
dt2

þ eCr4μ

1 − 2κ
r2μþ1 þ ð1 − 4μ2Þ e−CQ2

r2

dr2

þ r2ðdθ2 þ sin2θdφ2Þ ð46Þ

which corresponds to a solution in the presence of an
electric field with potentialUðrÞ ¼ Q

r1−2μ, if we include in the
right-hand side of (4) the energy momentum tensor

TEM
μν ¼ 2FμκF κ

ν −
1

2
gμνFκλFκλ; ð47Þ

where Fμν ¼ ∇μAν −∇νAμ and A ¼ UðrÞdt. Once more
the solution is compatible with the expression (30) for the
scalar field.

1This part is not crucial in the analysis, similar results can be
obtained form2 ¼ 1, but for a different choice for the signs of the
parameters.
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IV. EXISTENCE OF CIRCULAR ORBITS

In this section we investigate whether the new black
hole solution (29) supports stable trajectories of massive
particles.
Lets assume the affinely parametrized geodesic

equations for a timelike particle in a space-time whose
line element is (29). The system is described by the
Lagrangian

LGeodesic ¼−
1

2
ζðrÞ

�
dt
ds

�
2

þ1

2

eCr4μ

ζðrÞ
�
dr
ds

�
2

þ1

2
r2
�
dΩ
ds

�
2

;

ð48Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 and ζðrÞ ¼ 1 − 2κ
r2μþ1. The

geodesic equations admit the conservation laws

ζðrÞ dt
ds

¼ E; r2sin2θ
dφ
ds

¼ L0 ð49Þ

while the Hamiltonian of (48) in the equatorial plane θ ¼ π
2

and for the case of a timelike particle yields

eCr4μ
�
dr
ds

�
2

¼ E2 −
�
2þ L2

0

r2

�
ζðrÞ ð50Þ

As previously, we define the new variable dR ¼ r2μdr
which gives R ¼ 1

2μþ1
r2μþ1, hence the latter equation

becomes

eC
�
dR
ds

�
2

¼ E2 − VgðRÞ ð51Þ

where now

VgðRÞ ¼ 2

�
1 −

K̄
R

�
þ L̄2

Rμ̄ − K̄
L̄2

R1þμ̄ ð52Þ

and L̄2 ¼ ðμ̄
2
Þμ̄2L2

0; K̄ ¼ μ̄κ and μ̄ ¼ 2
1þ2μ. For real valued

scalar field, that is, for − 1
2
< μ < 0, i.e., μ̄ > 0 and for large

values of R, which also means large values of r, the
dominant terms are those of the Newtonian potential, that
is VgðRÞ ≃ 2ð1 − K̄

RÞ.
We consider the special case where K̄ ¼ 1; L̄2 ¼ 10 and

μ̄ ¼ 3, then VgðRÞ ¼ 2ð1 − 1
RÞ þ 10

R3 − 10
R4 and d

dRðVgðRÞÞ¼
2
R5 ð20−15RþR3Þ, thus the stationary point d

dR ðVgðRÞÞ ¼ 0

is found on the positions R1 ≃ 1.61 and R2 ≃ 2.81. For this
set of values the Killing horizon is located on R ¼ 1, thus
both stationary points are outside of the latter. Point R1 is
unstable, that is d2

dR2 ðVgðRÞÞjR→R1
< 0 while point R2 is an

attractor, since d2

dR2 ðVgðRÞÞjR→R2
> 0. In Fig. 1 we present

potential VgðRÞ for K̄ ¼ 1; L̄2 ¼ 10 from where it is clear

that there are periodic solutions around the stationary
point R2.
In order to understand the deviation from the

Schwarzschild solution we consider K̄ ¼ 1, L̄2 ¼ 3 and
in Fig. 2 we present the qualitative evolution of RðsÞ for

K

FIG. 1. Evolution of the gravitational potential VgðRÞ ¼
2ð1 − 1

RÞ þ 10
R3 − 10

R4.

FIG. 2. Qualitative evolution of RðsÞ around the periodic
solution for various values of μ̄. Solid line is for μ̄ ¼ 2, which
correspond to the Schwarzschild solution (μ ¼ 0), dashed line is
for μ̄ ¼ 2.01, dotted line is for μ̄ ¼ 2.1 and dashed-dotted line is
for μ̄ ¼ 3. The evolution is for K̄ ¼ 1, L̄2 ¼ 3 and C ¼ 0.
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various values of μ̄. We observe that there is a deviation
from the Schwarzschild solution in the period of the
oscillation. The trajectories presented in Fig. 2 are for
the same initial conditions.

V. CONCLUSIONS

In this work we studied the existence of exact static
spherically symmetric solutions in Einstein-Aether scalar
field gravity with an interaction between the scalar field and
the Aether. For the gravitational theory proposed by Kanno
and Soda [16] and for the requirement the field equations to
admit a pointlike Lagrangian we were able to find analytic
and exact solutions for specific functional forms of the
unknown functions. We distinguished conditions that are
necessary for certain black hole space-times to emerge.
The solutions correspond to a massless scalar field and can
be modified appropriately to introduce a cosmological
constant and/or an electrostatic field to contribute in the
effective fluid.
The black hole solutions that we presented admit an

additional (apart from the mass) constant of integration C in
the metric. The latter emanates from the scalar content of
the theory and allows us to characterize these solutions as
hairy black holes. Surprisingly enough, a limit exists that
connects the resulting space-time to the known static
black hole solutions of general relativity. When we have
μ → 0, C → 0, the solutions that we found tend to the
Schwarzschild, the de-Sitter Schwarzschild and Reissner-
Nordström metrics. Hence, we can say that μ in these cases
appears as a measure of the radial modification produced
due to the aether having a velocity in the r direction, that is,
due to the Lorentz violation.
We need to mention that the solutions we derived so far

correspond to specific combinations of the free parameters
μ and ν. However, these combinations are not unique in
giving black hole space-times. For instance, if we take
μ ¼ − 1

6
, ν ¼ 1 we get the exact solution

ds2 ¼ −r165
�
1 −

2κ

r2

�
3

dt2 þ eCr−
6
5

ð1 − 2κ
r2Þ3

dr2

þ r2ðdθ2 þ sin2 θdφ2Þ ð53Þ

with scalar field

ϕðrÞ ¼ �
ffiffiffi
5

3

r
e
C
2

r
3
5ð1 − 2κ

r2Þ
; ð54Þ

which is distinct from what we had previously. The
resulting space-time admits a curvature singularity at the
origin r ¼ 0, while r ¼ ffiffiffiffiffi

2κ
p

is a coordinate singularity.
This indicates that there is a rich structure in the theory
which leads to various black hole solutions.
Finally, it is straightforward to see that the above results

have their cosmological counterparts which are obtained
through the transformations: t ↔ r;ϕ ↦ iϕ. That is, we
need only interchange t with r in the above line elements
and wherever we have ϕ, put in its place iϕ. For example if
we take (29) and (30) the cosmological dual solution is

ds2 ¼ −
eCt4μ

1 − 2κ
t2μþ1

dt2 þ
�
1 −

2κ

t2μþ1

�
dr2

þ t2ðdθ2 þ sin2 θdφ2Þ ð55Þ

with

ϕðtÞ ¼ � e
C
2t2μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μð2μþ 1Þp ; ð56Þ

and it corresponds to a theory with F ¼ −μϕ2 and
M ¼ −νϕ2. Since there is no obligation for having an
horizon here, κ can be taken negative. We remark that in the
case of cosmological solutions the aether field is timelike.
In a future work we plan to extend our study on the

thermodynamics properties of these new black hole
solutions.
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