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We introduce a very early universe model based on the thermodynamics of a gas of closed strings in a
background that is nonperturbative in α0. Upon considering the fully α0-corrected equations extended to
include certain anisotropic cosmological backgrounds, we describe the evolution of the system in three
different stages parametrized by the gas’s equation of state. Using standard string thermodynamical
arguments, we start with an isotropic ten-dimensional universe inside the string scale and evolve it
toward a universe with four large spacetime dimensions and six stabilized internal dimensions in the
Einstein frame.
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I. INTRODUCTION

The ΛCDM model is quite successful. Relying
solely on six free parameters, it is able to account
for most of the current cosmological data [1], which has
become abundant for the last 30 years. It provides a
description of the evolution of the Universe that extends
from a fraction of a second to its current age, around
13.8 × 109 years [2].
An attachment to the ΛCDM model is the inflationary

paradigm for the very early universe. Inflation [3–9]
postulates a phase of accelerated expansion in the early
universe that explains why the Universe we live in seems to
be so spatially flat, so large, and nearly homogeneous. It
also explains how the small fluctuations in the cosmic
microwave background are generated and why they are
almost scale invariant, and therefore it also explains how
structures such as galaxies and galaxy clusters have been
formed in our Universe. However, inflation does not
explain away all the problems. Both the ΛCDM model
and inflation rely on general relativity, which is shown
to be unavoidably singular in the very early universe
considering these models’ matter content [10–13]. It is
expected that only a fully fledged theory of quantum
gravity (QG) could yield a nonsingular cosmology, thus

explaining what really happens to the spacetime close to
diverging curvature regions.
String theory is one of the most promising candidates

for a QG theory. Among its successes, the theory provides
a possible framework for unifying all the known inter-
actions of nature. One of the main advantages to consider
strings as being fundamental instead of point particles is
the fact that the singularity theorems may be avoided.
This is easy to understand intuitively, since as the energy
scale gets higher, the energy can flow into the additional
degrees of freedom present due to the extra dimension-
ality of the string.
In fact, not only does string theory have new degrees

of freedom, it also contains new symmetries. Particularly,
on compact manifolds, strings also have winding modes,
besides the quantized momentum modes, that corres-
pond to strings wound in closed cycles [14]. Because of
the existence of these different types of modes, toroidal
compactifications present a new symmetry: T-duality [15].
This symmetry implies that physics in geometries with
characteristic radius R is equivalent to physics in geom-
etries with characteristic radius l2s=R, where ls is the
string length.
Furthermore, it is worth noting that a thermodynamical

treatment of a gas of strings also obeys this symmetry,
which can be seen from the thermal partition function of a
gas of closed strings in a toroidal background [16]. This
implies that the temperature TðRÞ remains finite as the
torus’s radius, R, runs from 0 to ls while considering the
total entropy to be constant. Moreover, if the gas of strings
contains a large entropy, then, for a wide range of values of
R on either side of the string scale, TðRÞ hovers just below
the Hagedorn temperature TH, the maximal temperature for
a gas of closed strings [17].
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Given that thermal effects may be important for realistic
cosmological backgrounds, the above considerations gave
rise to the string gas cosmology (SGC)1 scenario [19] (see
also [20]), according to which the spacetime geometry is
locally R × T9 and the universe emerges from a phase in
which matter is made of a gas of strings with temperature
close to the Hagedorn temperature, while the T-duality
symmetry in the matter sector is unbroken. It was postu-
lated that this phase is quasistatic in the sense that the scale
factor in the Einstein frame (EF) is nearly constant. Later, it
was shown that thermal fluctuations of the string gas lead
to a nearly scale-invariant spectrum of cosmological per-
turbations with a small red tilt [21] for the scalar modes
and a slight blue tilt [22,23] for tensor modes. The fluc-
tuations are Gaussian and have Poisson-suppressed non-
Gaussianities on large scales [24]. Hence, SGC yields an
alternative to the cosmological inflationary paradigm for
explaining the origin of structure in the universe (see, e.g.,
[25–27] for reviews of SGC).
As studied in [28–31], size moduli of the extra spatial

dimensions are naturally stabilized at the string scale by
the interplay between momentum and winding modes.
Similarly, shape moduli of the extra dimensions can be
stabilized by stringy effects [32]. Nonperturbative effects
like gaugino condensation can be used to stabilize the
dilaton [33] without interfering with the stabilization of the
other moduli. This nonperturbative mechanism then leads
to supersymmetry breaking at the string scale [34]. The key
open issue in SGC is to justify the assumption that the EF
scale factor is, in fact, nearly constant in the high temper-
ature phase. If we were to use Einstein gravity, we would
not obtain an almost constant scale factor in a phase of high
string gas energy density.
However, the Einstein equations are clearly not the correct

equations to use for the background dynamics since they are
inconsistent with the T-duality symmetry of string theory.
Pre-big-bang cosmology [35] (see also [36,37] for a review)
is an attempt to study early universe cosmology in the
context of dilaton gravity where there is a scale factor duality
symmetry between solutions. However, the static phase
required by SGC is not a solution of the equations, and
even if it were it would not be justified since such equations
are not valid anymore for high energy densities.
The dilaton-gravity equations are actually low energy

equations for the bosonic sector of the supergravity
theory for the background (massless) fields of superstring
theories, once we turn off all the fluxes. In fact, the mass-
less Neveu-Schwarz (NS-NS) sector is universal for all ten-
dimensional superstring theories and has the same action
for closed superstrings [38]. In applications to cosmo-
logy, such equations are typically sourced by the energy-
momentum tensor of a perfect fluid [39]. For a gas of

strings, the energy-momentum tensor has exactly this form
with an equation of state (EoS) that depends on the modes
that dominate the gas: for compact directions with size
smaller (greater) than the string length, winding (momen-
tum) modes are energetically favorable [19].
If we are after solutions with high energy density, such as

during the static phase in the EF of SGC, we need to correct
the bosonic NS-NS sector of the supergravity action with
higher order operators. These operators are associated with
α0 and gs corrections. The former are related to the string
length, given by ls ≡

ffiffiffiffi
α0

p
which sets the string scale, thus

present even at classical level, while the latter are due to
string interactions and account for quantum corrections.
They correspond to the two-dimensional sigma model and
spacetime perturbative expansions, respectively. Having
the set of fully corrected equations is one of the most
desirable achievements in string theory, as it could be used
to answer all sorts of nonperturbative and phenomenologi-
cal questions.
An interesting point of view is that due to the extensive

nature of its fundamental constituents, string theory gives
rise to a new kind of geometry at the nonperturbative level,
a string quantum geometry [40]. In the limit gs → 0 and
α0=R2 → 0 (where R is the characteristic radius of space-
time curvature) we are back to Einstein theory plus classical
fields, while at any given order in both expansions there are
corrections to this limit. Note that these limits are not
completely independent, since the string coupling is not a
free parameter, being fixed by the dilaton’s vacuum expect-
ation value, gs ¼ ehϕi. However, if the equations admit
solutions with a small string coupling, then we can neglect
the quantum corrections to leading order while keeping all
α0 corrections in the nonperturbative regime, which gives
rise to the classical string geometry limit, i.e., the geometry
of the tree-level string theory.
Although it is expected that the final equations are

background invariant [41], significant progress has been
made recently for purely time-dependent backgrounds at
tree level. This was due to the fact that for such back-
grounds there is a noncompact symmetry acting in the field
space [42]. Indeed, for a cosmological ansatz in D ¼ dþ 1
dimensions, the scale factor duality [43] is a particular
discrete transformation within a global Oðd; dÞ group [44].
Restricted to the lowest order terms, a duality covariant
formalism was established in [44], including the energy
momentum tensor of a gas of strings, that was shown to
transform covariantly under the Oðd; dÞ group. Moreover,
in [45] it was shown that the Oðd; dÞ symmetry should
be present to all orders in α0 and, in fact, it was shown in
[46] that although the first corrections modify the duality
transformation, there are field variables in which they
remain unchanged. Assuming that to be the case at any
order, all possible corrections were classified in [47] for the
vacuum case. The formalism was extended to include
matter couplings through an Oðd; dÞ invariant matter action

1Recently the dynamics of SGC has been embedded into a
more general proposal called Emergent scenario [18].
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in [48], establishing the α0-cosmology framework within
which perturbative and nonperturbative solutions were
found. In [49] such solutions were shown to hold even
with a nontrivial dilatonic charge, and their stability under
homogeneous perturbations was studied.
In the following sections, we propose an early universe

cosmological scenario based on these solutions. It starts
off with ten dimensions where nine spatial dimensions are
smaller than the string length and evolves such that at
the end we have four large spacetime dimensions while
the other six spatial dimensions remain stabilized around
the string length. This is realized after considering a gas of
strings sourcing the equations assuming the expected
evolution of the equation of state for a gas of strings in
the most natural way [50] and then solving the dynamics in
three stages. Surprisingly, the α0-corrected equations sup-
port a static phase in the Einstein frame as postulated by
SGC, though in ten dimensions.
The outline of the paper is as follows. In Sec. II, we

summarize the construction and heuristics of the model. In
Sec. III, we discuss technical details, in particular how we
can get four-dimensional equations from α0-cosmology
after having extended the framework to include a certain
class of anisotropic cosmological backgrounds. The quan-
titative aspects of the model are introduced in Sec. IV,
where the dynamics both in the string frame and in the
Einstein frame are discussed. Then we conclude in Sec. V.

II. SUMMARY OF THE MODEL

In SGC, the thermodynamics of a gas of strings in a
(dþ 1)-dimensional compact space can be separated into
three types of EoS assuming a barotropic perfect fluid, such
that p ¼ wρ: a winding EoS, with w ¼ −1=d; a radiation
EoS, with w ¼ 1=d; and a pressureless one, with w ¼ 0.
Indeed, for a noninteracting isotropic gas of strings on an
isotropic toroidal background Td winding modes are
energetically favorable if the radius of the torus is smaller
than the string length, so that the fluid is dominated by
these modes and has a winding EoS. On the other hand,
momentum modes dominate when the radius is greater
than the string length such that the fluid has a radiation EoS
in this case. Close to the T-duality self-dual radius

ffiffiffiffi
α0

p
,

both modes contribute with the same magnitude to the
pressure, but with opposite signs, giving rise effectively to a
dustlike EoS, since the oscillatory modes which are also
excited around the self-dual radius yield a pressureless fluid
as well [27].
Note that in order to calculate how each string state

contributes to the energy and pressure of the string gas,
the mass spectrum of a single string in a static toroidal
spacetime is used. In SGC, an adiabatic approximation is
assumed, such that we can approximate the spectrum in a
cosmological spacetime by simply promoting the radius of
the torus to be the time dependent scale factor [27]. In the
following, we use the results obtained from the adiabatic

approximation, in particular the equations of state described
above, even though the background is an expanding
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology
with Hubble parameter close to the string scale. The
justification comes from T-duality, since once it holds to
all orders in α0, there should be winding and momentum
modes among the states. Thus, even for the full spectrum in
the time-dependent background, we expect these modes to
dominate the string gas states.
In the string frame (SF), we assume an initial high

density string gas phase on a cosmological spacetime
that has the topology of R × T9 with all spatial directions
compactified on a nine-dimensional torus with radius
smaller than the string length. As discussed in previous
paragraphs, the string gas starts off with a winding EoS.
Now, given that the energy density is closer to the string
scale, the α0-corrected cosmological equations of [48,49]
should be the ones to rule the background evolution,
which is expected to be nonperturbative in α0. It was
shown that there are nonperturbative d-dimensional de
Sitter (dS) solutions, HðtÞ ¼ H0 (in string frame) with
constant equation of state, w ¼ w0, and the dilaton’s
evolution completely parametrized by these two constants
[see (12)]. Thus, the natural solution for this initial stage is a
compactified dS10 solution with a winding equation of
state, with all directions expanding until their physical
radius becomes of the order of

ffiffiffiffi
α0

p
. This stage corresponds

to a static phase in the Einstein frame as described in
Sec. IV B 1.
As the background approaches a characteristic length

equal to the string size, the string gas fluid ceases to have a
winding EoS, since oscillatory and momentum modes start
to get excited. Thus, the EoS evolves toward zero as the
physical radii get closer to the string scale. This establishes
the second stage of the dynamics. There is an important
caveat here: as the EoS approaches zero, the geometry
departures from being isotropic in all spatial directions
and it divides into two independent isotropic sectors: an
internal six-dimensional one, for which the EoS associated
with these dimensions stops evolving as it reaches zero,
and an external three-dimensional one, for which the
EoS keeps evolving toward a radiation EoS. This happens
because the winding modes can annihilate completely only
in the latter sector, while in the former they remain existing
and helping to stabilize the internal EoS together with the
momentum modes [19]. In Sec. III C, we show explicitly
that there are solutions with static directions with pi ¼ 0
and _wi ¼ 0 so that the balance between winding and
momentum modes at the string scale can potentially
stabilize all the internal directions, as previously suggested
by [28,30]. This is the end of the dynamics of the internal
directions in the SF, while in the EF they start to contract as
described in Sec. IV B 2.
Since the winding modes completely decay into momen-

tum modes in the external sector, the EoS continues
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evolving until becoming a radiation EoS, which allows the
external directions to remain dynamical. This, together
with the freezing of the internal sector, is the SGC
mechanism for generating a three-dimensional cosmology
from a ten-dimensional one. After the radiation EoS is
settled, we enter the third stage of the model, where we
have an anisotropic cosmology with six static spatial
internal directions with w ¼ 0 and three evolving external
directions with w ¼ 1=3. The relevant nonperturbative
solution is now locally dS4 × T6 (in the string frame) with
a rolling dilaton whose velocity is determined by the
evolution of the external directions (as explicitly shown in
Sec. IVA 5).
Meanwhile, the dilaton has been evolving so far approx-

imately linearly with time. Although it is possible to choose
the dilaton’s initial value such that we reach the third stage
in the small string coupling regime, when the internal
directions are stabilized and the external ones continue to
expand, there is no bound on the dilaton’s time evolution.
Thus, we eventually enter in the quantum nonperturbative
regime, where gs ¼ eϕ ∼ 1. From this moment on, as we
would like to have a string theory based model, we can-
not fully trust the Oðd; dÞ covariant equations anymore
because they do not include gs corrections. Instead, it is
known that nonperturbative effects such as D-branes may
dominate the theory’s spectrum, giving rise, for instance,
to gaugino condensation [51–53]. Physically the dilaton
should acquire a potential that stabilizes it [54–56] (see [33]
for dilaton stabilization with gaugino condensation in
SGC). Thus, in order to potentially make contact with
standard big bang cosmology, we seek for perturbative
solutions with a constant dilaton. In [48] it was shown that
this condition completely fixes the solution to be a
perturbatively corrected radiation solution of the gravi-
ton-dilaton equations that is known to be determined once a
constant dilaton is assumed [36]. As time goes by, the
perturbative corrections get smaller and the solution
approaches the lowest order one with a radiation EoS.
After the stabilization of the dilaton, there is no differ-

ence between the string and Einstein frames. But during the
three stages described above, the dilaton time dependence
is fixed by the solutions. That is the reason why it is
possible to describe how each stage evolves in the EF. It is
important to notice that both frames are equivalent in the
sense that any physical observable can be calculated and
has the same value regardless of frames [57]. Besides that,
describing the EF evolution is useful when trying to make
contact with observations. During the first stage, with a
winding EoS, the Einstein frame scale factor is constant
and we have a static ten-dimensional phase as a solution of
the nonperturbative equations, in contrast with the four-
dimensional static phase postulated by SGC. In the second
and third stages, the dilaton’s evolution is independent of
the static internal directions that in the EF correspond to
contracting dimensions, while the external directions first

undergo accelerated expansion and then later expand as a
radiation dominated universe.
The model is summarized in Fig. 1, where the Hubble

radius of the internal and external directions and the EoS
are schematically plotted as a function of time. Quantitative
details about the stages can be found in Sec. IV. Finally, it
is important to emphasize that prior to α0-cosmology, there
were no equations that could describe the dynamics of
the model as elucidated above. In particular, the existence
of static solutions in the EF for a winding EoS and the
static solutions for the internal directions in the SF with a
pressureless EoS, which were essential for the model,
are here derived for the first time using the framework
discussed here.

III. α0-COSMOLOGY: TIME-DEPENDENT
BACKGROUNDS FROM CLASSICAL

STRING GEOMETRY

A. Review of α0-cosmology

In [47,48], it was shown that the action for a purely
time-dependent D ¼ dþ 1-dimensional string background,
including a matter sector, with metric G00¼−n2ðtÞ,
G0i ¼ 0, Gij¼gijðtÞ, Kalb-Rammond field B00¼0¼B0i,
Bij ¼ bijðtÞ, and dilaton field ϕðxÞ ¼ ϕðtÞ can be written in
a Oðd; dÞ invariant form as

S¼ 1

2κ2

Z
ddxdtne−Φ½−ðDΦÞ2 þXðDSÞ� þ Sm½Φ; n;S; χ�;

ð1Þ

where Φ≡ 2ϕ − ln
ffiffiffiffiffiffiffiffiffi
det g

p
is a Oðd; dÞ scalar called the

shifted dilaton, χ represents the matter sector, and the
Oðd; dÞ scalar function XðDSÞ depends only on the first
time derivative (D≡ 1=n∂t) of the 2d × 2d matrix

S ≡ ηH ¼
�
0 1

1 0

��
g−1 −g−1b
bg−1 g − bg−1b

�

¼
�
bg−1 g − bg−1b

g−1 −g−1b

�
; ð2Þ

where we use a basis in which the Oðd; dÞ metric η has an
off-diagonal form and H ∈ Oðd; dÞ acts as a generalized
metric. As H is an element of the duality group, S is a
constrained field satisfying S2 ¼ 1. Since the gravitational
coupling κ2 is factorized, terms in the integrand should
have mass dimension 2. Given that the function X is
invariant under duality transformations, it can be written
as a sum of traces of the matrix S. Thus, at a given order
k − 1 in α0, there could be two types of dimension 2
operators in the action: single-trace and multitrace ones,
with respective forms
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α0k−1trððDSÞ2kÞ; α0k−1
Yj
i¼1

trððDSÞ2liÞ; ð3Þ

where the set flig is constrained in order for the operator
to have dimension 2, l1 þ � � � þ lj ¼ k. Moreover, as
shown in [47], by redefining n2ðtÞ we can set to zero
any multitrace operator containing factors of trðDSÞ2, so
li ≠ 1. Thus, the number of multitrace operators at the
(k − 1)th order is the number of partitions of k that does

not include 1, i.e., j ¼ 1;…; pðkÞ − pðk − 1Þ, where pðkÞ
is the number of partitions of k. Note that the lowest
order action is obtained by truncating the corrections to
k ¼ 1, and this gives a single-trace operator proportional
to trððDSÞ2Þ.
It was noticed in [47] that with a flat FLRW ansatz for

the metric and vanishing two-form field, the multitrace
operators contribute in the same manner as the single-
trace ones, and thus they only renormalize the numerical
coefficients of the latter. Hence, for this specific ansatz,
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FIG. 1. The dynamics of the model is shown as a whole, which is later separated into three different stages in Sec. IV. On the left, the
evolution of the equation of state is plotted as a function of time for both the internal and the external directions. In the center, the time
evolution of the scale factor and the Hubble radius can be seen in the string frame while on the right they are shown in the Einstein frame.
The dilaton stabilizes at t�. The evolution is nonsingular in both frames.
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we can neglect the multitrace operators such that the action
has the form

S ¼ 1

2κ2

Z
ddxdtne−Φ

�
−ðDΦÞ2 þ

X∞
k¼1

α0k−1cktrðDSÞ2k
�

þ Sm½Φ; n;S; χ�; ð4Þ

with c1 ¼ −1=8 and the other ck are generally unknown
(they depend on which type of string theory is considered).
If D is not equal to the critical dimension Dc, there is a
term proportional to e−ΦðD −DcÞ in the integrand of the
matter action. In the present work, we assume D¼Dc¼10
unless stated otherwise.
The equations of motion for Φ, nðtÞ, and S coming from

the action (4) are, respectively,

2D2Φ − ðDΦÞ2 −
X∞
k¼1

α0k−1cktrðDSÞ2k ¼ κ2eΦσ̄; ð5aÞ

ðDΦÞ2 −
X∞
k¼1

α0k−1ð2k − 1ÞcktrðDSÞ2k ¼ 2κ2ρ̄eΦ; ð5bÞ

D
�
e−Φ

X∞
k¼1

α0k−14kckSðDSÞ2k−1
�

¼ −κ2ηT̄ : ð5cÞ

The right-hand sides (RHS) of these equations are propor-
tional to variations of the matter action. We defined an
Oðd; dÞ invariant dilatonic charge σ by

σ ≡ −
2ffiffiffiffiffiffiffi
−G

p δSm
δΦ

; ð6Þ

while the energy density is given by n2ðtÞρ ¼ T00, with

Tμν ¼ −
2ffiffiffiffiffiffiffi
−G

p δSm
δgμν

ð7Þ

being the energy-momentum tensor of the matter sector. Its
spatial components enter in the Oðd; dÞ tensor T defined by

T̄ ≡ 1

n

�
η
δSm
δS

S − ηS
δSm
δS

�
; ð8Þ

where the bars in the matter variables denote multiplication
by

ffiffiffi
g

p
.

In [48,49], solutions for Eqs. (5) for the FLRW ansatz

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; bij ¼ 0;

Tν
μ ¼ diagð−ρ; p;…; pÞ ð9Þ

were found. Some of these solutions are relevant for the
current work. First, there is a nonperturbative class of dS
solutions with

HðtÞ ¼ H0; _Φ ¼ −βH0; ð10Þ

where β is fixed by the EoS, p ¼ wρ, and the dilatonic
charge, assumed to satisfy σ ¼ λρ,

β ¼ −
dw

1þ λ=2
: ð11Þ

Thus, the dilaton evolves as

_ϕ ¼ dH0

2þ λ

�
1þ wþ λ

2

�
: ð12Þ

There are conditions for the existence of this class of
dS solution: the function

FðHÞ ¼ 2d
X∞
k¼1

ð−α0Þk−1ck22kH2k ð13Þ

and H0 should be such that (for λ ≠ −1, 2)

F0ðH0Þ ¼
2d2w2H0

1þ λ
2

; FðH0Þ ¼
1þ λ

2þ λ
H0F0

0: ð14Þ

While there are sets of fckg that are not inconsistent with
such conditions, the ones coming from string theory might
be incompatible with them. In other words, there are
dS solutions (in the SF) in the space of duality invariant
theories, but it is not guaranteed that they exist in string
theory.2 Nonetheless, no obstruction for such solutions was
found after including all α0-corrections. For discussions
about solutions in the vacuum case, see [47,60–63].
The other relevant solution is a perturbative one. In [48],

it was shown that the only perturbative solution for a
constant dilaton has the form

HðtÞ ¼ H0

t
þ α0

H1

t3
þ α02

H2

t5
þ � � � ; ð15Þ

wðtÞ ¼ 1

d
− 32dc2w2ð

ffiffiffiffi
α0

p
HÞ2 þ 128dc3w3ð

ffiffiffiffi
α0

p
HÞ4

− 512dc4w4ð
ffiffiffiffi
α0

p
HÞ6 þ � � � ; ð16Þ

where the coefficients H1; H2;… and w2; w3;… depend
on the spacetime dimension and the fckg. Thus, it is a
solution for any duality invariant theory, in particular for

2In [58] a symmetry based argument against the existence of a
possible two-dimensional (2D) conformal field theory with a
“macroscopic” dS target space was developed. However, we
expect the dS radius of our solutions to be of the order of the
string length, even though it is not possible to compute the exact
relation between H0 and

ffiffiffiffi
α0

p
at the moment due to the lack of

knowledge on the function FðHÞ (see [59] for a discussion about
how nonperturbative information is necessary to fix FðHÞ). We
thank Savdeep Sethi for discussions about this point.
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any type of superstring theory. Note that this solution
for large times approaches the usual radiation phase of
standard cosmology.
The solutions above describe D ¼ dþ 1-dimensional

isotropic cosmologies, with a single scale factor aðtÞ.
In order to discuss more realistic scenarios with an
n-dimensional compact submanifold, it is useful to have
anisotropic solutions, in which the n compact direc-
tions evolve differently than the other d − n spatial direc-
tions. These solutions cannot be straightforwardly obtained
from action (4) as for them the multitrace operators cannot
simply be taken into account by only redefining the
coefficients of the single-trace operators. In the following
we show a way around this issue for a particular class of
anisotropic cosmological metrics.

B. Anisotropic metric in α0-cosmology

Let us consider a Bianchi type I ansatz for the metric

ds2 ¼ −n2ðtÞdt2 þ a2i ðtÞδijdxidxj ð17Þ

and vanishing two-form field, bij ¼ 0. For this particular
case, we have

DS ¼ 2KJ ; ð18Þ

where K is a 2d × 2d diagonal matrix constructed with d
Hubble parameters, Hi ≡D ln ai,

K ¼
�
Hi 0

0 Hi

�
; ð19Þ

and J is defined by

J ¼
�

0 g

−g−1 0

�
; ð20Þ

and it squares to minus the identity, J 2 ¼ −I .
Using (18), we evaluate typical single and multitrace

operators for the anisotropic ansatz to be

trððDSÞ2kÞ ¼ ð−1Þk22kþ1
Xd
i¼1

H2k
i ;

Yj
i¼1

trððDSÞ2liÞ ¼ ð−1Þk22kþ1
Yj
i¼1

Xd
q¼1

H2li
q ; ð21Þ

where the constraint l1 þ � � � þ lj ¼ k was used. We see
that in the isotropic case, Hi ¼ H ∀ i, they have the
same structure and so contribute in the same form to the
equations of motion.
Now, let us suppose we have (d − n) directions with

the same scale factor, i.e., aiðtÞ ¼ aðtÞ for i ¼ 1;…; d − n,

and n static directions withHi ¼ 0 for i ¼ d − nþ 1;…; d.
In this case, we have

trððDSÞ2kÞ ¼ ð−1Þk22kþ1ðd − nÞH2k;

Yj
i¼1

trððDSÞ2liÞ ¼ ð−1Þk22kþ1ðd − nÞjH2k; ð22Þ

and so, for this particular case, the (k − 1)th order
multitrace operators contribute in the same way as the
single-trace ones, they merely shift the coefficient ck of
the latter. Hence, for n static directions and (d − n)
isotropic directions, we can neglect the multitrace oper-
ators and use action (4) to get the equations of motion
for the (d − n) dynamical scale factors. Therefore, the
single-trace action can also be useful for finding some
anisotropic solutions.
Note that in this calculation we have assumed that n

directions were static. Thus, if we plan to use it later, we
will have to invoke good reasons why that should be
the case. Nevertheless, we can use the full Bianchi type I
ansatz (17) in Eqs. (5) to search for conditions on the matter
sector in order to have n static directions. For that, we
evaluate these equations in terms of Hi and the matter
variables in the following.
The form of the single-trace operators was already

calculated in (21), and using this result, Eqs. (5a) and (5b)
can be written as

2D2Φ − ðDΦÞ2 þ 1

d

Xd
i¼1

FðHiÞ ¼ κ2eΦσ̄; ð23Þ

ðDΦÞ2 þ 1

d

Xd
i¼1

HiF0ðHiÞ −
1

d

Xd
i¼1

FðHiÞ ¼ 2κ2eΦρ̄; ð24Þ

where the function F is as defined in (13). To write Eq. (5c)
in components, we assume Tj

i ¼ piδ
j
i and get

T̄ ¼ ffiffiffi
g

p
 

0 piδ
i
j

−piδ
j
i 0

!
; ð25Þ

and thus, the combination ηT̄ that appears in the right-hand
side of (5c) is

ηT̄ ¼ ffiffiffi
g

p �−pi 0

0 pi

�
: ð26Þ

Moreover, starting from (18) one can easily get

ðDSÞ2k−1 ¼ ð−1Þk−122k−1H2k−1J ⇒ SðDSÞ2k−1

¼ ð−1Þk−122k−1
�−H2k−1

i 0

0 H2k−1
i

�
: ð27Þ
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Using these results, Eq. (5c) gives

D
�
e−Φ

X∞
k¼1

α0k−14kckð−1Þk−122k−1
�−H2k−1

i 0

0 H2k−1
i

��

¼ −κ2
ffiffiffi
g

p �−pi 0

0 pi

�
; ð28Þ

which implies that

D
�
e−Φ

X∞
k¼1

ð−α0Þk−14kck22k−1H2k−1
i

�
¼ −κ2p̄i: ð29Þ

In terms of FðHiÞ we have

Dðe−ΦF0ðHiÞÞ ¼ −2dκ2p̄i; ð30Þ

which can also be written as

ðDHiÞF00ðHiÞ − ðDΦÞF0ðHiÞ ¼ −2dκ2eΦp̄i: ð31Þ

Summarizing, the equations of motion coming from
single-trace operators in the action for the anisotropic
ansatz (17) are

2D2Φ − ðDΦÞ2 þ 1

d

Xd
i¼1

FðHiÞ ¼ κ2eΦσ̄; ð32aÞ

ðDΦÞ2 þ 1

d

Xd
i¼1

ðHiF0ðHiÞ − FðHiÞÞ ¼ 2κ2eΦρ̄; ð32bÞ

Dðe−ΦF0ðHiÞÞ ¼ −2dκ2p̄i: ð32cÞ

The continuity equation is not independent of Eqs. (5), as
expected from Bianchi identities and explicitly shown in
[48]. It is written as

_̄ρþ 1

4
trðS _SηT̄ Þ − 1

2
σ̄ _Φ ¼ 0; ð33Þ

and given the anisotropic ansatz it reduces to

_̄ρþ
Xd
i¼1

Hip̄i −
1

2
σ̄ _Φ ¼ 0: ð34Þ

In Appendix B, we show that upon neglecting
α0-corrections, Eqs. (32) reduce to the dilaton-gravity
equations coupled to matter. This was to be expected since
the lowest order action has no contribution from multitrace
operators, and Eqs. (32) contain only contributions from
the single-trace operators. Despite this fact, we show how
and why they are still relevant for discussing anisotropic
solutions in the next subsection.

C. Nonisotropic solutions with static internal directions

Recalling the discussion after Eqs. (22), if we impose
aiðtÞ ¼ aðtÞ for (d − n) directions and let the other n
directions have a constant scale factor, Hi ¼ 0 for i ¼ d−
nþ 1;…; d, then the multitrace operators can be neglected
(in the sense that they will contribute in the same manner
as the single-trace ones), and then the equations of
motion (32) are the full set of equations including all
α0-corrections. In this section, we will obtain a consistency
condition that the matter sector should satisfy in order to
have Hi ¼ 0 for n directions.
Let us rewrite (32) for (d − n) isotropic directions with

the same scale factor aðtÞ and corresponding Hubble rate
HðtÞ [setting nðtÞ ¼ 1]:

2Φ̈ − _Φ2 þ ðd − nÞ
d

FðHÞ þ 1

d

Xd
i¼d−nþ1

FðHiÞ ¼ κ2eΦσ̄;

ð35aÞ

_Φ2 þ ðd − nÞ
d

ðHF0ðHÞ − FðHÞÞ

þ 1

d

Xd
i¼d−nþ1

ðHiF0ðHiÞ − FðHiÞÞ ¼ 2κ2eΦρ̄; ð35bÞ

∂tðe−ΦF0ðHÞÞ ¼ −2dκ2p̄; ð35cÞ

∂tðe−ΦF0ðHiÞÞ ¼ −2dκ2p̄i; ð35dÞ

where the index i in the last equation runs over then directions
with different scale factors ai (i ¼ d − nþ 1;…; d). From
the last equation we see that we need pi ¼ 0 in order to
have static internal directions. So any solution with zero
pressure in n different directions and with the same scale
factor aðtÞ for (d − n) directions satisfying

2Φ̈ − _Φ2 þ ðd − nÞ
d

FðHÞ ¼ κ2eΦσ̄; ð36aÞ

_Φ2 þ ðd − nÞ
d

ðHF0ðHÞ − FðHÞÞ ¼ 2κ2eΦρ̄; ð36bÞ

∂tðe−ΦF0ðHÞÞ ¼ −2dκ2p̄ ð36cÞ

is a solution for the entire set of corrected equations, with n
stabilized directions. For this specific class of solutions, we
can use the results from α0-cosmology even though they do
not include multitrace contributions.
Indeed, rather than trying to find new solutions for the

(new) set of Eqs. (36), we can use a trick to map the new
equations to the ones in [48,49]. The trick is the following:
if we define a function JðxÞ as
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JðxÞ≡ d − n
d

FðxÞ; ð37Þ

then we can write (36) as

2Φ̈ − _Φ2 þ JðHÞ ¼ κ2eΦσ̄; ð38aÞ

_Φ2 þHJ0ðHÞ − JðHÞ ¼ 2κ2eΦρ̄; ð38bÞ

∂tðe−ΦJ0ðHÞÞ ¼ −2ðd − nÞκ2p̄; ð38cÞ

and the resulting set of equations is the same as the
ones studied in the previous papers once we do the
replacements3 FðHÞ → JðHÞ and d → ðd − nÞ. This means
that the analyses and solutions in [48,49] can be used,
but now as (d − n)-dimensional results. In particular,
there are solutions with H ¼ const with EoS w ¼ p=ρ ¼
−1=ðd − nÞ and a perturbative solution with constant
dilaton that asymptotes to a (d − n)-dimensional spatial
volume dominated by radiation.

IV. EMERGENT COSMOLOGICAL SCENARIO
WITH FOUR LARGE DIMENSIONS

Having at our hands all the necessary equations and
solutions to build our cosmological model, now we focus
on its details. We will first highlight how the dynamics
happens in the string frame and later describe the corre-
sponding picture in the Einstein frame.

A. Dynamics in the string frame

1. Stage 1—winding EoS: wð1Þ = − 1=d

We start off with a homogeneous and isotropic space-
time with topology R × Td where all the dimensions4 are
smaller than the string length, ls ¼ α01=2. Thus,

RðtÞ≡ rcaðtÞ < ls; ð39Þ

where RðtÞ corresponds to the size of the compact dimen-
sions and rc is the comoving radius of them. Looking to the
mass spectrum of closed strings in a compact space, we
know that the dominant modes for when RðtÞ < ls are the
winding modes5[27] with corresponding EoS given by

wð1Þ ¼ −1=d. We label each different stage from now on
with a superscript (i), where i ¼ 1, 2, and 3.
Given that the directions’ sizes are within the string scale,

the nonperturbative equations that take into account the
infinite tower of α0-corrections are suitable to find solu-
tions for such a regime. In fact, it has been shown that one
solution for this matter content results in a dS universe; thus
HðtÞ ¼ Hð1Þ ¼ const, with dilaton evolving as (12),

ϕð1ÞðtÞ ¼ ϕ0 þ
d − 1

2
Hð1Þt; t ≥ 0; ð40Þ

which grows linearly in time. It is easy to see from (55) that
this solution corresponds to having all the dimensions
being static in the EF.
Hence, all the dimensions are exponentially growing

until they reach the string scale at the time ts, representing
the end of the first phase. That happens when

ts ¼
1

Hð1Þ ln
�

ls
a0rc

�
; ð41Þ

where a0 is a constant corresponding to the initial value of
the scale factor which can be absorbed into rc, which now
becomes the initial size of the dimensions in the SF.
Since the dilaton is growing in time, we need to track

its evolution to avoid entering too early into the strong
coupling regime where quantum corrections can no longer
be neglected. At the end of stage 1, the dilaton is

ϕð1ÞðtsÞ ¼ ϕ0 þ
d − 1

2
ln

�
ls
rc

�
; ð42Þ

and so, in order to have eϕ
ð1ÞðtsÞ < 1, we need the initial

value of the string coupling to satisfy eϕ0 < ðrc=lsÞðd−1Þ=2.
Note that, as we would like to start in the weak coupling
regime, this condition is compatible with the assumption
that rc < ls. In other words, starting with all directions
compactified with a physical radius smaller than the string
length and requiring the string coupling to be smaller than
one at ts implies that the string coupling is small at the
initial time.
Once the size of the dimensions have reached the string

length, we expect another solution to be relevant to our
dynamics. In particular, we know that the equation of state
cannot be given purely by the winding EoS until the end of
this stage and beyond, since as the size of the dimensions
grows other modes are excited: oscillatory and momentum
modes. In fact, we expect that at the end of this phase the
EoS is w ¼ 0 [19,27]. However, it is very hard to solve the
equations for an evolving EoS, and so our scenario will
be built by gluing together solutions of three different
stages while describing what is expected to be happening in
between them. We start with the first transition now.

3We also need to change the ck coefficients of FðHÞ to new
ones c0k due to the inclusion of the multitrace contributions. In the
rest of the text, we simply drop the prime and continue to denote
the set of unknown coefficients by fckg.

4Note that although we consider D ¼ 1þ d ¼ 1þ ðd − nÞ þ
n ¼ 10, where (d − n) corresponds to three large dimensions and
n to six small dimensions, we keep the notation general.

5Postulating T-duality to be true, we know that has to be the
case since for a large radius we only have momentum modes
being excited, which transform into winding modes when T-dual
rotated.
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2. Transition between stage 1 and stage 2

As the sizes of the dimensions are growing and the
EoS is evolving toward zero due to the excitation of
oscillatory and momentum modes, we expect the expan-
sion to slow down and we exit the dS phase. That means
that during the transition between stage 1 and stage 2 we
have that6 _Hð1Þ→ð2Þ < 0 while we keep Hð1Þ→ð2Þ > 0. At
the same time, we know that the static phase in the EF
has to end as the equation of state is evolving, which

results in _Hð1Þ→ð2Þ
E ðtEÞ > 0 [19], which from (55) implies

the condition

1 − d
2

_H þ
_ϕ2

2ðd − 1Þ <
_ϕH − ϕ̈; ð43Þ

where the left-hand side (LHS) is positive and thus

d ln _ϕ

d ln a
< 1; ð44Þ

where we have suppressed the label “ ð1Þ→ð2Þ.” Thus, a
“slow-rolling” dilaton during the transition between the two

phases is a necessary condition for having Hð2Þ
E > 0. We do

not know how fast this transition is but it could be modeled
phenomenologically and numerically through [50]

wðaÞ ¼ 2

πd
arctanðγ ln aÞ; ð45Þ

where γ indicates how fast the transition happens.

3. Stage 2—matter EoS, wð2Þ = 0

As the dimensions reach the string size, the dynamics
starts to become more involved. Although the EoS is w ¼ 0,
meaning the pressure is vanishing for all the dimensions, we
do not expect that isotropy remains for long. The reason
for that is that winding modes can annihilate completely in
three spatial dimensions [19] [from now on called external
directions, labeled d − n ¼ 3, and with scale factor aðtÞ]
while they continue to exist for the remaining six other
dimensions [from now on called internal directions, labeled
n ¼ 6 and with scale factor bðtÞ].
The internal directions start to oscillate around the self-

dual radius due to the interplay between winding and

momentum modes, which on average results in wð2Þ
b ¼ 0,

until they eventually stabilize, Hð2Þ
b ¼ 0 [27]. It is exactly

this dynamics that justifies the simplification considered
above in Sec. III C, where the multitrace terms were
considered zero for an anisotropic universe since all the
internal directions were considered static, allowing a
decoupling between the dynamics of the internal and

external directions. Thus, this is the end of the dynamics
of the internal directions in the SF.
Turning now to the external directions, the phase with the

EoS parameter close to zero is very short, since _wð2Þ
a > 0

even though wð2Þ
a ≈ 0. Thus, we cannot describe this

phase by considering Hð2Þ
a ¼ 0 as we did for the internal

directions. Although the Hubble parameter for these
dimensions decreases as the oscillatory and momentum
modes are excited, the winding modes will start annihilat-
ing and the EoS rapidly converges to a radiation EoS as
the expansion continues. To describe this short stage, we

consider as a first order approximation Hð2Þ
a to be constant

and smaller than Hð1Þ
a ¼ Hð1Þ while wð2Þ ≈ 0. The dilaton

evolves as (12) with wa ¼ 0. Thus,

ϕð2ÞðtÞ ¼ ϕð1ÞðtsÞ þ
d − n
2

Hð2Þðt − tsÞ; t ≥ ts; ð46Þ

where we have glued7 the two solutions after imposing
ϕð2ÞðtsÞ ¼ ϕð1ÞðtsÞ. Note that (46) shows the dilaton’s
evolution depending only on the external directions (see
discussion on Sec. III C), which is now evolving slower as
expected from (44). We will consider this solution to be
valid until all the winding modes annihilate and the EoS of
the external directions becomes radiation, at time tr. So,

ϕð2ÞðtrÞ ¼ ϕð1ÞðtsÞ þ
d − n
2

Hð2Þðtr − tsÞ; ð47Þ

at the end of this stage.

4. Transition between stage 2 and stage 3

Stage 2 is rather short since the external directions
continue to be exponentially expanding, implying that
the winding modes continue to decay away while the
momentum modes are being excited and the EoS rapidly
approaches the one of radiation, w ¼ 1=ðd − nÞ. Thus,
this transition is characterized by having a positive EoS
with _w > 0.
Unfortunately, because of the unknown coefficients ck,

we cannot solve the equations for H during the transition.
We will assume that the rate of expansion does not change
considerably, remaining around the string scale so that
nonperturbative solutions will have to be invoked during
the next stage. We will come back to this point in Sec. V.

5. Stage 3—radiation EOS, wð3Þ
a = 1=ðd − nÞ

Rolling dilaton. For this stage we consider that the EoS is
already given by that of radiation for the external directions.
Note that for the low-energy theory that automatically
implies that the dilaton is constant (see, e.g., [36]), while

6See Appendix A.

7Note that we do not glue derivatives since we do not consider
a continuous evolution of the EoS.
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for α0-cosmology that is not necessarily the case, especially
around the string scale. Initially the dilaton keeps evolving
following (12) with wa ¼ 1=d

ϕð3ÞðtÞ ¼ ϕð2ÞðtrÞ þ
d − nþ 1

2
Hð3Þðt − trÞ; t ≥ tr;

ð48Þ

where we once again glued solutions imposing ϕð3ÞðtrÞ ¼
ϕð2ÞðtrÞ. As the expansion continues and the dilaton
keeps evolving, at some point the dilaton will approach
zero, leading the dynamics into the strong regime, since
gs ¼ eϕ ∼ 1. We invoke its stabilization during this regime.
We do not have a precise dynamics to account for that,
and we can only say that in the strong regime quantum
corrections to the dilaton’s dynamics can become impor-
tant, resulting in an effective potential that stabilizes it to a
constant value [33,55,56].
Note that the time t� when the strong regime is reached

(which we assume to be when the dilaton reaches the value
zero) in our scheme depends on the initial value ϕ0 of the
dilaton, the string scale, the initial size of the dimensions,
and the Hubble parameters at the different stages. The
approximate relation is

t�Hð3Þðd − nþ 1Þ þ tr½ðd − nÞHð2Þ − ðd − nþ 1ÞHð3Þ�
− ts½Hð2Þðd − nÞ −Hð1Þðd − 1Þ� ≈ 2jϕ0j: ð49Þ

This is a constraint on the parameters introduced so far to
ensure that the strong regime is approached only at stage 3.
In fact, we can approximate this expression considering
that tr ≈ ts, since stage 2 is very short. Then, we obtain

t�Hð3Þðd−nþ1Þ− ts½ðd−nþ1ÞHð3Þ−ðd−1ÞHð1Þ�≈2jϕ0j:
ð50Þ

After this transition, t > t�, both string and Einstein frames
become completely equivalent. Moreover, now that the
dilaton is halted the internal directions are also completely
stabilized in the EF.
Constant dilaton. Once the dilaton is constant and we

progressively leave the string scale, perturbative solutions
can be used. Solutions of this kind have been found in [48],
and they take the form

Hð3Þ
a ðtÞ ¼ 2

ðd − nþ 1Þtþ α0
H1

t3
þ α02

H2

t5
þ � � � ; ð51Þ

wð3Þ
a ðtÞ ¼ 1

d − n
− 32ðd − nÞc2w2α

0H2

þ 128ðd − nÞc3w3α
02H4

− 512ðd − nÞc4w4α
03H6 þ � � � ; ð52Þ

where the EoS for the external directions also evolves
toward radiation, wa ¼ 1=ðd − nÞ. Thus, in principle one
could consider a smooth gluing between the last two stages.
As the expansion continues, all the corrections decay
away, and we recover the known radiation solution of
the lowest order theory, for which the Hubble parameter
of the external directions evolves purely as radiation while
the dilaton is completely fixed.

B. Dynamics in the Einstein frame

Apart from the perturbative solution with radiation EoS
and the static phase in the SF with matter EoS, all other
solutions considered are dS solutions in the SF with
different equations of state (and, consequently, different
dilaton evolution). Moreover, the late time perturbative
solution has a constant dilaton and its EF dynamics is
identical to the SF one. Thus, we will be interested in the
HEðtEÞ for the dS solutions in the following.
As we are considering a nonisotropic ansatz, we need to

rederive the formula forHEðtEÞ in terms of the string frame
variables. The Einstein frame metric is given by

GE
μν ≡ e−

4ϕ
d−1Gμν; ð53Þ

and so the relation between the time variables in both
frames is the same as in the isotropic case. Focusing now on
the spatial components, we have that

a2i;EðtÞ ¼ e−
4ϕ
d−1a2i ; ð54Þ

and starting from this it is straightforward to show that

Hi;EðtEÞ ¼ −
e

2ϕ
d−1

d− 1

�
_Φþ

Xd
j¼1

Hj − ðd− 1ÞHi

�

¼ −
�Yd

l¼1

a
1

d−1
l

�
e

Φ
d−1

d− 1

�
_Φþ

Xd
j¼1

Hj − ðd− 1ÞHi

�
:

ð55Þ

Now, let us write the dS solutions in the SF in terms
of the Einstein variables. For such solutions (including a
dilatonic charge), it was shown in [49] that

Hi ¼ H0; _Φ ¼ −βH0: ð56Þ

The relation between β and ðw; λÞ depends on the spacetime
dimensionality. Considering n stabilized directions with
Hb ¼ 0, following the discussion in Sec. III C, we have

β ¼ −
ðd − nÞw
1þ λ=2

; ð57Þ

and the dilaton evolution is
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ϕðtÞ ¼ ϕ0 þ
ðd − n − βÞ

2
H0ðt − t0Þ; ð58Þ

since only the evolving directions contribute to _Φ. Note that
in order to write the nonisotropic solution with n stabilized
directions, we are invoking the arguments of Sec. III C,
which allows us to have a solution in the string frame that is
locally dSd−n × Tn.
The time variable in the EF can be obtained as

dtE ¼ e−
2ϕ
d−1dt ⇒ tE − tE;0

¼ e−
2ϕ0
d−1

d − 1

ðd − n − βÞH0

�
1 − e−

d−n−β
d−1 H0ðt−t0Þ

�
; ð59Þ

where tE;0 is the value of tEðtÞ at t ¼ t0. We can invert this
result to write tðtEÞ:

t − t0 ¼ −
d − 1

ðd − n − βÞH0

× ln

�
1 − e

2ϕ0
d−1

ðd − n − βÞH0

d − 1
ðtE − tE;0Þ

�
: ð60Þ

The Einstein frame Hubble parameter HEðtEÞ for the
(d − n) external directions is obtained from (55) evaluated
for the dS solution,

HEðtEÞ ¼ e
2ϕ0
d−1H0

ðβ þ n − 1Þ
d − 1

×

�
1 − e

2ϕ0
d−1

ðd − n − βÞ
d − 1

H0ðtE − tE;0Þ
�
−1
: ð61Þ

Note that as the bracket in the above expression came
from an exponential, it cannot be negative. We can check
that while t ∈ ½0;∞Þ, the relation tEðtÞ is such that
tE ∈ ½tE;0; tE;maxÞ where

tE;max ¼ tE;0 þ e−
2ϕ0
d−1

d − 1

ðd − n − βÞH0

; ð62Þ

such that the bracket in HEðtEÞ is never negative. Since for
a gas of strings we can set λ ¼ 0, we have β ¼ −ðd − nÞw,
such that

HEðtEÞ ¼ e
2ϕ0
d−1

ðn − 1 − ðd − nÞwÞ
d − 1

×H0

�
1 − e

2ϕ0
d−1

ðd − nÞðwþ 1Þ
d − 1

H0ðtE − tE;0Þ
�
−1
:

ð63Þ
The evolution of the dilaton in the EF is simply

ϕðtEÞ ¼ ϕ0 −
d − 1

2
ln

�
1 − e

2ϕ0
d−1

ðd − n − βÞH0

d − 1
ðtE − tE;0Þ

�
;

ð64Þ

from which we can see that it is never singular. Moreover,
the canonically normalized scalar field associated with the
dilaton is given by (see, for instance, [14])

φðtEÞ ¼
2

κ

1ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p ϕðtEÞ; ð65Þ

and clearly has nonsingular evolution for dS solutions in
the SF.

1. Stage 1—winding EoS: wð1Þ = − 1=d

During this phase all dimensions are evolving with the
same scale factor and winding EoS. Thus, we can use
Eq. (63) with n ¼ 0 and w ¼ −1=d, yielding

Hð1Þ
E ðtEÞ ¼ 0; ð66Þ

as first realized in [49]. Therefore, we start off with a ten-
dimensional static phase in the Einstein frame.

2. Stage 2—matter EoS, wð2Þ = 0

During this stage, we have a matter EoS in all directions,
i.e., pi ¼ 0 for all i, but the dynamics is different for the

internal and external directions. For the former, Hð2Þ
b ¼ 0,

and for the latter, Ha ¼ Hð2Þ ¼ const. The dilaton time
dependence is still fixed by the evolution of the external
directions and is given by Eq. (58). For the internal
directions, Eq. (55) gives

Hb;EðtEÞ ¼ −
e

2ϕ
d−1

d − 1
½ _Φþ ðd − nÞHa�; ð67Þ

and evaluating this for the dS solution, we get

Hð2Þ
b;EðtEÞ ¼ −

e
2ϕð2Þ
d−1

d − 1
Hð2Þðd − n − βÞ: ð68Þ

Thus, for w ¼ 0 (β ¼ 0), the internal directions are con-
tracting in the EF. They will keep contracting until the
dilaton is stabilized at the end of stage 3.
On the other hand, for the external directions, Eq. (55)

implies that

Ha;EðtEÞ ¼ −
e

2ϕ
d−1

d − 1
ð _Φ − ðn − 1ÞHaÞ; ð69Þ

which evaluated for the dS solution gives
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Hð2Þ
a;EðtEÞ ¼

e
2ϕð2ÞðtsÞ

d−1

d− 1
Hð2Þðn− 1þ βÞ

×

�
1− e

2ϕð2ÞðtsÞ
d−1

ðd− n− βÞ
d− 1

Hð2ÞðtE − tEðtsÞÞ
�
−1
;

ð70Þ

that is, for w ¼ 0, the external directions are expanding
with rate

Hð2Þ
a;EðtEÞ ¼

e
2ϕð2ÞðtsÞ

d−1

d − 1
Hð2Þðn − 1Þ

×

�
1 − e

2ϕð2ÞðtsÞ
d−1

ðd − nÞ
d − 1

Hð2ÞðtE − tEðtsÞÞ
�
−1
:

ð71Þ

Note that this corresponds to a phase of superexponential
accelerated expansion which, if stage 2 were to last a long
time, would lead to a finite time singularity. We come back
to this point below.

3. Stage 3—radiation EOS, wð3Þ
a = 1=ðd − nÞ

During this stage, before the string coupling becomes
Oð1Þ, the SF dynamics of the internal directions is trivial,
since they are stabilized with wb ¼ 0, while the external
directions are expanding with constant Ha ¼ Hð3Þ and
radiation EoS wa ¼ 1=ðd − nÞ. Thus, in the EF the internal
directions are still contracting as in stage 2, as it can be seen
from Eq. (68) for w ¼ 1=ðd − nÞ (i.e., β ¼ −1), and the
external directions expand as

Hð3Þ
a;EðtEÞ ¼

e
2ϕð3ÞðtrÞ

d−1

d− 1
Hð3Þðn− 2Þ

×

�
1− e

2ϕð3ÞðtrÞ
d−1

ðd− nþ 1Þ
d− 1

Hð3ÞðtE − tEðtrÞÞ
�
−1
;

ð72Þ

as can be checked from (70). This phase ends when the
dilaton value is such that quantum effects cannot be
neglected anymore and nonperturbative loop effects might
dominate the dynamics. Then, such effects could stabilize ϕ
such that there is no difference between the frames
anymore.
Similar to (71), this solution also corresponds to a

phase of accelerated expansion with a finite time singu-
larity. Fortunately, both stages are short in our model,
since the former describes the fleeting phase where the
EoS is approximately zero while the latter models the
end of the nonperturbative dynamics in α0 before the dilaton
is fixed. Nonetheless, these two phases might play an
important role to explain away the flatness and horizon

problems present in the standard big bang cosmology. This
is further explored in [64].
Once the dilaton is stabilized, the string gas with

radiation EoS can support the perturbative solution (51)
of [48]. When this happens, the value of H decreases with
time and the tower of α0-corrections become more and more
irrelevant as the expansion continues to unfold until we
finally get a four-dimensional low-curvature regime domi-
nated by radiation.

V. CONCLUSION AND DISCUSSIONS

In this paper we have built the first very early universe
cosmological model based on α0-cosmology and inspired
by the string gas cosmology (SGC) scenario. Our model
provides for the first time dynamics for the Einstein
frame quasistatic phase advocated by SGC. Moreover,
with reasonable assumptions, we have shown that the
nonperturbative equations of α0-cosmology are compatible
with the dynamical mechanism of SGC to generate a four-
dimensional cosmology starting from ten dimensions, as
required by string theory.
Our dynamical system consists of the equations of

α0-cosmology coupled to a matter sector being given by
a gas of strings described by a barotropic perfect fluid.
From the thermodynamics of the strings, we can model the
evolution of the equation of state for both the internal and
the external directions. To solve these equations, we break
the time evolution into different stages and consider each
stage separately.
In our model, all nine spatial dimensions start off with an

equal size smaller than the string length, which implies that
the dominant modes are winding, with EoS w ¼ −1=9.
This corresponds to a de Sitter expansion in the string
frame and to a static phase in the Einstein frame. As the
dimensions expand in the former, the density of states of
winding modes decays as other modes are excited, and the
EoS grows until it becomes that of a pressureless fluid.
As the matter energy drifts from the winding modes to

other string excitations and the equation of state parameter
approaches w ¼ 0, the dynamics stops being isotropic
since winding modes can completely disappear only in
three spatial dimensions. Thus, there result two sectors,
each of which we model as isotropic: one with six internal
directions and the other with three external ones. The
pressure in the former remains around zero due to the
interplay of winding and momentum modes, while the EoS
for the latter keeps evolving toward a radiation EoS; i.e.,
the density of states is dominated by momentum modes.
The internal dynamics freezes out completely in the string
frame at this point.
Once the EoS parameter becomes w ¼ 1=3 for the

external directions, the dynamics is divided into two
phases: a nonperturbative solution in α0 for when the
energy scale is still around the string scale, and a pertur-
bative solution for the low-curvature regime. The transition

STRING COSMOLOGY BACKGROUNDS FROM CLASSICAL … PHYS. REV. D 103, 043540 (2021)

043540-13



between these two is given by the stabilization of the
dilaton. The first phase is described by a short dS solution
in the SF, which corresponds to superexponential accel-
eration in the EF, while the latter converges to a typical
radiation dominated solution for both frames.
Needless to say, our model can be further improved, even

within the framework of α0-cosmology as well as given that
we are at the moment not able to solve the equations for an
evolving EoS parameter. In particular, it would be interest-
ing to explore the phenomenological consequences of our
result that there is a short phase of accelerated expansion
for the external dimensions in the Einstein frame. Could
this be enough to account for the observed spatial flatness
of the universe (see also [65] for a recent attempt to
explain the spatial flatness in the context of SGC)? In [64]
we have shown that the answer is yes, proving that the
model can be made compatible with standard cosmology at
the background level.
Besides, in order to make contact with the most

important cosmological successes of SGC, namely its
prediction of almost scale-invariant power spectra for
scalar and tensor perturbations with red and blue tilts,
respectively, we would need to consider cosmological
perturbations starting in a ten-dimensional isotropic back-
ground with a rolling dilaton. The calculations considered
in the context of SGC so far have been made for a constant
dilaton and in a four-dimensional space. One reason to
believe that the results could be robust is the fact that the
results of [21,22] are based mostly on holographic scaling
of thermodynamic fluctuations, and this may be robust to
the change in the background dynamics.
The reader might have become suspicious about our

arguments concerning dilaton stabilization. Indeed, our
discussion concerning how this happens remains to be
improved in the context of α0-cosmology. In fact, it may
be the case that we do not even need to rely on its
stabilization by any other mechanism than the sole evolu-
tion of the equation of state. The reason for that is that
we might be able to make a strong argument purely based
on the equations of motion that imply that H is decaying
as the EoS evolves with _w > 0 (similarly as derived in
Appendix A when w is evolving away from the winding
mode dominance). Then, the transition between stages 2
and 3 could end with the Hubble parameter already lower
than the string scale, such that we could consider directly
the perturbative solution with a rolling dilaton for which its
evolution asymptotes to a constant [66].
Finally, let us comment on the connection of our

work to double field theory (DFT) (see, e.g., [67,68]
for reviews). The dynamical equations of α0-cosmology
as studied in [47–49] do not necessarily assume a
compact background. Thus, the Oðd; dÞ group explored
in those works is present even in the noncompact case. In
our model, we have assumed a compact background, so
the Oðd; dÞ discussed in the present work is part of the

T-duality group. In fact, we can recover it from the
generalized coordinate transformations of DFT; see, for
instance, Ref. [68]. Thus, a possible avenue of explora-
tion is to embed our model into DFT, or at least to
describe its first stage in a T-dual frame, where instead
of considering the directions’ size to be smaller than the
string scale and expanding, the dimensions are large and
contracting (cf. [69,70]).
While the present work was in review, an interesting

paper [59] appeared presenting new vacuum solutions
including a nontrivial NS-NS two-form field. In the model
developed here, the energy density of the string gas source
cannot be neglected in any phase. Hence, the new solutions
of [59] cannot be immediately used to improve our model.
However, the equations developed in [59] are more general
than the ones used to get the solutions of Secs. III, for they
include the coupling with the Bμν field. It would be of great
interest to add matter to the setup of [59] and to study
whether this would help us improve our model.
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APPENDIX A: TRANSITION BETWEEN
STAGE 1 AND STAGE 2: _H < 0

We need to show that as the EoS increases over time,
_w > 0, and while it remains negative, w < 0, the Hubble
parameter decreases when starting off in a dS phase. To
study what conditions are necessary for this to happen,
we consider linear perturbations of the equations (36) by
introducing

HðtÞ ¼ H0ðtÞ þH1ðtÞ; ðA1aÞ

_ΦðtÞ ¼ _Φ0ðtÞ þ _Φ1ðtÞ; ðA1bÞ

ρ̄ðtÞ ¼ ρ̄0ðtÞ þ ρ̄1ðtÞ; ðA1cÞ

p̄ðtÞ ¼ p̄0ðtÞ þ p̄1ðtÞ; ðA1dÞ

where the subscript “1” denotes the perturbations.
Plugging this ansatz into (36) with n ¼ 0 and using the
background equations, the resulting first order equation for
the perturbations are

2 _Φ0
_Φ1 þH0F00

0H1 ¼ 2κ2eΦ0ðρ̄1 þ ρ̄0Φ1Þ; ðA2aÞ

F00
0
_H1 þ ½ _H0Fð3ÞðH0Þ − _Φ0F00

0�H1 − F0
0
_Φ1

¼ −2κ2deΦ0ðp̄1 þ p̄0Φ1Þ; ðA2bÞ
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Φ̈1 − _Φ0
_Φ1 þ

1

2
F0
0H1 ¼ 0; ðA2cÞ

and we can also consider the perturbed continuity equation

_̄ρ1 þ dH0p̄1 þ dp̄0H1 ¼ 0: ðA3Þ

Moreover, for a barotropic EoS, we have

p̄1 ¼ w0ρ̄1 þ ρ̄0w1: ðA4Þ

Now we consider our particular background fH0ðtÞ;
_Φ0ðtÞ; w0ðtÞg ¼ fH0;−H0;−1=dg, which also implies
F0
0 ¼ 2H0 and F0 ¼ H2

0 as shown in [49]. Thus, combining
(A2a) and (A2b) results in

F00
0
_H1 ¼ −2κ2dρ̄0eΦ0w1: ðA5Þ

Since w1 > 0 as the EoS evolves from −1=d to 0, we know
that as long as F00

0 > 0 we will have a decreasing Hubble
parameter, _H1 < 0.

APPENDIX B: A SMALL CHECK:
DILATON-GRAVITY EQUATIONS

In the absence of corrections, we do not need to worry
about single or multitrace operators: the equations of motion
follow only from the first terms in the action. Then, if we
neglect the corrections and take only the leading term in
FðHiÞ ¼ −dH2

i þ � � �, we can recover the matter sourced
dilaton-gravity equations from α0-cosmology.
In order to show this, let us consider (d − n) directions

with the same scale factor aðtÞ and n directions with scale
factor bðtÞ. In comparing with SGC, we have in mind
the example d ¼ 9 and n ¼ 6. Let us also set n2ðtÞ ¼ 1.
Then, we have

2Φ̈− _Φ2þ1

d
½ðd−nÞFðHaÞþnFðHbÞ�¼ κ2eΦσ̄; ðB1aÞ

_Φ2 þ d − n
d

ðHaF0ðHaÞ − FðHaÞÞ

þ n
d
ðHbF0ðHbÞ − FðHbÞÞ ¼ 2κ2eΦρ̄; ðB1bÞ

∂tðe−ΦF0ðHaÞÞ ¼ −2dκ2p̄a; ðB1cÞ

∂tðe−ΦF0ðHbÞÞ ¼ −2dκ2p̄b; ðB1dÞ

where we denote Ha ¼ d ln a=dt, Hb ¼ d ln b=dt while pa
and pb are the respective pressures. Putting σ ¼ 0, neglect-
ing α0-corrections by setting FðxÞ ¼ −dx2 and defining
λ ¼ ln a and ν ¼ ln b we have

2Φ̈ − _Φ2 − ðd − nÞ_λ2 − n_ν2 ¼ 0; ðB2aÞ

_Φ2 − ðd − nÞ_λ2 − n_ν2 ¼ 2κ2eΦρ̄; ðB2bÞ

− _Φ _λþ ̈λ ¼ κ2eΦp̄a; ðB2cÞ

− _Φ _νþν̈ ¼ κ2eΦp̄b: ðB2dÞ

We can combine the first two equations to write instead

Φ̈ − ðd − nÞ_λ2 − n_ν2 ¼ κ2eΦρ̄: ðB3Þ

Given the assumptions of this subsection, the continuity
equation reads

_̄ρþ ðd − nÞ_λp̄a þ n_νp̄b ¼ 0; ðB4Þ

as can be checked by starting with the equations of
motion.
These equations match the ones previously used in

studies of string cosmology [see, for instance, Eqs. (38)–
(41) in [27] in the absence of flux]. There is an important
caveat: since we are not necessarily writing the equations in
the critical dimension case (Dc ¼ 10), we should always
have added a term in the action proportional to ðD −DcÞ:

δS ¼ 1

2κ2

Z
dDx

ffiffiffiffiffiffiffi
−G

p
e−2ϕ

�
−

2

3α0
ðD −DcÞ

�

¼ −
1

2κ2

Z
dDxne−ΦΛ: ðB5Þ

However, note that we can simply consider this contribu-
tion to the action to be a contribution to the matter action. In
this case we would get contributions for the energy density,
pressure, and dilatonic charge as

σ̄Λ ¼ −e−Φ
Λ
κ2

; ρ̄Λ ¼ e−Φ
Λ
2κ2

; p̄Λ ¼ 0: ðB6Þ

Including these contributions to the matter sector, one can
check that the only changes are in Eqs. (B2a) and (B2b),
and they are such that Eq. (B3) is preserved:

Φ̈ − ðd − nÞ_λ2 − n_ν2 ¼ κ2eΦρ̄; ðB7aÞ

_Φ2 − ðd − nÞ_λ2 − n_ν2 − Λ ¼ 2κ2eΦρ̄; ðB7bÞ

− _Φ _λþ ̈λ ¼ κ2eΦp̄a; ðB7cÞ

− _Φ _νþν̈ ¼ κ2eΦp̄b: ðB7dÞ

One can also check that the continuity equation is not
modified.
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APPENDIX C: DILATON BETA FUNCTIONAL
AND ON-SHELL ACTION

At lowest order in α0, the supergravity action is propor-
tional to the integral of the dilaton equation of motion,
which implies that it should vanish on-shell [71]. Moreover,
in [72] assuming a reasonable form of the fully corrected
action, it was shown that the spacetime Lagrangian density
should be proportional to the dilaton’s conformal anomaly,
which implies that the action should vanish to all orders in
α0. We will check whether this is the case for the non-
perturbative SF dS solutions used in this paper assuming a
specific action for the matter sector.8

Upon the cosmological ansatz (9), the action (4)
reduces to

S ¼ 1

2κ2

Z
ddxdte−Φ½− _Φ2 − FðHÞ� þ Sm ðC1Þ

that vanishes for the vacuum solution of [47] due to the
constraint on the FðHÞ function. For the matter coupled
case, since a general perfect fluid energy-momentum tensor
was employed to find the dS solution (10), we use the Schutz
action [73] to evaluate Sm on-shell.9 Doing so, we get

Son-shell ¼
1

2κ2

Z
ddxdte−Φ½−ð2þ λÞβ2H2

0 þ 2κ2eΦp̄t�;

ðC2Þ

where pt ¼ pþ σ=2 is the total pressure including the Sm
metric dependence through Φ [66]. As a string gas source
does not depend on Φ, we have pt ¼ p for the solutions
considered in this paper. The assumption that the Schutz
action describes the matter sector does not imply that Sm is
not invariant under Oðd; dÞ since the pressure can be written
as a trace of a term containing the duality covariant energy-
momentum tensor T̄ .
Now, using the equations of state p ¼ wρ and σ ¼ λρ,

the relation between ρ and H0 of [49], and Eq. (11),
we find

Son-shell ¼
1

2κ2

Z
ddxdte−Φ2ðw − 1Þβ2H2

0; ðC3Þ

which vanishes for w ¼ 0, 1. On the other hand, using the
on-shell value of Φ on the exponential factor we have

Son-shell ¼
2βH0ðw − 1Þ

2κ2

Z
ddxdt

d
dt

ðe−ΦÞ; ðC4Þ

which shows that the action reduces to a total derivative in
time. Thus, we can readily put it to zero since we could
have started with an action including a total derivative term
to cancel the final on-shell action.

[1] Y. Akrami et al. (Planck Collaboration), Planck 2018
results. I. Overview and the cosmological legacy of Planck,
Astron. Astrophys. 641, A1 (2020).

[2] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020).

[3] R. Brout, F. Englert, and E. Gunzig, The creation of the
universe as a quantum phenomenon, Ann. Phys. (N.Y.) 115,
78 (1978).

[4] K. Sato, First order phase transition of a vacuum and
expansion of the universe, Mon. Not. R. Astron. Soc.
195 (1981) 467.

[5] A. A. Starobinsky, A new type of isotropic cosmological
models without singularity, Adv. Ser. Astrophys. Cosmol. 3,
130 (1987).

[6] A. H. Guth, The inflationary Universe: A possible solution
to the horizon and flatness problems, Adv. Ser. Astrophys.
Cosmol. 3, 139 (1987).

[7] A. D. Linde, A new inflationary universe scenario: A
possible solution of the horizon, flatness, homogeneity,

isotropy and primordial monopole problems, Adv. Ser.
Astrophys. Cosmol. 3, 149 (1987).

[8] P. J. Steinhardt, Natural inflation, in Nuffield Workshop on
the Very Early Universe (1982), pp. 251–266.

[9] A. Vilenkin, The birth of inflationary universes, Phys. Rev.
D 27, 2848 (1983).

[10] S. Hawking and R. Penrose, The singularities of gravitational
collapse and cosmology, Proc. R. Soc. A 314, 529 (1970).

[11] A. Borde and A. Vilenkin, Eternal Inflation and the Initial
Singularity, Phys. Rev. Lett. 72, 3305 (1994).

[12] A. Borde, A. H. Guth, and A. Vilenkin, Inflationary Space-
Times are Incomplete in Past Directions, Phys. Rev. Lett.
90, 151301 (2003).

[13] D. Yoshida and J. Quintin, Maximal extensions and singu-
larities in inflationary spacetimes, Classical Quantum
Gravity 35, 155019 (2018).

[14] J. Polchinski, String Theory. Vol. 1: An Introduction to the
Bosonic String, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2007).

8We thank the anonymous referee for suggesting such an
analysis.

9The Schutz action is valid for any matter action described by a
perfect fluid in the level of the equations of motion, which is the
case for the matter action consider here.

BERNARDO, BRANDENBERGER, and FRANZMANN PHYS. REV. D 103, 043540 (2021)

043540-16

https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1016/0003-4916(78)90176-8
https://doi.org/10.1016/0003-4916(78)90176-8
https://doi.org/10.1093/mnras/195.3.467
https://doi.org/10.1093/mnras/195.3.467
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevD.27.2848
https://doi.org/10.1103/PhysRevD.27.2848
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.72.3305
https://doi.org/10.1103/PhysRevLett.90.151301
https://doi.org/10.1103/PhysRevLett.90.151301
https://doi.org/10.1088/1361-6382/aacf4b
https://doi.org/10.1088/1361-6382/aacf4b


[15] A. Giveon, M. Porrati, and E. Rabinovici, Target space
duality in string theory, Phys. Rep. 244, 77 (1994).

[16] N. Deo, S. Jain, and C.-I. Tan, String distributions above the
Hagedorn energy density, Phys. Rev. D 40, 2626 (1989).

[17] R. Hagedorn, Statistical thermodynamics of strong inter-
actions at high-energies, Nuovo Cimento Suppl. 3, 147
(1965).

[18] R. Brandenberger, Fundamental physics, the Swampland
of effective field theory and early universe cosmology, in
11th International Symposium on Quantum Theory and
Symmetries (QTS2019) Montreal, Canada, 2019 (2019)
[arXiv:1911.06058].

[19] R. H. Brandenberger and C. Vafa, Superstrings in the early
Universe, Nucl. Phys. B316, 391 (1989).

[20] J. Kripfganz and H. Perlt, Cosmological impact of winding
strings, Classical Quantum Gravity 5, 453 (1988).

[21] A. Nayeri, R. H. Brandenberger, and C. Vafa, Producing a
Scale-Invariant Spectrum of Perturbations in a Hagedorn
Phase of String Cosmology, Phys. Rev. Lett. 97, 021302
(2006).

[22] R. H. Brandenberger, A. Nayeri, S. P. Patil, and C. Vafa,
Tensor Modes from a Primordial Hagedorn Phase of String
Cosmology, Phys. Rev. Lett. 98, 231302 (2007).

[23] R. H. Brandenberger, A. Nayeri, and S. P. Patil, Closed
string thermodynamics and a blue tensor spectrum, Phys.
Rev. D 90, 067301 (2014).

[24] B. Chen, Y. Wang, W. Xue, and R. Brandenberger, String
gas cosmology and non-Gaussianities, Universe 3, 2 (2015).

[25] R. H. Brandenberger, String gas cosmology: Progress and
problems, Classical Quantum Gravity 28, 204005 (2011).

[26] R. H. Brandenberger, String gas cosmology, in String
Cosmology, edited by J. Erdmenger (Wiley, New York,
2009), pp. 193–230.

[27] T. Battefeld and S. Watson, String gas cosmology, Rev.
Mod. Phys. 78, 435 (2006).

[28] S. P. Patil and R. Brandenberger, Radion stabilization by
stringy effects in general relativity, Phys. Rev. D 71, 103522
(2005).

[29] S. P. Patil and R. H. Brandenberger, The cosmology of
massless string modes, J. Cosmol. Astropart. Phys. 01
(2006) 005.

[30] S. Watson and R. Brandenberger, Stabilization of extra
dimensions at tree level, J. Cosmol. Astropart. Phys. 11
(2003) 008.

[31] S. Watson, Moduli stabilization with the string Higgs effect,
Phys. Rev. D 70, 066005 (2004).

[32] R. Brandenberger, Y.-K. E. Cheung, and S. Watson, Moduli
stabilization with string gases and fluxes, J. High Energy
Phys. 05 (2006) 025.

[33] R. J. Danos, A. R. Frey, and R. H. Brandenberger, Stabiliz-
ing Moduli with thermal matter and nonperturbative effects,
Phys. Rev. D 77, 126009 (2008).

[34] S. Mishra, W. Xue, R. Brandenberger, and U. Yajnik,
Supersymmetry breaking and dilaton stabilization in string
gas cosmology, J. Cosmol. Astropart. Phys. 09 (2012) 015.

[35] M. Gasperini and G. Veneziano, Pre-big bang in string
cosmology, Astropart. Phys. 1, 317 (1993).

[36] A. A. Tseytlin and C. Vafa, Elements of string cosmology,
Nucl. Phys. B372, 443 (1992).

[37] M. Gasperini and G. Veneziano, The pre-big bang scenario
in string cosmology, Phys. Rep. 373, 1 (2003).

[38] J. Polchinski, String Theory. Vol. 2: Superstring Theory and
Beyond, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2007),
10.1017/CBO9780511618123.

[39] M. Gasperini, Elements of String Cosmology (Cambridge
University Press, Cambridge, England, 2007).

[40] B. R. Greene, String theory on Calabi-Yau manifolds, in
Theoretical Advanced Study Institute in Elementary Particle
Physics (TASI 96): Fields, Strings, and Duality (1996),
pp. 543–726.

[41] O. Hohm, Background independence in string theory, Int. J.
Mod. Phys. D 27, 1847026 (2018).

[42] J. Maharana and J. H. Schwarz, Noncompact symmetries in
string theory, Nucl. Phys. B390, 3 (1993).

[43] K. A. Meissner and G. Veneziano, Symmetries of cosmo-
logical superstring vacua, Phys. Lett. B 267, 33 (1991).

[44] M. Gasperini and G. Veneziano, Oðd; dÞ covariant string
cosmology, Phys. Lett. B 277, 256 (1992).

[45] A. Sen, OðdÞ ⊗ OðdÞ symmetry of the space of cosmo-
logical solutions in string theory, scale factor duality and
two-dimensional black holes, Phys. Lett. B 271, 295 (1991).

[46] K. A. Meissner, Symmetries of higher order string gravity
actions, Phys. Lett. B 392, 298 (1997).

[47] O. Hohm and B. Zwiebach, Duality invariant cosmology to
all orders in α0, Phys. Rev. D 100, 126011 (2019).

[48] H. Bernardo, R. Brandenberger, and G. Franzmann, Oðd; dÞ
covariant string cosmology to all orders in α0, J. High
Energy Phys. 02 (2020) 178.

[49] H. Bernardo and G. Franzmann, α0-Cosmology: Solutions
and stability analysis, J. High Energy Phys. 05 (2020) 073.

[50] R. Brandenberger, R. Costa, G. Franzmann, and A. Welt-
man, Dual spacetime and nonsingular string cosmology,
Phys. Rev. D 98, 063521 (2018).

[51] S. Ferrara, L. Girardello, and H. P. Nilles, Breakdown of
local supersymmetry through gauge fermion condensates,
Phys. Lett. 125B, 457 (1983).

[52] I. Affleck, M. Dine, and N. Seiberg, Supersymmetry Break-
ing by Instantons, Phys. Rev. Lett. 51, 1026 (1983).

[53] M. Dine, R. Rohm, N. Seiberg, and E. Witten, Gluino
condensation in superstring models, Phys. Lett. 156B, 55
(1985).

[54] T. Damour and A.M. Polyakov, String theory and gravity,
Gen. Relativ. Gravit. 26, 1171 (1994).

[55] T. Damour and A. M. Polyakov, The string dilaton and a
least coupling principle, Nucl. Phys. B423, 532 (1994).

[56] M. Gasperini, Dilaton cosmology and phenomenology,
Lect. Notes Phys. 737, 787 (2008).

[57] E. Alvarez and J. Conde, Are the string and Einstein frames
equivalent?, Mod. Phys. Lett. A 17, 413 (2002).

[58] D. Kutasov, T. Maxfield, I. Melnikov, and S. Sethi,
Constraining de Sitter Space in String Theory, Phys. Rev.
Lett. 115, 071305 (2015).

[59] C. A. Núñez and F. E. Rost, New non-perturbative de Sitter
vacua in α0-complete cosmology, arXiv:2011.10091.

[60] P. Wang, H. Wu, and H. Yang, Are nonperturbative AdS
vacua possible in bosonic string theory?, Phys. Rev. D 100,
046016 (2019).

STRING COSMOLOGY BACKGROUNDS FROM CLASSICAL … PHYS. REV. D 103, 043540 (2021)

043540-17

https://doi.org/10.1016/0370-1573(94)90070-1
https://doi.org/10.1103/PhysRevD.40.2626
https://arXiv.org/abs/1911.06058
https://doi.org/10.1016/0550-3213(89)90037-0
https://doi.org/10.1088/0264-9381/5/3/006
https://doi.org/10.1103/PhysRevLett.97.021302
https://doi.org/10.1103/PhysRevLett.97.021302
https://doi.org/10.1103/PhysRevLett.98.231302
https://doi.org/10.1103/PhysRevD.90.067301
https://doi.org/10.1103/PhysRevD.90.067301
https://doi.org/10.1088/0264-9381/28/20/204005
https://doi.org/10.1103/RevModPhys.78.435
https://doi.org/10.1103/RevModPhys.78.435
https://doi.org/10.1103/PhysRevD.71.103522
https://doi.org/10.1103/PhysRevD.71.103522
https://doi.org/10.1088/1475-7516/2006/01/005
https://doi.org/10.1088/1475-7516/2006/01/005
https://doi.org/10.1088/1475-7516/2003/11/008
https://doi.org/10.1088/1475-7516/2003/11/008
https://doi.org/10.1103/PhysRevD.70.066005
https://doi.org/10.1088/1126-6708/2006/05/025
https://doi.org/10.1088/1126-6708/2006/05/025
https://doi.org/10.1103/PhysRevD.77.126009
https://doi.org/10.1088/1475-7516/2012/09/015
https://doi.org/10.1016/0927-6505(93)90017-8
https://doi.org/10.1016/0550-3213(92)90327-8
https://doi.org/10.1016/S0370-1573(02)00389-7
https://doi.org/10.1142/S0218271818470260
https://doi.org/10.1142/S0218271818470260
https://doi.org/10.1016/0550-3213(93)90387-5
https://doi.org/10.1016/0370-2693(91)90520-Z
https://doi.org/10.1016/0370-2693(92)90744-O
https://doi.org/10.1016/0370-2693(91)90090-D
https://doi.org/10.1016/S0370-2693(96)01556-0
https://doi.org/10.1103/PhysRevD.100.126011
https://doi.org/10.1007/JHEP02(2020)178
https://doi.org/10.1007/JHEP02(2020)178
https://doi.org/10.1007/JHEP05(2020)073
https://doi.org/10.1103/PhysRevD.98.063521
https://doi.org/10.1016/0370-2693(83)91325-4
https://doi.org/10.1103/PhysRevLett.51.1026
https://doi.org/10.1016/0370-2693(85)91354-1
https://doi.org/10.1016/0370-2693(85)91354-1
https://doi.org/10.1007/BF02106709
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1007/978-3-540-74233-3
https://doi.org/10.1142/S0217732302006606
https://doi.org/10.1103/PhysRevLett.115.071305
https://doi.org/10.1103/PhysRevLett.115.071305
https://arXiv.org/abs/2011.10091
https://doi.org/10.1103/PhysRevD.100.046016
https://doi.org/10.1103/PhysRevD.100.046016


[61] C. Krishnan, de Sitter, α0-corrections & duality invariant
cosmology, J. Cosmol. Astropart. Phys. 10 (2019) 009.

[62] P. Wang, H. Wu, H. Yang, and S. Ying, Non-singular string
cosmology via α0 corrections, J. High Energy Phys. 10
(2019) 263.

[63] P. Wang, H. Wu, H. Yang, and S. Ying, Construct α0
corrected or loop corrected solutions without curvature
singularities, J. High Energy Phys. 01 (2020) 164.

[64] H. Bernardo, R. Brandenberger, and G. Franzmann, Sol-
ution of the size and horizon problems from classical string
geometry, J. High Energy Phys. 10 (2020) 155.

[65] V. Kamali and R. Brandenberger, Creating spatial flatness
by combining string gas cosmology and power law infla-
tion, Phys. Rev. D 101, 103512 (2020).

[66] H. Bernardo, G. Franzmann, J.-L. Lehners, and J. Quintin
(to be published).

[67] G. Aldazabal, D. Marques, and C. Nunez, Double field
theory: A pedagogical review, Classical Quantum Gravity
30, 163001 (2013).

[68] O. Hohm, D. Lüst, and B. Zwiebach, The spacetime
of double field theory: Review, remarks, and outlook,
Fortschr. Phys. 61, 926 (2013).

[69] R. Brandenberger, R. Costa, G. Franzmann, and A. Weltman,
T-dual cosmological solutions in double field theory,
Phys. Rev. D 99, 023531 (2019).

[70] H. Bernardo, R. Brandenberger, and G. Franzmann, T-dual
cosmological solutions in double field theory. II., Phys. Rev.
D 99, 063521 (2019).

[71] J. Callan, Curtis G., E. Martinec, M. Perry, and D.
Friedan, Strings in background fields, Nucl. Phys. B262,
593 (1985).

[72] J. Callan, Curtis G., I. R. Klebanov, and M. Perry,
String theory effective actions, Nucl. Phys. B278, 78
(1986).

[73] B. F. Schutz, Perfect fluids in general relativity: Velocity
potentials and a variational principle, Phys. Rev. D 2, 2762
(1970).

BERNARDO, BRANDENBERGER, and FRANZMANN PHYS. REV. D 103, 043540 (2021)

043540-18

https://doi.org/10.1088/1475-7516/2019/10/009
https://doi.org/10.1007/JHEP10(2019)263
https://doi.org/10.1007/JHEP10(2019)263
https://doi.org/10.1007/JHEP01(2020)164
https://doi.org/10.1007/JHEP10(2020)155
https://doi.org/10.1103/PhysRevD.101.103512
https://doi.org/10.1088/0264-9381/30/16/163001
https://doi.org/10.1088/0264-9381/30/16/163001
https://doi.org/10.1002/prop.201300024
https://doi.org/10.1103/PhysRevD.99.023531
https://doi.org/10.1103/PhysRevD.99.063521
https://doi.org/10.1103/PhysRevD.99.063521
https://doi.org/10.1016/0550-3213(85)90506-1
https://doi.org/10.1016/0550-3213(85)90506-1
https://doi.org/10.1016/0550-3213(86)90107-0
https://doi.org/10.1016/0550-3213(86)90107-0
https://doi.org/10.1103/PhysRevD.2.2762
https://doi.org/10.1103/PhysRevD.2.2762

