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Accurate constraints on curvature provide a powerful probe of inflation. However, curvature constraints
based on specific assumptions of dark energy may lead to unreliable conclusions when used to test inflation
models. To avoid this, it is important to obtain constraints that are independent on assumptions for dark
energy. In this paper, we investigate such constraints on curvature from the geometrical probe constructed
from galaxy-lensing cross-correlations. We study comprehensively the cross-correlations of galaxy with
magnification, measured from type Ia supernovae’s brightnesses (“gκSN”), with shear (“gκg”), and with
CMB lensing (“gκCMB”). We find for the LSSTand Stage IV CMB surveys, “gκSN”, “gκg” and “gκCMB” can
be detected with signal-to-noise ratio S=N ¼ 104, 2291, 1842 respectively. When combined with
supernovae Hubble diagram (“SN”) to constrain curvature, we find galaxy-lensing cross-correlation
becomes increasingly important with more degrees of freedom allowed in dark energy. Without any
priors, we obtain error on ΩK of 0.723 from “SNþ gκSN”, 0.0417 from “SNþ gκg”, and 0.04 from
“SNþ gκg þ gκCMB” for the LSST and Stage IV CMB surveys. The last one is more competitive than a
Stage IV BAO survey (“BAO”). When galaxy-lensing cross-correlations are added to the combined probe
of “SNþ BAOþ CMB”, where “CMB” stands for Planck measurement for the CMB acoustic scale, we
obtain constraint on ΩK of 0.0013, which is a factor of 7 improvement from “SNþ BAOþ CMB”.
We study improvements in these results from increasing the high redshift extension of supernovae.
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I. INTRODUCTION

The Universe’s curvature is one of its fundamental
properties, and deserves to be accurately measured.
More importantly, stringent constraints on curvature also
provide powerful probes of early Universe physics such
as inflation [1–3]. Though predictions of the inflationary
scenario have been shown to be consistent with accurate
measurements of the cosmic microwave background
(CMB) anisotropies [4], details of the scenario remain to
be uncovered by further measurement results including
measurement of the curvature.
In inflation models with a large number of e-foldings,

curvature is predicted to be undetectable, i.e., the magni-
tude of ΩK—the curvature density parameter—is below
10−5, the measurement limit from local fluctuations in
the spatial curvature within our Hubble volume. While
if ordinary slow-roll inflation is preceded by false
vacuum decay, potentially observable open curvature can

be produced [5–9]. Specifically, the analyses by [10,11]
find that future detection of closed curvature at the level
of jΩKj≳ 10−4 will exclude eternal inflation and pose
challenges to the inflationary scenario, while detection of
open curvature at the same level will suggest that false
vacuum decay happened before the observable inflation.
Therefore, accurate measurement of curvature provides a
powerful tool to probe inflation.
Current constraints on curvature come mainly from

measurements of the Universe’s geometry. Due to severe
degeneracy between curvature and dark energy, most of
these constraints adopt simple assumptions for dark energy.
For example, by assuming dark energy to be the cosmo-
logical constant, the Planck collaboration obtains ΩK ≃
0.0007� 0.0019 from their measurements of the CMB
temperature, polarization, reconstructed lensing, and exter-
nal measurements of the baryon acoustic oscillations
(BAO) [12], which is probably the best precision we can
achieve today under this assumption. However, since the
nature of dark energy remains a mystery [13–16], one
cannot reach a decisive conclusion when using these
constraints to test inflation models. Actually, with the same
assumption for dark energy, the Planck team found their
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measurements for the CMB temperature and polarization
alone prefers a closed Universe otherwise [12], see also
[17,18]. While the real reason for this apparent discrepancy
remains to be clarified, the situation also stresses the
importance of obtaining stringent constraints on curvature
that are independent on the uncertainties in our knowledge
about dark energy.
In this paper, we investigate the constraints on curva-

ture that are independent on the “unknown” properties of
dark energy by utilizing geometrical cosmology probes.
Specifically, besides the most extensively explored probing
techniques such as type Ia supernovae, BAO, and CMB, we
study the constraints from the cross-correlation between
galaxy (tracers of large-scale structure) distribution and
signatures of weak-lensing, for which we comprehen-
sively consider the magnification of the brightnesses of
background standard candles such as type Ia supernovae,
cosmic shear measured from the distorted images of
background galaxies, and the remapping of the CMB fields.
The galaxy-weak lensing cross-correlation itself certainly

involves information on structure growth. However, by
comparing the signals for the same lensing galaxies but
sources at different redshifts, pure geometric information
can be extracted [19–21]. With more and more ambitious
cosmological surveys starting or to start operation, especially
the planned stage IV dark energy experiments such as the
LSST [22], CSST [23,24], the stage IV CMB experiment
[25], this geometrical probe is drawing more attention these
days. For example, ratios of distances have recently been
measured from real surveys with high significance using
the cross-correlation between galaxy and cosmic shear (the
so-called galaxy-galaxy lensing), and the cross-correlation
between galaxy and CMB lensing [26,27]. At the same time,
the cross-correlation between galaxy and supernovae mag-
nification itself has not been conclusively detected with
current data yet. For recent trials, see [28–30]. The oppor-
tunitieswith future surveys such as the LSST should bewide-
ranging, see [31] and our investigations in Sec. III A below.
Gravitational lensing uniquely probes the angular diam-

eter distance from the lens (rather than from observers at
z ¼ 0) to the source, in addition to the distances to the
lens and to the source. It is known that the three distances
altogether provide a pure metric probe for curvature
[32,33], see Fig. 1. In particular, [32] proposed to obtain
model-independent constraints on curvature by using the
geometrical probe constructed from galaxy-galaxy lensing.
However, their analysis done in real space adopts an
oversimplified assumption that observables along different
line of sights are completely independent. In this paper,
without directly dealing with the correlations between
observables along different line of sights, we perform an
analysis in Fourier space that automatically takes into
account the correlations. In addition, we extend the analysis
to include galaxy-supernovae magnification and galaxy-
CMB lensing cross-correlations. We notice that cosmo-
logical constraints from the cross-correlation between

galaxy and supernovae magnification have been barely
explored, if not completely none. We forecast the dark
energy independent constraints on curvature from galaxy-
weak lensing cross-correlations for Stage IV dark energy
experiments, and see whether the desired accuracy level of
10−4 can be reached when they are combined with other
popular geometrical probes.
The rest of this paper is organized as follows. In Sec. II,

we present the formulas we use to forecast the pure geo-
metrical constraints from galaxy-lensing cross-correlations.
In Sec. III, we forecast the constraints on curvature with
different assumptions for dark energy from the geometrical
probe of galaxy-lensing cross-correlations and the ultimate
combination with supernovae, BAO and CMB. We discuss
our results in Sec. IV and summarize in Sec. V.

II. THEORETICAL CALCULATIONS

In this section, we present the theoretical calculations
to forecast the pure geometrical constraints from galaxy-
lensing cross-correlations. To break the parameter degen-
eracies, we will combine the constraints with those from
the supernovae Hubble diagram, which is available from
the same supernovae survey used to measure the galaxy-
supernovae cross-correlation, and the calculation of which
is given in Sec II A. There are great similarity among
the three types of galaxy-lensing cross-correlations. The
differences are mainly in source redshifts and noises for
measuring the lensing signals. Thus, we elaborate the
calculations for the galaxy-supernovae cross-correlation,
which are much less presented in the literature, while
briefly mention those for the other two. We note our
calculations in Sec. II B 1 applies to other types of standard
candles as well.

FIG. 1. The comoving angular diameter distances to the lens rL,
to the source rS, and from the lens to the source rLS provide a
probe of curvature altogether. Shown in this plot is the depend-
ence on ΩK for the ratio of ðrL þ rLSÞ to rS, while rL, rS fixed at
1500 and 3000h−1 Mpc respectively. Here, we have used the
approximation for rLS when jΩK j ≪ 1 [34].
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A. Type Ia Supernovae

The apparent magnitude of a supernova at redshift zi is
given by

mi ¼ 5 log10 ½H0dLðziÞ� þMþ ϵi; ð1Þ

We introduce Mi as a quantity involving the supernova’s
intrinsic luminosity and the Hubble constant H0, and
separate Mi into its mean M and statistical variation
ðMi −MÞ. The latter is included in ϵi, which we use to
represent the total variation in mi. The luminosity distance
dL is related to the comoving angular diameter distance r
by dL ¼ ð1þ zÞr, while r is given as a function of the
comoving radial distance χ by

rðχÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
−ΩK

p
H0

sin ½
ffiffiffiffiffiffiffiffiffiffi
−ΩK

p
H0χ�; ð2Þ

with χ calculated by χ ¼ R
z
0 dz

0=Hðz0Þ.
We assume the total number of supernovae discovered

from a supernovae survey is Ntot, and their redshift dis-
tribution is dn=dz, which we normalize to be 1. To forecast
parameter constraints from a supernovae-alone probe—the
supernovae Hubble diagram, following [22], we neglect
all possible correlations between the apparent magnitudes
of different supernovae, and for the variance in an indi-
vidual supernova’s apparent magnitude σ2m, we assume it
is totally due to statistical variation of the supernova’s
intrinsic luminosity, and take it to be a constant. We note
that correlations between different supernovae induced by
various systematic effects and other types of statistical
variations should be taken into account for a more accurate
forecast. We then use the Fisher matrix technique to
forecast the anticipated constraints, which is constructed as

Fαβ ¼ Ntot

Z
dz

dn
dz

1

σ2m

∂m̄ðzÞ
∂pα

∂m̄ðzÞ
∂pβ

: ð3Þ

Here, besides the cosmological parameters, our parameter
set also includes M which involves both the mean of
the supernovae’s intrinsic brightness and H0. In obtaining
constraints on the cosmological parameters, we marginalize
overM. It can be seen that the parameter constraints will be
inversely proportional to N1=2

tot .

B. Galaxy-lensing cross-correlation

1. Galaxy-supernovae cross-correlation

In the previous section, we have considered the total
variation in an individual supernova’s brightness at a given
redshift comes only from its intrinsic luminosity. In reality,
an additional type of variation will be introduced by the
magnification effect of gravitational lensing by matter
distribution in the foreground [35–38]. Some supernovae
are magnified, and some demagnified. In the limit of weak

lensing, ϵi in Eq. (1) will have an additional term of
−5=ðln 10Þκi, besides ðMi −MÞ. Here, κi is the lensing
convergence for a source at the supernova’s location. This
magnification effect can be statistically measured by cross-
correlating the supernovae’s brightnesses with the distri-
bution of large-scale structure tracers in their foreground
such as galaxies (see e.g., [39–41]), which we study in this
section.
Specifically, we consider the cross-correlation between

the following two observables,

δ2Dn ðθ⃗Þ≡
Z

dzWLðzÞδnðz; θ⃗Þ; ð4Þ

Mðθ⃗Þ≡
Z

dzWSðzÞmðz; θ⃗Þ; ð5Þ

where δ2Dn and δn are the two and three-dimensional
galaxy overdensities; WL and WS are the redshift selection
functions for the galaxies (“Lens”) and supernovae
(“Source”) respectively, both of which have been normal-
ized to be 1, i.e.,

R
WðzÞdz ¼ 1; Mðθ⃗Þ represents the

average apparent magnitude for the selected supernovae
whose angular positions are within a solid angle d2θ
(d2θ → 0) around θ⃗. Intrinsic fluctuations in supernovae’s
brightnesses drop out in the cross-correlation, and by a
Fourier transform, we get the following cross-correlation
power spectrum,

CLS
l ¼−

15

2 lnð10ÞΩmH2
0

Z
dzWLðzÞ

gSðzÞ
ar2

Pgm

�
k¼ l

r
; z

�
;

ð6Þ

where Ωm is the density parameter for matter, a is the scale
factor, Pgm is the galaxy-matter power spectrum, and gSðzÞ
is given by,

gSðzÞ ¼
Z

dz0WSðz0Þ
rðχÞrðχ0 − χÞ

rðχ0Þ Θðχ0 − χÞ; ð7Þ

whereΘ is the Heaviside step function. In our derivation for
Eq (6), we have used the Limber approximation [42,43].
Galaxy-supernovae cross-correlation potentially provides

a pure geometrical probe of the Universe, as is the case for
galaxy-galaxy lensing [19,21]. A direct way to see this is by
taking the limit that the foreground galaxies are all selected to
be at a single redshift, i.e.,WLðzÞ → δðz − zLÞ, thenwe have
CLS
l =CLS0

l → gSðzLÞ=gS0 ðzLÞ, i.e., the ratio of the cross-
correlations between these galaxies and supernovae selected
with different selection functions,WSðzÞ andWS0 ðzÞ, probes
a pure geometrical quantity. Furthermore, in the limit of
WSðzÞ → δðz − zSÞ and WS0 ðzÞ → δðz − zS0 Þ, CLS

l =CLS0
l →

rðχS − χLÞrðχS0 Þ=rðχSÞrðχS0 − χLÞ, which directly probes
the ratio of the angular diameter distances.
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In this section, we investigate the pure geometrical probe
constructed from the galaxy-supernovae cross-correlation.
We consider a survey of both supernovae and galaxies, and
assume the former to be observed to a maximum redshift
zmax, and the latter to a redshift beyond that. For measure-
ments of the cross-correlation, galaxies at z > zmax would
be of no use, since their cross-correlation with the super-
novae would vanish. We divide both the supernovae and
galaxies from z ¼ 0 to z ¼ zmax into redshift bins of
equal size Δz. Hereafter, we use “S” as the index for the
supernova (source) redshift bins, and “L” for the galaxy
(lens) redshift bins. The measured cross power spectra CLS

l

and CL0S0
l0 have the following covariance,

CovðCLS
l ; CL0S0

l0 Þ ¼ δKll0

2lΔlfsky
ðCSS0

l CLL0
l þ CLS0

l CL0S
l Þ; ð8Þ

where δK is the Kronecker delta, Δl is the size of the
multipole bin used to measure CLS

l , and fsky is the fraction
of sky covered by the survey. Both the auto power spectra
for the supernovae brightnesses CSS0

l and for the galaxy
distribution CLL0

l have two contributions: one from large-
scale structure (“LSS”), and the other from shot noise
(“shot”), given by

CSS0
l;shot ¼ δKSS0σ

2
m=n̄2DS ; ð9Þ

CSS0
l;LSS ¼

�
15

2 lnð10ÞΩmH2
0

�
2
Z

dz
dχ
dz

×
gSðzÞgS0 ðzÞ

a2r2
Pmm

�
k ¼ l

r
; z

�
; ð10Þ

CLL0
l;shot ¼ δKLL0=n̄2DL ; ð11Þ

CLL0
l;LSS ¼

Z
dzWLðzÞWL0 ðzÞ

�
dχ
dz

�
−1
r−2

× Pgg

�
k ¼ l

r
; z

�
; ð12Þ

where σ2m, as in Sec. II A, is the variance of an individual
supernova’s brightness due to its intrinsic luminosity,
n̄2DS ; n̄2DL are the mean angular number densities for super-
novae in the “S”th redshift bin and galaxies in the “L”th
redshift bin respectively, while Pmm and Pgg are the matter
and galaxy power spectra in turn. Note CSS0

l;LSS is the power
spectrum of the E-mode shear except for a constant factor
of ð5= lnð10ÞÞ2, see e.g., [21,44].
Same as before, we use the Fisher matrix technique to

forecast parameter constraints from galaxy-supernovae
cross-correlation. Since statistical isotropy implies that
different multipoles are uncorrelated, the Fisher matrix
can be written as a sum of contributions from different
multipoles,

Fαβ ¼
X

l

X

ðLSÞ;
ðL0S0Þ

∂CLS
l

∂pα
ðCovlÞ−1

∂CL0S0
l

∂pβ
; ð13Þ

where ðLSÞ or ðL0S0Þ labels distinct cross power spectra.
Covl is the subblock of the full covariance matrix (Eq. (8)
for all the cross power spectra with multipole l. We note its
inverse is proportional to 2lΔlfsky, hence Fαβ ∝ fsky, and

the parameter constraints will be proportional to f−1=2sky .
To extract the pure geometrical constraints, we choose

our redshift bins to be narrow enough such that the
following approximation (under the limit of Δz → 0) to
the cross power spectrum holds to a good accuracy,

CLS
l ≈ −

15

2 lnð10ÞΩmH2
0

rðχS − χLÞ
rðχSÞrðχLÞ

1

aðzLÞ

× Pgm

�
k ¼ l

rðχLÞ
; zL

�
ΘðχS − χLÞ; ð14Þ

where χS ¼ χðzSÞ, χL ¼ χðzLÞ, with zS, zL representing the
mean redshifts of the narrow supernova and galaxy bins
respectively. With this approximation, we can easily
separate geometrical information (rðχS − χLÞ=rðχSÞ) from
what remains whose prediction typically involves uncer-
tainties in galaxy bias and matter power spectrum in the
nonlinear regime, which we hereafter denote as Cgm

l ðzLÞ.
Next, we take the Cgms at different multipoles and redshifts
also as parameter entries for the Fisher matrix, and
marginalize over them for the final geometrical constraints
on the cosmological parameters. Including these extra
parameters significantly increases the dimension of the
Fisher matrix, hence increases the difficulty for its inver-
sion. However, from Eq. (13), we find that Fαβ ¼ 0, when
pα and pβ correspond to Cgm at different multipoles. This
feature greatly simplifies the inversion of the Fisher matrix
with the method of “inversion by partitioning” [45].

2. Galaxy-galaxy lensing

Compared to galaxy-supernovae cross-correlation, gal-
axy-galaxy lensing [46] can be detected with a stronger
significance and to a higher redshift, for it is much easier to
observe a large number of galaxies to a high redshift than to
observe supernovae. In this section, we consider the pure
geometrical probe from galaxy-galaxy lensing.
While galaxy-supernovae cross-correlation is the corre-

lation between the distribution of a foreground galaxy
population and magnifications in the background super-
novae’s brightnesses, galaxy-galaxy lensing is the correla-
tion between the former and distortions in the background
galaxies’ images caused by weak lensing—the cosmic
shear field. To be explicit, galaxy-galaxy lensing is the
cross-correlation between δ2Dn , given by Eq. (4), and Γi,
given by the following,
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Γiðθ⃗Þ ¼
Z

dzWSðzÞγiðz; θ⃗Þ; ð15Þ

where γi is the shear field estimated through measurements
of background galaxies’ ellipticities, and “i” labels the
two shear components. Note, WSðzÞ here is the selection
function for the “sources,” i.e., background galaxies.
Similar to Mðθ⃗Þ, Γiðθ⃗Þ represents the average of the shear
estimated from background galaxies whose angular posi-
tions are within a solid angle d2θ (d2θ → 0) around θ⃗.
The shear field can be decomposed into a curl-free

E-mode component and a divergence-free B-mode com-
ponent. With scalar perturbations alone, only the E-mode
shear exists, which is equivalent to the lensing con-
vergence. Therefore, we only need to study the cross-
correlation between galaxy and the E-mode shear, which
we recognize to be exactly the same as the galaxy-supernovae
cross-correlation, except for a factor of 5= lnð10Þ.
In this section, we consider a weak lensing survey. As

before, we divide the galaxies into redshift bins of equal
size Δz, and denote the galaxy-galaxy lensing power
spectrum as CLS

l . Different from before, “S” here labels
the redshift bin for the “source” galaxies. The expression
for the covariance of CLS

l and CL0S0
l0 remains the same as

before, except the following differences: (1) CSS0
l;LSS has not

a factor of ð5= lnð10ÞÞ2; (2) CSS0
l;shot is now given by

CSS0
l;shot ¼

δKSS0

n̄2DS

Z
dzWSðzÞγ2rmsðzÞ; ð16Þ

where n̄2DS is the mean angular number density for source
galaxies in the “S”th redshift bin, and γrms is the rms of
shear in each component from galaxies’ intrinsic elliptic-
ities. In the end, we use the same method as in Sec II B 1 to
forecast the pure geometrical constraints on cosmological
parameters from galaxy-galaxy lensing.

3. Galaxy-CMB lensing cross-correlation

The Universe’s large-scale structure gravitationally
deflects the photons of CMB as well, and thus perturbs
the CMB power spectra. The weak lensing convergence for
the CMB can be reconstructed from the various lensed
CMB power spectra using the minimum variance estimator,
which minimizes the reconstruction noise [47]. For cosmic
shear, the source galaxies are typically distributed across a
relative broad range of redshift, and the signals are then
averaged over this distribution. However, the CMB photons
originate from a very narrow range of comoving distance,
thus the source redshift distribution can be approximated as
a Dirac δ-function with the value of redshift known to a
very precise level. For the cross-correlation between galaxy
and CMB lensing, the expressions for the cross power CLS

l

and the covariance between CLS
l and CL0S

l0 (“S” here labels

the redshift bin for the “source” of CMB) remain the same
as for the galaxy-galaxy lensing, except CSS

l;shot is now
replaced by the CMB lensing reconstruction noise, whose
expression is given by, e.g., Eq. (42) in [47].

III. CURVATURE CONSTRAINTS

In this section, we present the constraints on curvature
from the geometrical probe constructed from galaxy-
lensing cross-correlations. In Sec III A, we forecast the
constraints from the galaxy-lensing cross-correlations in
combination with the supernovae Hubble diagram. We
make our forecast for fiducial surveys mimicking the LSST
and Stage IV CMB experiment. In addition to detecting a
large number of type Ia supernovae, the LSSTwill measure
both the galaxy distribution and cosmic shear field at the
same time. Hence, three of the probes discussed in the
last section, i.e., the supernovae Hubble diagram, galaxy-
supernovae cross-correlation, and galaxy-galaxy lensing,
will be available from the LSST, while the galaxy-CMB
lensing cross-correlation can be measured from the over-
lapping area between the LSST and Stage IV CMB
experiment. (We assume the Stage IV CMB survey over-
laps completely with the LSST.) In Sec. III B, we add in
BAO and CMB to further tighten the constraints. In Sec III
C, we study improvements in the constraints from increas-
ing the high redshift extension of supernovae while keeping
their total number fixed.

A. Combination of galaxy-lensing cross-correlation
with supernovae Hubble diagram

The supernovae Hubble diagram probes the angular
diameter distance from a given redshift to an observer
on the earth, i.e., at z ¼ 0, while the galaxy-lensing cross-
correlation can additionally probe the angular diameter
distances from a given redshift (the sources’ redshift) to
observers at all intermediate redshifts with z ≠ 0 (the
lenses’ redshifts). Hence, the latter provides important
complementary information.
The LSST is about to survey a sky area of approximately

20; 000 deg2 for a duration of 10 years starting by 2022
[48]. It will detect about half a million type Ia supernovae to
a redshift slightly beyond z ¼ 1, see Fig. 2 for the super-
novae’s redshift distribution [22]. In the following, we
assume the total number of supernovae Ntot to be 4 × 105

[48], and the rms of their intrinsic brightnesses σm to be 0.1
[22]. At the same time, the LSSTwill observe galaxies at an
average angular number density of 50 arcmin−2, which is
the so-called gold sample of the LSST galaxies, the redshift
distribution of which is shown as the solid line in Fig. 2
[22]. Among these galaxies, we assume about 60% of
them can be used for shear measurement [48], hence, for
galaxy-galaxy lensing, the number density of source
galaxies is 30 arcmin−2, and we assume γrms has a red-
shift-independent value of 0.28 [22]. For the Stage IV CMB
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experiment, we assume a 1 arcmin beam and 1 μKarcmin
noise [25], and assume it covers the LSST survey area.
For the galaxy-lensing cross-correlations, we choose a

redshift bin size of Δz ¼ 0.1 for the type Ia supernovae,
lens and source galaxies. We note that the recent analysis
by [27] chooses a bin size of Δz ¼ 0.15 for the lens
galaxies, and finds the correction from the narrow tracer bin
approximation to be negligible compared to their meas-
urement errors. For galaxy-supernovae cross-correlation,
we have 11 supernovae bins from z ¼ 0 to zmax ¼ 1.1—the
highest supernova redshift, and this gives us 55 (10 × 11=2)
distinct cross power spectra. For galaxy-galaxy lensing, we
cut off the galaxy distribution at zmax ¼ 4 in our numerical
calculation, which includes ∼99% of all the galaxies, and
we have 780 distinct cross power spectra. This also gives us
40 galaxy-CMB lensing cross power spectra. In Fig. 3, we
explicitly show the power spectra for the galaxy-super-
novae cross-correlation (“gκSN”, black) and galaxy-galaxy
lensing (“gκg”, red) for the same redshift bins of lenses and
sources. Note, the former has been divided by a factor of
5= lnð10Þ, hence the two curves agree. The cross power
spectrum for the galaxy and CMB lensing for the same lens
galaxies is also shown as the green curve. The error bands
including both sample variance and shot noise are fore-
casted according to Eq. (8), with appropriate adaptions for
gκg and gκCMB as discussed in Sec. II. For the auto power
spectrum of CMB lensing and the reconstructed noises for
the Stage IV CMB experiment as considered here, we refer
the readers to [49].
For CMB lensing, we use the public available package

quicklens [50] to do lensing reconstruction from the T, E
and B modes of CMB, and we cut off the multipoles at
l ¼ 3000, due to the difficulty of cleaning temperature
foregrounds at l> 3000 for ground-based CMB experi-
ments. For gκSN and gκg, since we marginalize over
parameters directly describing the galaxy-matter power
spectrum, there is no need to worry about nonlinear effects
and baryonic effects on small scales, we use information on

angular scales up to l ∼ 105 [21]. Of course, not much
information can be obtained from modes with high enough
multipoles due to significant noise.
If we define the total S=N square for the galaxy-lensing

cross-correlation as

�
S
N

�
2 ≡X

l

X

ðLSÞ;
ðL0S0Þ

CLS
l ðCovlÞ−1CL0S0

l ; ð17Þ

we find for the LSST, the galaxy-supernovae cross-
correlation has S=N ¼ 103.8, while the galaxy-galaxy
lensing has S=N ¼ 2291.2, about 22 times larger due
to its wider redshift coverage and smaller shot noise
(see Table I). While for the LSST and Stage IV CMB
experiment, the galaxy-CMB lensing cross-correlation
has S=N ¼ 1842.3.
Throughout this paper, we choose our fiducial cos-

mological model to be the flat ΛCDM model with
ΩΛ ¼ 0.689 [12]; when calculating Pmm, we further choose
fΩbh2;Ωmh2; σ8; nsg ¼ f0.022; 0.142; 0.81; 0.967g [12],
and adopt the Smith et al. prescription [51] to account
for the effects of non-linear evolution; when calculating Pgg

and Pgm, we assume a simple linear bias of b ¼ 1.
Degeneracy between dark energy parameters and curva-

ture is expected, since they both affect the Universe’s
expansion rate, hence the comoving radial distance, though
curvature has an additional effect on the comoving angular
diameter distance. Therefore, the constraints on curvature
will depend on specific assumptions about dark energy,

FIG. 2. Normalized redshift distributions of type Ia supernovae
(histogram) and galaxies (solid line) for the LSST. FIG. 3. The power spectra for the galaxy-supernovae cross-

correlation (“gκSN”, black), galaxy-galaxy lensing (“gκg”, red),
and galaxy-CMB lensing cross-correlation (“gκCMB”, green).
Error bands are forecasted for the LSST and Stage IV CMB
experiment. We have divided the galaxy-supernovae cross power
and its errors by a factor of 5= lnð10Þ. The lens galaxies are in the
redshift bin of z∶½0.4; 0.5�, while the supernovae and source
galaxies are in z∶½0.5; 0.6�. The error bands for the galaxy-CMB
lensing cross power are plotted up to l ¼ 3000.

YUFEI ZHANG and WENJUAN FANG PHYS. REV. D 103, 043539 (2021)

043539-6



characterized by assumptions for its equation of state w
which determines the evolution of its energy density.
For comparison, we forecast the constraints on curvature

for a wide range of choices of w. We first consider the
following common choices: (1) w is fixed to be (−1), i.e.,
dark energy is the cosmological constant; (2)w is a constant
whose value needs to be determined; (3) w varies with time
as w ¼ w0 þ wað1 − aÞ, with the values of w0, wa to be
determined. From the first to the third choice, the degrees of
freedom in w is increasing. Next, we consider a fourth more
general parametrization where w is a binned function
parametrized by its values in N equal-sized a bins from
a ¼ 0 to a ¼ 1, which we denote as wi, with i ¼ 1;…; N.
Each wi is allowed to vary independently. This paramet-
rization potentially can enclose all possible models for w,
hence the constraints on curvature obtained with this choice
after marginalizing over all dark energy parameters can be
considered as independent of models of dark energy. In the
following, we will study the constraints on curvature with
N ¼ 10, 20, and 50, and the results when N ¼ 50 will be
our most dark energy independent constraints on curvature.
The constraints on curvature with the above assumptions

for dark energy forecasted for the LSSTand Stage IV CMB
experiments are shown in Table II. In different columns, we
show the constraints from different probes, with the second
column showing the constraints from the supernovae
Hubble diagram alone (“SN”), and the third and fourth
columns giving the constraints from the combinations of
“SN” with “gκSN” and “gκg” respectively. The last column
gives the constraints from the combinations of “SN” with
“gκg” and “gκCMB”. We do not show the constraints from
either “gκSN”, “gκg” or “gκCMB” alone, because they are
less interesting due to severe parameter degeneracy [32]. In
different sections, we show the constraints with different
assumptions for dark energy. From the first to the third
sections, we show in turn the constraints with our first three
choices of w, while from the fourth to the last, we give the
constraints for the fourth choice with N ¼ 10, 20, 50
respectively. Note, from the top to the bottom sections,
the uncertainty in our knowledge about w is increasing.
By comparing the constraints in different sections for

each probe, we find that when there are more degrees
of freedom in dark energy’s equation of state, the con-
straints on curvature get weaker, consistent with one’s
expectation. Our strongest constraints are hence obtained
when w ¼ −1, and the weakest ones obtained when w is a

binned function with 50 bins in a. It can also be easily
seen that the constraints from the combined probes of
either “SNþ gκSN” or “SNþ gκg” are better than “SN”
alone, due to the important complimentary information
provided by the galaxy-lensing cross-correlation which
breaks the degeneracy between curvature and dark energy
parameters.
It is interesting to find that the improvements in the

curvature constraints by adding in “gκSN” or “gκg” get more
significant when dark energy has more degrees of freedom,
with the improvements being minimal when dark energy is
known to be the cosmological constant and maximal when
w is parametrized by 50 wis. This highlights the importance
of galaxy-lensing cross-correlation in obtaining dark
energy independent constraints on curvature. Moreover,
the constraints from the combination of “SNþ gκg” are
better than from “SNþ gκSN”. For N ¼ 50, the improve-
ment factor is 233 by adding in “gκg” to “SN”, while 13
when adding in “gκSN”. This is expected as compared to
“gκSN”, “gκg” has a wider redshift coverage and lower shot
noise. To tighten the constraints more, we add in “gκCMB”
to “SNþ gκg” in the last column, we do not add “gκSN”

TABLE I. Total S=N for detecting the galaxy-lensing cross-
correlation from the LSST and Stage IV CMB experiments.

S=N

gκSN 103.8
gκg 2291.2
gκCMB 1842.3

TABLE II. Parameter constraints forecasted for the LSST
and Stage IV CMB experiments. From left to right, the columns
are constraints from the supernovae Hubble diagram (“SN”),
its combination with galaxy-supernovae cross-correlation
(“SNþ gκSN”), and combination with galaxy-galaxy lensing
(“SNþ gκg”), and combination with galaxy-galaxy lensing
and galaxy-CMB lensing(“SNþ gκg þ gκCMB”). Note, our con-
straints from “gκSN”, “gκg” and “gκCMB”are pure geometrical.
From top to bottom, the constraints in different sections are based
on dark energy parametrizations with more degrees of freedom in
its equation of state w: the first three sections are for (1) w ¼ −1,
(2) w ¼ const, (3) w ¼ w0 þ wað1 − aÞ; while the last three
sections assume w is a binned function parametrized by its values
in N bins from a ¼ 0 to a ¼ 1, with N ¼ 10, 20, 50 respectively.

Parameters SN SNþ gκSN SNþ gκg SNþ gκg þ gκCMB

ΩK 0.00815 0.00815 0.00659 0.00166
ΩΛ 0.00568 0.00568 0.00463 0.00142

ΩK 0.0701 0.0698 0.00874 0.00200
ΩΛ 0.0720 0.0717 0.00882 0.00396
w 0.0825 0.0822 0.0123 0.0101

ΩK 0.408 0.356 0.0151 0.00214
ΩΛ 0.517 0.451 0.00886 0.00792
w0 0.515 0.449 0.0156 0.0101
wa 1.28 1.12 0.173 0.107

ΩK 1.16 0.614 0.0359 0.0343
ΩΛ 1.30 0.702 0.0735 0.0709

ΩK 8.22 0.722 0.0407 0.0389
ΩΛ 9.19 1.32 0.175 0.170

ΩK 9.72 0.723 0.0417 0.0400
ΩΛ 8.68 2.35 0.391 0.384
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here to avoid the strong correlations between “gκSN” and
“gκg”. We notice, the improvements by adding in “gκCMB”
to “SNþ gκg” get milder when dark energy has more
degrees of freedom, ranging from 4 when dark energy
is known to be the cosmological constant to 1.04
when N ¼ 50.
Finally, we find that though the curvature constraints

keep getting weaker when w is allowed to have more
degrees of freedom, the constraints from the combined
probes of “SNþ gκg þ gκCMB” do not degrade much
when we take w to be a binned function and increase
the number of bins from 10 to 20 to 50. As discussed in
[52], a limited number of bins that is equally-spaced in
scale factor is enough for parameter constraints to con-
verge. Therefore, we hereafter quote the constraints with w
a binned function with 50 bins in a as our final “dark
energy independent” constraints.
To summarize, we obtain dark energy independent

constraints on ΩK of 0.723 from the combination of
“SNþ gκSN”, 0.0417 from “SNþ gκg” for the LSST, and
0.04 from “SNþ gκg þ gκCMB” for the LSST and Stage IV
CMB experiments. We find the galaxy-lensing cross-
correlation plays a significant role in obtaining these
results. It improves the curvature constraints by breaking
the degeneracy between curvature and the dark energy
parameters from “SN” alone. If we know dark energy to
be the cosmological constant, we are able to get much
tighter constraints of 0.00815 for “SNþ gκSN”, 0.00659
for “SNþ gκg”, and 0.00166 for “SNþ gκg þ gκCMB”. We
note that in obtaining these results, we do not apply any
priors. These results do not reach the desired accuracy level
of 10−4, so below we add other geometrical probes to
improve the constraints on curvature further.

B. Adding in BAO and CMB

In this section, we are interested in tightening the
constraints on curvature further by combining with other
geometrical probes. Specifically, we include the probes
utilizing the standard ruler of sound horizon at recombi-
nation s. Measurements of the CMB anisotropies can probe
the angular size extended by the sound horizon at recom-
bination θ�, hence the angular diameter distance to recom-
bination r�ð¼ s=θ�Þ. Late-time BAO measurements can
also probe the sound horizon1 through its imprints on
matter distribution. Its extensions in the transverse direction
(δθ ¼ s=r) and the line-of-sight direction (δz ¼ sH) probe
the late-time angular diameter distance r and Hubble
expansion rate H respectively. In this section, we include
these two probes in our forecast.
For the CMB constraints, we simply incorporate the

Planck measurement for θ�, which is at an accuracy level of

∼0.03%, and is very stable to changes in the assumed
cosmology [12]. We calculate the sound horizon and
redshift of recombination according to the fitting formulas
given in [53]. These two quantities are determined by
the baryon and matter densities in the Universe, which
themselves are well measured from morphology of the
CMB anisotropy power spectrum. Therefore, we adopt the
Planck constraints on Ωmh2 and Ωbh2 as priors for our
calculation.
For the BAO constraints, we follow [16] and consider a

Stage IV BAO experiment that maps 25% of the full
sky from z ¼ 0 to z ¼ 3 with errors ∼80% larger than the
linear theory sample variance errors (to account for non-
negligible shot noise and non-linear degradation of the
BAO signal). Such an experiments can be collectively
achieved by the BAO programs that are currently ongoing
or under design, such as the programs from Euclid [54],
WFIRST [55], and DESI [56]. We adopt the forecasted
covariance matrix for the measured quantities of r=s and
sH from [16], and then use the Fisher matrix to derive
constraints on the cosmological parameters.
The constraints we obtained from BAO and CMB are

shown in Table III. By adding BAO and CMB to our
previous calculations we get stronger constraints, also
shown in Table III. Here we only show the constraints
obtained with the assumption that dark energy is the
cosmological constant (top section), and with our most
uncertain assumption for dark energy (i.e., w is a binned
function with 50 equal-sized bins from a ¼ 0 to a ¼ 1,
bottom section). Note, whenever CMB is included, we
apply a weak Gaussian prior with width Δwi ¼ 10

ffiffiffiffi
N

p
on

all the wis [16].
We focus on discussions about the “dark energy-inde-

pendent constraints on curvature,” which we simply refer
to as “constraints on curvature” unless otherwise explicitly
stated in the following. From Table III, it can be seen
that our constraint on curvature from “BAOþ CMB” is
better than that from “SNþ gκg þ gκCMB”. Therefore,
“BAOþ CMB” is more promising in constraining curva-
ture in a dark-energy independent way than the combina-
tion of “SN” and galaxy-lensing cross correlations.

TABLE III. Constraints from “BAO þ CMB”, “SNþ BAOþ
CMB” and “SNþgκgþgκCMBþBAOþCMB” (denoted as
“All”). The upper section assumes dark energy is the cosmological
constant, while the lower section assumes w is a binned function
parametrized by 50wis—its values in 50 bins from a ¼ 0 to a ¼ 1.
For each wi, a prior of Δwi ¼ 10

ffiffiffiffi
N

p ðN ¼ 50Þ is applied.
Parameters BAO þ CMB SNþ BAOþ CMB All

ΩK 0.000644 0.000514 0.000496
ΩΛ 0.00288 0.000783 0.000782

ΩK 0.0227 0.00938 0.00130
ΩΛ 0.264 0.00939 0.00315

1Strictly speaking, late-time BAO measurements probe the
sound horizon at the end of the baryon drag epoch. We here
neglect the small difference following [16].
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At the same time, we also look at the constraint on
curvature from BAO alone,2 which we find to be 0.0522.
This is slightly worse than the constraint from “SNþ gκg”
and “SNþ gκg þ gκCMB”. Therefore, for Stage IV dark
energy surveys, the combination of “SN” and galaxy-
lensing cross correlations provides a slightly better probe
of curvature than BAO.
To see the importance of galaxy-lensing cross correla-

tions when they are added to the combined probe of
“SNþ BAOþ CMB”, we compare the 3rd and 4th col-
umns of Table III, and find they are only mildly helpful
when dark energy is the cosmological constant, but can
tighten the constraint on curvature by approximately a
factor of 7 when dark energy has a general parametrization.
Therefore galaxy-lensing cross-correlations play an impor-
tant role in extracting information on the Universe’s
curvature in a dark energy independent way.
Our ultimate constraint on curvature from the combina-

tion of the five geometrical probes “SNþ gκg þ gκCMBþ
BAOþ CMB” now reaches 0.0013. This is much better
than either “SNþ gκg þ gκCMB” or “BAOþ CMB”, which
give curvature constraints only at the level of 10−2,
reflecting the strong complementarity of the two combined
probes.
To conclude, when BAO and CMB are included, the

improvements on the curvature constraints can be one
order of magnitude. We find the dark energy independent
constraints on curvature now can be as tight as ∼1 × 10−3,
but still one order of magnitude away from the desired level
of 10−4. Moreover, even if dark energy is the cosmological
constant, the constraint on curvature from the combination
of the five geometrical probes of “SNþ gκg þ gκCMB +
BAO+CMB” is only ∼0.0005, still larger than the target
precision of 1 × 10−4. In the following we explore how
much we can gain on the curvature constraint by broad-
ening the redshift coverage of supernovae.

C. Increasing zmax of Supernovae

It is known that for a supernovae alone probe, a broader
redshift coverage can give better parameter constraints
provided the total number of supernovae is kept fixed
[57]. This is because supernovae at different redshifts
usually lead to different degeneracy directions among
the parameter space, and a wider redshift coverage results
in better complementarity. In this section we investigate
the possibility of tightening the curvature constraints more
with a wider redshift coverage of supernovae or standard
candles in general.
Specifically, we keep the total number of supernovae to

be fixed at 4 × 105, and assume their redshift distribution
follows that of the LSST galaxies but cuts off at zmax. In the
following, we will forecast the constraints on curvature for

two choices of zmax: zmax ¼ 2 and zmax ¼ 3. Supernovae at
such high redshifts may be challenging to be surveyed with
ground-based telescopes like the LSST, but may be easier
to observe with future space-based ones. For example, the
WFIRSTmission is about to find supernovae to zmax ¼ 1.7,
but with Ntot only ∼3000 [58], far less than 4 × 105. Thus,
we note the forecasts we make in this section may be too
optimistic for type Ia supernovae surveys currently in plan.
However, they may be more realistic for other types of
standard candles such as quasars and gamma-ray bursts,
which can be observed to much higher redshifts [59,60].
The dark energy independent constraints on curvature

obtained by extending zmax from zmax ¼ 1.1 to zmax ¼ 2
and zmax ¼ 3 are plotted in Figure 4. It can be easily
seen that the curvature constraints from either “SN”,
“SNþ gκSN”, “SNþ gκg þ gκCMB ”, or “SNþ gκg þ
gκCMB þ BAOþ CMB” all get better when the super-
novae’s redshift distribution can reach a higher zmax. We
also find that the improvements in the constraints by
increasing zmax from zmax ¼ 1.1 (Table II) to zmax ¼ 2
are more significant than increasing it from zmax ¼ 2 to
zmax ¼ 3. For the dark energy independent constraints on
curvature from “SN ”, we obtain 1.12 with zmax ¼ 2
(improved by a factor of ∼8.7 from zmax ¼ 1.1), and
0.728 with zmax ¼ 3 (improved by a factor of ∼1.5 from
zmax ¼ 2); while for the dark energy independent con-
straints from “SNþ gκg þ gκCMB”, we get 0.00926 with
zmax ¼ 2 (improved by a factor of ∼4.3 from zmax ¼ 1.1),
and 0.00541 with zmax ¼ 3 (improved by a factor of ∼1.7
from zmax ¼ 2). Even if we can increase the supernovae’s
redshift distribution only to zmax ¼ 2, the efforts are
rewarding enough judging from the improvements on

FIG. 4. Forecast 1σ constraints on curvature as a function
of the maximal redshift of supernovae for “SN”(black),
“SNþ gκSN”(red), “SNþ gκg þ gκCMB”(green) and “SNþ gκg þ
gκCMB+BAO+CMB”(blue, denoted as “All”), respectively. The
total number of supernovae is kept fixed at 4 × 105. The dark
energy equation of state parameter w is assumed to be a binned
function parametrized by its values in 50 bins from a ¼ 0 to a ¼ 1.

2Planck priors on Ωmh2 and Ωbh2 are still included here.

GEOMETRICAL CONSTRAINTS ON CURVATURE FROM … PHYS. REV. D 103, 043539 (2021)

043539-9



curvature constraints from “SN” and its combination with
galaxy-lensing cross-correlations. Again, we find as before
that combining galaxy-lensing cross-correlations and “SN”
resulting in significant improvement, even for the case with
gκSN, which has a relative lower S=N.
However, for the combination of all five probes

“SNþ gκg þ gκCMB þ BAOþ CMB”, the improvement
from increasing zmax is much milder, especially when
increasing from zmax ¼ 2 to zmax ¼ 3, reflecting the sub-
dominant role of “SN” in the combined probes (probably
because BAO already provides the high-z information up
to z ¼ 3), and the rapid decrease with redshift of galaxy
distribution at high z. We find the constraints from the
combination of the five probes is still ∼10−3. However,
significant improvement on curvature constraint can be
possible with standard candles whose redshift distribution
has a larger fraction at high redshift, say z > 3, which we
postpone for future study.

IV. DISCUSSION

Our calculations above have adopted several simplifica-
tions. We have neglected a few systematic effects such as
photometric redshift errors, shear calibration errors, galaxy
intrinsic alignments etc. For photometric redshift errors,
the LSST galaxies’ photometry will have high enough
quality to provide a rms accuracy σ=ð1þ zÞ of 0.02 [48].
This is in general much smaller compared to our bin width
of Δz ¼ 0.1. Therefore, we expect photometric redshift
errors would not change at least the order of magnitude of
our results. For shear calibration errors, recent analysis
by [27] found that if the multiplicative shear bias m from
LSST can be calibrated to σðmÞ ¼ 0.001, which is the
requirement set in the LSST science book [22], its effect on
cosmological constraints would be negligible. We then
assume LSST shear calibration will be accurate enough not
to change much of the cosmological constraints we have
obtained. For intrinsic alignment, which probably will
weaken our constraints on curvature to some extent, the
effect can be minimized if the redshift separation between
the lens and source galaxies are increased to be large
enough. Considering the ultimate constraints on curvature
we obtain is at the level of 10−3, one order of magnitude
larger than the desired level of 10−4, we do not analyze the
effect of intrinsic alignment together with other systematic
effects (including those we have not mentioned in the
above, such as the narrow lens bin approximation, lensing
dilution and galaxy lensing boost factors) quantitatively
here, which will not change our primary finding.
In this work, we obtain our dark energy-independent

constraints on curvature by assuming the equation of state
of dark energy is parametrized by its values in 50 a bins
from a ¼ 0 to a ¼ 1 and marginalizing over all these
parameters. Compared to previous work on this topic by
[61,62], this approach is more model-independent: the

method proposed by [61] depends on the assumption that
dark energy is completely negligible in “matter-dominated”
regime, while ours allows dark energy to be non-negligible
even at early times (early dark energy); [62] parametrizes w
of dark energy at low redshift (z≲ 1.7) with 15 principle
components (PCs), but calculations of the PCs typically
depend on the specifics of both the data set and cosmo-
logical model used to obtain the Fisher matrix from which
they are derived.
However, compared to previous work by [32], our

approach is not as model-independent. [32] probes curva-
ture purely from the relationship between rL, rLS and rS. By
marginalizing over the distances of rL, rS which are
integrals of functions of the Hubble expansion rate, the
obtained constraints do not depend on any energy compo-
nent of the Universe or dynamics that governs its expan-
sion, but only on the validity of the FRW metric. Our
approach is less general in the sense that we in addition
assume energy-momentum conservation and the validity of
the Friedmann equation if cosmic acceleration is due to
dark energy, or if cosmic acceleration is due to modified
gravity, its effect on the Universe’s expansion can be
viewed equivalently as an effective dark energy, which
holds for most interesting modified gravity models (see
e.g., [63,64]). Therefore, though in this paper we use the
term of “dark energy”-independent constraints on curva-
ture, our constraints are actually independent on the
unknown mechanism for cosmic acceleration including
both dark energy and modified gravity.
Since we obtain our curvature constraints by marginal-

izing over the contribution of dark energy or “effective”
dark energy to the Universe’s expansion, while [32] obtain
theirs by marginalizing over the distances, our constraints
will be tighter than theirs. We conclude that [32] provide a
pure metric probe of curvature which does not depend on
how the Universe expands, while we probe the curvature in
a way that is independent on how (“effective”) dark energy
affects the Universe’s expansion.
There are also many works in the literature that utilize

measurements of the angular diameter distances and Hubble
expansion rates to obtain model-independent constraints
on curvature, e.g., [65–70]. These works typically need to
estimate derivatives of the angular diameter distances or to
reconstruct theHubble expansion history using somemodel-
independent smoothing techniques such as the Gaussian
process. Thus, it may be hard to achieve an accuracy as tight
as σΩK

∼ 10−4 robustly using these methods.
In this work, we have focused on constraining curvature

using probes of the Universe’s geometry. One can surely
add in probes of the Universe’s growth of structure to
tighten the constraints. Actually, [62] has studied model
independent constraints on curvature from combining
geometry probes with growth probes through measuring
the abundance of X-ray clusters. However, their work is
done within the “smooth” dark energy paradigm [71] and
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assumes the validity of general relativity, hence it does not
apply to dark energy with nontrivial clustering properties or
modified gravity.Also, probes of structuregrowth are usually
subject to systematics from theoretical modeling of baryonic
physics and growth of structure on nonlinear scales. Future
work on using probes of structure growth to constrain cur-
vature in a dark energy-independent way should take into
account of all these problems, which may be challenging.

V. SUMMARY

Accurate constraints on curvature provide a powerful
probe of inflation. However, current accurate constraints
on curvature are almost all derived upon simple assumptions
of dark energy such as assuming it is the cosmological
constant. Considering the large uncertainties in our theoreti-
cal understanding about dark energy, constraints with these
assumptions may lead to unreliable conclusions when they
are used to test inflation models. Hence, for a robust test of
inflation models, it is important to obtain constraints on
curvature that are independent on uncertainties in our knowl-
edge about dark energy. In this paper, we have investigated
such constraints on curvature from the geometrical probe
constructed from galaxy-lensing cross-correlations and its
combination with other common geometrical probes.
We study the galaxy-magnification, galaxy-shear, and

galaxy-CMB lensing cross-correlations, with magnification
measured from the type Ia supernovae’s brightnesses. We
find for the Stage IV dark energy survey of LSST and the
Stage IV CMB survey, the galaxy-magnification cross-
correlation (“gκSN”) can be detected with signal-to-noise
ratio S=N ¼ 104, the galaxy-shear cross-correlation (“gκg”)
with S=N ¼ 2291, and the galaxy-CMB lensing cross-
correlation (“gκCMB”) with S=N ¼ 1842. We include the
supernovae Hubble diagram (“SN”) to break parameter
degeneracy, which is available with the same supernovae
data set used to measure “gκSN”. We obtain dark energy
independent constraints on ΩK of 0.723 from “SNþ gκSN”,
0.0417 from “SNþ gκg”, and 0.04 from “SNþ gκg þ
gκCMB” for the LSST and Stage IV CMB experiment. We
find that the galaxy-lensing cross-correlation plays a signifi-
cant role in tightening the curvature constraint by breaking

the degeneracy between curvature and the dark energy para-
meters, especially when dark energy is completely unknown.
We find the constraint from “SNþ gκg þ gκCMB” is better
than that from a Stage IV BAO experiment, but not as good
whenBAO is combinedwith the Planckmeasurement for the
acoustic scale in the CMB. Adding the galaxy-lensing cross-
correlations to the combined probe of “SNþ BAOþ CMB”
results in a factor of 7 improvement in the dark energy
independent constraints on curvature, but much milder
improvement when dark energy is known to be the cosmo-
logical constant. We obtain our ultimate constraint onΩK of
0.0013 from “SNþ gκg þ gκCMB þ BAOþ CMB”. Our
analysis also shows that tighter constraints can be obtained
with better knowledge about dark energy.
We investigate the possibility of tightening the curvature

constraints further by increasing the redshift extension of
supernovae or standard candles in general, while keeping
the total number fixed at the same value. We find though the
“SN” alone and its combination with galaxy-lensing cross
correlations have significant improvements on curvature
constraints, the combined probes of “SNþ gκg þ gκCMB þ
BAOþ CMB” does not. However, improvements can still
be achievable with a larger fraction of standard candles at
high redshift, larger than that for the LSST galaxies which
we have assumed for the supernovae in our analysis. While
this is hard to realize with supernovae, it can be easier to
achieve with other types of standard candles such as
quasars [60]. We plan to investigate more about this in a
future paper.
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