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The quantum origin of cosmological primordial perturbations is a cornerstone framework in the
interplay between gravity and quantum physics. In this paper, we study the mutual information between
two spatial regions in a radiation-dominated universe filled by a curvature perturbation field in a
squeezed state. We find an enhancement with respect to the usual mutual information of the Minkowski
vacuum due to momentum modes affected by particle production during inflation. This result supports
our previous claim of the existence of long-range correlations between primordial black holes (PBH) at
formation during the radiation era.
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I. INTRODUCTION

Entropy and information play a key role in our under-
standing of physics. They are important properties of
quantum states and are useful in describing correlations.
They are thought to be a bridge between classical gravity
and an underlying quantum theory of gravity.
The study of entropy and information applied to black

hole physics is a fruitful field of research. The introduction
of Bekenstein entropy [1] was followed by the discovery
of the area law of entanglement entropy [2,3]. The link
between these two concepts added quantum information to
the already successful crossover between gravity and
quantum field theory.
Cosmology also profits from this interplay between

gravity and quantum physics. The idea of inflation intro-
duced a quantum origin of primordial perturbations [4].
This was needed in order to explain the power spectra of the
cosmic microwave background (CMB) and some features
of the large-scale structure (LSS) of the Universe. Less
known alternatives to inflation also explain power spectra
by means of quantum fluctuations [5]. Even though
quantum fluctuations classicalize in the sense that their
observable features appear classical [6–8], their quantum
origin is still relevant. For instance, the study of the entropy
of cosmological perturbations in momentum space has long
been considered [9] and has recently been extended to
include nonlinear interactions [10]. In a more general sense,
it has also been a matter of recent work, the study of the
universe as a storage of quantum information in gravita-
tional d.o.f., which could, in turn, leave an imprint on
primordial perturbations [11].

In a previous work, we investigated the entanglement
entropy of the primordial curvature perturbation field in a
radiation-dominated universe [12]. We found that there are
UV-finite contributions to the entanglement entropy, which
are linked to long-range correlations. They are a natural
consequence of the stretching of quantum fluctuations
during inflation. We argued that entangled primordial black
holes (PBH) could be formed by gravitational collapse of
entangled perturbations during the radiation era.
Here, we take a step further by computing the mutual

information between disjoint regions in a radiation-
dominated universe filled with a curvature perturbation
field. The mutual information quantifies both classical and
quantum correlations between these regions. We find that it
is linked to the primordial power spectrum and thus
enhanced by inflation due to the stretching of quantum
fluctuations.
This paper is organized as follows. In Sec. II, we review

the concepts of entropy and information associated to
quantum states. In Sec. III, we describe the squeezed state
of the scalar perturbation field in terms of two-point
correlation functions, whose behavior we analyze. In
Sec. IV, we review the well-known formalism that connects
correlation functions and entanglement of local d.o.f.
In Sec. V, we adapt an existing perturbative approach
for the computation of the mutual information to the
particular squeezed state of the radiation field and obtain
a closed-form expression for it. In Sec. VI, we discuss some
implications for the cosmological evolution, and we finish
with conclusions in Sec. VII.

II. ENTROPY AND INFORMATION

We provide here a brief review of the concept of the
entropy associated to a quantum state and its link to
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information. Given a quantum state described by its density
matrix ρ, one defines its von Neumann entropy as

S ¼ −Trðρ log ρÞ: ð1Þ

This satisfies the simple but important property,

S ¼ 0 for ρ a pure state;

S > 0 for ρ a mixed state: ð2Þ

If ρ describes the state of a system with several d.o.f., for
instance, two complementary subsystems A and B, we can
ask the same questions regarding one of its reduced density
matrices, ρA ¼ TrBρ,

SA ¼ −TrðρA log ρAÞ: ð3Þ

This is the von Neumann entropy of the state ρA. If ρ is a
pure state, then the subsystem A is in a mixed state only if
it’s entangled with B. Then SA ¼ SB and is called the
entanglement entropy.
Let us consider now a multipartite system with possibly

infinite d.o.f., as is the case of a quantum field. Then, A
and B need not be complementary, and one can ask what is
the entropy of the subsystem A ∪ B, and it turns out to be
given by

SA∪B ¼ SA þ SB − IðA; BÞ: ð4Þ

IðA; BÞ is defined as the mutual information between A
and B and is the key object of study of this paper. In the
case of a quantum field consisting of local continuous
d.o.f., subsystems correspond to local d.o.f. restricted to
spatial regions. The mutual information is a measure of
total (classical and quantum) correlations between disjoint
regions A and B. It satisfies two important properties:

(i) Non-negativity:

IðA; BÞ ≥ 0: ð5Þ

(ii) Symmetry:

IðA; BÞ ¼ IðB; AÞ: ð6Þ
The mutual information between two regions for a scalar

field in the Minkowski vacuum is a rapidly decaying
function of the distance r. For instance, for two spheres
of radius R1 and R2 and R1; R2 ≪ r, one finds the
expression [13,14],

IðA;BÞ ≃ 1

4

R2
1R

2
2

r4
; ð7Þ

which becomes quickly irrelevant. We will see in the course
of this paper how this quantity is enhanced thanks to

particle production (or, equivalently, stretching of quantum
fluctuations) during inflation. Indeed, this same quantity
for a scalar field in the squeezed state resulting from an
inflationary period lasting from conformal time η0 to ηend
and evaluated at superhorizon scales at conformal time η
during the radiation era is given by

IðA;BÞ ≃ 1

16

R2
1R

2
2

η4end

�
η

ηend

�
4
�
1 − γ þ log

�
−η0
r

��
2

; ð8Þ

where γ ≃ 0.577216… is the Euler-Mascheroni constant.
This much slower decay signals long-range correlations
between these disjoint regions and is the main result of our
paper. It is also a natural result: Due to inflation, distant
regions were causally connected in the past. Enhanced
mutual information is intuitively connected with the main
dynamical prediction of inflation: a homogeneous and
isotropic universe with a nearly scale-invariant spectrum
of curvature perturbations.

III. THE QUANTUM STATE AFTER INFLATION

Consider a FLRW universe with linear perturbations of
its geometry and matter content. In the longitudinal gauge,
its metric takes the following form [15,16]:

ds2 ¼ a2ðηÞ½ð1þ 2ΦÞdη2 − ð1 − 2ΦÞdx⃗2�; ð9Þ

where a is the scale factor, η is the conformal time, x⃗ is the
set of comoving spatial coordinates, and Φ is the gauge-
invariant gravitational potential. Notice that all coordinates
are dimensionless, and only the scale factor a keeps track of
physical dimensions. During inflation, the background
evolution is dominated by a scalar field φðηÞ, which also
has linear gauge-invariant perturbations δφðη; x⃗Þ. One can
fully characterize primordial scalar perturbations by means
of the Mukhanov-Sasaki variable [15–17],

vðη; x⃗Þ ¼ aðηÞ
�
δφþ φ0 Φ

H

�
; ð10Þ

where 0 denotes a derivative with respect to conformal time
η andH ¼ a0=a. The origin of these perturbations is traced
back to quantum fluctuations that are stretched out during
inflation, which drives growth (i.e., particle creation) when
modes become superhorizon. The Mukhanov-Sasaki var-
iable is directly connected to gauge-invariant metric cur-
vature perturbations via the relation,

vðη; x⃗Þ ¼ ζðη; x⃗Þ
z

; ð11Þ

with z being mainly related to the scale factor,
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z ¼ a
φ0

H
: ð12Þ

The dynamics of the Mukhanov-Sasaki variable is
derived from a perturbation of the action,

δS ¼ 1

2

Z
d4x

�
ðv0Þ2 − c2sδij∂iv∂jvþ

z00

z
v2
�
; ð13Þ

where cs is the speed of sound, which takes values cs ¼ 1

during inflation, and cs ¼ 1=
ffiffiffi
3

p
during the radiation era.

The corresponding equation of motion for the Fourier

modes vkðηÞ ¼
R
d3xeik⃗·x⃗vðη; x⃗Þ is

v00 þ
�
c2sk2 −

z00

z

�
v ¼ 0; ð14Þ

which is the equation of motion of a harmonic oscillator
with a time-dependent mass. Thus, whenever c2sk2 < z00=z,
particle creation can occur.
At the beginning of inflation, the perturbation field is

assumed to be in the Bunch-Davies vacuum; i.e., mode
functions behave as plane waves in the distant past [18].
Then, these modes evolve and are put in a squeezed state
after they become superhorizon. For each momentummode
k, the state is described by a squeezing parameter τk and
angle δk. This time evolution is due to the z00=z term in the
equation of motion (14).
We will refer mostly to curvature perturbations, but our

conclusions can be extended to primordial gravitational
waves as well, since they have effectively the same
dynamics.
The time evolution of the quantum state for general

inflationary models is more practically obtained after per-
forming a canonical transformation of the Hamiltonian
obtained from the action (13). This is equivalent to the
addition of a total derivative to the action in order to get

δS ¼ 1

2

Z
d4x

�
ðv0Þ2 − c2sδij∂iv∂jv − 2

z0

z
vv0 þ

�
z0

z

�
2

v2
�
:

ð15Þ

Of course, from this action, one gets the same equation
of motion (14). The canonical momentum and the
Hamiltonian are given by

π ¼ v0 −
a0

a
v;

H ¼ 1

2

Z
d3x

�
π2 þ c2sδij∂iv∂jvþ 2

z0

z
vπ

�
: ð16Þ

We will use this Hamiltonian for the rest of the paper.
For a detailed discussion of the two Hamiltonians that can
equivalently describe the time evolution of primordial

perturbations and the canonical transformation that relates
them, we refer the reader to Refs. [17,19].
In our previous work, we described this state with the

bracket formalism. Here, it will be more useful to consider
its one- and two-point correlation functions, which deter-
mine any Gaussian state. Not only do we know the
squeezed state to be a Gaussian state, but it is a general
result that Gaussian states remain Gaussian if the
Hamiltonian that drives their evolution is bilinear [20].
This statement is true regardless of whether the
Hamiltonian conserves the particle number or not.
Inflation is succeeded by the radiation era. Recall that

η ∈ ð−∞; 0Þ for eternal inflation or dS and η ∈ ð0;∞Þ for
an eternal radiation era. Instead, we will consider that
inflation starts at η0 < 0 and finishes at ηend < 0, and
then the radiation era starts at −ηend. The details of the
matching between ηend and −ηend depend on the reheating
scenario but have little effect on curvature perturbations.
Nevertheless, the mode functions of the radiation era
depend, of course, on the boundary conditions imposed
at −ηend. First, we will obtain the correlation functions in
quasi de Sitter inflation by obtaining the time evolution of
the mode functions and then generalize them by applying
known results in the squeezing formalism.

A. Correlation functions in quasi de Sitter

During quasi de Sitter inflation, c2s ¼ 1, a ¼ −1=ðHηÞ,
and therefore, z00=z ¼ 2=η2. In this scenario, the mode
functions of the Bunch-Davies vacuum have a simple form:

vik ¼
ðkjηj þ iÞffiffiffi
2

p
k3=2jηj e

ikjηj: ð17Þ

From them, one computes the mode functions for the
canonical momentum,

πikðηÞ ¼ vi
0
kðηÞ −

a0

a
vikðηÞ ¼

i
ffiffiffi
k

pffiffiffi
2

p eikjηj: ð18Þ

Mode functions allow us to build the mode expansions of
the quantum field and its canonical momentum,

viðη; x⃗Þ¼
Z

d3k

ð2πÞ3=2
�
eik⃗x⃗vi�k ðηÞâkþe−ik⃗ x⃗vikðηÞâ†k

�
;

πiðη; x⃗Þ¼
Z

d3k

ð2πÞ3=2
�
eik⃗x⃗πi�k ðηÞâkþe−ik⃗ x⃗πikðηÞâ†k

�
: ð19Þ

Now, we can compute the correlation functions that
characterize the Bunch-Davies vacuum during quasi de
Sitter inflation:

(i) One-point correlation functions:

hviðx; ηÞi ¼ hπiðx; ηÞi ¼ 0: ð20Þ
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(ii) Two-point correlation functions:

hviðη; x⃗Þviðη; y⃗Þi ¼
Z

d3k
ð2πÞ3

1

2k

�
1þ 1

k2η2

�
e−ik⃗ðx⃗−y⃗Þ;

hπiðη; x⃗Þπiðη; y⃗Þi ¼
Z

d3k
ð2πÞ3

k
2
e−ik⃗ðx⃗−y⃗Þ;

hviðη; x⃗Þπiðη; y⃗Þþ πiðη; y⃗Þviðη; x⃗Þi

¼
Z

d3k
ð2πÞ3

1

kjηje
−ik⃗ðx⃗−y⃗Þ: ð21Þ

These integrals are taken over momenta that are affected
by inflation, i.e., those that are subhorizon when inflation

starts and become superhorizon before it ends. These are
momentum modes that satisfy

−η0 > k−1 > −ηend: ð22Þ

When inflation ends at η ¼ ηend, mode functions are
matched at the beginning of the radiation era at η ¼ −ηend.
The radiation era satisfies z00=z ¼ 0, and so solutions to
the equation of motion (14) are plane waves. Once the
boundary conditions are imposed and taking into account
that c2S ¼ 1=3 during the radiation era, we get the solution,

vrkðηÞ ¼
eikηendffiffiffi

2
p ·

�ð− ffiffiffi
3

p þ ð1þ ffiffiffi
3

p Þηendkðηendkþ iÞÞ
2η2endk

5=2 e
iffiffi
3

p kðηþηendÞ þ ð ffiffiffi
3

p þ ð1 − ffiffiffi
3

p Þηendkðηendkþ iÞÞ
2η2endk

5=2 e−
iffiffi
3

p kðηþηendÞ
�
: ð23Þ

Note that this mode function is a linear combination of
oscillating functions, unlike in the Minkowski vacuum, in
which the oscillation affects only a global phase of the
mode function. Modes significantly affected by inflation
satisfy kηend ≪ 1, so it is enough to keep leading terms in
inverse powers of ðkηendÞ,

vrkðηÞ ≃
eikηend

i
ffiffiffi
2

p
η2endk

5=2
sin

�
kðηþ ηendÞffiffiffi

3
p

�
: ð24Þ

The dependence on the sin function of the mode function
is a general result for modes significantly affected by
inflation [4]. From (23), one can also get the explicit form
of the canonical momentum mode function πrkðηÞ by using
the definition (16).
We will consider only superhorizon modes, i.e., those

that satisfy kη ≪ 1 at a given time during the radiation era.
For those, the correlation functions include:

(i) One-point correlation functions:

hvrðx; ηÞi ¼ hπrðx; ηÞi ¼ 0: ð25Þ

(ii) Two-point correlation functions:

hvrðη; x⃗Þvrðη; y⃗Þi

≃
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ

×

�
1

2k
þ 1

2k3η2end
þ 1

2

�
ηþ ηend
jηendj

�
2 1

k3η2end
þ � � �

�
;

ð26Þ

hπrðη; x⃗Þπrðη; y⃗Þi

≃
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ

×

�
k
2
þ 2

3

�
ηþ ηend
jηendj

�
1

kη2end
þ � � �

�
; ð27Þ

hviðη; x⃗Þπiðη; y⃗Þ þ πiðη; y⃗Þviðη; x⃗Þi

≃
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ

×

�
1

kηend
−
1

3

�
ηþ ηend
jηendj

�
1

k3η3end
þ � � �

�
: ð28Þ

The quadratic term in Eq. (26) is clearly dominant, while
the expansion in Eqs. (27) and (28) is a bit more involved,
and only the first term is shown for illustrative purposes.
Hence, after inflation ends and the radiation era starts,
two-point correlation functions continue growing with
conformal time η. This is a general result that can be
understood as well in the squeezing formalism.

B. General correlation functions
in the squeezing formalism

For general inflationary models, one can treat the time
evolution of the Bunch-Davies vacuum using the squeezing
formalism, which, of course, can be applied to the quasi de
Sitter case as well. Such a state is characterized by the
following correlation functions involving the field v and its
canonical conjugate π [9].
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(i) One-point correlation functions:

hvðη; x⃗Þi ¼ hπðη; x⃗Þi ¼ 0: ð29Þ

(ii) Two-point correlation functions:

hvðη; x⃗Þvðη; y⃗Þi ¼
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ
�
1

2k
ð1þ 2sinh2τk

− sinh2τk cos2δkÞ
�
;

hπðη; x⃗Þπðη; y⃗Þi ¼
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ
�
k
2
ð1þ 2sinh2τk

þ sinh2τk cos2δkÞ
�
; ð30Þ

hvðη; x⃗Þπðη; y⃗Þi

¼
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ
�
i
2
ð1þ isinh2τk sin2δkÞ

�
;

hπðη; y⃗Þvðη; x⃗Þi

¼
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ
�
−i
2
ð1− isinh2τk sin2δkÞ

�
:

ð31Þ

The squeezing parameter τk and phase δk can be derived
from the inflationary dynamics and the subsequent evolu-
tion in the radiation era and have a momentum-dependent
expression. However, we will perform the following
approximation: We will assume a random character of
the phases δk so that integrals over sin 2δk or cos 2δk vanish.
This is a standard procedure in the study of primordial
perturbations and is justified by the effect of small self-
interactions or interactions with other fields [9,10]. It can be
seen as a coarse-graining or decoherence procedure, where
the off-diagonal elements of the density matix in momen-
tum space ρðk⃗;−k⃗; p⃗; −⃗pÞ decay. Nevertheless, our results
would not change significantly if the random phase
approximation was not performed. We leave this discussion
in the Appendix.
After averaging over the phases, the correlators become

hvðη; x⃗Þvðη; y⃗Þi ¼
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ 1

2ωk
ð1þ 2sinh2τkÞ;

hπðη; x⃗Þπðη; y⃗Þi ¼
Z

d3k
ð2πÞ3 e

ik⃗ðx⃗−y⃗Þ ωk

2
ð1þ 2sinh2τkÞ;

hvðη; x⃗Þπðη; y⃗Þ þ πðη; y⃗Þvðη; x⃗Þi ¼ 0: ð32Þ

Because of the term ð1þ 2 sinh2 τkÞ, we get an effective
enhancement of the field and conjugate correlations for

those momentum modes that are affected by inflation, i.e.,
those that satisfy

−η0 > k−1 > −ηend: ð33Þ

The affected modes are thus those with a wavelength
smaller than the horizon when inflation starts and larger
than the horizon when it ends.
One could ask what should be the correlators for modes

that are not squeezed. It is clear that, for modes with a small
wavelength k−1 < −ηend, we can take them to be equal to
those of the Minkowski vacuum due to the Bunch-Davies
prescription. However, there is little if anything we can
say about those modes with a large wavelength k−1 > −η0
as they were already superhorizon when inflation started.
Those modes should have physical effects only at
extremely large scales, much larger than the observable
universe. We expect them to give an irrelevant contribution
to the correlator, and thus, we will treat them as if they were
in the Minkowski vacuum as well.
In our discussion, we will not pay too much attention to

the particular inflationary dynamics. Instead, we will take
the following quite general result for the squeezing param-
eter during inflation [6]:

τik ¼ log

�
1

−ηk

�
for − η0 > k−1 > −η; ð34Þ

and τk ¼ 0 otherwise. Notice that once inflation ends, this
squeezing parameter will have a dependence on the
conformal time at the end of inflation, but not at its
beginning. Furthermore, during the radiation era, the
quantum state undergoes additional squeezing so that its
parameter is given by [6]

τrk ¼ log

�
1

jηendjk
�
þ log

�
η

jηendj
�

for k−1 > η: ð35Þ

This additional term stops growing once the mode
reenters the horizon at η ¼ k−1 and reaches τrk ¼
2 logðjηendjkÞ. In the rest of the paper, we will restrict
ourselves to modes that remain superhorizon. It is impor-
tant to notice that modes that are subhorizon when inflation
ends are not squeezed during the radiation era.
The enhancement of the correlation functions for modes

affected by inflation is then

1þ 2 sinh2 τk ¼
1

2

�
1

k2η2end

�
η

ηend

�
2

þ k2η2end

�
ηend
η

�
2
�
:

ð36Þ

The second term can be neglected because of the
condition kηend ≪ 1 and the fact that η > jηendj. The
correlators in the random phase approximation for modes
that are affected by inflation and stay superhorizon at
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conformal time η in the radiation era are then given by

hvðxÞ; vðyÞi ¼
Z
k

d3k
ð2πÞ3

1

4k
1

k2η2end

�
η

ηend

�
2

eik⃗·ðx⃗−y⃗Þ;

hπðxÞ; πðyÞi ¼
Z
k

d3k
ð2πÞ3

k
4

1

k2η2end

�
η

ηend

�
2

eik⃗·ðx⃗−y⃗Þ: ð37Þ

The enhancement of the two-point correlation functions
is translated into a slower decay. The long-range behavior
of the Minkowski correlation functions is known to
be [2,13]

Z
d3k
ð2πÞ3

1

k
eik⃗·r⃗ ∼ r−2 and

Z
d3k
ð2πÞ3 ke

ik⃗·r⃗ ∼ r−4; ð38Þ

where r ¼ jx⃗ − y⃗j. The result is similar when considering
other powers of k in the integrand,

Z
d3k
ð2πÞ3 k

αeik⃗·r⃗ ¼ r−ð3þαÞ for α > −3; ð39Þ

and thus, correlations decay fast with distance. This is also
true for several of the enhanced terms, as they satisfy this
form with α > −3. However, there is one term in the field-
field correlation function that has α ¼ −3, namely

IðrÞ ¼ 1

4η2end

�
η

ηend

�
2
Z
k∈inf

d3k
ð2πÞ3

1

k3
eik⃗·r⃗: ð40Þ

In the long-range regime, this integral has an analytic
expression,

IðrÞ ¼ 1

8π2η2end

�
η

ηend

�
2
�
−Ci

�
r

−η0

�
þ Ci

�
r
η

�

þ −η0
r

sin

�
r

−η0

�
−
η

r
sin

�
r
η

��
; ð41Þ

where Ci is the cosine integral defined as

CiðxÞ ¼ −
Z

∞

x

cos tdt
t

¼ γ þ log xþ
Z

x

0

cos t − 1

t
dt:

ð42Þ

And, γ ¼ 0.577216… is the Euler-Mascheroni constant.
Because of the logarithmic behavior of the cosine integral,
this term of the field-field correlator decays logarithmically
with distance (see Fig. 1) until r ≃ −η0; i.e., the enhance-
ment happens only up to length scales comparable to the
wavelength of the longest momentum modes affected by
inflation.
If inflation lasts for a finite number of e folds, the

correlation vanishes at infinity

lim
r→∞

IðrÞ ¼ 0: ð43Þ

The expression above is not very intuitive, but we can
approximate it by assuming that r ≪ −η0, which is a
reasonable approximation until distances reach the scale
of the horizon at the beginning of inflation. Then, we have

Ci
�

r
−η0

�
≃ γ þ log

�
r

−η0

�
;

sin

�
r

−η0

�
≃

r
−η0

: ð44Þ

Then,

IðrÞ ≃ 1

8π2η2end

�
η

ηend

�
2
�
Ci

�
r
η

�
− γ þ log

�
−η0
r

�

−
�
η

r

�
sin

�
r

−ηend

�
þ 1

�
: ð45Þ

Since we are limiting ourselves to superhorizon scales,
we can also assume r ≫ η and perform further approx-
imations,

Ci

�
r
η

�
≃ 0;�

η

r

�
sin
�
r
η

�
≃ 0: ð46Þ

And, we get the expression

IðrÞ ≃ 1

8π2η2end

�
η

ηend

�
2
�
log

�
−η0
r

�
þ 1 − γ

�
: ð47Þ
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FIG. 1. An example of the difference between the enhanced
correlator (red dashed line) and the Minkowski one (restricted
to inflationary modes, blue line) for −η0 ¼ 10, −ηend ¼ 0.1,
η ¼ ηend. The Minkowski correlator decays very fast for distances
larger than the scale of the largest momentum, while the enhanced
correlator has a much slower decay.
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Figure 2 compares the exact and approximated expres-
sions for IðrÞ. Physically, field correlations are enhanced in
those momentum modes affected by inflation. This can be
understood as modes being stretched out from small scales
and then occupied due to particle creation. The next step
will be to review the connection between correlation and
entropy or information.

IV. ENTROPY OF THE SCALAR FIELD

Let us now revisit the problem of computing the entropy
of a spatial region for a scalar field in a Gaussian state.
Gaussian states are simple enough for a systematic method
to be developed but already include important states such as
the Minkowski vacuum or the squeezed state from infla-
tion, which we are considering in this paper. In order to
do so, we will take advantage of the fact that Gaussian
states can be fully characterized by its equal-time one-point
and two-point correlation functions. We refer the reader to
[21–23] for additional details.
The computation of the entropy becomes particularly

simple in the case of vanishing expected values,

hvðx⃗Þi ¼ 0 hπðx⃗Þi ¼ 0; ð48Þ

and vanishing symmetrized two-point cross-correlation
function,

hvðx⃗Þπðy⃗Þ þ πðy⃗Þvðx⃗Þi ¼ 0: ð49Þ

This is the case for the squeezed state of the curvature
perturbation field once the averaging over phases is
performed. The other two-point correlation functions are
given by the operator kernels,

Xðx⃗; y⃗Þ ¼ hvðx⃗Þvðy⃗Þi Pðx⃗; y⃗Þ ¼ hπðx⃗Þπðy⃗Þi: ð50Þ

Then, one defines the operator,

ΛΩ ¼ X · P; ð51Þ

where the operator product is equivalent to a convolution of
the kernels,

ΛΩðx⃗; y⃗Þ ¼
Z
ΩC

d3zXðx⃗; z⃗ÞPðz⃗; y⃗Þ; ð52Þ

where the region ΩC comprises the local d.o.f. that we wish
to trace out, thereby being left with an operator kernel
defined onΩ only. Then, the entropy of the complementary
region Ω can be computed as

SΩ ¼ Tr
h� ffiffiffiffiffiffiffi

ΛΩ
p

þ 1=2
��

log
� ffiffiffiffiffiffiffi

ΛΩ
p

þ 1=2
��

−
� ffiffiffiffiffiffiffi

ΛΩ
p

− 1=2
��

log
� ffiffiffiffiffiffiffi

ΛΩ
p

− 1=2
��i

: ð53Þ

Note that the kernel of the square root is not the square
root of the kernel, and so, we cannot give a closed
expression for the kernel

ffiffiffiffiffiffiffi
ΛΩ

p ðx⃗; y⃗Þ. However, in order
to compute numerically this complicated expression, we
do not need to know it. Instead, one needs to solve the
eigenvalue problem for ΛΩ, i.e., find those λi for whichZ

Ω
d3yΛΩðx⃗; y⃗Þfiðx⃗Þ ¼ λifiðy⃗Þ; ð54Þ

where fi is the eigenfunction of ΛΩ with eigenvalue λi.
Then, one has

SΩ ¼
X
i

hðλiÞ

¼
X
i

h� ffiffiffiffi
λi

p
þ 1=2

��
log
� ffiffiffiffi

λi
p

þ 1=2
��

−
� ffiffiffiffi

λi
p

− 1=2
��

log
� ffiffiffiffi

λi
p

− 1=2
��i

: ð55Þ

Nevertheless, we will compute the mutual information
perturbatively, without needing to obtain exact results for
SΩ. That is, if we take Ω ¼ A ∪ B, where A and B are, then
we have that

SA∪BðrÞ ¼ SA þ SB − IðA;BÞðrÞ: ð56Þ

This method was introduced by Noburo Shiba in
Ref. [13]. We will adapt it to the case of cosmological
perturbations by using a more general formalism (valid
for arbitrary Gaussian states, not only the vacuum) and
applying it to the quantum state following inflation. One
expects that the mutual information should vanish at
infinite distance,

0.005 0.010 0.050 0.100 0.500 1
0.5

1

5

10

r/( 0)

I(
r)

FIG. 2. Comparison between the exact expression for the
enhanced correlator IðrÞ Eq. (41) (blue line), its approximation
Eq. (45) (red dashed line) and the further logarithmic approxi-
mation Eq. (47) (green dotted line), for −η0 ¼ 10;−ηend ¼ 0.1,
η ¼ ηend. The agreement is excellent until distances of the order
of r=ð−η0Þ ∼ 1, where both approximations start to slowly
diverge.
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lim
r→∞

IðA;BÞðrÞ ¼ 0: ð57Þ

Conversely,

lim
r→∞

SA∪BðrÞ ¼ SA þ SB: ð58Þ

The idea then is to expand perturbatively the joint
entropy SA∪B as the individual entropies SA and SB and
a term involving functions of the distance vanish at infinity.
This can be already done at the operator level by identifying
what terms in ΛA∪B depend on the distance r and expand-
ing them.
For the case at hand,Λwill carry both contributions from

the Minkowski vacuum as well as the squeezed modes. The
former will be responsible for a mutual information that
scales as r−4 and thus, is of no interest to us. The latter,
however, will be responsible for an enhanced mutual
information that decays logarithmically.

V. THE PERTURBATIVE COMPUTATION

We are interested in perturbative solutions to the eigen-
value problem,Z

Ω
d3yΛΩðx⃗; y⃗Þfiðx⃗Þ ¼ λifiðy⃗Þ; ð59Þ

with the choice

Ω ¼ A ∪ B; ð60Þ

where A and B are two disjoint regions of size RA and RB,
separated by a large distance r such that r ≫ RA; RB. Both
regions need not be spherical, although this is the simplest
and perhaps most interesting application.
We will find these perturbative solutions by following

the next steps.
(i) We identify the perturbative and nonperturbative

contributions.
(ii) We identify the leading perturbative contribution. In

our case, this will mean keeping only the enhance-
ment of the correlation functions.

The behavior of ΛΩ depends on whether x and y belong
to the regions A or B. We represent this in matrix form,

ΛΩðx; yÞ ¼
�ΛΩðx⃗a; y⃗aÞ ΛΩðx⃗a; y⃗bÞ
ΛΩðx⃗b; y⃗aÞ ΛΩðx⃗b; y⃗bÞ

�
: ð61Þ

It is understood that x⃗a; y⃗a ∈ A and x⃗b; y⃗b ∈ B.

A. Perturbative part

We take first a look at the off-diagonal terms, as they
clearly involve points belonging to different regions. First,
we rewrite the off-diagonal terms using the relation,

Λ0ðx⃗a=b; y⃗b=aÞ ¼ δð3Þðx⃗a=b; y⃗b=aÞ ¼ 0; ð62Þ

where 0 ¼ fR3gC is the empty set. We will use the
notation a=b to mean “a or b,” and the order will
matter if it appears several times in an equation. Then,
the Dirac delta equals 0 because x⃗a=b ≠ y⃗b=a when one
point belongs to A and the other belongs to B. We can then
rewrite

ΛΩðx⃗a=b; y⃗b=aÞ ¼ −ΛΩCðx⃗a=b; y⃗b=aÞ; ð63Þ

with

ΛΩCðx⃗a=b; y⃗b=aÞ ¼
Z
A
d3zaXðx⃗a=b; z⃗aÞPðz⃗a; y⃗b=aÞ

þ
Z
B
d3zbXðx⃗a=b; z⃗bÞPðz⃗b; y⃗b=aÞ: ð64Þ

Strictly speaking, Λ0 ≃ δ, but the equality is not exact.
The difference is small from the operator point of view, and
we will neglect it. It is also an artifact of assuming random
phases.
Notice that for each of the integrals, either the kernel

Xðx; yÞ or Pðx; yÞ has a long-distance behavior; i.e., it is
evaluated at points belonging to different regions. Both
kernels have the form of a Fourier transform, regardless of
whether we consider the Minkowksi or the squeezed
correlators,

Xðx⃗; y⃗Þ ¼
Z

d3k
ð2πÞ3 XðkÞe

ik⃗ðx⃗−y⃗Þ;

Pðx⃗; y⃗Þ ¼
Z

d3k
ð2πÞ3 PðkÞe

−ik⃗ðx⃗−y⃗Þ; ð65Þ

where the only dependence on the direction of k⃗ is encoded
in the exponential. In the long-distance regime, we can
approximate

Z
dθ sin θeikjx⃗−z⃗j cos θ ≃

Z
dθ sin θeikr cos θ ¼ 2 sinðkrÞ

kr
;

ð66Þ

and the integral over zwill be irrelevant for this kernel since

ja⃗ − b⃗j ≃ r for ∀ a⃗ ∈ A; b⃗ ∈ B: ð67Þ

Hence, we will approximate from now on

Xðx⃗a=b; y⃗b=aÞ ≃ IðrÞ; ð68Þ
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and we will keep only terms involving IðrÞ in the off-
diagonal components of ΛΩ since they are the leading
perturbative contribution. This leaves us with

δΛΩðrÞ ¼ −IðrÞ
 

0
R
B d

3zbPðz⃗b; y⃗bÞR
A d

3zaPðz⃗a; y⃗aÞ 0

!
:

ð69Þ

B. Nonperturbative part

The nonperturbative part of ΛΩ needs some refinement.
One would think first to simply choose its block-diagonal
components,

ΛD
Ω ¼ ΛΩðx⃗a=b; y⃗a=bÞ: ð70Þ

However, this still depends on r, as it integrates over
z ∈ ΩC ¼ ðA ∪ BÞC. Instead, we define the nonperturba-
tive part as the limit,

Λ0
Ω ¼ lim

r→∞
ΛD
Ω

¼
�R

AC d3zXðx⃗a; z⃗ÞPðz⃗; y⃗aÞ 0

0
R
BC d3zXðx⃗b; z⃗ÞPðz⃗; y⃗bÞ

�
:

The difference is given by a perturbative contribution
that decays faster than IðrÞ, as it decays at most as slow as
IðrÞ times an additional perturbative term,

Λ0
Ω−ΛD

Ω

¼
�R

Bd
3zbXðx⃗a; z⃗bÞPðz⃗b; y⃗aÞ 0

0
R
Ad

3zXðx⃗b; z⃗aÞPðz⃗a; y⃗bÞ

�
:

Since X will decay at most as slow as IðrÞ and P will
decay as some inverse power of r, it is clear thatΛ0

Ω − ΛD
Ω is

a negligible perturbative term.
We have now a well-posed perturbative approach for the

eigenvalue problem.

C. Non-Hermitian perturbation theory

The first thing we should notice when taking the pertur-
bative approach is that neither Λ0

Ω nor δΛΩ are symmetric
operators. This means that, in principle, it is not guaranteed
that ΛΩ is diagonalizable or that the computation of its
eigenvalues admits the usual perturbative treatment. In
practice, one can argue that ΛΩ is diagonalizable [23];
nevertheless, the issue of applying perturbation theory
remains. For a detailed treatment of non-Hermitian pertur-
bation theory, we refer the reader to [24]. We will need to
work with symmetrized forms of both operators, which we
will achieve by introducing the following operator,

P0 ¼ lim
r→∞

P ¼
�
Pðx⃗a; y⃗aÞ 0

0 Pðx⃗b; y⃗bÞ

�
ð71Þ

so that the operator P0ΛΩ is indeed symmetric. Let us see
why. For the perturbative, part it is pretty straightforward:

P0δΛΩðx⃗a; y⃗bÞ

¼ −
Z
A
d3za

Z
B
d3zbPðx⃗a; z⃗aÞXðz⃗a; z⃗bÞPðz⃗b; y⃗bÞ

≃ −IðrÞ
Z
A
d3za

Z
B
d3zbPðx⃗a; z⃗aÞPðz⃗b; y⃗bÞ; ð72Þ

and

P0δΛΩðx⃗b; y⃗aÞ

¼ −
Z
A
d3za

Z
B
d3zbPðx⃗b; z⃗bÞXðz⃗b; z⃗aÞPðz⃗a; y⃗aÞ

≃ −IðrÞ
Z
A
d3za

Z
B
d3zbPðx⃗b; z⃗bÞPðz⃗a; y⃗aÞ: ð73Þ

It is clearly symmetric since P is symmetric. The
nonperturbative part is perhaps less obvious:

P0Λ0
Ωðx⃗a; y⃗aÞ ¼

Z
A
d3za

Z
AC

d3zPðx⃗a; z⃗aÞXðz⃗a; z⃗ÞPðz⃗; y⃗aÞ;

ð74Þ

and

P0Λ0
Ωðx⃗b; y⃗bÞ ¼

Z
B
d3zb

Z
BC

d3zPðx⃗b; z⃗bÞXðz⃗b; z⃗ÞPðz⃗; y⃗bÞ:

ð75Þ

However, we can now make use of the relation that was
argued previously:

Z
R3

d3zXðx⃗; z⃗ÞPðz⃗; y⃗Þ ¼ δð3Þðx⃗ − y⃗Þ: ð76Þ

Then we can rewrite the nonperturbative part as

P0Λ0
Ωðx⃗a; y⃗aÞ

¼ −
Z
A
d3z1

Z
A
d3z2Pðx⃗a; z⃗1ÞXðz⃗1; z⃗2ÞPðz⃗2; y⃗aÞ

þ Pðx⃗a; y⃗aÞ: ð77Þ

And, analogously for Pðx⃗b; y⃗bÞ, one checks that the
result is symmetric.
Next, let us discuss the eigenvalue problem for Λ0

Ω first.
We know that it is diagonalizable and has real eigenvalues
[23], but it is still a nonsymmetric operator. Therefore, its
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right and left eigenvectors do not need to coincide. Let us
consider a right eigenvector fi:

Λ0
Ωf

0
i ¼ λif0i : ð78Þ

We can apply P0 on the left and define a new set of
vectors f̃0i ≔ P0f0i . Notice what happens if we compute:

P0Λ0
Ωf

0
i ¼ λ0i P0f0i ≡ λ0i f̃

0
i : ð79Þ

It turns out that f̃0i are left eigenvectors of Λ0
Ω,

λ0i f̃
0
i ¼ P0Λ0

Ωf
0
i ¼ Λ0†

Ω P0f0i ¼ Λ0†
Ω f̃0i : ð80Þ

For the perturbation theory to work, we would like this
set of left and right eigenvectors to form a complete
biorthonormal set, i.e., that the following identity is
satisfied:

f̃0†i f0j ¼ f0†i P0f0j ¼ δij: ð81Þ

Let us see when this is true, starting from the fact that
P0Λ is a symmetric operator,

0 ¼ f0†i P0Λ0
Ωfj − f0†i Λ0†

Ω P0fj ¼ ðλj − λiÞf̃0†i f0j ; ð82Þ

which means that, if the eigenvalues are nondegenerate,
then the set of left and right eigenvalues is guaranteed to be
biorthonormal. If they are degenerate, one has to look into it
more carefully.
We have the intuitive notion from QM that degeneracy

arises when a symmetry is present. The corresponding
transformation allows us to add additional labels to the
degenerate eigenstates and also transform between them.
Under which transformations is Λ0

Ω invariant? Let us think
of the space-time symmetries, which are actually restricted
to spatial symmetries, i.e., three-dimensional rotations
and translations, since we are working with equal time
correlators.
Translational symmetry is clearly broken by the choice

of the regions A and B. It may be only partially broken
if these regions are infinite in some direction, but this is not
of interest for the case at hand. Then, we are left with
rotational symmetry only, which is a symmetry only of Λ0

Ω
restricted to either A or B when these are in turn spherically
symmetric regions. In additional to this restricted rotational
symmetry, the permutation A ↔ B is also a symmetry if A
and B have the same size and shape, and this adds an
additional degeneracy.
How can we know that this degeneracy brought by

symmetry transformations T is not harmful? The key is that
restricted rotations and permutations commute with P0,
which is the operator that maps between left and right
eigenvectors.

½T; P0� ¼ 0: ð83Þ

Recall the discussion on complete sets of commuting
observables in quantum mechanics. Here, because we
are dealing with a non-Hermitian operator that plays the
role of a hamiltonian, not only do we need symmetry (i.e.,
½Λ; T� ¼ 0), but also the commuting relation above in order
to guarantee the existence of a complete biorthonormal set
of eigenstates. It is clear that P0 is both invariant under
restricted rotations and permutations, and this is why it
commutes with T. Permutations are really not an issue,
because it is clear that eigenfunctions defined on different
regions A and B are orthogonal. Due to rotational sym-
metry, we can label the right eigenvectors with degenerated
eigenvalue according to its angular momentum,

film ¼ fiYlm; ð84Þ

where Ylm are the spherical harmonics. Furthermore, the
left eigenvectors are

f̃ilm ¼ P0film ¼ P0fiYlm ¼ f̃iYlm; ð85Þ

since P0 commutes with rotations. This guarantees now the
biorthonormality relation,

f̃0†ilmf
0
jl0m0 ¼ f̃0†i f0jY

�
lmYl0m0 ¼ δijδll0δmm0 : ð86Þ

Therefore, it is guaranteed that Λ0
Ω is diagonalizable and

has a complete biorthogonal set of eigenvectors. We will
need this later, and, in particular, we will need the
resolution of identity,X

ilm

f̃0ilmf
0†
ilm ¼ 1: ð87Þ

D. Computation

Let us now deal with the perturbation theory itself.
We will keep first- and second-order perturbations to the
eigenvalues,

λi ¼ λ0i þ δλ1i þ δλ2i : ð88Þ

Then, the entropy can be computed in perturbation
theory,

SAB ¼
X
i

hðλiÞ

¼ SA þ SB þ
X
i

�
δλi

dh
dλi

				
λi¼λ0i

þ 1

2
ðδλiÞ2

d2h
dλ2i

				
λi¼λ0i

�
;

ð89Þ
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where δλi ¼ δλ1i þ δλ2i is the combined first- and second-
order perturbation, and we simply denote by h the
function of the eigenvalues that delivers the entropy.
We can clearly identify the mutual information as the
third term in the RHS. We will see that the first-order
perturbation to the entropy vanishes, and so the second-
order perturbation becomes the most relevant one. The
following lines are to great extent a reproduction of the
results from [13].
We will try to keep R1 ≠ R2 during the whole compu-

tation in order to keep it as general as possible. In fact, we
will keep the regions A and B of arbitrary shape. Recall that
the nonperturbative operator Λ0

Ω is divided in two blocks,
affecting either region A or B. Each of these blocks may
have some common and some different eigenvalues. Then,
let us introduce extra indices to take this into account, as
well as other possible degeneracies. We label the eigen-
values in increasing order; i.e., λ0m > λ0n when m > n and
the right eigenvectors with eigenvalue λ0m are

f0m1α ¼
�
f0m1αðx⃗aÞ

0

�
f0m2β ¼

�
0

f0m2βðx⃗bÞ
�
; ð90Þ

being that α and β some possible degeneracies. With this
notation, the orthogonality property is written as

f̃0†miαf
0
njβ ¼ δmnδijδαβ: ð91Þ

The right eigenvector fmγ of the full operator ΛΩ is a
linear combination of the eigenvectors of the blocks plus
perturbations,

fmγ ¼
X
α

aγαf0m1α þ
X
β

bγβf0m2β þ f1mγ þ f2mγ

≡ ξ0mγ þ f1mγ þ f2mγ: ð92Þ

Note that if λ0m is not a common eigenvalue of both
blocks, then either the aγα or the bγβ coefficients vanish.
We can now plug the perturbative expansion of the right
eigenvector fmγ in the eigenvalue equation to find

ðΛ0
Ω þ δΛΩÞfmγ ¼ ðλ0m þ δλ1mγ þ δλ2mγÞfmγ: ð93Þ

The first-order perturbation equation is obtained by
neglecting second-order perturbations and plugging in
the solution to the unperturbed eigenvalue equation,

Λ0
Ωf

1
mγ þ δΛΩξ

0
mγ ¼ λ0mf1mγ þ δλ1mγξ

0
mγ: ð94Þ

Similarly, we obtain the second-order perturbation
equation,

Λ0
Ωf

2
mγ þ δΛΩf1mγ ¼ λ0mf2mγ þ δλ1mγf1mγ þ δλ2mγξ

0
mγ: ð95Þ

We take now the first-order perturbation equation and
multiply it by f̃0† on the left,

f̃0†mjγ0Λ
0
Ωf

1
mγ þ f̃0†mjγ0δΛΩξ

0
mγ ¼ λ0mf̃

0†
mjγ0f

1
mγ þ δλ1mγf̃

0†
mjγ0ξ

0
mγ:

ð96Þ

Since f̃0†mjγ0 is a left eigenvector of Λ
0
Ω, the first terms in

the LHS and RHS cancel out. So, we are left with

f̃0†mjγ0δΛΩξ
0
mγ ¼ δλ1mγf̃

0†
mjγ0ξ

0
mγ: ð97Þ

If we decompose back ξ0mγ ¼
P

α aγαf
0
m1α þ

P
β bγβf

0
m2β,

we can rewrite this equation asX
α

aγαV
j1
mγ0mα þ

X
β

bγβV
j2
mγ0mβ ¼ δλ1mγðaγγ0δj1 þ bγγ0δj2Þ;

ð98Þ

where we have used the orthonormality relation f̃0†i f0j ¼
δij, and we have introduced the operator,

Vij
mαnβ ¼ f̃0†miαδΛΩf0njβ: ð99Þ

Because of the block structure of P0δΛΩ, it is clear that
V11
mαnβ ¼ V22

mαnβ ¼ 0, while the other components take the
following form:

V12
mαnβ ¼ −IðrÞ

Z
A
d3xa

Z
A
d3zaPðx⃗a; z⃗aÞf0m1αðx⃗aÞ·

·
Z
B
d3zb

Z
B
d3ybPðz⃗b; y⃗bÞf0n2βðy⃗bÞ

≡ −IðrÞCmαnβ: ð100Þ

Note the symmetry,

V12
mαnβ ¼ V21

nβmα; ð101Þ

which makes the definition of Cmαnβ meaningful. We
further define the set of matrices,

ðCmnÞαβ ≡ Cmαnβ ð102Þ

so that the equation for the first-order perturbation δλ1mγ can
be rewritten as a block matrix equation,

−IðrÞ
�

0 Cmm

CT
mm 0

��
aγ
bγ

�
¼ δλ1mγ

�
aγ
bγ

�
: ð103Þ

In the case that λ0m is not a common eigenvalue of Λ0 in
both regions A and B, then either the coefficients aγ or bγ
(notice that they are vectors) vanish and so does the
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perturbation δλ1m. On the contrary, if λ0m is indeed a common
eigenvalue, then this equation becomes an eigenvalue
equation that is solved by means of a characteristic
polynomial,

det

				 x1Mm×Mm
−Cmm

−CT
mm xNm×Nm

				
¼ detðx1Mm×Mm

Þ det ðx1Nm×Nm
− x−1CT

mmCmmÞ
¼ xMm−Nn det ðx21Nm×Nm

− CT
mmCmmÞ; ð104Þ

where Mm and Nm are the degeneracies of the eigenvalues
λ0m in each region with the convention Mm ≥ Nm. In other
words, the perturbation is linked to the eigenvalue problem
for the matrix CT

mmCmm, which is a symmetric positive
semidefinite matrix since Cmm is real and symmetric. This
means that for all its eigenvalues, cmα ≥ 0 and then the
perturbation δλ1m either vanishes or comes in pairs of
opposite sign,

δλ1mγ ¼ �IðrÞ ffiffiffiffiffiffiffi
cmγ

p
; ð105Þ

and thus, the first-order perturbation to the entropy vanishes
because the following combination also vanishes:

X
γ

δλ1mγ
dh
dλm

				
λm¼λ0m

¼ 0: ð106Þ

Next, we need to deal with the second-order perturbation.
Recall the relevant equation,

Λ0
Ωf

2
mγ þ δΛΩf1mγ ¼ λ0mf2mγ þ δλ1mγf1mγ þ δλ2mγξ

0
mγ: ð107Þ

We can multiply this time by ξ̃0†miγ0 on the left in order to get
rid of the first terms of the left- and right-hand side:

ξ̃0†mγ0δΛΩf1mγ ¼ ξ̃0†mγ0δλ
1
mγf1mγ þ ξ̃0†mγ0δλ

2
mγξ

0
mγ: ð108Þ

We need an explicit expression for f1mγ. Let us look again at
the first-order perturbation,

Λ0
Ωf

1
mγ þ δΛΩξ

0
mγ ¼ λ0mf1mγ þ δλ1mγξ

0
mγ: ð109Þ

This means that

f1mγ ¼ ðΛ0
Ω − λ0mÞ−1ðδλ1mγ − δΛΩÞξ0mγ: ð110Þ

We now insert the identity operator

f1mγ ¼ ðΛ0
Ω − λ0mÞ−1

�X
n;j;α

f0njαf̃
0†
njα

�
ðδλ1mγ − δΛΩÞξ0mγ

¼
X

n≠m;j;α

ðλ0m − λ0nÞ−1f0njαf̃0†njαδΛΩξ
0
mγ: ð111Þ

Note that the addend would vanish if m ¼ n due to the
equation for the first-order perturbation. Now, we can plug
this in the equation for δλ2mγ,

ξ̃0†mγ0δλ
2
mγξ

0
mγ

¼ ξ̃0†mγ0 ðδΛΩ − δλ1mγÞf1mγ

¼ ξ̃0†mγ0 ðδΛΩ − δλ1mγÞ
X

n≠m;j;α

ðλ0m − λ0nÞ−1f0njαf̃0†njαδΛΩξ
0
mγ

¼
X

n≠m;j;α

ðλ0m − λ0nÞ−1ξ̃0†mγ0δΛΩf0njαf̃
0†
njαδΛΩξ

0
mγ: ð112Þ

In the last line, we used δλ1mγξ̃
0†
mγ0f

0
njα ¼ 0 for n ≠ m.

Finally, since ξ̃0†mγ0ξ
0
mγ ¼ δγγ0 ,

δλ2mγ ¼
X

n≠m;j;α

ðλ0m − λ0nÞ−1ξ̃0†mγδΛΩf0njαf̃
0†
njαδΛΩξ

0
mγ

≡X
n≠m

ðλ0m − λ0nÞ−1ξ̃0†mγδΛΩϕ̂nδΛΩξ
0
mγ; ð113Þ

where we have introduced the projector onto the subspace
spanned by the eigenvectors with eigenvalue λn,

ϕ̂n ¼
X
j;α

f0njαf̃
0†
njα: ð114Þ

Now, we compute the perturbation to the entropy due to the
second-order perturbation δλ2mγ,

X
m;γ

δλ2mγ
dh
dλm

				
λm¼λ0m

¼
X
m;γ

X
n≠m

ðλ0m − λ0nÞ−1ξ̃0†mγδΛΩϕ̂nδΛΩξ
0
mγ

dh
dλm

				
λm¼λ0m

¼
X
m

X
n≠m

ðλ0m − λ0nÞ−1Trðϕ̂mδΛΩϕ̂nδΛΩÞ
dh
dλm

				
λm¼λ0m

¼
X
n

X
m>n

ðλ0m − λ0nÞ−1Trðϕ̂mδΛΩϕ̂nδΛΩÞ

×

�
dh
dλm

				
λm¼λ0m

−
dh
dλn

				
λn¼λ0n

�
: ð115Þ

In the last line, we simply relabeled the indices so that
m > n. Furthermore, the alternative expression for the
projector was used:

X
γ

ξ0mγ ξ̃
0†
mγ ¼ ϕ̂m: ð116Þ

What is the sign of this expression? Let us take a look at the
trace,
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Trðϕ̂mδΛΩϕ̂nδΛΩÞ
¼
X
i;α;j;β

ðf̃0†niαδΛΩf0mjβÞðf̃0†mjβδΛΩf0niαÞ

¼
X
i;α;j;β

Vij
nαmβV

ji
mβnα ¼

X
i;α;j;β

ðVij
nαmβÞ2

¼
X
αβ

IðrÞ2ðCnαmβÞ2 ≥ 0: ð117Þ

It’s time to compute the derivatives of h.
(i) Function:

hðλÞ ¼
� ffiffiffi

λ
p

þ 1=2
�
log
� ffiffiffi

λ
p

þ 1=2
�

−
� ffiffiffi

λ
p

− 1=2
�
log
� ffiffiffi

λ
p

− 1=2
�
: ð118Þ

(ii) First derivative:

dh
dλ

ðλÞ¼ 1

2
ffiffiffi
λ

p
h
log
� ffiffiffi

λ
p

þ1=2
�
− log

� ffiffiffi
λ

p
−1=2

�i
>0

for λ>1=4: ð119Þ

(iii) Second derivative:

d2h
dλ2

ðλÞ ¼
4
ffiffi
λ

p
1−4λ þ log

� ffiffiffi
λ

p
− 1

2

�
− log

� ffiffiffi
λ

p þ 1
2

�
4λ3=2

< 0

for λ > 1=2: ð120Þ

Furthermore, the first derivative is positive but mono-
tonically decreasing, while the second derivative is negative
but monotonically increasing. Both tend to 0 for large λ and
blow up for λ → 1=4.
In particular, if m > n, then λm > λn, and so

�
dh
dλm

				
λm¼λ0m

−
dh
dλn

				
λn¼λ0n

�
< 0; ð121Þ

and the sign of the perturbation is nonpositive.
There is also a second-order perturbation coming from

the term,

X
mγ

ðδλ1mÞ2
d2h
dλ2m

				
λm¼λ0m

≤ 0; ð122Þ

and thus, the sign of this perturbation is nonpositive as well.
The last step is to plug everything into the formula for the

mutual information between the two regions:

IðA;BÞ ¼ SA þ SB − SAB

¼ −
X
i

�
δλi

dh
dλi

				
λi¼λ0i

þ 1

2
ðδλiÞ2

d2h
dλ2i

				
λi¼λ0i

�

¼ −IðrÞ2GðA;BÞ ≥ 0: ð123Þ

Then, there is a non-negative mutual information between
disjointed regions that is enhanced due to inflation. Here,
GðA;BÞ is a function of the size and possibly the shape of
the regions A and B; e.g., for two spherical regions of radii
R1 and R2, we would have GðA; BÞ ¼ GðR1; R2Þ, but its
precise form is not that easy to compute.
Nevertheless, GðR1; R2Þ is a function of the short-range

behavior of the operator P, and as such, its leading term
is expected to agree with the Minkowski computation.
In that case, one has the following result for the mutual
information [13]:

IMðA; BÞ ¼ −
1

16π4r4
GðA;BÞ: ð124Þ

Notice that we use the convention of factoring out of
GðA;BÞ not only the long-range dependence on r but also
numerical coefficients coming from Xðx⃗; y⃗). The function
GðA;BÞ was computed numerically by Shiba in [14] and
found

GðR1; R2Þ ≃ −
1

4
R2
1R

2
2 × 16π4: ð125Þ

We take this computation to be valid in leading order for
our case because the kernel Xðx; yÞ is equal to the
Minkowski kernel for most momenta. Dimensions agree,
but notice that Ri are comoving, not physical, radii. Then,
we arrive to the result,

IðA;BÞ ≃ 1

4
IðrÞ2R2

1R
2
2 × 16π4

≃
1

16

�
η

ηend

�
4 R2

1R
2
2

η4end

�
1 − γ þ log

�
−η0
r

�

þCi

�
r
η

�
−
�
η

r

�
sin

�
r
η

��
2

; ð126Þ

FIG. 3. Comparison between the mutual information of the
Minkowski vacuum Eq. (124) (blue line) and the enhanced
mutual information [Eqs. (126), (127)] (red dashed and green
dotted lines, as in Fig. 2), for ηend ¼ −0.1, η0 ¼ −10, η ¼ ηend
and R1 ¼ R2 ¼ 1 (gray vertical line).
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where we have used the approximation from Eq. (45),
which is valid for r < −η0. More compactly, we arrive at

IðA;BÞ ≃ 1

16

R2
1R

2
2

η4end

�
η

ηend

�
4
�
1 − γ þ log

�
−η0
r

��
2

; ð127Þ

using the approximation from Eq. (47), which is valid for
−η0 > r > η. The long-range behavior is inherited by the
mutual information, and thus, an enhancement is obtained
due to inflation (see Fig. 3). On the one hand, it decays
logarithmically and, therefore, slower than inverse powers
of r. On the other hand, the ratio R2

1R
2
2=η

4
end can be

potentially very large and does not depend on the distance,
as opposed to the mutual information for the Minkowski
vacuum, which behaves as R2

1R
2
2=r

4, which is necessarily
small for the perturbative approach to work. Furthermore, it
continues growing with time as η4=η4end during the radia-
tion era.
This result is valid for superhorizon scales during the

radiation era. It can also applied before the radiation era,
during inflation by setting η ¼ ηend and replacing the
remaining η−4end factor by the same power of the conformal
time at which it is computed.

VI. PHENOMENOLOGY

Mutual information behaves differently from other
thermodynamical quantities during the radiation era. For
instance, the mutual information between two regions of
fixed physical size R remains constant, since a ∼ η, as
opposed to other quantities that dilute due to the expansion
of the universe, such as the energy density of relativistic
species.
The enhanced mutual information seems intuitively to be

connected to some of the main predictions of inflation, such
as the leading homogeneous and isotropic nature of the
Universe and the common causal past of the observable
universe. For instance, the CMB temperature anisotropies
are characterized with the two-point correlation function of
curvature perturbations. The enhanced mutual information
offers a new perspective on a well-known fact, namely that
fluctuations in distant points in the sky are tightly related.
Quantum correlations in the CMB have been explored by
computing the quantum discord of primordial perturbations
in momentum space [25]. The enhanced mutual informa-
tion is a first step toward a similar study of quantum
correlations in position space in the CMB and possibly
other cosmological observables.
Following the ideas presented in [12], we state that

should certain regions collapse to form PBHs during
the radiation era, the PBH will inherit the enhanced
mutual information by the collapsing regions. Whether
these signals enhanced genuinely quantum correlations
between the PBH remains an open question, since mutual

information is a measure of both classical and quantum
correlations.
Of course, in our computation, we considered a toy

model for inflation that delivers an exactly flat power
spectrum. Under such circumstances, the formation of a
PBH is an extremely unlikely event. Hence, in order to
compute the mutual information between two PBH, we
would need to consider the power spectrum of the par-
ticular inflationary model leading to sufficiently abundant
PBH formation [26]. It deviates from flatness at scales
comparable to the comoving size of the PBH at formation
time (or, equivalently, the size of the Hubble scale at
formation time) but not for scales well probed, such as the
CMB scales. This should make no difference for the mutual
information shared by PBH separated by distances so large
that the power spectrum at the corresponding scale is flat or
nearly flat. For those, we can state their pair-wise mutual
information at formation time to be given by

IPBH ≃
1

16

R2
1R

2
2

η4end

�
η

ηend

�
4
�
log

�
−η0
r

�
þ 1 − γ

�
2

: ð128Þ

This mutual information characterizes the properties of
the network that PBH form, at least at formation time and
for PBH at large enough distances. One may find even
larger values for PBH in dense clusters, once they find each
other and merge. We leave for future work the application
of this methodology to particular inflationary models and
PBH formation scenarios.
Entangled black holes have been considered previously

in the literature, for instance, in the context of the celebrated
ER ¼ EPR correspondence [27]. In this framework, one
could picture the network of entangled PBH as a network of
black holes connected by wormholes that fill the entire
Universe. In that case, the mutual information shared by the
PBH would most likely be relevant in order to characterize
the wormholes that connect them, as long as genuinely
quantum correlations are enhanced as well. For instance,
two black holes connected by an Einstein-Rosen bridge
would be maximally entangled in the ER ¼ EPR corre-
spondence, and so their mutual information is maximal and
equal to the Bekenstein entropy of a single black hole.
We wonder whether the entropy of the PBH network can

be interpreted as thermodynamical entropy and, in that
case, lead to some kind of entropic forces that would affect
the dynamics of the network. We leave this discussion for
future work.

VII. CONCLUSIONS

The quantum origin of primordial curvature perturba-
tions generated during inflation has provided a fascinating
explanation for the origin of the matter distribution on large
scales. However, it is often thought to offer no distinctive
signature or observational feature compared to simply
postulating the existence of a classical Gaussian (free)
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stochastic field of density perturbations. This is due to the
suppression of the decaying mode thanks to squeezing, a
phenomenon called decoherence without decoherence [8],
which is actually necessary in order to reproduce the
apparently classical features of the primordial power
spectrum of matter fluctuations seen in the CMB
and LSS.
Nevertheless, there has been recent interest on the

quantum nature of the matter distribution and how to
properly distinguish quantum from classical perturbations.
Although the decaying mode is hopelessly suppressed in
both slow-roll and ultra-slow-roll inflation [28], there are
actually features of the primordial bispectrum (the three-
point correlation function) that would be distinctively
quantum and may be probed in the future [29]. On the
other hand, the quantum nature of inflationary fluctuations
can be explored with rare but highly nonlinear phenomena
like primordial black hole collapse during the radiation era
that arises precisely because of large non-Gaussian tails due
to quantum diffusion during inflation [30]. These events
could provide the best clue as to the quantum nature of
matter fluctuations generated during inflation, affecting
structure formation and constituting a significant compo-
nent of dark matter [31]. We believe the importance of the
quantum origin of cosmological perturbations should not
be understated.
In this paper, we have studied the mutual information

between two disjoint regions at superhorizon scales in a
radiation-dominated universe filled with curvature pertur-
bations of inflationary origin. This enhanced mutual
information has a quantum origin, in the sense that it is
linked to squeezing and particle creation and may be linked
to genuine quantum correlations. Future research will be
required to establish this.
Even if the enhanced mutual information is dominated

by classical correlations, our results offer a new approach
to the predictions of inflation, as it is related to a scale-
invariant power spectrum of primordial perturbations.
Furthermore, future research in the topic of entropic forces,
which has precedence in cosmology, could provide relevant
observational features.
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APPENDIX: BEYOND THE RANDOM PHASE
APPROXIMATION

One may wonder whether assuming that the squeezing
phases δk are random has a noticeable effect on the mutual
information of primordial perturbations. In the following,
we argue why it is not the case.
In the case that hvpþ pvi ≠ 0, then one cannot simply

compute the entropy of the quantum state by finding the
eigenvalues of the operator Λ, as described in Sec. IV.
Instead, one needs to consider an operator built from the
larger field,

χ ¼
�
v

π

�
: ðA1Þ

Its two-point correlation function contains all the two-
point correlation functions of the state,

Δðx⃗; y⃗Þ ¼ 1

2
hχðx⃗Þχðy⃗i ¼

�
Xðx⃗; y⃗Þ 1

2
Cðx⃗; y⃗Þ

1
2
Cðx⃗; y⃗ Pðx⃗; y⃗Þ

�
; ðA2Þ

where

Cðx⃗; y⃗Þ ¼ hvðx⃗Þpðy⃗Þ þ pðy⃗Þvðx⃗Þi: ðA3Þ

This correlation function transforms under symplectic
transformations as

Δ → SΔS†: ðA4Þ

Such transformations are not a similarity transformation
and, hence, do not leave the eigenvalues of Δ invariant.
Still, Williamson’s theorem guarantees that there exists a
symplectic transformation that brings Δ to a diagonal form
[23]. Note that any symplectic transformation S preserves
the symplectic form,

SΩS† ¼ Ω; where Ω ¼
�

0 i

−i 0

�
: ðA5Þ

Or, equivalently

S† ¼ ΩS−1Ω: ðA6Þ

This means that the problem of finding symplectic
eigenvalues of Δ is equivalent to finding conventional
eigenvalues of ΔΩ,

ΔΩ ¼
�− i

2
C iX

−iP i
2
C

�
: ðA7Þ

If we assume random phases, then C ¼ 0, and the
eigenvalues of ΔΩ are those of

ffiffiffiffi
Λ

p
so that both the

formalism used in Sec. IV and the one presented here
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are consistent. If C ≠ 0, we need to study the eigenvalue
problem of this operator. The determinant of a block matrix
admits the following decomposition:

M ¼
�
M11 M12

M21 M22

�

detðMÞ ¼ detðM22Þ detðM11 −M12M−1
22M21Þ: ðA8Þ

We are interested in the determinant of ΔΩ − λ in order
to find the eigenvalues of ΔΩ, and thus,

detðΔΩ − λÞ

¼ det

�
i
2
C − λ

�
det

�
i
2
C − λ − X

�
i
2
C − λ

�
−1
P

�
:

ðA9Þ

This expression admits two approximations. First, since we
are interested in the perturbative regime, C will have a
subdominant contribution in the first determinant and can
be neglected. This argument is valid as well for the first

term of the second determinant. Second, since C deals with
only a subset of momentum modes, we can assume that it
has a norm smaller than that of the identity, and hence, we
can expand the inverse as

−λ−1
�
1 − λ−1

i
2
C

�
−1

≃ −λ−1
�
1þ λ−1

i
2
C

�
; ðA10Þ

and thus,

detðΔΩ − λÞ ≃ det ½−λþ λ−1Xð1þ iλ−1C=2ÞP�: ðA11Þ

Recall that the dominant perturbative contribution is given
by X being perturbative and P being nonperturbative. Then,
C will be nonperturbative as well. Since it is only non-
vanishing for momenta affeced by inflation, it does not
affect the more relevant high-momentum modes of P.
Hence, we can conclude than the effect of averaging over
the squeezing phases has a negligible effect on the mutual
information of primordial perturbations.
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