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The cosmic microwave background (CMB) is gravitationally lensed by large-scale structure, which
distorts observations of the primordial anisotropies in any given direction. Averaged over the sky, this
important effect is routinely modeled with the lensed CMB power spectra. This accounts for the variance of
this distortion, where the leading variance effect is quadratic in the lensing deflections. However, we show
that if bright extragalactic sources correlated with the large-scale structure are masked in a CMB map, the
power spectrum measured over the unmasked area using a standard pseudo-Cl estimator has an additional
linear lensing effect arising from correlations between the masked area and the lensing. This induces a
scale-dependent average demagnification of the unlensed distance between unmasked pairs of observed
points and a negative contribution to the CMB correlation function peaking at ∼10 arcmin. We give simple
analytic models for point sources and a threshold mask constructed on a correlated Gaussian foreground
field. We demonstrate the consistency of their predictions for masks removing radio sources and peaks of
Sunyaev-Zeldovich and cosmic infrared background emissions using realistic numerical simulations. We
discuss simple diagnostics that can be used to test for the effect in the absence of a good model for the
masked sources and show that by constructing specific masks the effect can be observed on Planck data.
For masks employed in the analysis of Planck and other current data sets, the effect is likely to be
negligible, but may become an important subpercent correction for future surveys if substantial populations
of resolved sources are masked.
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I. INTRODUCTION

CMB observations are inevitably contaminated at some
level by foregrounds, from galactic dust and synchrotron
emission to a range of extragalactic signals including the
cosmic infrared background (CIB), thermal Sunyaev-
Zeldovich effect (tSZ), and radio point sources. These
extragalactic signals are correlated to the matter density at
the foreground source redshifts, and point source brightness
may also be affected by line-of-sight gravitational lensing.
Much of the foreground signal can either be modeled or
removed using the distinct frequency dependence. However,
bright sources can be problematic and are often masked out.
It is usually tacitly assumed that the CMB power spectra
estimated over the unmasked areas are then unbiased
estimates that can be used to study cosmology. As long
as sources with strong correlation to lensing are not masked,
for current data this is likely to be a safe approximation.
For future data, where large populations of extragalactic

sourceswill be resolved, correctionsmaybecome important.
We quantify the likely size of the bias due to mask
correlations, as well as proposing empirical consistency
tests than can be used in the absence of detailed models or
predictions for the source populations.
The CMB is lensed by the large-scale structure along the

line of sight, and hence some correlation between extra-
galactic sources and the CMB lensing convergence is
inevitable. The effect of CMB lensing on the full-sky
CMB power spectra is well understood and routinely
modeled [1,2]: the varying magnification and shear of
the unlensed acoustic peaks as a function of position on the
sky leads to a small smoothing of the peaks in the power
spectrum, and the small-scale lenses also increase the
power in the CMB damping tail. These are both effects
quadratic in the lensing, since over the full sky the
convergence and shear average to zero. However, if bright
extragalactic sources are masked, due to the correlation of
the source density with the lensing this will preferentially
be removing peaks of the CMB lensing convergence. If the
power spectrum is now estimated only using the unmasked*G.Fabbian@sussex.ac.uk

PHYSICAL REVIEW D 103, 043535 (2021)

2470-0010=2021=103(4)=043535(25) 043535-1 © 2021 American Physical Society

https://orcid.org/0000-0002-3255-4695
https://orcid.org/0000-0002-5751-1392
https://orcid.org/0000-0001-5927-6667
https://orcid.org/0000-0002-5271-5070
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.043535&domain=pdf&date_stamp=2021-02-25
https://doi.org/10.1103/PhysRevD.103.043535
https://doi.org/10.1103/PhysRevD.103.043535
https://doi.org/10.1103/PhysRevD.103.043535
https://doi.org/10.1103/PhysRevD.103.043535


area, there can be additional net effect that is linear in the
lensing. The correlation between the deflection angle
around convergence peaks is relatively long range, peaking
at around 20 arcmin, so every masked peak is associated
with a surrounding area of correlated deflection angle that
distorts (magnifies) the unlensed CMB. When these peaks
are masked, the corresponding regions of demagnifying
deflection angle are no longer fully balanced, and the net
effect is a scale-dependent net average demagnification.
The effect of a constant demagnification on the CMB is

easily understood: it simply shifts angular scales so that
everything looks smaller and the CMB power spectrum is
therefore shifted toward higher harmonic multipole l. At
any given observed l, the CMB power is then the same as
at a lower pre-demagnification l, which on small scales is
larger because the CMB power decreases rapidly with l,
leading to an increase in power on small scales (and a
corresponding decrease on large scales). Since the angular
acoustic scale is shifted to smaller values, corresponding to
the acoustic peaks being shifted to smaller scales, and there
is also a strongly oscillatory difference between the power
spectra. Due to the steep fall of the CMB spectrum with l
in the damping tail, a small constant demagnification can
lead to non-negligible signatures on the power spectrum.
Plausible numbers may be given as follows: removing 2%
of the sky on the convergence peaks would give a mean
convergence hκi ≈ −0.003 over the remaining unmasked
area. This leads to a significant 1% change in the temper-
ature spectrum at l ∼ 2000, and larger on smaller scales.1

This crude estimate is one motivation to the more careful
analysis that we give in this paper. For future data, with the
CMB power spectrum measured to nearly cosmic variance
out to small scales, any small percent-level corrections
would have to be carefully accounted for.
In this constant demagnification picture, the effect would

be almost degenerate with a change in the angular diameter
distance to the CMB (the effect from large-scale lenses
would be like a mask-correlated lensing super-sample
variance [4]). However, this model is not accurate, since
the effective net demagnification is both mode-orientation
and scale dependent. The degree-scale acoustic features are
only slightly affected because the deflection-convergence
correlation peaks on smaller scales, about 20 arcmin. The
corresponding effect on the power spectrum is therefore
distinctive, and important corrections actually arise mostly
from relatively smaller-scale lenses.
We start in Sec. II by giving a simple leading-order

analytic model for the effect in terms of a general mask-
deflection correlation function. We give specific analytic
forms for the case of masking the most relevant CMB
extragalactic foreground emission correlated with CMB

lensing: Poisson point sources (an approximate model for
radio sources), and peaks above some threshold in a
Gaussian isotropic convergence or foreground field (amodel
for tSZ sources and a component of the infrared sources).We
show that this model is sufficient to accurately calculate the
effect when these assumptions hold, leaving details of a fully
non-perturbative calculation to Appendix B.
In Sec. III we test the models and compare analytic

predictions with results based on realistic numerical simu-
lations which include non-Gaussian correlated maps of the
CMB lensing convergence, tSZ and CIB emission at
various frequencies as well as radio sources. In real-world
analyses, masks are usually apodized to remove ringing
effects when estimating power spectra in harmonic space.
Although this case is harder to model fully analytically, we
show that semianalytic estimates of the bias based on the
mask-lensing correlation measured in the simulated maps
describes the bias measured in simulations quite accurately.
In this paper, we focus on the effect of masking on the

CMB power spectra. In a companion paper [5] we consider
the impact on lensing reconstruction, for which the pre-
liminary investigation of Refs. [6,7] suggested a similar
effect might be important in particular for cross-correlation
between CMB lensing and external matter tracers. Since
extragalactic foregrounds are most dominant for the small-
scale CMB temperature we focus on that, however some
bright extragalactic polarized sources may also have to be
masked, so the impact on polarization is also potentially
important [8]. We include a few numerical and analytic
results for polarization for completeness, but leave a more
detailed quantitative analysis of the likely impact of
masking polarized sources to future work (the effect would
be both experiment and spectrum estimator dependent).

II. MODELING

The effects of masking are largely on small scales, so for
simplicity we use the flat-sky approximation in the main
text, where the lensed temperature T̃ðxÞ ¼ Tðxþ αðxÞÞ is
related to the unlensed temperature T via the lensing
deflection angle αðxÞ. In Appendix B 1 we also provide
leading-order curved-sky results.
It is convenient to work mostly in position space using

a correlation function approach, just as for the usual
lensed CMB spectra [2]. The lensed correlation function
is defined by

ξ̃ðrÞ≡ hT̃ðxÞT̃ðxþ rÞi; ð2:1Þ

and is independent of x and the direction of r for a
homogeneous statistically isotropic field. From a sta-
tistically isotropic map with a fixed mask an estimator for
the lensed CMB correlation function can be built by spatial
averaging. In the absence of noise and assuming all distances
r can be probed at least once, an estimator is [9,10]

1The rms of the (assumed Gaussian) convergence field down to
l ∼ 2000 is ≈0.06. The impact of the unmasked large-scale lenses
on l2Cl may be written to linear order as hκi dðl2ClÞ

d ln l e.g., [3].
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ˆ̃ξðrÞ≡ hðWT̃ÞðxÞðWT̃Þðxþ rÞix;ϕr

hWðxÞWðxþ rÞix;ϕr

: ð2:2Þ

The normalization in the denominator is required for the
estimator to be unbiased in the case where the lensed
temperature distribution is independent of the mask. After
transforming to the power spectrum, the correlation function
estimator is equivalent to a standard “pseudo-Cl” estimator
with mask WðxÞ [11]. In the presence of mask-lensing
correlations, this estimator is no longer unbiased, since the
conditional distribution for the lensed temperature given the
fixedmask is no longer statistically isotropic. This is the bias
we aim to quantify.
ThemaskWðxÞ is a function of position on the sky, which

is zero over sources that are masked out. For an extragalactic
source mask, where WðxÞ is constructed based on the
realization of statistically isotropic sources, WðxÞ can
also be viewed as a statistically isotropic random field.
The denominator in Eq. (2.2) is its empirical two-point
correlation function, which we denote ξ̂maskðrÞ. With fsky
the average of the mask across the sky, ξ̂maskðrÞ is a smooth
function varying from f2sky at separations larger than all
relevant correlation lengths, to fsky for separations much
smaller than the typical mask hole sizewhere both points are
almost surely both inside or both outside the mask.
We now turn to the calculation of the expectation values

and biases entering the estimator given by Eq. (2.2). We
proceed by replacing spatial averages with expectations
values over ensembles of T, W at fixed x and r. Since we
model the mask as a random field, there is a slight possible
ambiguity in this approach. In practice, for simulating
CMB data, both CMB and extragalactic foreground skies
should be varied at the same time. With the extragalactic
part of mask varying with the foregrounds, the CMB
correlations must be deconvolved from the mask realization
per realization: the estimator mean is the expectation value
of the ratio in Eq. (2.2), rather than the ratio of expectation
values. However, we show in Appendix A that these are
equivalent for binary masks.
The numerator of Eq. (2.2) becomes simply the un-

normalized pseudocorrelation function of the masked
temperature

ξ̃maskedðrÞ≡hðWT̃ÞðxÞðWT̃ÞðxþrÞi
¼hTðxþαðxÞÞTðx0 þαðx0ÞÞWðxÞWðx0Þi; ð2:3Þ

where x0 ¼ xþ r. Expanding into flat-sky harmonics and
taking the unlensed CMB T to be uncorrelated to anything
else, we then have

ξ̃maskedðrÞ ¼
Z

d2l
ð2πÞ2 Cleil·rheil·ðαðxÞ−αðx0ÞÞWðxÞWðx0Þi:

ð2:4Þ

In this equation Cl is the unlensed temperature power
spectrum. The leading correction in α to the masked
correlation function from mask correlations is then

Δξ̃maskedðrÞ≡ ξ̃maskedðrÞ − ξ̃ðrÞξmaskðrÞ ð2:5Þ

≈
Z

d2l
ð2πÞ2Cleil·rhil · ðαðxÞ−αðx0ÞÞWðxÞWðx0Þi

¼ ∂rξðrÞhðαrðxÞ−αrðx0ÞÞWðxÞWðx0Þi: ð2:6Þ
In the last line we introduced αr, the components of
the deflection parallel to r at x and x0, and the unlensed
CMB correlation function ξðrÞ. The result for the polariza-
tion correlation functions has exactly the same form, with ξ
replaced by ξþ or ξ− for polarizationor ξ× for the temperature
cross-correlation. At lowest order, the unlensed correlation
function ξðrÞ can equally well be replaced by the standard
lensed correlation function ξ̃ðrÞ, which leads to a better
approximation as it captures the main non-perturbative
standard lensing effects (see Appendix B for a more accurate
result). The expectation in Eq. (2.6) is just the average
difference between the lensed and unlensed distance between
any twopoints (allowing formasking this is positive), and the
derivative term then gives howmuch the correlation function
changes due to the mean shift in separation (negative since
the correlation falls with distance on relevant scales).
Dividing by ξmaskðrÞ, the normalized (mask-decon-

volved) correction to the correlation function is therefore
always of the product form

Δξ̃ ≈ ∂rξ̃ðrÞΔ̄ðrÞ; ð2:7Þ
where from Eq. (2.6) we defined Δ̄ðrÞ as the average over
the unmasked area of change in the separation of points due
to lensing

Δ̄ðrÞ≡ h½αrðxÞ − αrðx0Þ�WðxÞWðx0Þi
hWðxÞWðx0Þi ð2:8Þ

¼ 2
hαrðxÞWðxÞWðx0Þi

hWðxÞWðx0Þi ; ð2:9Þ

where in the last equation we used the symmetry properties
of hαrðxÞWðxÞWðx0Þi under the coordinates transformation
x → x0 (see Sec. II B). The unmasked area can therefore be
thought of as having scale-dependent demagnification of
the distance between points, with2 ξ̃ðrÞjunmasked area ∼
ξ̃ðrþ Δ̄ðrÞÞ. The product form of Eq. (2.7) in real space
corresponds in harmonic space to a convolution of the
CMB temperature-gradient power with the power spectrum
corresponding to Δ̄.

2As discussed in more detail in Appendix B this relation is not
exact beyond leading-order, since the lensing of the correlation
function is not independent of the local Δ̄ðrÞ
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In Sec. II A we first give a recipe to estimate the bias in
Eq. (2.7) from simulations. We then proceed with analytic
methods in Sec. II B. There we start by discussing results
for masks built locally from some Gaussian foreground
field f. We then look in more detail at two mask models: in
Sec. II B 1 we discuss thresholding the peaks of f, where the
effect can be significant, then in Sec. II B 2 we consider
masking sources that aremodeled as a Poisson sampling off,
as a model of masking radio point source (where the effect is
typicallymuch smaller).A set of appendices collect details of
the calculations related to these two models.

A. Empirical estimation of the bias

Equation (2.9) can in principle be calculated empirically
for any mask construction if the required average can be
calculated from simulations that capture the relevant
correlations and (potentially non-Gaussian) statistics. The
quantity hαrðxÞWðxÞWðx0Þi appearing in Eq. (2.9) is just
the correlation function of the gradient mode of the masked
deflection angle with the mask. For any given simulation,
where we know W and κ (and hence the deflection α), we
can estimate Δ̄ðrÞ directly from the cross-spectrum
between the masked deflection and the mask measured
in that simulation.
More explicitly, if EðlÞ and BðlÞ are the gradient and curl

modes of the spin-1 field αW, and WðlÞ the Fourier
coefficients of the spin-0 mask, we may write on the flat-sky

r̂ · αW ¼
Z

d2l
2π

ðEðlÞr̂ · l̂ þ BðlÞr̂ ⋆ l̂Þieil·x ð2:10Þ

with r̂ ⋆ l̂ ¼ r̂ · ð− sinϕ; cosϕÞ. Correlating with Wðx0Þ
gives

hαrðxÞWðxÞWðx0Þi ¼ −
Z

dl
2π

lCEW
l J1ðlrÞ: ð2:11Þ

The denominator in Eq. (2.9) can also be calculated directly
from the mask power spectrum with a spin-0 (here, J0)
transform.
The leading correction to the correlation function can

therefore easily be evaluated from corresponding power
spectra. For any masking recipe, this therefore provides a
straightforward way to calculate the expected bias in the
power spectrum measured over the unmasked area. On
data, the deflection field is not known, but it may be
possible to estimate it, at least crudely, from a correlated
field (e.g., the CIB) or lensing reconstruction, providing an
internal estimate of the expected bias without having a
detailed model for the statistics of the mask.

B. Analytic models

For a first analytic model, we assume that some under-
lying Gaussian statistically-isotropic “foreground” field
fðxÞ determines the mask probability locally, so that

WðxÞ only depends on some (in general nonlinear) function
of fðxÞ. We will consider two specific analytic models for
the mask construction, a peak threshold mask (where the
effect can be substantial) and Poisson sources (where the
effect is generally small). When considering a threshold
mask we will consider specifically the case where f is tSZ
or CIB fields, or as an extreme limiting case, the CMB
lensing convergence κ itself. For Poisson sources, f will be
the perturbation to the expected number of sources over the
area masked out per source, determined by the perturba-
tions to the underlying galaxy populations, which we
approximate as Gaussian.
By symmetry, at a point there is no correlation between

the scalar foreground f and the vector deflection angle,
hfðxÞαðxÞi ¼ 0. However, if f is correlated to large-
scale structure it will be correlated to the lensing con-
vergence, and hence have a nonzero correlation ξfαiðrÞ≡
hfðxÞαiðx0Þi ¼ −hαiðxÞfðx0Þi≡ ξfαr r̂i, corresponding e.g.,
to deflection angles around overdensities having an inward-
pointing radial direction (positive ξκαr for our definition of
r≡ x0 − x and κ ¼ −∇ · α=2). If ϕ is the lensing potential
with α ¼ ∇ϕ, then its explicit form is

ξfαrðrÞ ¼ −∂rξ
fϕðrÞ ¼

Z
dl
2π

l2Cfϕ
l J1ðlrÞ: ð2:12Þ

As shown in Fig. 1, ξfαrðrÞ peaks somewhere around
r ∼ 20 arcmin depending on the field being considered.
Since we are only considering the two-point CMB

correlation function, for any choice of coordinates the
correlation function is an average over the correlated
Gaussian variables fðxÞ; fðx0Þ;αðxÞ − αðx0Þ. The expect-
ations in Eq. (2.6) can then be evaluated for Gaussian fields
to give

Δξ̃ðrÞ ≈ gðrÞ∂rξ̃ðrÞ
ξfαrðrÞ
σf

; ð2:13Þ

where

gðrÞ≡−
2σff̄ðrÞ
σ2fþξfðrÞ

; f̄ðrÞ≡ hfðxÞWðxÞWðx0Þi
hWðxÞWðx0Þi : ð2:14Þ

Here f̄ðrÞ is the mean of the foreground field over the
unmasked area weighted by the number of pairs of points
each point forms with separation r, which is usually
negative. In Eq. (2.13), gðrÞ is a very smooth prefactor
which, in all models we considered, varies by a factor of two
across all distances. For separations large compared to the
correlation length (ξfðrÞ ≪ σ2f) and hole size, the fore-
ground mean becomes the simple mean over the unmasked
area, f̄ðrÞ → f̄, hence for large separations we have
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Δξ̃ðrÞ ≈ −2∂rξ̃ðrÞ
f̄
σf

ξfαrðrÞ
σf

: ð2:15Þ

For very small separations, assuming the mask holes have
finite size so the two points are almost surely either inside the
same hole or both unmasked, Wðx0Þ ≈WðxÞ ¼ WðxÞ2 and
ξfðrÞ ≈ σ2f so that3

Δξ̃ðrÞ ≈ −∂rξ̃ðrÞ
f̄
σf

ξfαrðrÞ
σf

: ð2:16Þ

The f̄
σf

ξfαr ðrÞ
σf

term is simply the mean radial deflection at

one of a pair of points separated by r over the unmasked area.
For large separations, where the foreground values at the
points are uncorrelated, the total relative change in separa-
tion of the two points is twice this. Equations (2.15) and
(2.16) are of the form of the product of two real space
functions. In harmonic space, the result is therefore a
convolution, so on large scales compared to the foreground
correlation length and hole size the correction to the power
spectrum is

ΔC̃l ∼ −2
f̄
σ2f

Z
d2l0

ð2πÞ2 C̃l0C
ϕf
jl−l0jl

0 · ðl − l0Þ; ð2:17Þ

FIG. 1. The correlation between the size of the (inward
pointing) radial lensing deflection about a point and the deviation
of the field f at that point from its mean in units of the standard
deviation: for a point with a foreground field that is 1σf above the
mean, the plots show the mean inward-pointing radial lensing
deflection at radius r. The top plot shows the result in arcminutes,
the bottom shows the fractional change in distance between the
points due to the deflection. Different colors correspond to the
limiting case of a field that is fully correlated, f ∝ κ (blue), and
the result expected for Compton Y (thermal SZ foreground,
orange) or cosmic infrared background foreground at 217 Ghz
(green). The latter results are based on a smooth fit to the Websky
simulation power spectra [12]. Solid lines are for the field values
after smoothing with a 1.7 FWHM beam, dashed the correspond-
ing result for a 5.1 FWHM beam. The correlation extends to
cosmologically important distances, and the fractional change in
radius becomes percent level on scales below 10s of arcminutes.

FIG. 2. An illustration of the lensing effect on a temperature hot
spot (top row) or cold spot (bottom row). The columns show the
unlensed temperature and change in temperature due to lensing
by the expected radial deflection if there is a convergence
minimum (left two columns) or peak (right two columns) in
the center. The unlensed temperature and lensing color scales are
not the same to make the much smaller lensing signal easily
visible. The temperature T in the center is unchanged by an
aligned lens, and is positively correlated with the ring of lensing
signal ΔT if the lensing is converging (κ > 0), and negatively
correlated if the lens is diverging (κ < 0). For Gaussian fields
both signs are equally common, and the correlation averages to
zero when there is no masking. If the center of the lens is
preferentially removed by a mask W when κ > 0 due to
correlation between foregrounds and the convergence, there
will be more points of negative correlation between the center
and the ring, giving a net negative change to the lensed CMB
correlation function at radius r > 0. In harmonic space, masking
of the temperature at a convergence peak leads to net negative
correlation between the large-scale temperature and lensing
correction, leading to a negative contribution to the large-scale
pseudo power spectrum. On small scales (but larger than the hole
size), there is a ringlike pattern in both the masked temperature
and lensing signal at a convergence peak, hence there is a positive
correlation between them leading to an enhancement of small-
scale pseudo power spectrum (which is not removed by a mask
deconvolution that does not account for the mask correlation).
Since the lensing signal is much smaller than the unlensed
temperature, the cross-correlation terms dominate the effect on
the power spectrum compared to small changes due to also
masking the lensing signal.

3This is for a binary mask. More generally Wðx0ÞWðxÞ ≈
WðxÞ2, and f̄ can then be defined as theW2-weighted mean of f.
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where Cϕf
l0 is the cross-spectrum between the lensing

potential and the foreground. For a foreground that scales
roughly like the convergence, the convolution is with a
kernel that goes like the ακ spectrum, which hasmore small-
scale power compared to the αα spectrum that enters the
convolution for the leading-order standard lensing effect.
This leads to much broader mixing of scales, giving a
relatively nonpeaky result mixing contributions from differ-
ent acoustic peaks, and efficiently transfers power to small
scales where the CMB spectrum is small. If we consider an
l in the damping tail (i.e., much higher than the peak of the
temperature gradient spectrum at l ∼ 1000), where the
power spectrum is small, most of the integrand comes from
l0 ≪ l; in this limit, the leading term is

Δðl2C̃lÞ ∼ 2
f̄
σ2f

dCκf
l

d ln l

Z
dl0

l0
l04C̃l0

2π
: ð2:18Þ

Since f̄ is negative when masking peaks, the result is
positive when Cκf

l is decreasing at high l where the limit
applies. It vanishes onlywhen there is no foreground-lensing
correlation or a cross-correlation spectrum Cκf

l that is
constant (white, which corresponds to no spatial correlation
between the foreground value and surrounding lensing
field). The integral over the CMB spectrum quantifies the
total power from larger scales in the correlation between the
CMB temperature and its curvature. The correction spec-
trum falls much less quickly than the unlensed CMB, and
when there are substantial correlations can become a large
fractional correction deep in the damping tail; in the high l
limit it can become comparable to the standard lensing
signal, which is given in this limit by

l2C̃l ∼ 2Cκ
l

Z
dl0

l0
l04C̃l0

2π
: ð2:19Þ

See Fig. 2 for an illustration of the effect on the lensed CMB
signal in real space when masking convergence peaks and
Fig. 3 for its harmonic domain version.

1. Peaks of foreground fields

For a mask that is constructed by thresholding the fore-
ground to mask out the peaks, i.e., a step function WðxÞ ¼
Θðνσf − fðxÞÞ where ν determines the “sigma” value of
the cut, the derivative of WðxÞ is just a delta function. The
remaining Gaussian integral over fðxÞ to calculate the
expectation in Eq. (2.14) can then be done to give

gðrÞξmaskðrÞ

¼ e−ν
2=2ffiffiffiffiffiffi
2π

p
"
1þ erf

 
νffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2f − ξfðrÞ
σ2f þ ξfðrÞ

s !#
: ð2:20Þ

The normalization ξmaskðrÞ generally needs to be calcu-
lated numerically, but varies between ∼f2sky at large rwhere

the foreground fields are nearly uncorrelated, to ∼fsky for
small r where both points are almost surely either both
inside or outside the mask. The transition between these
values is very smooth and determined by the correlation
length of the foreground field. The expected observed sky
fraction is

hfskyi ¼ hWðxÞi ¼ 1

2
½1þ erfðν=

ffiffiffi
2

p
Þ�: ð2:21Þ

The factor in the square brackets in Eq. (2.20) varies
smoothly between ∼2fsky when ξfðrÞ ≪ σ2f (for r much
larger than the correlation length) to unity on very small
scales. The factor −e−ν2=2=

ffiffiffiffiffiffi
2π

p ¼ hfWi=σf ¼ fskyf̄=σf is
the mean masked value of f in units of its standard
deviation, which is negative, where (as before) f̄ as the

FIG. 3. An illustration of the lensing effect of a small-
wavelength convergence plane wave κ (top panel) on an aligned
longer-wavelength CMB temperature modes (second panel,
dashed line). Remapping points with the corresponding deflection
angles gives the lensing correction (solid orange, greatly exag-
gerated in relative size for illustration). Thevertical bands show the
peaks of the convergence, which are preferentially masked if a
masked foreground is correlated to the lensing. The third and
bottom panels show the temperature values that are removed by
masking the peaks of the convergence to calculate a pseudo power
spectrum (solid blue lines). Dotted lines show a Fourier compo-
nent of these values (at the sum and difference of the lens andCMB
frequencies respectively). The higher-frequency component in the
third panel is negatively correlated with the lensing signal
oscillations shown in orange; the lower-frequency component
in the bottom panel is positively correlated with the lensing. Since
the temperature is much larger than the lensing signal, the cross-
correlation can be similar or larger than the lensing auto spectrum
even if only a small area at the peaks ismasked. On small scales the
temperature and lensing spectrum fall with l, so more negative
cross-correlation is removed by masking than positive is added,
leading to a net positive signal that is linear in the lensing. This also
leads to a positive bias on the power spectrum estimator after
deconvolving the pseudospectrum assuming statistical isotropy
over the unmasked area.
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mean value of f over the unmasked area. It therefore has the
general limiting forms given for large r by Eq. (2.15) and
small r by Eq. (2.16). Note that the result is independent of
the scale or normalization of f, so the effect is leading order
in the perturbations (linear in αr), and will only be
negligible when the correlation is very low or f is
dominated by very small scales so that f̄=σf is small.
Although the mean deflection at any distance is very

small, less than a quarter of an arcminute, the mean relative
change in distance Δ̄ðrÞ=r is an important percent-level
effect at scales of tens of arcminutes and below when
masking foreground peaks; see Fig. 4. A typical full
numerical result for the correlation function correction
over the unmasked area, Δξ̃ðrÞ, is shown in Fig. 5 for a
smoothed foreground f ∝ κ that is threshold-masked with
ν ¼ 2. The signal peaks at around 10 arcmin; on much

smaller scales the CMB is very smooth so ∂rξ̃ðrÞ → 0, and
on much larger scales the deflections have little correlation
and only a small fractional effect.
If f is band limited or smoothed to a certain scale, so that

Cϕf
l starts to fall off sharply with l, the signal will also

decline at the same scale, and the approximation limit will
no longer be valid. The full shape of Δ̄ðrÞ=r shown in Fig. 4
has a peak in between the small and large-scale limits,
determined by the clustering scale of the foreground that
determines the size of the mask holes. As scales transition
from the large-scale to small-scale limit, this translates into
a change in sign of the second derivative, ∂2

rΔξ̃ðrÞ. For the
power spectrum, this corresponds to the correction going
negative at high l (for high l, the integral of J0ðlrÞ against a
smooth function depends on the second derivatives because
the fast oscillations average to zero for constant and
constant gradient terms).
It may seem quite unintuitive that an effect being

sourced from a small sky-fraction mask could be a large
fractional effect on the total: doesn’t this imply that at each
masked point the effect must be very large? From Fig. 1, for
a 1-sigma convergence peak centered at r ¼ 0, the radial
(inward-pointing) lensing deflection peaks at ∼0.3 arcmin
at a radius of ∼20 arcmin. The r.m.s. size of the CMB
gradient is ∼14 μKarcmin−1, so the typical size of the
lensing-induced signal at r ∼ 20 arcmin is therefore
ΔT ∼ r̂ · α∂rT ∼ 4 μK, with a dipolelike pattern about
the center if there is a significant central temperature

FIG. 4. Top: the average fractional change in the separation r of
pairs of points in the unmasked area as a function of separation
for a thresholded foreground field [see Eq. (2.9)]. This is
assuming an unapodized mask is constructed by thresholding
νσ of a Gaussian foreground field proportional to the lensing
convergence after Gaussian smoothing with the given beam full-
width-half-maximum (FWHM). Below the acoustic scale, the
effect becomes percent-level, and is relatively more important in
the power spectrum due to the rapid fall in power on Silk-
damping scales. Bottom: the corresponding correction to the
lensed CMB temperature power spectrum C̃l estimated from the
unmasked area (the dotted line shows the one hundredth of
the full power spectrum for comparison). Results for SZ and CIB-
thresholded maps have similar shapes but with lower amplitude
proportional to their lower lensing correlation.

FIG. 5. The lensed CMB correlation function ξ̃ðrÞ (blue solid),
and its log derivative (dotted orange). The green lines show the
correction Δξ̃ðrÞ due to threshold masking of a fully-correlated
foreground with f ∝ κ smoothed with a 1.7 (solid) or 5.1
(dashed) arcmin FWHM Gaussian beam with a ν ¼ 2 threshold
mask (fsky ≈ 0.977). In the power spectrum the effect is a much
larger fractional correction on small scales, since it adds power on
scales where the lensed correlation function has little; on large
scales the negative sign of the correction corresponds to a small
reduction in power at l≲ 1000.
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gradient. However, the correction of interest comes
from the fact that the temperature at the center and the
radial temperature gradient at distance r are correlated,
with hTð0Þ∂rTðrÞi ¼ ∂rξ̃ðrÞ ∼ −190 μK2 arcmin−1 for r ∼
20 arcmin (see Fig. 5). Hence, there is a correlation
between the central temperature and size of the surround-
ing lensing signal: for a ∼0.3 arcmin inward-pointing
radial deflection, hTð0ÞΔTðrÞi ∼ 57 μK2. For example,
for convergence peaks located at temperature peaks there
is a positive surrounding ring of lensing-induced signal;
for lenses located at temperature troughs, there is a
negative ring of lensing-induced signal (see Figs. 2 and 3).
This correlation signal is larger than the variance
of the deflection signal, which is ∼16 μK2 on these
scales. Without masking, the signal around lensing
overdensities on average cancels with that from under-
densities, but when only the peaks of the convergence
are masked, there is a net effect that can be significant
even if only a small fraction of the sky is masked. For
an n-sigma peak, the signal is proportionately larger,
which also partly offsets the smaller sky area affected
for moderate n.
In practice, a threshold mask is often enlarged or

apodized, which breaks the strict assumption that the mask
is a local function of the foreground. The general form of
Eq. (2.7) still holds and can be applied if it can be estimated
from simulations, but the specific analytic results do not
generalize straightforwardly.

2. Poisson point sources

In CMB frequency bands with ν≲ 217 GHz bright
extragalactic sources detected in the sky (and that are
later masked) are dominated by radio sources (RS). At
higher frequencies dusty star-forming galaxies (DSFGs),
which are observed as infrared (IR) sources via their
thermal emission from dust heated by the ultraviolet
emission of young stars, start to dominate [13–15].
Whether a given galaxy contains a bright radio source
involves largely stochastic processes determining the
generation of an active-galactic nucleus (AGN), the largely
random alignment of any radio jet with our line of sight, or
the status of star formation processes. They are therefore
often modeled as a Poisson process, with a distribution
following the distribution of the host galaxies. Since on
large scales the universe is homogeneous, to zeroth order
this results in an uncorrelated white-noise spectrum of
sources.
We make the simple assumption that the probability of

an observed bright radio source in a galaxy is independ-
ently the same for each galaxy in a population. In redshift
interval dz the number of sources in solid angle dΩ in
direction n̂ is taken to be ngðn̂; zÞdzdΩ, so for small
probability pg per galaxy, the mean number of sources
per solid angle is

λðn̂Þ ¼
Z

dzpgngðzÞ½1þ Δngðn̂; zÞ − ð2þ 5sðzÞÞκðn̂; zÞ�:

ð2:22Þ

This neglects small velocity and potential corrections and
strong lensing events but accounts for the fact that at first
order in perturbations, the number density of galaxies is
correlated to the density and hence to CMB lensing. There
is therefore a clustered component to the spectrum that will
correlate masked sources with the lensing potential. In
addition, there are also potentially correlations with CMB
lensing induced by magnification bias (due to the weak
lensing convergence κðzÞ of sources at redshift z). The size
of this lensing effect depends on the slope of the source
luminosity function sðzÞ at the flux cut used for the mask
[16,17]. The lensing term should be included for an
accurate analysis, but it is usually a small fractional
correction. As we shall see the effect of Poisson point
source mask is small anyway, so the lensing terms can
safely be neglected for our purposes. This is consistent with
the numerical simulations that we use, which also do not
include the lensing effect on the point source fluxes.
If for each source we mask out an circular area around it

of radius R, the probability of a given direction being
masked (WðxÞ ¼ 0), is one minus the probability of the
Poisson probability of no point sources over the hole area,

PðWðxÞ ¼ 1jλRðxÞÞ ¼ e−λRðxÞ; ð2:23Þ

where λRðxÞ is the hole area mean number field. Here we
use the flat sky approximation where

λRðxÞ≡
Z

dθr

Z
R

0

rdrλðxþ rÞ; ð2:24Þ

so that in Fourier space λRðlÞ ¼ 2πR2½J1ðlRÞ=ðlRÞ�λðlÞ.
If we approximate Δngðn̂; zÞ and κðzÞ as Gaussian

random fields, or invoke approximate central limit theorem
Gaussianization by line of sight averaging, we can take
λRðxÞ ¼ λR þ fðxÞ as having the background value λR plus
a perturbation f that is an Gaussian random field with
variance σ2f at any point. The sky fraction after masking is
therefore

hfskyi ¼ hWðxÞi ¼ he−λRðxÞi ¼ e−λReσ
2
f=2: ð2:25Þ

Note that for small perturbations, the masked area is
dominated by Poisson sampling of the background source
population, with source density λR per mask area, which
has no correlation to the lensing. The σf term reflects the
fact that more clustered matter will have more overlapping
mask holes, hence less masked area (higher fsky). For small
numbers of sources, hfskyi ≈ 1 − λR.
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Finite-sized point source mask holes in general violate
the assumption that WðxÞ only depends on fðxÞ, since if
Wðx0Þ is masked, x may already be inside the same mask
hole. However, it does hold for r large enough that the two
points are never inside the same mask hole (r > 2R), so that

PðWðxÞ ¼ 1;Wðx0Þ ¼ 1jλRðxÞ; λRðx0ÞÞ ¼ e−λRðxÞ−λRðx0Þ:

ð2:26Þ

For Gaussian f and r > 2R, the general form of Eq. (2.13)
holds, with gðrÞ identically equal to 2, so that

Δξ̃ðrÞ ≈ 2∂rξ̃ðrÞξfαrðrÞ: ð2:27Þ

Although the correlation function ξfαrðrÞ is linear in the
deflection angle, it is also linear in the galaxy density
perturbations, so the overall correction is small unless the
source galaxies are very strongly clustered. Equation (2.27)
is equivalent to the general limiting form of Eq. (2.15) for
large separations, since in this case f̄ ¼ −σ2f, but here the
result is valid for all r > 2R.
More generally, the result can be calculated on all scales

using Eq. (2.7) where

Δ̄ðrÞ ¼ 2
hαrðxÞ exp ð−

R
Aðx;x0Þ λðyÞd2yÞi

hexp ð− RAðx;x0Þ λðyÞd2yÞi ; ð2:28Þ

where Aðx; x0Þ denotes restricting the integral to the area
where a point source would give WðxÞ ¼ 0 or Wðx0Þ ¼ 0.
For r > 2R the area Aðx; x0Þ is just the two circular regions
around each point, and this reduces to Eq. (2.27). More
generally, for Gaussian fields it can be evaluated numeri-
cally using

Δξ̃ðrÞ ≈ 2∂rξ̃ðrÞ
Z
Aðx;x0Þ

d2yξλαrðryÞr̂y · r̂ ð2:29Þ

¼ 4∂rξ̃ðrÞ
Z

Rþr

maxðR;r−RÞ
dssξλαrðsÞsinðϕrðsÞÞ; ð2:30Þ

where ry ≡ y − x and ϕrðsÞ is defined through cosϕrðsÞ ¼
ðs2 þ r2 − R2Þ=2sr. For r < 2R the region A is the area
inside the two overlapping circles centered at each point.
For r ≪ R the limiting form of Eq. (2.16) applies, with
gðrÞ ¼ 1, so that on scales much smaller than the holes

Δξ̃ðrÞ ≈ ∂rξ̃ðrÞξfαrðrÞ: ð2:31Þ

Equation (2.30) smoothly interpolates between the limiting
forms of Eqs. (2.31) and (2.27).
Figure 6 shows predictions for the power spectrum

correction. The blue line shows the prediction of
Eq. (2.30), where disks of 3 arcmin are drawn for total
masked sky fraction of 1.6%. The other colored lines

illustrate the impact of apodization of the mask. The
apodization procedure is performed as described in
Appendix C. The orange and green curves show the case
of 3 and 5 arcmin apodization respectively, and show two
main signatures: the increase of the masked sky fraction,
boosting the large-scale signal, and the introduction of a
cutoff on small scales. For comparison with the threshold
mask of the previous section, we have picked for this figure
fðxÞ equal to κðxÞ the lensing convergence field; more
realistic point source fields are dealt with in Sec. III. If
sourceswere to formpreferentially in peaks of the κ field, the
relevant Poisson intensity f would be a biased version bκ,
and the colored curves would scale linearly with b. The
black line shows the threshold-mask analytic prediction at
the same masked sky fraction than the green curve, reduced
by a factor 20. Hence, unless the bias is extremely high, a
Poisson-induced signal is typically much smaller.

C. Polarization

The general result of Eq. (2.13) also holds for the
polarization or cross-correlation, simply by using the
relevant correlation functions in place of the temperature
correlation function. However, for B-mode polarization, the
choice of estimator is much more important. The mask-
normalized pseudo-correlation functions we are analyzing
here correspond to deconvolved pseudo-Cl estimators. It is

FIG. 6. Correction to the lensed CMB temperature power
spectrum C̃l for a mask consisting of an ensemble of disks of
radius 3 arcmin, centered on sources Poisson-sampling a under-
lying density field δðn̂Þ, for a total masked (unapodized) sky
fraction of 1.6%. Shown are the cases without apodization (blue)
or after apodization as indicated in the legend (orange and green).
Apodization increases the masked sky fraction, and introduces a
cut-off at the corresponding scale. When sampling a biased
matter tracer bδ, the mask traces the peaks better (for b > 1) and
all the colored curves scale increase linearly with b. For this
figure, δ is taken to be the lensing convergence field κ to allow
comparison with the κ-threshold mask results (black dotted,
scaled by a factor 0.05; see Fig. 4). For Poisson distributed
sources, even highly biased source masks give a much smaller
effect than direct thresholding.
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well known that for polarization, although these estimators
are unbiased, they couple cosmic variance of E-modes into
B-modes due to E-to-Bmixing on the cut sky. For this reason
they are unlikely to be used in practice for analyzing future
data, where sensitivity to small B-mode signal is a major
goal. It is also clear that there are likely to be many fewer
polarized sources compared to temperature sources, so a
much small masked sky fraction is likely [8]. However, as a
baseline for reference and comparison, we do briefly present
a few basic results for the pseudo-correlation function
estimators. These are likely to remain relevant for many
E-mode power spectrum analyses, and we comment in later
sections about the impact of using different estimatorswhere
the effects on the B-modes may be much smaller.
The form of the correlation function results is basically

the same, but the polarization pseudopower spectra are
formed from combinations of the two ξ� correlation
functions. In harmonic space this still give a convolution-
like effect on the power spectra: if we take the unlensed
CB
l ¼ 0, on large scales compared to the foreground

correlation length and hole size, the result corresponding
to Eq. (2.17) for the temperature is

ΔC̃E
l ∼ −2

f̄
σ2f

Z
d2l0

ð2πÞ2 C̃
E
l0C

ϕf
jl−l0jl

0 · ðl − l0Þ cos2ðϕl0 − ϕlÞ;

ð2:32Þ

ΔC̃B
l ∼ −2

f̄
σ2f

Z
d2l0

ð2πÞ2 C̃
E
l0C

ϕf
jl−l0jl

0 · ðl − l0Þ sin2ðϕl0 − ϕlÞ:

ð2:33Þ

For low l, we have the leading order result

ΔC̃B
l ∼ 2

f̄
σ2f

Z
dl0

l0
l02C̃E

l0

2π
Cfκ
l0 ; ð2:34Þ

which is white and negative, compared to the standard
lensing result

C̃B
l ∼ 2

Z
dl0

l0
l02C̃E

l0

2π
Cκκ
l0 : ð2:35Þ

The correction can easily make the total negative on large
scales if f is well correlated to κ and relatively smooth. In
Appendix B we show numerical results for a simple test
case. On the E-modes and temperature cross spectrum the
effect is qualitatively similar to on the temperature spec-
trum, but the B-mode spectrum picks up a large bias. This
large bias is a result of the way that the estimators are
combining cut-sky modes, and is entirely driven by the
masking effect on E-modes. Using a pure-B estimate of the
power spectrum would give a much smaller result.

III. NUMERICAL RESULTS

A. Simulations and comparison method

We tested the accuracy of our analytic estimates against
numerical simulations that model the relevant effects, in
particular the extragalactic foreground emission and their
correlation with CMB lensing. For this purpose we used the
publicly available Websky simulation suite4 [12] which
includes maps of CMB lensing convergence κ, radio point
sources, CIB, and tSZ produced from the same underlying
mass distribution at z ≤ 4.5. The mass distribution was
constructed with the accelerated N-body mass-Peak Patch
approach [18,19] from a 15.4 Gpc3, 12,2883 particle
lightcone in a Planck 2018 cosmology. CIB and tSZ
emission maps were constructed starting from the same
matter distribution and using halo models matched to the
latest CMB data from Planck, SPT and ACT as well as
Herschel data at frequencies relevant for CMB experi-
ments. We refer the reader to Ref. [12] for more details of
the semianalytic models adopted for these maps.
Since the mask-induced biases are small, and depend on

the properties of the underlying matter field which is non-
Gaussian, we created two sets Monte Carlo simulations of
100 lensed CMB realizations each. To build the first set, the
unlensed CMB realizations were lensed using the same
deflection field constructed from the Websky κ simulation
(NG set). To build the second set, the same unlensed CMB
simulations were lensed with different Gaussian random
realizations of the deflection field having the same angular
power spectrum as the Websky κ map (G set). We used the
NG set to isolate the bias as it would appear on real data
while the G set was used to compute the error bars of our
measurements. Hence, the error bars displayed in the
figures do not include any non-Gaussian contribution to
the covariance. In the following, unless stated otherwise,
error bars displayed in figures represent the error on the
average measured on the G simulations.

B. Limiting case: 100% correlated foreground mask

As a first test we considered the extreme case of a mask
constructed from a foreground that is 100% correlated with
CMB lensing, creating a foreground mask Wκ by simply
thresholding the CMB lensing κ field. Since the total bias is
sensitive to the overall sky fraction removed by the mask,
as well to the specific correlation between the mask and the
convergence, we tested different configurations. To test the
dependency on the sky fraction we thresholded the field
masking all the pixels above a specific κ value so that a sky
fraction fmask

sky is removed. This generates masks with large
numbers of small holes. To test the effect of the correlation
scale of the deflection field and the shape of the mask, we
also created masks by smoothing the κ field with Gaussian

4https://mocks.cita.utoronto.ca/index.php/WebSky_Extragalactic_
CMB_Mocks
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beams of different full width at half maximum (FWHM,
θ1=2) prior to the thresholding step. This results in more
regular and connected holes due to the longer correlation
length, and also effectively reduces the shot noise of the
foreground map (i.e., κ) due to the finite number of particles
in the Websky N-body simulation.
The bias induced by Wκ is estimated as the difference

between the power spectra obtained using the original
(unrotated) mask, and a randomly rotated mask, both using
the same NG lensed CMB realizations. The rotated mask
Wrot

κ is derived from a random rotation of the originalWκ so
that it is uncorrelated with κ, but retains all the other non-
trivial mode-coupling effects due to cut sky and hole
shapes. The correlated mask bias evaluated in this way
is therefore insensitive to numerical effects only due to an
incomplete sky coverage.5 We computed the power spec-
trum of the masked CMB skies using a pseudo-Cl method
as implemented in the NaMaster package [20] and used a
C2 function (effectively a cosine) to apodize the mask to
control ringing effects in harmonic space. This approach
follows common practice in CMB analyses including small
angular scales and is described by the analytic modeling
presented in the previous sections. As we discuss in Sec. IV,

alternative estimators capable of effectively recovering the
information inside the holes of the mask would give
different results and potentially have a reduced effect.
Figure 7 shows the measured bias from mask correla-

tions measured in the simulations (shown as data points),
compared to the semi-analytic perturbative prediction
described in Sec. II A. To compute the theoretical predic-
tions we measured the required cross-spectra between the
mask and the deflection field from simulations, as well as
the mask auto spectrum. The semianalytic model describes
the effect on large scales up to l ≈ 3000 remarkably well
for all the configurations considered here. This holds also
for extreme cases where the relatively blue shape of the
Websky κ angular power spectrum, the presence of N-body
shot-noise and the relatively large apodization length
adopted, leads to the mask containing numerous tiny
disconnected regions with greatly reduced effective sky
area (as low as 15%, even with no Galactic plane mask). On
smaller scales, the agreement between simulations and
predictions gets worse, but a better fit can be achieved using
the nonperturbative calculations discussed in Appendix B.

C. Cosmic infrared background

TheCIB is produced by star-forming galaxies through the
absorption of stellar radiation by dust grains which is later
reemitted in the infrared. The clustering of halos, and

FIG. 7. Bias induced by masking the lensed CMB temperature with a foreground mask generated by thresholding the Websky CMB
lensing κ field after smoothing to a scale of 1.70 (orange) or 5.10 (green). In the top panel data points measured from simulations are
compared to perturbative semianalytic predictions in solid. Results obtained by masking different sky areas are shown in different
columns. We apodized each mask with a 0.2 deg. apodization length to control ringing effects in the power spectrum estimation step.
The masked area prior to apodization is reported in the title and the effective sky area after apodization used to compute CTT

l is shown in
the legend. The bottom panel shows the bias measured on CMB simulations lensed with a deflection field with an inverted sign
(NG− set). Since the leading-order effect of the mask correlation is linear in the lensing, the bias has the opposite sign compared to the
case of the top panel on scales where the leading order predictions are accurate. See Sec. III D for more details.

5We neglect the small error from regions near the poles of the
rotation axes that are correlated even after random rotation.
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consequently of the galaxies within, then generates the
observed CIB intensity fluctuations [21]. In addition to
providing important constraints on the physics of star
formation over a wide range of redshifts and halo and
galaxy masses, especially for the objects with low luminos-
ity that cannot be studied individually, the CIB acts as an
important contaminating emission at microwave frequen-
cies. Due to its spectral energy distribution (SED) similar to
thermal dust emission it is difficult to disentangle CIB and
galactic dust through component separation and perfectly
remove both components, in particular at small angular
scales and high observing frequencies. CIB residuals then
propagate to data products derived from CMB maps.
For CMB lensing and Compton y maps, CIB residuals

are potentially particularly harmful as they are highly
correlated with the underlying cosmological signals
[22–25], and hence can bias cosmological analyses. The
CIB is therefore an example of a foreground highly
correlated with CMB lensing (≳70% for l≲ 1000 where
clustering of the emission is important). We constructed a
threshold mask WCIB following the procedure outlined in
the previous section starting from the Websky CIB map at
217 GHz. This frequency was chosen as it is the highest
relevant frequency typically used for CMB power spectrum
analysis based on multi-frequency cross-correlation as
done for e.g., Planck. The Websky maps are based on a
halo model of CIB previously used to fit Herschel and
Planck data [21,26,27]. The rest-frame SED of CIB in these
halos accounts for mass, frequency and redshift evolution

as well as frequency decorrelation, and was normalized to
reproduce the Planck CIB at 545 GHz [27,28]. While
improvements to this model have been recently presented
in the literature [29], it is sufficient to reproduce with good
accuracy all the measurements available in the literature
from Planck and Herschel data between 143 GHz
and 857 GHz (see [12] and references therein for more
details). Figure 8 shows the correlated mask bias measured
from simulations adopting the same C2 function of the
previous section and using two different apodization
lengths (30 and 120), compared to our semianalytic pertur-
bative predictions.
As for the case of theWκ mask, the theoretical predictions

match the simulation measurements very well up to scales
l≲ 2500. The amplitude of the mask bias at small scales has
a peak and then decreases on scales smaller than the
characteristic scale imposed by the mask hole size.
Qualitatively this turnover is similar whether the larger
hole size is caused by apodization, or by thresholding a
smoothed CIB map. When masking the CIB peaks without
applying any smoothing of the CIB maps prior to thresh-
olding (orange lines and points in Fig. 8), there are many
very small holes due to the relatively blue shape of the
CIB angular power spectrum. A larger apodization scale
increases the fraction of sky that is masked for fixed under-
lying hole distribution, increasing the bias on larger scales
(where noise and foreground power is lower, and therefore
potentially more important in the analysis of real data).

FIG. 8. Bias induced by masking the lensed CMB temperature with a foreground mask generated by thresholding the CIB map at
217 GHz of the Websky suite after smoothing to a scale of 1.70 (orange) or 5.10 (green). Data points show the measurements of the bias
on simulations while perturbative semianalytic predictions are shown in solid lines. Masks with different sky fractions are shown in
different columns. The top row shows results with 30 mask apodization tapering function, the bottom row using a larger 120 apodization
(giving substantially larger masked areas as shown in the legend).
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Although masks on real data are usually not designed to
remove peaks of CIB emission per se, the case where we
masked the highest peaks so that only the 0.6% of the sky is
removed is of particular interest. Infrared sources that are
local dusty galaxies are expected to have a low correlation
to CMB lensing due to the short path length. However,
chance radial alignments of sources for the CIB, high-
redshift protoclusters, and lensed high-redshift galaxies,
may make up an important fraction of the point sources
detected in CMB maps [30,31], all of which may have a
significant correlation to the line of sight CMB lensing
[32–34]. The brightest of these objects are usually removed
by point sources masks (see later Sec. III E). Despite the
reduced masked sky area, the bias in this case is potentially
significant and could lead to important detectable effects as
we will see in the following sections.
There are however several caveats to our analysis. The

Websky CIB simulations do not model specifically the
effect of Poisson shot noise for the brightest sources nor
include lensing of the infrared galaxies, which potentially
make up a significant fraction of the detected objects
[35,36], especially the brightest one. Moreover, objects
located at very high redshift above the maximum redshift
probed by the LSS included in Websky (zmax ¼ 4.5),
despite being very rare, can still retain a nonzero correlation
with CMB lensing as CMB lensing kernel has a non-
negligible amplitude in that regime (see e.g., [37] for a
discussion on high-redshift object cross-correlation in the
optical band).

D. Thermal SZ

Observation of the tSZ effect, the inverse Compton
scattering of CMB photons by free electrons, is a well
established way to construct roughly mass-limited samples
of galaxy clusters that are independent of redshift and thus
very powerful cosmological probes [38–40]. tSZ clusters
mark out large-scale density peaks, and as such have
substantial correlation to CMB lensing, at the 30–50%
level [41], and the emission also follows highly non-
Gaussian statistics [42,43]. If tSZ clusters are masked
out, the CMB lensing-mask correlation can be substantial.
Current CMB surveys from the ground and from space

have blindly detected approximately 3200 tSZ clusters with
redshift measurements to date [44–46]. Due to its character-
istic spectral signature, tSZ emission can be subtracted
from CMB maps using component separation. However,
this becomes difficult on small scales where noise becomes
important, and foreground-cleaning residuals are less
simple to model. The tSZ signal is therefore usually not
cleaned for CMB power spectrum analysis, instead its
contribution to the observed power spectra is accounted for
in the model. Nevertheless, to minimize complex fore-
ground residuals, for various higher-point statistics (includ-
ing CMB lensing reconstruction) it is often useful and
common practice to remove some of this source of highly

non-Gaussian signal by masking the SZ clusters (see e.g.,
[47]). In this case it may also be important to understand
what happens to the two-point statistics over the remaining
unmasked area. Planck data were shown to be robust to
these effects [48], however future ground-based surveys
such as Simons Observatory [49] (SO) and CMB-S4 [50]
(S4 hereafter) will detect one order of magnitude more
clusters and thus cluster masking might potentially soon
become a more significant issue.
We followed the same procedure outlined in previous

sections and constructed a mask based on the thresholding
of the Websky tSZ Compton y parameter map Wy. The
Websky simulation models the tSZ emission starting from
the dark matter halos identified in the simulation, and
applies a halo model construction including the effects of
non-thermal processes such as radiative cooling, star
formation, supernova and AGN feedback in the pressure
profile [51]. As a result, the y map is highly non-Gaussian
with the skewness and kurtosis of its 1-point PDF having
values significantly above 1.
In Fig. 9 we show the comparison of our theoretical

predictions with the simulation measurements. Compared
to the case of κ and CIB thresholding, the agreement
between the perturbative model and simulation results is
worse, with significant discrepancies observed already at
multipoles l ≈ 2500 and reaching a factor between 2 to 4 at
l ≈ 4000 in particular when only the highest peaks are
masked (right panel). For more aggressive masks where a
significant fraction of the peak is masked however the
agreement (left panel) between simulations and analytic
predictions improve substantially. Since the bulk of the tSZ
emission is localized in highly clustered and dense regions
at relatively low redshift for a threshold that is sufficiently
small, Wy contains holes with a larger angular size around
the overdensity corresponding to the galaxy cluster. The
masked region at each cluster may therefore remove a
significant area of high lensing signal associated with the
cluster (rather than just a small area at the very peak of the
overdensity). We therefore checked whether higher-order
effects beyond the linear term modeled in the previous
section could be responsible for the observed discrepancy,
for example from the reduction in lensed CMB signal over
the cluster mask.
To test higher-order effects we constructed another set of

lensed CMB simulations with the same masks as the NG
set, but lensed with a deflection field with an inverted sign.
We refer to this set of simulations as NG− in the following.
Since the leading-order effect of the mask correlation is
linear in the lensing, in these maps it should have opposite
sign (see Fig. 7). Higher-order effects that are quadratic or
involve a higher even power of the lensing can be isolated
on simulations using the half sum of the mask biases
measured on the NG and NG− sets using the same
threshold mask for both NG and NG−. In the bottom panel
of Fig. 9 we show that higher-order effects induce a
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negative correction to the leading order predictions that
explains the discrepancy. When only a reduced fraction
of the sky is masked, the higher-order effects become
important at l ≈ 2000 and suppress the bias by a factor
of 4 compared to the leading order predictions at l ≈ 4000.
In the limiting case where we mask a large fraction of the
sky, the corrections become relevant at progressively
smaller angular scales and their relative importance is
reduced.
Corrections that are quadratic in the lensing largely

account for a change in the underlying lensed CMB power
spectrum due to the masking of areas where the lensing is
larger. An approximate analytic estimate of this higher-
order bias can be obtained by computing the lensed CMB
power spectrum (approximately a convolution of the CMB
lensing and the unlensed CMB power spectra) where the
CMB lensing power spectrum is derived from the lensing
convergence power spectrum computed over the masked
sky using the Wy mask. Figure 9 shows that this simple
model describes the effect seen in the simulations quite
accurately (a more accurate analytic calculation, including
all orders for a Gaussian foreground, is described in
Appendix B).

E. Radio point sources

The dominant population of bright point sources
detected at CMB frequencies are AGN-powered radio
sources emitting synchrotron radiation through acceleration

of relativistic charged particles [52]. The details of the
observed emission law of such sources (whose intensity
typically decreases as frequency grows) depends on the
orientation of the observer relative to the axis of the
characteristic jets emerging from the central black hole
[53]. Because the synchrotron emission is polarized, some
of the sources detected in temperature also have a counter-
part in CMB polarization maps. So far only a minor fraction
of the detected sources in temperature are polarized, but the
situation is expected to change in the coming years where
hundreds of object will be identified in deep polarization
maps [8,54]. These are potentially an important obstacle to
the exploitation of small scale E-mode polarization data as
well as large scale B-mode polarization if the tensor-to-
scalar ratio r is sufficiently low. As such, all these sources
are systematically masked in CMB temperature power
spectra analyses. Polarization data can be masked sepa-
rately (using only the detected objects in polarization)
or together with temperature data using the same mask
[55–58]. Other analyses studying statistically anisotropic
effects in CMB maps (e.g., CMB lensing or birefringence
reconstructions) adopted different approaches, ranging
from keeping the same mask as in power spectrum analysis
or using dedicated source-subtracted or inpainted maps
[48,59–62].
Halos hosting radio sources, and therefore the radio

source distribution (especially the low flux component),
correlate with large-scale structure and hence with the tSZ

FIG. 9. Top: bias induced by masking the peaks of the tSZ emission (after smoothing to a scale of 1.70, orange, or 5.10, green) on the
lensed CMB temperature as measured on simulations compared to perturbative leading order analytic predictions (solid line). Masks
with different sky fractions are shown in different columns. We adopted a 60 apodization length for the mask tapering function. Bottom:
measurement on simulations of the even higher-order biases responsible for the discrepancies between the leading order predictions and
the simulation results shown in the upper panel. Approximate analytic predictions of the second-order terms are shown as solid lines and
described in Sec. III D.
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emission, CMB and galaxy lensing and CIB [63–66].
The relatively low amplitude of the clustered component
of ∼10 s–100 smJy radio sources detected in current
generation CMB maps, means that for current masked
source densities the mask can be approximated as uncorre-
lated to the lensing to good accuracy. We used Websky
radio sources mock catalogues to test that this is indeed the
case, and whether this assumption breaks down for future
experiments.
The radio-source mocks use the halos identified in the

simulation box of Websky to implement a halo occupation
distribution (HOD) for the Fanaroff-Riley Class I (FR- I)
and Class II (FR-II) galaxies described in [67,68]. The
HOD models the occupation numbers of FR-I and FR-II
populations as broken power laws and asymmetric
Gaussians and a luminosity function given by a broken
power law with a luminosity cutoff set to reproduce the
luminosity function at 151 MHz. The constructed HOD is
then resampled to match the observed flux counts nðSÞ ¼
dN=dS while keeping the same rank ordering of the
original catalogue, mixing in practice HOD and abundance
matching techniques (see [69] for more details6). The
constructed catalogues reproduce with good precision the
Planck number counts at frequencies ν ≤ 143 GHz where
the radio galaxies dominate the DSFGs population.
To build the RS mask for a given experiment we started

from the simulated radio catalogues and selected the
sources that have a measured flux above the detection
limit of a particular experiment. We focused on Planck, SO
and S4, and for each of these we selected the sources in the
three frequency bands most relevant for small-scale power
spectra measurements. We label these LOW, MID, HIGH,
with each having a different flux limit and resolution as
shown in Table I.7 The properties of the selected galaxy
samples for each experiment are summarized in Fig. 10.
In the literature, different experiments adopted different

choices for how to mask point sources. Planck masked
a circle of radius 3σ ¼ 3θ1=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log 2

p
≈ 1.3θ1=2, where

θ1=2 is the FWHM of the beam of each frequency channel
and a Gaussian tapering function with 300 apodization
length [55]. Ground-based experiments adopted more
conservative choices. ACTpol used holes of a radius of
about ∼3.5θ1=2 radius hole at 98 GHz and 150 GHz with a
sine apodization having a length ranging between 100 to

150 [56]. SPTpol typically masked the sources with a fixed
50 radius circle (which is ∼3–5θ1=2 at 95–220 GHz) and a
cosine apodization with 50 apodization length [59]. For
small-scale temperature analysis, they adopted a different
masking procedure with larger holes for the brightest
sources [72]. For wide surveys such as Planck or
ACTpol Wide, the fraction of observed sky masked by
sources before apodization amounts to ∼0.4% while deep
surveys like SPTpol and ACT deep removed a few percent
of the observed sky. We investigated the impact of different
setups in terms of apodization and hole size, and Fig. 11
summarizes our findings.
The clustering of the selected galaxies is dominated by

the shot noise for all the selected galaxy samples. The mean
cross-correlation with CMB lensing is 5%, below 10% on
all angular scales for the deepest sample of S4, and one
order of magnitude lower for Planck. The formalism based
on Poisson sampling of the density field (see Sec. II B 2)
would thus be appropriate if one had to model the effect
from first principles. In Fig. 11 we use the empirical model
of Sec. II A to compute the analytic predictions. A C2

apodization of the mask holes is used to measure the effects
on simulations for consistency with the results of the
previous sections.
For the case of masks with 3σ hole radius, and the union

mask that removes sources detected at all frequencies
(which largely overlap between frequency channels), for
Planck we find a negligible effect of the order of ∼0.01%.
For SO and S4 however, the effect becomes comparable to
the cosmic variance uncertainty and therefore becomes
relevant. Increasing the hole radius to 2θ1=2 makes the bias
shape change significantly, especially at small angular
scales where it can grow to about 1% and change sign.
Increasing the apodization length potentially has a more
important effect as all scales are affected by the increased
masked area. An apodization such as that of adopted by
Planck [55] can increase biases by a factor two, however
for the specific case of Planck shown here, it still keeps the
bias below the detection threshold. If instead we mask only

TABLE I. Point source intensity flux cut values and resolution
of the different frequency channels and experiments considered in
this work. See [8,49,55] for more details.

Channel ν (GHz)
Intensity flux
cut (mJy) θ1=2 (arcmin)

Planck LOW 100 232 9.69
Planck MID 143 147 7.30
Planck HIGH 217 127 5.02
SO LOW 93 4.37 2.2
SO MID 145 5.03 1.4
SO HIGH 225 9.88 1.0
S4 LOW 95 2.82 2.2
S4 MID 143 1.98 1.4
S4 HIGH 220 4.37 1.0

6See also https://github.com/xzackli/XGPaint.jl.
7The value of the flux limits for SO have been computed using

the publicly available noise curves discussed later in the text and
the method discussed in Appendix 4 of [70], which takes into
account uncertainties due to foreground residuals. We note that
more accurate estimates including noise inhomogeneity could
lead to flux limits that are ∼20% lower than those quoted in
Table I [71]. This would lead to a higher number of detected
sources that are then masked. The SO-related results presented in
the following can therefore be considered as lower bounds on the
amplitude of the mask bias.
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the sources detected at a given frequency, we found that the
LOW and MID frequency channels are the ones most
affected, as they are the ones where the effect is larger
and/or have the lowest flux detection threshold.

More conservative approaches to point source masking,
as typically adopted in the analysis of ground-based
experiments mentioned above, where the hole radius
exceeds the 2θ1=2 value considered in this work and wider

FIG. 11. Effect of masking radio sources for different experiments considered in this work (left to right). The MID frequency channel
is shown in orange, and the mask derived by taking the product of the masks at each considered frequency channel is shown in blue.
Simulation measurements are shown as data points and the semianalytic theory prediction in solid. Different hole sizes are displayed in
the top and middle panel. The point source masks were apodized with a C2 tapering having an apodization length of 30 (upper and
middle panel) and 120 for the bottom one.

FIG. 10. Distributions of the Websky simulation radio galaxy population at different frequencies that would be detected using the flux
limit for different experiments. Numbers here are over the full sky and are masked in our full-sky analysis. The number of sources
detected over the full sky is shown in the label while the median redshift is shown as a dashed vertical line. See Table I for the
specification of the LOW, MID, and HIGH frequency channels.
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apodization lengths are employed, will lead to a significant
increase of the bias and a strong detection if unmodeled. At
the SO and S4 level of sensitivity such strategies will need
to be reconsidered as it may become necessary to find a
compromise between data loss, increase of the mask-
induced bias, and foreground contamination. In all cases,
however, our analytic model describes the results of
simulations well and can be used to estimate or mitigate
the bias when required.
As shown in Appendix B, the mask bias observed on

E-modes is roughly a factor 2 lower compared to the one
observed in the temperature power spectrum. If a common
mask between temperature and polarization is adopted, we
expect the bias to become relevant for high-sensitivity
analysis of small-scale E-mode polarization and be negli-
gible for B-modes on scales l≳ 200 if a pure-pseudo
power spectrum (or more optimal [73]) method is used
[74,75]. In the case of a pure-B estimator the residual
observed bias comes mainly from higher-order masking
effects suppressing the lensed B-mode power, while the
larger bias at linear order involving E-modes converting to
B-modes is naturally removed. An accurate evaluation of
the bias on the large angular scale B-mode power from pure
pseudo-Cl methods would depend on the details of the
apodization length of the mask. This can be highly non-
trivial in presence of masks with complex boundaries, such
as those removing radio point sources, and should anyway
be optimized given an experimental noise level and a
choice of multipole binning to minimize the total B-mode
variance [76,77]. This is beyond the scope of this paper
and we leave this exercise for future work. However, in
Fig. 12 we show an example of the effect of the B-mode

purification on the mask bias for the limiting case of
a Wκ mask. For the more realistic case of a mask that
removes radio sources detected at all frequencies, the
B-mode power bias for the pure estimator is ∼10–20%
at l ≈ 200 for S4.

IV. IMPACT ON CURRENT AND FUTURE
DATA SETS

A. Detectability, diagnostics and mitigation

Although the level of the bias can easily be calculated
from simulations, in practice it is usually not straightfor-
ward to reliably simulate very precisely what is being
masked, so some kind of internal measurement or diag-
nostic would be useful. Fortunately, because the effect is
linear in the lensing, it is quite distinctive.
We can expect methods that reconstruct the CMB

inside the holes, such as inpainting or CMB Wiener
filtering, to be quite effective at reducing the bias (or
affecting its shape) if the mask is not too large. This is
because the temperature in a small hole can be predicted
accurately by using the large-scale temperature modes
that are well measured outside the mask. The correlation
between the temperature value in the masked hole and the
surrounding lensing (see Fig. 2) would then be mostly
recovered, giving little net bias. The temperature
reconstruction may itself bias the result, but in a very
different way that allows for consistency checks. The
effect can also be isolated in cross-correlation of masked
and unmasked (or inpainted) maps, where the bias
appears on large-scales with half the amplitude.8 This
has the advantage of not picking up mean white fore-
ground noise from the unmasked foreground peak or
some effects of inpainting errors, allowing a direct
comparison with the masked auto spectrum.
For example, simulations suggest that the Planck point-

source mask of fsky ∼ 2% [55] could bias cosmological
parameters by up to about 1σ if the mask were highly
correlated to the lensing, but assessing exactly the level of
correlation from purely theoretical considerations or sim-
ulation is difficult. We can instead directly assess the size of
the bias by looking at cross-spectra between masked and
inpainted maps. Specifically, we consider the difference of
power spectra SMICA × SMICA − SMICA × SMICA0,
where SMICA is the foreground-cleaned SMICA temper-
ature map [78] masked by one of the likelihood masks
including point source mask, and SMICA0 is the SMICA
map only masked by the galactic mask and inpainted
elsewhere. To avoid noise bias in the power spectrum,

FIG. 12. Lensing-induced mask bias on the B-mode angular
power spectrum for a standard pseudo-Cl estimator (blue) and for
a pure pseudo-Cl estimator (orange). Because the major source
of the bias at leading order is a conversion from E to B-modes, the
pure estimator removes almost entirely the bias observed with the
standard estimator. The two estimators generate a very similar
bias at small scales where the bias is mainly sourced by higher-
order terms in the lensing (e.g., the suppression of lensing power
due to peak masking).

8Cross-correlating a perfectly inpainted map with the
masked map results in a linear order bias proportional
to hαrðxÞWðyÞi=hWðyÞi, instead of 2hαrðxÞWðxÞWðyÞi=
hWðxÞWðyÞi for the autospectrum. For a Gaussian foreground
field model, the first is half the second on large scales, but
transitions to be equal to it on small scales.
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the first and second map can be taken from different
half-mission splits. For the various frequency masks the
smoothed difference is always ΔDl < 1 μK2 at 1000 <
l < 2000 and < 4 μK2 on larger scales (with much of the
variation expected from cosmic variance over the differing
areas), suggesting the level of bias is safely negligible for
the default Planck masks.
The effect can also be tested using an estimate of the

deflection field over the unmasked area to empirically
estimate Δ̄ðrÞ (Eqs. (2.9), (2.11). For Planck two good
tracers of the lensing field are available: the lensing
reconstruction [48] (on large scales) and the cosmic infra-
red background (which is highly correlated to lensing and
well-measured by Planck on smaller scales), which can be
used to estimate Δ̄ðrÞ and hence the expected impact on the
power spectrum. In either case we find these semi-analytic
predictions consistent with zero. Each method of assessing
the bias has some caveats, but taken together there seems to
be good consistency with negligible bias for Planck
parameters due to mask-lensing correlations. This is con-
sistent with the expectation that the mask is dominated by
Poisson radio sources, which have negligible impact given
the number densities of sources masked by Planck, and
nearby galaxies that are only weakly correlated to the CMB
lensing. We reach the same conclusion trying to estimate
the Δ̄ðrÞ on ACT DR4 [61] D56 and D8 deep regions. For
higher-resolution and forthcoming data, where substan-
tially more sources may be resolved, mask bias consistency
checks may be much more important.
On the other hand, we can easily detect biases in Planck’s

SMICAmaps when using a modified mask designed for the
purpose. Figure 13 shows results when masking additional
5% of the sky with a foreground threshold mask. The points
show the difference in the SMICA map power spectrum, as
calculated on the union of the Planck likelihood masks
at 143 and 217 GHz (fsky ¼ 43%), after masking this
additional 5% of the sky by directly thresholding on a
foreground map taken here to be the (noisy, and beam-
convolved) Planck CIB observations as captured by the
GNILC [79] map at 545 GHz. The error bars are estimated
for each multipole bin from the empirical standard
deviation of the spectrum. The blue curve shows the
analytic prediction for the bias as obtained with the
threshold model of Sec. II B 1. Along with the foreground
autospectrum, the prediction requires its cross-spectrum to
the lensing potential. We have used the empirical cross-
correlation of the GNILC map to Planck 2018 publicly
available lensing map [48, MV estimate] for this purpose.
This could be viewed as a rather nontrivial consistency
check of our analysis and several Planck products.

B. Forecasts for future experiments

Despite not being detectable on current data sets, in the
previous sections we have shown that correlated masks can
introduce substantial biases on the power spectrum if not

accounted for, and they may be import for forthcoming
more sensitive experiments that measure small angular
scales. We therefore calculated the detectability of the
biases induced by masking of tSZ, CIB and radio sources
for SO and S4 assuming a sky coverage of fsky ¼ 40% and
the realistic publicly available noise power spectra in
temperature and polarization after a component separation
procedure based on a standard9 internal linear combination
algorithm.10 In Fig. 14 we show the detectability of the bias
in terms of achievable detection significance as a function
of the highest multipole included in the analysis. This
approach is simplified and assumes the perfect knowledge
of the CMB power spectrum and, if employed, of the
nuisance parameters used to describe the foreground
residuals. As such, a detectable bias should be interpreted
as showing that it is necessary to model the effect to be sure
the inference of remaining cosmological (or nuisance)
parameters is not biased. We note here that the masks
are unapodized.
If tSZ and the brightest regions of CIB emission (which

are considered here as proxy of DSFGs and covering only
0.6% of the sky) are masked, biases on C̃TT

l will be detected
with a statistical significance well above 5σ for both SO and
S4. For RS masking we assumed that a joint mask

FIG. 13. Difference between Planck SMICA data power
spectra estimated on the Planck likelihood mask and after
removing an additional 5% of the sky, directly thresholding on
the GNILC CIB map at 545 GHz. The solid line is the analytic
prediction using the Gaussian foreground thresholding model in
this paper, where the cross-spectrum of the foreground to the
lensing potential is obtained from the cross-spectrum of GNILC
map to the Planck 2018 lensing MV lensing potential quadratic
estimate.

9We consider the standard version of the algorithm the one
that does not explicitly deproject any extragalactic foreground
component.

10Details of the noise model for SO can be found at https://
github.com/simonsobs/so_noise_models, while the noise speci-
fications for S4 have been taken from https://cmb-s4.org/wiki/
index.php/Survey_Performance_Expectations. For SO we used
the so-called baseline noise.
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removing all sources detected at any frequencies with a
hole radius of ∼1θ1=2 is applied to both temperature and
polarization. Considering only multipoles l ≲ 3000 where
extragalactic foreground residuals become important, only
S4 would detect the effect above 5σ in C̃TT

l while for SO the
detection significance is reduced to ∼2σ. Measurements of
C̃EE
l are less affected by the bias and should remain

insensitive to it at SO sensitivity, while S4 will need to
account for the effect as it should be able to measure it at
∼3σ. The size of the bias for C̃BB

l is highly dependent on the
choice of the estimator. Standard pseudo-Cl estimators not
accounting for E-to-B leakage due to partial sky coverage
in the E-B separation will lead to a very significant
detection of the bias also on subdegree scales. However,
estimators that remove the E-to-B leakage, such as the
pure-pseudo-Cl, can remove the majority of the bias and
leave the residual effect below the detection threshold.
Except on scales smaller than the smoothing scale for the
mask, the effect on the temperature and E-mode power
spectra is mainly an increase in power at small angular
scales. This is likely to partly degenerate with the spectral
index ns and other parameters affecting the damping tail, so
any analysis neglecting the effect may misestimate these
parameters. We stress however that for a given noise level,
the quantitative impact of the mask bias in the analysis of
real data is ultimately dependent on the details of the final
analysis mask and thus on the interplay between the shape
of the bias and cosmological, foreground and other nui-
sance parameters.

V. CONCLUSIONS

We have shown that masks that are correlated to lensing
can potentially give large biases in pseudo-Cl power
spectrum estimators, even if the masked sky area is small.

To a good approximation, this results from a scale-
dependent demagnification causing an efficient transfer
of power from large to small scales. We discussed analytic
models which accurately describe the effect of simple
masks, and provided a recipe to estimate the bias empiri-
cally on simulations or data. We verified on simulations that
the predicted change in the CMB power spectra is accu-
rately capturing the main effect of the mask bias, with no
significant change to the power spectrum covariances
identifiable above the Monte Carlo noise. For current data,
where masked source densities are relatively low and CIB
and tSZ are usually not masked, the bias appears to be
safely negligible. For future data, with much larger popu-
lations of resolved sources, care will be required to either
include the correlated mask bias in the model, or ensure that
mask hole sizes and number densities are sufficiently low
that the bias remains negligible.
The bias from masking radio sources is relatively low

because the Poisson sampling ensures a mask hole pop-
ulation tracing the background galaxy density, rather than
correlating strongly with the density perturbations.
However, for the high radio source densities expected in
fourth-generation CMB observations, this may also start to
become marginally important. If tSZ clusters (or CIB
peaks) are included in the mask, the effect could be much
larger, producing highly significant biases in the power
spectra if left unmodeled. For these contaminants fore-
ground modeling and cleaning is likely to remain the best
approach, rather than masking. However, non-Gaussianity
and lensing studies that choose to mask these sources may
have to also carefully account for the induced change in the
power spectrum over the remaining area. We discuss in
detail the effect on lensing estimation in our companion
paper [5]. A detailed study of the impact on large-scale
CMB polarization and delensing is left for future work.

FIG. 14. Detection significance of the mask bias as a function of maximum multipole lmax included in the analysis for different
sources for future high-resolution ground-based experiments. SO is shown in solid line while S4 is shown in dashed line. For both
surveys we assumed a sky coverage of fobs ¼ 40%. Unlike Figs. 8, 9, and 11, no apodization was applied to the mask prior to the
computation of the power spectrum bias. This choice is conservative as it allows us to retain the largest observed sky area for a given
mask and thus a smaller bias on the majority of angular scales. The fraction of the sky area removed by masks based on foreground
thresholding is shown in the title as fmask

sky . The significance reported is assuming the full sky CMB spectra are known perfectly (and an
error model only accounting for foreground-cleaned noise).
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APPENDIX A: CORRELATION FUNCTION
ESTIMATORS AND AVERAGES WITH

BINARY MASKS

If we define the correlation function on a masked sky by
the expectation between unmasked points (assuming a
binary mask) we have

ξ̃ðx; x0Þ≡
Z

dT̃ðxÞdT̃ðx0ÞT̃ðxÞT̃ðx0Þ

× PðT̃ðxÞ; T̃ðx0ÞjWðxÞ ¼ 1;Wðx0Þ ¼ 1Þ

¼
Z

dT̃ðxÞdT̃ðx0Þ½T̃ðxÞWðxÞT̃ðx0ÞWðx0Þ�

× PðT̃ðxÞ; T̃ðx0ÞjWðxÞ ¼ 1;Wðx0Þ ¼ 1Þ: ðA1Þ

For a mask defined on statistically isotropic fields, for x and
x0 separated by r we have

ξmaskðrÞ≡ hWðxÞWðx0Þi

¼
Z

dWðxÞdWðx0ÞWðxÞWðx0ÞPðWðxÞ;WðxÞÞ

¼ PðWðxÞ ¼ 1;Wðx0Þ ¼ 1Þ: ðA2Þ

The correlation function for unmasked points then
becomes

ξ̃ðrÞ ¼
Z

dT̃ðxÞdT̃ðx0Þ½T̃ðxÞWðxÞT̃ðx0ÞWðx0Þ�

×
PðT̃ðxÞ; T̃ðx0Þ;WðxÞ ¼ 1;Wðx0Þ ¼ 1Þ

PðWðxÞ ¼ 1;Wðx0Þ ¼ 1Þ
¼ 1

ξmaskðrÞ
hT̃ðxÞWðxÞT̃ðx0ÞWðx0Þi; ðA3Þ

This is the same as the pseudocorrelation function for the
full masked sky normalized by the mask correlation
function.

From a single masked sky of data we can estimate the
correlation function by an average over the unmasked sky

ˆ̃ξðrÞ≡ hT̃ðxÞT̃ðxþ rÞix;ϕr;unmasked

¼ hðWT̃ÞðxÞðWT̃Þðxþ rÞix;ϕr;all

hWðxÞWðxþ rÞix;ϕr;all
; ðA4Þ

where angle brackets here denote sums over pairs of points
on a fixed sky, mask and area divided by the number of
pairs of points in that area. Since h ˆ̃ξðrÞi ¼ ξ̃ðrÞ, the
expectation of this estimator is also given by Eq. (A3).
So for a binary mask, the expectation of the ratio in
Eq. (A4) is the same as the ratio of the expectations
in Eq. (A3).

APPENDIX B: NONPERTURBATIVE
AND EXACT RESULTS

We can decompose the difference in the deflection
angles Δ≡ α − α0 at two points x and x0, into a part
correlated with fðxÞ, fðx0Þ and a part that is not, n,

αi − α0i ¼ ni − ξfαiðrÞ ðfðxÞ þ fðx0ÞÞ
σ2f þ ξfðrÞ

: ðB1Þ

From Eq. (2.4) this gives

ξ̃maskedðrÞ

¼
Z

d2l
ð2πÞ2Cleil·rheil·ni

×

�
exp

�
−il · r̂

ξfαrðfðxÞþfðx0ÞÞ
σ2fþξfðrÞ

�
WðxÞWðx0Þ

�
; ðB2Þ

where the second average is now only a 2D integral over the
foreground field values. Note that

hninji ¼ hΔiΔji − 2
ξfαiðrÞξfαjðrÞ
σ2f þ ξfðrÞ

; ðB3Þ

so that

heil·ni ¼ e−
1
2
hðl·nÞ2i ¼ e−

1
2
hðl·ΔÞ2i exp

�ðl · r̂ξfαrðrÞÞ2
σ2f þ ξfðrÞ

�
: ðB4Þ

The remaining complex exponent on the second line of

Eq. (B2) is small, since lξfαr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2f þ ξfðrÞ

q
≪ 1 for cases

of interest at l ≪ 104, suggesting a leading-order expansion
should be accurate.
Expanding perturbatively to lowest order in ξfαr and

using
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hðfðxÞ þ fðx0ÞÞWðxÞWðx0Þi

¼ ðσ2f þ ξfðrÞÞ
�∂WðxÞ
∂fðxÞ Wðx0Þ þ ∂Wðx0Þ

∂fðx0Þ WðxÞ
�

ðB5Þ

gives

Δξ̃maskedðrÞ ≈ −2
χðrÞ
r

ξfαr
�∂WðxÞ
∂fðxÞ Wðx0Þ

�
ðB6Þ

where

χðrÞ ¼
Z

d2l
ð2πÞ2 Cleil·rðir · lÞe−1

2
hðl·ΔÞ2i: ðB7Þ

This can be evaluated as for standard lensed correlation
functions, where χðrÞ is as defined in Eq. (C1) of Ref. [85],
related to C̃T∇T

l by

χðrÞ
r

¼ r̂ · h g∇TðxÞ T̃ðx0Þi ðB8Þ

¼ −
Z

dl
l2C̃T∇T

i

2π
J1ðlrÞ: ðB9Þ

Equation (B6) is a version of Eq. (2.13) that is exact to linear
order in ξfαr . In the limit of no lensing, χðrÞ → r∂rξðrÞ. The
gradient spectrum CT∇T

i is close to the standard lensed
CMB power spectrum except on the smallest scales; since
the mask correction on the most relevant scales mainly
transfers larger-scale power to smaller scales, it is a also a
good approximation to just use the lensed correlation
function, taking χðrÞ ≈ r∂rξ̃ðrÞ as in the main text.
In the case of a simple threshold mask, we can further

simplify Eq. (B2) and put it in a form suitable for numerical
evaluation. The expectation in the second line only depends
on the sum of the two foregrounds, while their difference is
unconstrained by the mask definition. This motivates
transforming to the Gaussian independent variables f� ≡
ðfðxÞ�fðx0ÞÞ

σf
ffiffi
2

p , with full sky variances σ2f� ¼ 1� ξf=σ2f. After

masking, the constraints fðxÞ < νσf and fðx0Þ < νσf leave

f− unconstrained but fþ <
ffiffiffi
2

p
ν − jf−j. The fþ integral

results in a complex error function, giving

ξ̃maskedðrÞ

¼
Z

d2l
ð2πÞ2Cleil·r−

1
2
hðl·ΔÞ2i

·

�
1−
Z

∞

0

dt
π
e−t

2

erfc

�
νþ iðl · r̂ÞξfαrðrÞ=σf − tσf−ðrÞ

σfþðrÞ
��

ðB10Þ

The integrand is very smooth, and the derivatives of the
complementary error function are exceedingly simple.

Hence, this equation can be used to get the exact result
for the masked lensed correlation function, or look at the
contributions order by order in ξfαrðrÞ. This is shown on
Fig. 15, with the conclusion that the linear approximation
of the main text is accurate except at the highest multipoles.
For Poisson sources, the expectations in Eq. (B2) are also

easily evaluated, but the mask bias is generally very small
anyway and the linear term basically exact for all practical
purposes. Similar results could be derived for more general
cases, for example constructing masks based on multiple
different foreground fields, or forming cross-spectra
between maps with different masks.

1. Curved-sky expressions

Finally, we give the curved-sky formulation of the biases,
in the approximation leading to Eq. (2.13). These expres-
sions also provide for convenient implementations since
they are very fast to evaluate and free of any flat-to-curved
sky remapping ambiguities. To obtain the corresponding
result, it is convenient to work in the spin-weight formal-
ism, where the CMB response to lensing [86] can be
written in terms of the spin-1 deflection field 1α to leading
order as

T̃ðn̂Þ ≈ Tðn̂Þ − 1

2
ð1αðn̂Þð̄Tðn̂Þ þ −1αðn̂ÞðTðn̂ÞÞ; ðB11Þ

where ð and ð̄ (or ðþ and ð− in what follows) are the spin-
raising and spin-lowering operators. Expanding, using

ð�sYlm ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl ∓ sÞðl� sþ 1Þ

p
s�1Ylm; ðB12Þ

and replacing the unlensed CMB spectrum by the lensed
spectrum and the flat-sky distance r by the angular distance
β, one gets

Δξ̃ðβÞ ≈ −gðβÞðξ̃ðβÞξð̄ϕfðβÞ ðB13Þ

ΔC̃l ¼ 2π

Z
1

−1
d cos βΔξ̃ðβÞdl00ðβÞ; ðB14Þ

with

ðξ̃ðβÞ≡X
l

�
2lþ 1

4π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
C̃ldl10ðβÞ ðB15Þ

ξfðβÞ≡
X
l

�
2lþ 1

4π

�
Cf
ld

l
00ðβÞ ðB16Þ

ξð̄ϕfðβÞ≡ −
X
l

�
2lþ 1

4π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Cfϕ
l dl−10ðβÞ: ðB17Þ
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For polarization, Eq. (B15) must be changed to the
corresponding derivative of ξþ; ξ− or ξ×, and the spins
in the transform Eq. (B13) must be adapted accordingly.

APPENDIX C: APODIZATION

In practice, a sharply defined mask will be apodized to
reduce harmonic-space mixing. We can attempt to include
this in our analytic model by considering a mask built by
the convolution of a binary mask with an apodization
function with a well-defined scale. For example, for a
desired apodization length a, one may build an apodized
mask as follows: first, the mask is extended by a=2 and
second this extended mask is convolved with an apodiza-
tion function with support extending to a=2. This ensures
that all masked points remain masked after convolution,
and that the new mask transitions smoothly beyond the
edges. This differs somewhat from the most common ways
of apodizing a mask in CMB analysis, where a smooth
function of the distance to the nearest pixel is applied to the
unmasked pixels. However, in the case of disks masks
centered on sources, the apodization function can be tuned
to match the resulting mask profile. Slight differences
might remain in regions close to two disks, but empirically
our approximate analytic procedure is working well. For
other masks, such as the threshold masks, it is difficult to
treat analytically the mask expansion and this prescription
remains very crude.

This procedure leads to some minimal changes in the
pseudo-Cl prediction that we describe now. LetWsðxÞ be the
sharp binary mask, with corresponding deflection-mask
correlators hαrðxÞWsðxÞWsðx0Þi. Convolving with an apod-
ization function apðxÞ, we must evaluate this now as a
function of three arguments, say hαrðxÞWsðyÞWsðy0Þi, where
y is close to x. In simple cases (as for the threshold or other
masks defined through the local value of a Gaussian fore-
ground field), we may always write the exact relation
hαrðxÞWsðyÞWsðy0Þi¼gðrÞðξαrfðx−yÞþξαrfðx−y0ÞÞ, for
some function gðr ¼ jy0 − yjÞ. Let the ⋆ symbol denote a
convolution (a multiplication in harmonic space), and the ·
symbol a pointwise product in real space. Then the separation
change becomes

hðαrðxÞ − αrðx0ÞÞðap ⋆ WsÞðxÞðap ⋆ WsÞðx0Þi
¼ 2ððξαrf · ðg ⋆ apÞÞ ⋆ apÞðrÞ
þ 2ððξαrf · apÞ ⋆ ðg ⋆ apÞÞðrÞ: ðC1Þ

For no apodization (apðxÞ ¼ δDðxÞ), the second term van-
ishes (since ξαrfð0Þ ¼ 0Þ and we recover the result of the
main text. To get the bias, we also need the apodized mask
correlation function hWðxÞWðyÞi ¼ ξmaskðrÞ. This is simply

hðap ⋆WsÞðxÞðap ⋆WsÞðyÞi¼ðap ⋆ ξmasks ⋆apÞðrÞ: ðC2Þ

FIG. 15. Total prediction for the fractional bias on the CMB power spectra (black) together with perturbative contributions of order
1 to 3 in Cfα

l (blue, orange and green), for an fsky ¼ 97.7% mask built thresholding f, the convergence map smoothed with a beam of
1.7 arcmin (top, SO-like) or 5.0 arcmin (bottom, Planck-like). The predictions are for deconvolved pseudo power spectra, where the
E-modes dominates both polarization spectra biases. E/B-separated or more optimal polarization estimators would produce a much

reduced BB bias. In the case of TE, instead of showing the fractional deviation we plot ΔC̃TE
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̃TT
l C̃EE

l

q
, which is the relevant ratio for

CMB likelihoods. Note that on small scales C̃TE
l is mainly negative, so the oppositely signed bias term has qualitatively the same effect

on the relative size of the signal as for the autospectra. In all curves the Gaussian lensing effects are exactly accounted for. The biases
measured in simulations are shown with a dot marker. The orange points that isolate even higher-order effects have been computed using
the method outlined in Sec. III D.
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Equation (C1) is exact for locally defined masks. In the
Poisson case, it holds only for r > 2R, where R is the sharp
point source mask radius, in which case the disks do not
overlap. For r < 2R we can proceed as follows. If DRðrÞ is
the indicator function of the disk of radius R (being unity
inside and zero outside), the indicator function of the area
drawn by two disks at y and y0 may be defined by
DRðx − yÞ þDRðx − yÞ −DRðx − yÞDRðx − y0Þ. The first
two terms (that is, the case neglecting the overlap) can be
treated exactly with Eq. (C1). The exact form of
the deflection-mask correlator hαrðxÞWðxÞWðx0Þi of the
overlap is

apðx − yÞapðx0 − y0Þgðy − y0Þ ðC3Þ

·ξαrλðx − sÞDRðs − yÞDRðs − y0Þ; ðC4Þ

where there is implicit integration over all positions except x
and x0. The function g is very smooth and varies very little

(for the Poisson case, gðrÞ is simply ξmasksðrÞ, which slowly
transitions from fsky to f2sky), and y; y0 are at most an
apodization length away from x and y respectively. This
motivates expanding gðy − y0Þ around r ¼ x − x0. This
expansion produces terms only involving real-space and
convolution products, and hence can easily be evaluated
numerically. The leading term is simply

hαrðxÞWapðxÞWapðx0Þi ðPoisson; overlap termÞ ðC5Þ

≃ − gðrÞ · ½ðξαrλ · ðDR ⋆ apÞÞ ⋆ ðDR ⋆ apÞ�ðrÞ: ðC6Þ

Here DR ⋆ ap is the profile of the apodized disk mask. As
expected we found the first correction to this, proportional to
∂rgðrÞ, to be negligible for realistic sky fractions close to
unity, even for apodization length comparable to or greater
than the disk size.
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