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We investigate in detail a family of quintessential inflation models in the context of Rþ R2 Palatini
modified gravity. We find that successful inflation and quintessence are obtained with an inflaton scalar
potential that is approximately quadratic in inflation and inverse quartic in quintessence. We show that
corrections for the kination period due to Palatini modified gravity are subdominant, while the setup does
not challenge constraints on modified gravity from Solar System observations and microscopic experi-
ments, in contrast to the metric case. We obtain concrete predictions regarding primordial tensors to be
probed in the near future.
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I. INTRODUCTION

Cosmic inflation is the most compelling solution to the
fine-tuning problems of hot big bang cosmology, while it
simultaneously generates the primordial curvature pertur-
bation which is necessary for the formation of large scale
structure in the Universe [1]. Observations of ever increas-
ing precision in the last decades have confirmed the
predictions of primordial inflation, while the rival theory
of structure formation (that of cosmic strings) has col-
lapsed [2].
Meanwhile, about 20 years ago it was discovered that

recently the Universe had started engaging in another boot
of late-time inflation [3,4]. This can be driven by a tiny
positive value of the cosmological constant, but the
necessary fine-tuning is extreme (more than 120 orders
of magnitude) [5]. One prominent alternative is using a
scalar field to drive this late-time inflation, which has been
called quintessence [6]; the fifth element after baryons, cold
dark matter, photons, and neutrinos. Employing a new
dynamical degree of freedom to explain late-time inflation
introduces a new problem though, that of its initial
conditions. The problem was ameliorated by considering
quintessence with attractor properties that would lead to the
desired late-time inflation with a wide range of initial
conditions [7]. However, recent precise observations seem
to undermine this kind of tracker quintessence. Therefore,
another solution to the problem of quintessence’s initial
conditions is necessary.
In their seminal paper [8], Peebles and Vilenkin con-

sidered linking primordial to late-time inflation by using a
single scalar field to drive them both. Apart from being

economic, this quintessential inflation proposal fixed the
initial conditions of quintessence through the inflationary
attractor. Quintessential inflation enables studying both
early and late inflation in a single theoretical framework.
However, one needs to satisfy simultaneously observations
of the late and early Universe, hopefully without introduc-
ing too many model parameters. The task is rather difficult
as the energy density in the two inflationary eras differs by
more than 100 orders of magnitude. Moreover, new
mechanisms for reheating the Universe had to be devised,
for the scalar field should not decay into the thermal bath of
the hot big bang, as with conventional inflation, but has to
survive until the present to play the role of quintessence.
Despite the challenging odds, a number of successful

quintessential inflation proposals have been constructed
(for a recent list of references see [9–15]). In many of them
the scalar potential features two flat regions: the infla-
tionary plateau and the quintessential tail. The flat regions
are connected through a steep part of the potential, which,
when traversed by the scalar field, results in a boost of
kinetic energy density, which dominates the Universe. This
period, called kination [16], is a unique prediction of
quintessential inflation and leads to characteristic obser-
vational signatures such as a spike in the spectrum of
primordial gravitational waves [17], which may be
observed by the forthcoming LISA mission. During kin-
ation, the inflaton-quintessence field is oblivious of the
scalar potential (because it is dominated by its kinetic
energy density), which means that the predictions of
kination are independent of the particular quintessential
inflation scalar potential considered.
Apart from employing a scalar field with a suitable

potential in Einstein gravity, inflation can be also achieved
by suitably modifying gravity, as was discovered early on
by Starobinsky, in his seminal paper [18], where he
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introduced a higher-order term in the gravitational action,
schematically Rþ R2, where R is the scalar curvature
(Ricci scalar). Even though it is possible to model pri-
mordial inflation in this way, a la Starobinsky inflation or
Higgs inflation [19] for example, the task is much harder
for late-time inflation. Indeed, many attempts to consider
modified gravity theories, e.g., with a term proportional to
1=R in the gravitational action [20], were shown to be
unstable1 [22]. Moreover, the recent observation confirm-
ing that the speed of propagation of gravitational waves is
exactly light-speed (to precision of 15 orders of magnitude)
[23], as suggested by Einstein gravity, excludes the con-
templation of many otherwise motivated modifications of
gravity at work in the late Universe (for example the Gauss-
Bonnet term [24]). While work still continues in this front
[25], in this paper we have investigated a blended quintes-
sential inflation model, which achieves primordial inflation
via modified gravity [also called fðRÞ gravity], but late-
time inflation via a suitable scalar potential of quintessence.
However, our approach cannot be clean cut in that
modifications of gravity are expected to affect the kination
era, after primordial inflation, and the recent history of the
Universe, after the end of the radiation era (when R ≃ 0).
One complication we had to face was that in the

Starobinsky Rþ R2 model, the higher order gravity term
introduces an extra degree of freedom, which can be
rendered in the form of a scalar field, the scalaron.
Starobinsky inflation is very successful, but if it were to
be considered as part of a quintessential inflation model, the
scalaron would need to survive until today and become
quintessence. In this case though, experimental tests of
gravity [26] cannot allow successful primordial inflation.
Therefore, we considered a different version of gravity,
where the Rþ R2 model does not introduce a scalaron and
the theory does not conflict with the experimental tests of
gravity. In this version, called Palatini gravity (originally
introduced by Einstein [27]), both the metric and the
connection are independent dynamical degrees of freedom
(gravitational fields). The inflaton field is not the scalaron
(for the latter does not exist) but it is explicitly introduced,
as in conventional inflation.
However, Palatini gravity does affect our scenario.

Firstly, it “flattens” the inflaton scalar potential [28–32]
so that the desired inflationary plateau can be attained even
with an originally steep scalar potential. Secondly, the
theory is expected to introduce modifications to the
kination period, after primordial inflation, and also in
the late Universe, when the inflaton field becomes quintes-
sence. We investigate in detail what these effects are,
considering a family of models, which is a generalized

version of the original Peebles-Vilenkin quintessential
inflation potential.
Our paper is structured as follows. In Sec. II, we provide

a brief pedagogic description of Palatini fðRÞ gravity. In
Sec. III. we introduce Rþ R2 Palatini gravity with a scalar
field and background matter/radiation, with emphasis on
the interaction between them. In Sec IV, we present our
family of quintessential inflation models and how they are
affected by the assumed modified gravity setup, focusing
on the period of primordial inflation. In Sec. V, the period
of kination in the context of Palatini Rþ R2 gravity is
investigated, in a way which is independent on the form of
the scalar potential. To obtain concrete inflationary pre-
dictions we assume gravitational reheating, but our results
are easy to reproduce when considering another, more
efficient mechanism, as only the relevant number of infla-
tionary e-folds is affected. In Sec. VI, we investigate
quintessence in our setup and look for the amount of
tuning needed to satisfy the coincidence requirement. In
Sec. VII, we show how experimental gravity tests are not
challenged by the modified gravity theory considered.
Finally, we end in Sec. VIII with a brief discussion of
our findings and our conclusions.
We use natural units with c ¼ ℏ ¼ 1 and mP ¼

ð8πGÞ−1=2 ¼ 2.43 × 1018 GeV being the reduced Plank
mass. The signature of the metric is diagð−1;þ1;þ1;þ1Þ.

II. PALATINI f ðRÞ GRAVITY

Before we fix the potential VðφÞ for our quintessential
inflation model and solve the inflationary, kination and
quintessential dynamics, we introduce some general con-
cepts in relation to fðRÞ theories of modified gravity.
fðRÞ theories are defined by the action

S ¼ 1

2
m2

P

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm½gμν;Φ�; ð1Þ

where Sm is the matter action and Φ collectively represents
the matter fields. In the present work the matter action is
taken to be

Sm½gμν;Φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∇μφ∇νφ − VðφÞ

�
þ Sm½gμν;ψ �; ð2Þ

where φ is the inflaton, VðφÞ its potential, and ψ collec-
tively represents all the matter fields other than the inflaton.
The action (1) is dynamically equivalent to

S ¼ 1

2
m2

P

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðχÞ þ f0ðχÞðR − χÞ�

þ Sm½gμν;Φ�; ð3Þ

where we have introduced the auxiliary field χ. Indeed, the
equation of motion for χ [if f00ðχÞ ≠ 0] leads to χ ¼ R,

1There are still many other viable models of fðRÞ gravity in the
metric formalism that successfully generate late-time accelera-
tion, such as fðRÞ ¼ R − μRp with p ∈ ð0; 1Þ, originally pro-
posed in [21].
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which can be replaced in Eq. (3) to obtain the original
action.
There exist two different approaches in order to obtain

the field equations. Firstly, in the metric formalism, as in
general relativity (GR), the metric gμν is taken to be the only
independent gravitational field, i.e., the connection takes
the usual Levi-Civita form of gμν, which a priori is not
necessary. The equations of motion are given by

δS
δgμν

¼ 0: ð4Þ

Secondly, in the Palatini formalism, both the connection
Γα
μν and the metric gμν are taken to be independent

gravitational fields, i.e., the connection does not necessarily
take the Levi-Civita form of gμν, although the matter action
does not depend on the independent connection. The
Riemann tensor Rα

βμν ¼ ∂μΓα
νβ þ Γα

μλΓλ
νβ − ðμ ↔ νÞ and

the Ricci tensor Rμν ≡ Rρ
μρν are functions of the connection

only, while the Ricci scalar R≡ gμνRμν also depends on the
metric. The equations of motion are given by

δS
δgμν

¼ 0 and
δS
δΓλ

μν
¼ 0: ð5Þ

One obviously expects that the dynamics obtained from
the action (1) departs from GR in both formalisms
[although they both reduce to GR when fðRÞ ¼ R].
However, the way in which they do so is different. In
the metric formalism, a new dynamical degree of freedom,
named the scalaron, given by

s≡ dfðRÞ
dR

≡ fR; ð6Þ

is introduced. Its dynamical evolution is determined by the
trace of the equation of motion in the Jordan frame

fRðRÞR − 2fðRÞ þ 3□fRðRÞ ¼
1

m2
P
T: ð7Þ

It is also easy to see that metric fðRÞ gravity is equivalent
to a Brans-Dicke theory with parameter ω ¼ 0 [33]. This
means that in the Einstein frame, after an appropriate field
redefinition, the new dynamical degree of freedom appears
in the action with a canonical kinetic term and is minimally
coupled to gravity. In sharp contrast to this scenario we
have the Palatini formalism, where no new dynamical
degree of freedom is introduced. The trace of the metric
equation of motion now reads

fRðRÞR − 2fðRÞ ¼ 1

m2
P
T; ð8Þ

and it follows that R, and therefore fðRÞ and fRðRÞ, is
algebraically related to thematter sources through the trace of

the energy-momentum tensor. Using the Brans-Dicke rep-
resentation of the theory it is easy to see that Palatini fðRÞ
gravity is equivalent to a Brans-Dicke theory with parameter
ω ¼ −3=2 [33]. Thus, in the Einstein frame s ¼ fR has no
kinetic term. The way in which the gravitational dynamics is
modified in thePalatini formalism is through the introduction
of new effective matter sources (see below).
After clarifying one of the most important distinctions

between both approaches to fðRÞ modified theories of
gravity we focus solely on the Palatini formalism. The
equations of motion (5) read2 [33]

fRRðμνÞ −
1

2
fgμν ¼

1

m2
P
Tμν; ð9Þ

∇λð
ffiffiffiffiffiffi
−g

p
fRgμνÞ ¼ 0; ð10Þ

where RðμνÞ represents the symmetric part of the Ricci
tensor and the energy-momentum tensor is obtained in the
usual way

Tμν ¼ −
2ffiffiffiffiffiffi−gp δS

δgμν
: ð11Þ

A couple of comments are in order. Firstly, just as in GR,
the action (1) is invariant under diffeomorphisms. Thus, the
conservation of the energy-momentum tensor, i.e.,
∇μTμν ¼ 0, is always satisfied. In Ref. [34], it was shown
that the energy-momentum tensor is also conserved in more
general theories of modified gravity, with nonminimal
couplings between gravity and the matter Lagrangian. It
follows that the conservation equation for a perfect fluid in
a Friedmann-Robertson-Walker universe

_ρþ 3Hðρþ pÞ ¼ 0 ð12Þ

is unchanged with respect to GR.
Secondly, under a conformal transformation gμν →

ḡμν ¼ fRgμν, Eq. (10) reads

∇λð
ffiffiffiffiffiffi
−ḡ

p
ḡμνÞ ¼ 0: ð13Þ

This equation can be solved algebraically to obtain the
Levi-Civita connection of ḡμν

Γα
μν ¼

1

2
ḡαβð∂μḡβν þ ∂νḡβμ − ∂βḡμνÞ: ð14Þ

Given that, from Eq. (8), R is algebraically related to T,
and since we have an expression for Γα

μν in terms of R and
gμν [just plug ḡμν ¼ fRgμν in Eq. (14)] we can eliminate the

2Equation (10) has been obtained after some elementary
manipulations and under the assumption that the connection is
symmetric in its lower indices (a priori there is no need for this).
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independent connection from the equations of motion and
express them only in terms of the matter fields and the
metric. Indeed, after some algebra, we obtain [33]

Gμν ¼ RμνðgÞ −
1

2
gμνRðgÞ

¼ 1

m2
PfR

Tμν −
1

2
gμν

�
R −

f
fR

�

þ 1

fR
ð∇μ∇ν − gμν□ÞfR

−
3

2f2R

�
∇μfR∇νfR −

1

2
gμνð∇fRÞ2

�
; ð15Þ

where RμνðgÞ, RðgÞ and ∇μ∇νfR are computed in terms of
the Levi-Civita connection of the metric gμν, while R and
fR must be seen as functions of T.
It is important to note that in vacuum Tμν ¼ 0 the

solution of Eq. (8) is a constant3 R ¼ Rvac, so that fR ¼
fRvac

is also a constant. In this way Eq. (15) is reduced to

Gμν ¼ −Λeffgμν; ð16Þ

where

Λeff ≡ 1

2

�
R −

f
fR

�����
Rvac

¼ 1

4
Rvac ð17Þ

plays the role of an effective cosmological constant and we
have used Eq. (8) with T ¼ 0 in the second step.
It is also possible to express the Einstein equations in

terms of the metric ḡμν ¼ fRgμν (below it is explained that
this metric is the one corresponding to the Einstein frame).
They read [35]

GμνðhÞ ¼
1

m2
PfR

Tμν − ΛðTÞḡμν; ð18Þ

where

ΛðTÞ ¼ RfR − f
2f2R

; ð19Þ

where R and fR are functions of the matter content, as
explained above.

III. THE MODEL

We work in fðRÞ gravity with a Starobinski term, as in
[28–30]. In this way, we have

fðRÞ ¼ Rþ α

2m2
P
R2; ð20Þ

so that the action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

PRþ 1

4
αR2

−
1

2
gμν∇μφ∇νφ − VðφÞ

�
þ Sm½gμν;ψ �: ð21Þ

As a remark, although Sm½gμν;ψ � ¼ 0 during inflation,
we keep this term explicit in what follows since the
treatment is also valid for the kination and quintessential
sector of the theory, when matter and radiation fields are
present.
It is straightforward to calculate the matter dependence

of the Ricci scalar. The derivatives of the fðRÞ function
read

fRðRÞ ¼ 1þ α

m2
P
R ð22Þ

and

fRRðRÞ ¼
α

m2
P
: ð23Þ

Taking into account the two main contributions to the
energy density of the Universe come from the inflaton (or
quintessence, depending on the cosmological era under
consideration) and from regular pressureless mater and
radiation, the energy-momentum tensor can be written as,
assuming the background matter and radiation behave as a
perfect fluid,

T tot
μν ¼ TðφÞ

μν þ TB
μν; ð24Þ

where

TðφÞ
μν ¼ ∂μφ∂νφ − gμν

�
1

2
∂αφ∂αφþ VðφÞ

�
ð25Þ

and

TB
μν ¼ ðρþ pÞuμuν þ pgμν; ð26Þ

where uμ is the four-velocity of a comoving observer with
respect to the fluid (so that −1 ¼ ημνuμuν).
It follows that the trace of the energy-momentum tensor,

remembering φ ¼ φðtÞ, reads

T tot ¼ TðφÞ þ TB; ð27Þ

where

TðφÞ ¼ gμνTðφÞ
μν ¼ −∂αφ∂αφ − 4VðφÞ

¼ _φ2 − 4VðφÞ; ð28Þ3Unless f ∝ R2.
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where in the last equation we have taken φ as homo-
geneous, and

TB ¼ gμνTB
μν ¼ −ρþ 3p ¼ −ρð1 − 3wÞ; ð29Þ

where ρ and p are the density and the pressure of the
background perfect fluid respectively, and w≡ p=ρ is its
barotropic parameter.
Assuming the Universe is filled up with radiation

(wr ¼ 1=3) and pressureless matter (wm ¼ 0) we have

TB ¼ −ρm: ð30Þ

Thus, Eq. (8) reads

fRR − 2f ¼
�
1þ α

m2
P
R

�
R − 2R −

α

m2
P
R2 ¼ −R

¼ 1

m2
P
ð−ρm þ _φ2 − 4VðφÞÞ: ð31Þ

The curvature scalar is then obtained as a function of the
matter content of the Universe as

R ¼ 1

m2
P
ðρm − _φ2 þ 4VðφÞÞ: ð32Þ

Depending on the cosmological era under consideration,
some approximations can be made to simplify Eq. (32).
During slow-roll inflation ρm ¼ 0 and _φ2 ≪ VðφÞ so that
the Ricci scalar reads

RSR ¼ 4

m2
P
VðφÞ: ð33Þ

During kination, remembering the inflaton is kinetically
dominated _φ2 ≫ VðφÞ and the other contribution to the
energy-momentum tensor is radiation, which is traceless,
we have

Rkin ¼ −
_φ2

m2
P
: ð34Þ

During the radiation dominated era, ρr ≫ ρðφÞ ¼
1
2
_φ2 þ VðφÞ. However, since the energy-momentum tensor

of a perfect fluid with w ¼ 1=3 is traceless, we have

RRD ¼ 1

m2
P
ð− _φ2 þ 4VðφÞÞ: ð35Þ

At reheating, the moment at which radiation becomes the
dominant component in the Universe, the field is still in free
fall as during kination (see below), so that we still
have RRD ≃ − _φ2=m2

P. However, not long after reheating,
the field stops and freezes [see Eq. (181) below], so that

RRD ≃ 4VðφÞ=m2
P, which is extremely small since V∼

10−120m4
P because of the coincidence requirement (seebelow).

During the matter dominated era, the Ricci scalar reads

RMD ¼ ρm
m2

P
: ð36Þ

Note also that during this era the energy density of the
quintessence field is ρðφÞ ≃ VðφÞ since it stops its roll down
the potential and freezes during the radiation dominated
era, as explained above.
During the quintessence era, the Ricci scalar still obeys

Eq. (32). However, we consider thawing quintessence (see
below), which means the inflaton is only starting to
unfreeze today, so that

Rquin ¼
1

m2
P
ðρm þ 4VðφÞÞ: ð37Þ

Finally, in vacuum, where Tμν ¼ 0, we have

Rvac ¼ 0: ð38Þ

It is interesting that Palatini fðRÞ gravity with a
Starobinski term does not lead to gravity-driven inflation
[36], as in its metric fðRÞ counterpart. As we have
commented above, Palatini fðRÞ theories do not introduce
a new degree of freedom and the change in the gravitational
dynamics (compared to conventional GR) can be inter-
preted as a change in the matter sources. In this way, when
ρm ¼ ρr ¼ 0, we reobtain the conventional Friedmann
equation with H ¼ 0, and inflation does not take place
in the absence of an inflaton field. If we do introduce a
minimally coupled scalar field φ in Palatini fðRÞ gravity
with a Starobinski term, the standard inflationary dynamics
(in the Jordan frame) is not affected when the inflaton is in
the slow-roll regime [37] at the level of the background
evolution. However, the generation of perturbations, which
is behind the inflationary observables, is indeed affected.
Following the procedure through which we obtained the

action in Eq. (3), the action in Eq. (21) is dynamically
equivalent to

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

P

�
1þ α

m2
P
χ

�
R −

1

4
αχ2

−
1

2
ð∇φÞ2 − VðφÞ

�
þ Sm½gμν;ψ �: ð39Þ

We emphasize that the original action in Eq. (21) can be
obtained by imposing the constraint on the auxiliary field

δS
δχ

¼ 0 ð40Þ

in the action in Eq. (39).
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We now perform a conformal transformation4

gμν → ḡμν ¼ f0ðχÞgμν ¼
�
1þ α

m2
P
χ

�
gμν; ð41Þ

so that

dt̄ ¼
ffiffiffiffiffiffiffiffiffiffi
f0ðχÞ

p
dt;

āðt̄Þ ¼
ffiffiffiffiffiffiffiffiffiffi
f0ðχÞ

p
aðtÞ: ð42Þ

After some algebra, the action in the Einstein frame can
be found to be

S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
m2

PR̄ −
1

2

m2
Pð∇̄φÞ2

ðm2
P þ αχÞ

−
m4

PðVðφÞ þ α
4
χ2Þ

ðm2
P þ αχÞ2

�
þ Sm½ðf0ðχÞÞ−1ḡμν;ψ �; ð43Þ

where barred quantities are calculated using the Einstein
frame metric given by Eq. (41). Note the new coupling
between χ and the matter fields in the matter action. Now,
imposing the condition in Eq. (40) on the auxiliary field χ,
we have

χ ¼ 4VðφÞ þ ð∇̄φÞ2
m2

P − α
m2

P
ð∇̄φÞ2 ; ð44Þ

which implies that

f0ðχðφÞÞ ¼ m4
P þ 4αVðφÞ

m4
P − αð∇̄φÞ2 : ð45Þ

Substituting back in the action in Eq. (43), one obtains

S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
m2

PR̄ −
1
2
ð∇̄φÞ2

1þ 4α
m4

P
VðφÞ −

VðφÞ
1þ 4α

m4
P
VðφÞ

þ α

4m4
P

ð∇̄φÞ2ð∇̄φÞ2
1þ 4α

m4
P
VðφÞ

�
þ Sm½ðf0ðφÞÞ−1ḡμν;ψ �; ð46Þ

where ðf0ðφÞÞ−1 is given by Eq. (45) and the prime denotes
a derivative with respect to χ ¼ χðφÞ.
Since we study the behavior of the inflaton during slow

roll and of quintessence today, when its potential is
becoming shallow, higher than quadratic powers of ∇̄φ
are not expected to play a role. Furthermore, it can be
shown [37] that during a kinetic energy dominated era, such
a kination, the kinetic energy of the inflaton (in the Jordan
frame) is bounded as

1

2
_φ2 <

m4
P

2α
: ð47Þ

As it is shown below, during kination the kinetic term in
the action is canonical to a very good approximation (since
the potential is negligible compared tom4

P during this epoch).
This means the canonical field in the Einstein frame ϕ is
equal to the canonical field in the Jordan frame φ. Therefore,
Eq. (47) holds in the Einstein frame during kination and the
quartic kinetic term in Eq. (46) is negligible compared to the
quadratic kinetic term, in the same way as it is during slow-
roll inflation and during the quintessence tail. Thus, this term
is ignored in what follows.

A. Coupling to matter

The conformal transformation in Eq. (41) introduces a
coupling between the field φ and the matter action in the
Einstein frame, as can be seen in, e.g., Eq. (46). In this
section we investigate the effects of such coupling.
The relation between the energy-momentum tensor in

the Jordan and in the Einstein frames reads (remember
barred quantities correspond to the Einstein frame while
unbarred quantities correspond to the Jordan frame)

T̄B
μν ¼ −

2ffiffiffiffiffiffi
−ḡ

p δSm
δḡμν

¼ −
2ffiffiffiffiffiffi
−ḡ

p ∂gαβ
∂ḡμν

δSm
δgαβ

¼ f0ðφÞ
ðf0ðφÞÞ2

�
−

2ffiffiffiffiffiffi−gp δSm
δgμν

�
¼ 1

f0ðφÞT
B
μν; ð48Þ

where we have used

∂gαβ
∂ḡμν ¼ f0ðφÞδαμδβν ð49Þ

and

ffiffiffiffiffiffi
−ḡ

p ¼ ðf0ðφÞÞ2 ffiffiffiffiffiffi
−g

p
; ð50Þ

which follow from Eq. (41). Following [20,38], it is then
convenient to define the energy-momentum tensor for a
perfect fluid in the Einstein frame as

T̄B
μν ¼ ðρ̄þ p̄Þūμūν þ p̄ḡμν; ð51Þ

where, comparing with Eq. (26) and using Eq. (48),

ūμ ¼
ffiffiffiffiffiffiffiffiffiffiffi
f0ðφÞ

p
uμ;

ρ̄ ¼ ρ

ðf0ðφÞÞ2 ;

p̄ ¼ p
ðf0ðφÞÞ2 : ð52Þ

During inflation, Sm½gμν;ψ � ¼ 0, and so the new cou-
pling in the matter action between φ and the matter fields

4As opposed to fðRÞ gravity in the metric formalism, the Ricci
tensor now only depends on the connection, so that it does not
transform under the conformal transformation in Eq. (41).
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does not change the dynamics. However, after inflation
ends and the Universe is reheated, the matter action is not
zero anymore. Indeed, the equation of motion for the
inflaton field now reads

δS
δφ

þ δSm
δφ

¼ 0; ð53Þ

where the result of the first term depends on the specific
form the potential takes.
Let us investigate the second term. We have

δSm
δφ

¼ ∂gμν
∂φ

δSm
δgμν

¼ f0φðφÞḡμν
�
−
1

2

ffiffiffiffiffiffi
−g

p
TB
μν

�

¼ f0φðφÞ
f0ðφÞ ḡ

μν

�
−
1

2

ffiffiffiffiffiffi
−ḡ

p
T̄B
μν

�
¼−

f0φðφÞ
2f0ðφÞ

ffiffiffiffiffiffi
−ḡ

p
T̄B; ð54Þ

where f0φ ¼ ∂f0=∂φ [recall that the prime denotes deriva-
tive with respect to χðφÞ] and we have used Eqs. (41) and
(48)–(50).
Analogously to Eq. (29), the trace of the energy-

momentum tensor in the Einstein frame reads

T̄B ¼ ḡμνT̄B
μν ¼ −ρ̄þ 3p̄ ¼ −ρ̄ð1 − 3w̄Þ; ð55Þ

where w̄ ¼ p̄=ρ̄ is the barotropic parameter of the back-
ground perfect fluid. Note that Eq. (52) implies the
barotropic parameter is the same in both the Jordan and
Einstein frames. Indeed,

w̄ ¼ p̄
ρ̄
¼ p

ρ
¼ w: ð56Þ

Furthermore, the prefactor on the right-hand side of
Eq. (54) reads, from Eq. (45)

f0φðφÞ
f0ðφÞ ¼ 4α

m4
P

∂V
∂φ

1

1þ 4α
m4

P
VðφÞ : ð57Þ

Putting everything together, we finally have

δSm
δφ

¼ ffiffiffiffiffiffi
−ḡ

p 2α

m4
P

∂VðφÞ
∂φ

ρ̄ð1 − 3w̄Þ
1þ 4α

m4
P
VðφÞ : ð58Þ

It immediately follows that during the radiation domi-
nated epoch (w̄ ¼ 1=3)

δSm
δφ

����
RD

¼ 0; ð59Þ

and the dynamics of φ is unaffected by the new coupling in
the matter action. Likewise, during kination, although the
dominant contribution to the energy density of the Universe
is that of the inflaton and the barotropic parameter of the

Universe is w̄ ¼ 1, the only other matter field present
during this epoch is radiation, so that w̄ ¼ 1=3 in Eq. (58)
and the dynamics of the inflaton during kination is also
unaffected.
As a remark, below is defined a new canonical field ϕ

which is identified as the inflaton. Obtaining its equation of
motion

δS
δϕ

þ δSm
δϕ

¼ 0 ð60Þ

is straightforward by simply using the chain rule

δSm
δϕ

¼ dφ
dϕ

δSm
δφ

: ð61Þ

Finally, it has been explained above [see Eqs. (18)–(19)]
that the Einstein equations in the Einstein frame read

Ḡμν ¼
1

m2
Pf

0ðTÞTμν −
RðTÞf0ðTÞ − fðTÞ

2ðf0ðTÞÞ2 ḡμν; ð62Þ

where the Ricci scalar and the function f0ðRÞ depend on the
matter content of the specific cosmological epoch under
consideration.

IV. THE INFLATIONARY SECTOR

After the general treatment of the action given in the
previous sections, we fix VðφÞ to be the generalized
quintessential inflation potential (the original model was
proposed by Peebles and Vilenkin [8]) given by

VðφÞ ¼ λn

mn−4
P

ðφn þMnÞ; φ < 0;

¼ λn

mn−4
P

Mnþq

φq þMq ; φ ≥ 0; ð63Þ

where λ is a dimensionless constant fixed by the inflationary
observables and 0 < M ≪ mP is a suitable energy scale that
is fixed by requiring that the potential energy density of the
inflaton (see below) at its frozen value ϕF corresponds to the
vacuum energy density measured today (coincidence
requirement). The parameters n and q are of order unity.
We will consider integer values of n and q to facilitate our
analytic treatment, but this is strictly speaking not necessary,
as we elaborate in the discussion section. The original
potential of Ref. [8] is recovered when n ¼ q ¼ 4.
Remember, as we have said above, that Sm½gμν;ψ � ¼ 0

during inflation.
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The kinetic term in the action (46), when jφj ≫ M, reads

1
2
ð∇̄φÞ2

1þ 4α
m4

P
VðφÞ ≃

1
2
ð∇̄φÞ2

1þ 4αλn

mn
P
φn : ð64Þ

It can be made canonical by means of the transformation

dϕ ¼ dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αλn

mn
P
φn

q ¼ mP

λð4αÞ1=n
dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xn

p ; ð65Þ

where we have defined

x≡ λð4αÞ1=nφ
mP

ð66Þ

and ϕ can be identified as the canonical inflaton. For now it
is not necessary to obtain ϕ ¼ ϕðxÞ. We only need

dx
dϕ

¼ λð4αÞ1=n
mP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xn

p
: ð67Þ

The potential in the Einstein frame reads

V̄ ¼ VðφÞ
1þ 4α

m4
P
VðφÞ ¼

λnφn=mn−4
P

1þ 4αλn

mn
P
φn ¼ m4

P

4α

xnðϕÞ
1þ xnðϕÞ : ð68Þ

The slow-roll parameters are calculated in terms of the
canonical field ϕ, so that

ϵV ¼ 1

2
m2

P

�
V̄ 0ðϕÞ
V̄ðϕÞ

�
2

¼ 1

2

m2
P

V̄2ðxÞ
�
dx
dϕ

∂V̄ðxÞ
∂x

�
2

¼ 1

2
λ2ð4αÞ2=nn2 1

x2ð1þ xnÞ ; ð69Þ

where from now on the prime denotes derivative with
respect to ϕ, and

ηV ¼ m2
P
V̄ 00ðϕÞ
V̄ðϕÞ ¼ m2

P

V̄ðxÞ
dx
dϕ

d
dx

�
dx
dϕ

∂V̄ðxÞ
∂x

�

¼ λ2ð4αÞ2=n nðn − 1Þ − nðn
2
þ 1Þxn

x2ð1þ xnÞ ; ð70Þ

where we have used Eq. (67). We can now calculate the
remaining number of inflationary e-folds after the cosmo-
logical scales exit the horizon as

N ¼ −
1

mP

Z
ϕend

ϕ�

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵVðϕÞ

p ¼ −
1

λ2nð4αÞ2=n
Z

xend

x�
dx

¼ 1

2λ2nð4αÞ2=n ðx
2� − x2endÞ; ð71Þ

where ϕ� is the inflaton value at which the cosmological
scales leave the horizon and ϕend is the inflaton value at

which inflation ends, i.e., ϵVðϕendÞ ¼ 1. The value of the
field x at the end of inflation xend ≡ xðϕendÞ can be
obtained, using Eq. (69), through the condition

ϵVðϕendÞ ¼ 1 ⇔ x2endðxnend þ 1Þ ¼ 1

2
λ2ð4αÞ2=nn2: ð72Þ

For the typical values of λ and α we consider, and for n
not too large, we have

jxendj ≪ 1 ð73Þ

so that5

x2end ≃
1

2
λ2ð4αÞ2=nn2 for all n: ð74Þ

The value of the field x when the cosmological scales
leave the horizon x� ¼ xðϕ�Þ then reads, from Eq. (71),

x2� ¼ x2endþ2λ2nð4αÞ2=nN¼ 2λ2nð4αÞ2=n
�
Nþn

4

�
: ð75Þ

A. Inflationary observables

We can constrain the parameters of our theory by
imposing the observational data obtained by Plank [39].
We list here the experimental values that we use. The
amplitude of the dimensionless power spectrum of the
scalar perturbations is

As ¼ ð2.096� 0.101Þ × 10−9: ð76Þ

Its tilt at 1σ is

ns ¼ 0.9661� 0.0040; ð77Þ

while at 2σ is

ns ¼ 0.9645� 0.0096: ð78Þ

Furthermore, the tensor-to-scalar ratio is constrained to be

r ¼ Ah

As
< 0.056: ð79Þ

Let us start with the curvature power spectrum. In the
slow-roll approximation, which is valid at the time at which
the cosmological scales exit the horizon, it reads

5In the opposite limit jxendj ≫ 1, the term n=4 in the paren-
theses in Eq. (75) is replaced by the complicated expression
2

−n−4
nþ2 n

−nþ2
2þn ðλ2ð4αÞ2=nÞ −n

2þn. Using the limit jxendj ≫ 1 it can be
shown this expression is bounded from above by n=4. Taking
into account that N ≫ n for reasonable values of n, this means
that our results are insensitive to whether jxendj ≫ 1 or jxendj ≪ 1.
However, we emphasize that, for the typical values of λ and α,
jxendj ≪ 1 holds.
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As ¼
V̄ðϕ�Þ

24π2m4
PϵVðϕ�Þ

¼ xnþ2�
48π2n2λ2αð4αÞ2=n ⇒

As ¼
2n=2nn=2−1

6π2
λn
�
N þ n

4

�nþ2
2

; ð80Þ

where we have used the first Friedmann equation and
Eq. (75) for the value of the field x at horizon exit. It follows
that As is independent of α. Note that the total number of e-
folds N depends on the specific details of the kination
period. See Figs. 1–4 for graphs representing the constant
λn for different values of n as a function of the number of e-
folds N. Note that in quintessential inflation, we typically
have N ∈ ½60; 70�.
The scalar spectral index reads

ns ¼ 1 − 6ϵVðϕ�Þ þ 2ηVðϕ�Þ

¼ 1 − λ2ð4αÞ2=n nðnþ 2Þ þ nðnþ 2Þxn�
x2�ð1þ xn�Þ

¼ 1 − λ2ð4αÞ2=n nðnþ 2Þ
x2�

⇒

ns ¼ 1 −
nþ 2

2ðN þ n
4
Þ ; ð81Þ

where we have used Eqs. (69), (70), and (75). It follows that
the scalar spectral index depends only on the number of
e-folds (and on n) and does not depend on the parameters of
the theory α,M, and λ. Remember the remaining number of
inflationary e-folds N depends on the details of the kination
period.
Finally, it is straightforward to obtain that the tensor-to-

scalar ratio reads

r ¼ 16ϵVðϕ�Þ ¼ λ2ð4αÞ2=nn2 8

x2�ð1þ xn�Þ
¼ 4n

ðN þ n
4
Þð1þ xn�Þ

⇒

r ¼ 4n
ðN þ n

4
Þ

1

½1þ 4ð2nÞn=2λnαðN þ n
4
Þn=2� ; ð82Þ

where we have used Eq. (75).
To better understand the role α plays in the obesrvational

bound r < 0.056, one can solve for λn in Eq. (80) and plug
it in Eq. (82) to obtain

r ¼ 16n
ð4N þ nÞ

1

½1þ 96π2n
ð4NþnÞ αAs�

: ð83Þ

FIG. 1. Constant λn for n ¼ 1 as a function of the number of e-
folds N in the range of interest for quintessential inflation.

FIG. 2. Constant λn for n ¼ 2 as a function of the number of e-
folds N in the range of interest for quintessential inflation.

FIG. 3. Constant λn for n ¼ 3 as a function of the number of e-
folds N in the range of interest for quintessential inflation.

FIG. 4. Constant λn for n ¼ 4 as a function of the number of e-
folds N in the range of interest for quintessential inflation.
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Therefore, α in terms of r reads

α ¼
16
r − ð1þ 4N

n Þ
96π2As

: ð84Þ

This means that α can be small (of order unity) when

r ≃
16

1þ 4N
n

: ð85Þ

For n ¼ 2 and taking into account that the existence of a
kination period means that the total number of e-folds is
typically within the interval N ∈ ½60; 70�, α is small (of
order unity) when the scalar-to-tensor ratio is approxi-
mately in the interval

r ∈ ½0.113; 0.132�: ð86Þ

The 1σ bound r < 0.056 does not allow this, but it might
be marginally allowed at 2σ, where r < 0.114 [39].
For n ¼ 1 accompanied by a long period of kination

such that N ≃ 71, we have

r ¼ 0.055; ð87Þ

which is marginally within the 1σ bounds. See Fig. 7 for the
r − ns graph in the n ¼ 1 case. Note however, that we
expect N ≲ 70 or so, for otherwise kination lasts too long
and there is danger that a spike in the spectrum of
primordial gravitational waves, corresponding to the scales
which reenter the horizon during kination, threatens to
destabilize big bang nucleosynthesis [40].
When the tensor-to-scalar ratio takes the value given by

Eq. (85), α can be very small (of order unity). However, as
we have explained above, this is in general not the case
[when n ¼ Oð1Þ we have α≳ 108 as can be seen in Figs. 5
and 6]. Indeed, using N ¼ 60 and As ¼ 2 × 10−9, we have

the following bounds for some values of n by imposing
r < 0.056:

n ¼ 2 ⇒ α > 0.87 × 108;

n ¼ 4 ⇒ α > 1.18 × 108;

n ¼ 8 ⇒ α > 1.34 × 108: ð88Þ

Note that α is a nonperturbative coefficient that can be
much larger than unity without a problem. Note also that
these bounds are a direct consequence of the observational
value of the scalar power spectrum and cannot be relaxed
via the choice of a suitable value of λn.
We end this section with a remark regarding the Lyth

bound [41]. By expressing the equation of motion of the
inflaton (during slow roll) as a function of the number of
e-folds, with the help of Eq. (83), it is straightforward to
obtain the variation of the inflaton from the time at which
the cosmological scales exit the horizon until the end of
inflation as

Δϕ≡ ϕend − ϕ�

¼ −mP

ffiffiffiffiffiffi
2n

p Z
Nend

N�

dNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N þ nþ 96π2nαAs

p : ð89Þ

We consider two different limits. Firstly, for α at least
one order of magnitude larger than A−1

s , e.g., the higher
bound α ¼ 1010 in Figs. 7–10, r is very small [cf. Eq. (83)]
and the third term in the square root in Eq. (89) dominates.
It can then be easily found that the displacement of the
inflaton, taking N� − Nend ≃ 70, as is usual in quintessen-
tial inflation, reads

Δϕ ∼ 0.7mP: ð90Þ

Note that for arbitrarily large α, Δϕ can be made arbitrarily
small, e.g., for α ∼ 1013 we have Δϕ ∼ 10−2mP.

FIG. 5. Lower bound on α as a function of the number of e-
folds N for n ¼ 1 (red dotted line), n ¼ 2 (green dashed line),
n ¼ 3 (black solid line), and n ¼ 4 (blue dash-dot line) obtained
by imposing r ¼ 0.056. The lower bound is roughly α ∼ 108 for
all values of n for the typical number of e-folds in quintessential
inflation models N ∈ ½60; 70�.

FIG. 6. Lower bound on α as a function of n for N ¼ 60 (blue
dash-dot line) and N ¼ 70 (black solid line), obtained by
imposing r ¼ 0.056. The bound quickly becomes insensitive
to the specific value of n taken, independently of the number of
e-folds within the range of interest in quintessential inflation.
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In the opposite limit, when the value of α is around the
lower bound given by Eq. (88), all terms in the square root
in Eq. (89) are comparable. However, the integration can
easily be carried out, yielding, for n ∼Oð1Þ and N ¼ 70,

Δϕ ∼ 6mP: ð91Þ

In order to obtain the displacement of the canonical field
in the Jordan frame φ, for a given n, we would need to
integrate Eq. (65) to obtain the relation between φ and ϕ. In
general it is not possible to obtain an analytic expression,
except for the n ¼ 2 case. This case is studied in detail
below and the displacement of φ is calculated there.

V. KINATION

A. Dynamics in the Jordan and Einstein frames

After the inflaton reaches the value given by Eq. (74) and
inflation ends, a new cosmological era called kination
starts. During kination, the dominant contribution to the
energy density of the Universe is still that of the inflaton.
Furthermore, as the slope of the potential becomes larger in
magnitude, the inflaton becomes oblivious to the potential
and its energy density is dominated by the kinetic part.
Varying the action (21) with respect to φ we obtain the
usual Klein-Gordon equation (remember in the Jordan
frame the field is minimally coupled to gravity). Thus,
during kination, the equation of motion of the inflaton reads

FIG. 7. r − ns graph where the predictions derived from our
model, for n ¼ 1, are compared to the experimental data. The
number of e-folds represented range from 60 (left side) to 70
(right side). The parameter α ranges from its lower bound
αmin ¼ 2.36 × 107 (blue) to α ¼ 1010 (yellow). Figure adapted
from Ref. [39].

FIG. 8. r − ns graph where the predictions derived from our
model, for n ¼ 2, are compared to the experimental data. The
number of e-folds represented range from 60 (left side) to 70
(right side). The parameter α ranges from its lower bound αmin ¼
8.7 × 107 (blue) to α ¼ 1010 (yellow). Figure adapted from
Ref. [39].

FIG. 9. r − ns graph where the predictions derived from our
model, for n ¼ 3, are compared to the experimental data. The
number of e-folds represented range from 60 (left side) to 70
(right side). The parameter α ranges from its lower bound αmin ¼
1.08 × 108 (blue) to α ¼ 1010 (yellow). Figure adapted from
Ref. [39].
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φ̈þ 3H _φ ≃ 0: ð92Þ

This equation can be readily integrated to obtain

_φ ∝ a−3 ⇔ ρφ ¼ 1

2
_φ2 ∝ a−6: ð93Þ

However, although the dominant contribution to the
energy density of the Universe is that of the inflaton,
Eq. (93) in general is not the energy density of the
Universe. This is because, in the Palatini formalism, new
effective matter sources are introduced as a consequence of
the Starobinski term in the action. We can see this by
calculating the zeroth-zeroth component of the Einstein
equations (15). Using Eq. (34) and remembering that
during a kinetic dominated era the kinetic energy density
of the inflaton is bounded as [37]

1

2
_φ2 <

m4
P

2α
; ð94Þ

which means that

f−1R ðRÞ ¼
�
1 −

α

m4
P
_φ2

�
−1

≃ 1þ α

m4
P
_φ2; ð95Þ

the zeroth-zeroth component of the Einstein equations
reads

3H2 ¼ _φ2

2m2
P
þ 6Hα

m4
P

_φ φ̈þ 3α

4m6
P

_φ4 þ 3α2

m8
P

_φ2φ̈ð2H _φ − φ̈Þ

−
α2

4m10
P

_φ6 −
6α3

m12
P

_φ4φ̈2: ð96Þ

This equation can be further simplified by using Eq. (92)
to obtain

3H2m2
P ¼

1

2
_φ2 −

2α

m2
P
φ̈2 þ 3α

4m4
P
_φ4 −

5α2

m6
P

_φ2φ̈2

−
α2

4m8
P

_φ6 −
6α3

m10
P

_φ4φ̈2

¼ 1

2
_φ2

�
1þ 3α

2m4
P
_φ2

�
1 −

α

3m4
P
_φ2

��

−
2α

m2
P
φ̈2

�
1þ 5α

2m4
P
_φ2

�
1þ 6α

5m4
P
_φ2

��
ð97Þ

If α is not very large, Eq. (94) can be strongly satisfied,
especially as the kinetic energy density decreases rapidly
after the end of inflation, cf. Eq. (93). Then, the above is
reduced to

3H2m2
P ≃

1

2
_φ2 −

2α

m2
P
φ̈2

≃
1

2
_φ2

�
1 − 36α

H2

m2
P

�
; ð98Þ

where we also used Eq. (92).6 H is diminishing with time,
so H2 < H2

inf ∼ 10−10m2
P. Thus, if α is not too large, the

second term in the parentheses above very soon becomes
negligible compared to unity. It follows that the main
contribution to the energy density of the Universe is the
kinetic energy density of the inflaton

3H2m2
P ≃

1

2
_φ2: ð99Þ

Using Eq. (93), we have

ρ ¼ ρφ ¼ 1

2
_φ2 ∝ a−6 ⇔ w ¼ 1 ⇔ a ∝ t1=3 ⇔ H ¼ 1

3t
;

ð100Þ

where w is the barotropic parameter of the Universe.
We conclude that the modifications to the kination

dynamics coming from the introduction of a Starobinski
term in Palatini fðRÞ gravity are subdominant and the
typical situation is recovered.

FIG. 10. r − ns graph where the predictions derived from our
model, for n ¼ 4, are compared to the experimental data. The
number of e-folds represented range from 60 (left side) to 70
(right side). The parameter α ranges from its lower bound αmin ¼
1.18 × 108 (blue) to α ¼ 1010 (yellow). Figure adapted from
Ref. [39].

6Rearranging Eq. (98) we obtain ð _φ=HÞ2 ¼ 6m2
P þ 36α _φ2=

m2
P, where one can see that H is not zero for any finite value of α,

that is the brackets in Eq. (98) are always positive.
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Equivalent conclusions can be obtained in the Einstein
frame. Indeed, close to the origin, the modified Peebles-
Vilenkin potential reads

VðφÞ ≃ λnMn

mn−4
P

; ð101Þ

so that the field redefinition (64) for the (noncanonical)
kinetic term in the action (46) now reads

dϕ ¼ dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αλnMn

mn
P

q ≃
�
1 −

2αλnMn

mn
P

�
dφ; ð102Þ

where we have used that M ≪ mP and αλn ≪ 1 (see
below). It follows that the kinetic term of φ is canonical
to a very good approximation, i.e., ϕ ≃ φ. Furthermore, the
coupling in the matter action does not affect the dynamics
[see the discussion after Eq. (58)]. Thus, since the inflaton
is still oblivious to the potential, in the Einstein frame we
have the equation

ϕ̈þ 3H̄ _ϕ≃ 0: ð103Þ

As for the zeroth-zeroth component of the Einstein
equations, from Eq. (62) we have

3H̄2m2
P ¼

1

2
_ϕ2 þ 3α _ϕ4

4m4
P
þ α2 _ϕ6

2m8
P
; ð104Þ

where barred quantities are calculated using the metric in
the Einstein frame (41) and dots represent d=dt̄.
Again, using Eq. (94) and ϕ ≃ φ during kination, the

Friedmann equation reads, to a very good approximation,

3H̄2m2
P ≃

1

2
_ϕ2: ð105Þ

B. Reheating and number of e-folds

When there is a cosmological era after inflation with a
stiff equation of state with barotropic parameter w, the
number of inflationary e-folds is increased by [42]

ΔN ¼ 3w − 1

3ð1 − wÞ ln
�
V1=4
end

Treh

�
: ð106Þ

In common inflationary models, after inflation ends, the
Universe is perturbatively reheated when the inflaton
oscillates around the minimum of its potential. It is easy
to show that in this situation the effective barotropic of the
Universe isw ¼ 0, so that the prefactor in Eq. (106) is−1=3
and the remaining e-folds of inflation are actually
decreased. In contrast, during kination, the barotropic
parameter of the Universe is w ¼ 1 [see Eq. (100)], so

that the prefactor is þ1=3. Thus, the remaining number of
inflationary e-folds is increased by

ΔN ¼ 1

3
ln

�
V̄1=4ðϕendÞ

Treh

�
; ð107Þ

where Treh is the temperature of the radiation bath at
reheating and V̄ðϕendÞ is the potential at the end of inflation.
In this way, in what follows we consider that the remaining
number of inflationary e-folds after the cosmological scales
exit the horizon is given by

N ¼ 60þ ΔN: ð108Þ

The lowest value for Treh, and, therefore, the highest for
ΔN, is obtained through gravitational reheating (for which
reheating occurs at the end of inflation treh ¼ tend).

7 For this
reheating mechanism, it can be shown [9] that

Tgr
reh ∼ 10−2

H2ðϕendÞ
mP

: ð109Þ

Assuming that the slow-roll approximation is still valid
at the end of inflation, we have

Tgr
reh ¼ 10−2

V̄ðϕendÞ
3m3

P
: ð110Þ

Thus, the increase in the number of e-folds reads

ΔN ¼ 1

3
ln

�
3m3

PV̄
1=4ðϕendÞ

10−2V̄ðϕendÞ
�

≃ 2þ ln

�
mP

V̄1=4ðϕendÞ
�
: ð111Þ

The potential at the end of inflation V̄ðϕendÞ can be
obtained by evaluating Eq. (68) at xend, given by Eq. (74). It
reads

V̄ðϕendÞ ¼
m4

P

4α

xnðϕendÞ
1þ xnðϕendÞ

¼ m4
Pn

nλn

2n=2 þ 4αnnλn
; ð112Þ

and the remaining number of e-folds is increased by

7It is important to mention that modifications to the gravita-
tional particle production, due to the R2 term in the action, are
possible. However, during inflation this term and the Einstein-
Hilbert one are comparable. Therefore, any possible modifica-
tions are of order unity. This is why, for simplicity, we assume the
dominant contribution comes from the latter. The study of particle
production due to an event horizon in Palatini fðRÞ gravity will
be addressed in a future work.
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ΔN ¼ 2þ 1

4
ln

�
2n=2 þ 4αnnλn

nnλn

�
: ð113Þ

Note that, by virtue of Eq. (73), Eq. (112) is simplified as

V̄ðϕendÞ ¼
m4

Pn
nλn

2n=2
; ð114Þ

so that Eq. (113) is simplified as

ΔN ¼ 2þ n
4
ln

� ffiffiffi
2

p

nλ

�
: ð115Þ

We emphasize that Eq. (73), and thus the approximated
expressions in Eqs. (114) and (115), only hold when we
work near the lower bound for α (as we do in the
present work).
From Eq. (81), taking into account that the remaining

number of inflationary e-folds is N ¼ 60þ ΔN we have

ns ¼ 1 −
nþ 2

2ð60þ ΔN þ n
4
Þ : ð116Þ

At this point, in order to obtain analytical results we need
to choose specific values for n.

C. n= 2

In this section we focus on the n ¼ 2 case. The potential
in the Jordan frame, remembering φ ≫ M during inflation,
reads

VðφÞ ¼ λ2m2
Pφ

2: ð117Þ

We can redefine the coupling constant as

λ2m2
P ≡ 1

2
m2; ð118Þ

where m is a suitable mass scale.
It is worth mentioning that for n ¼ 2 it is possible to

obtain an analytical expression for the potential in the
Einstein frame. Indeed, the field redefinition (65) now reads

dϕ ¼ mP

2λ
ffiffiffi
α

p dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p : ð119Þ

Integrating this expression we obtain

ϕðxÞ ¼ mP

2λ
ffiffiffi
α

p sinh−1x ⇒ xðϕÞ ¼ sinh

�
2λ

ffiffiffi
α

p
mP

ϕ

�
: ð120Þ

Using this in Eq. (68) we obtain the potential in the
Einstein frame

V̄ðϕÞ ¼ m4
P

4α
tanh2

�
2λ

ffiffiffi
α

p
mP

ϕ

�
: ð121Þ

Choosing n ¼ 2 in Eqs. (80)–(82), the inflationary
observables now read

As ¼
m2

24π2m2
P
ð2N þ 1Þ2; ð122Þ

ns ¼ 1 −
4

2N þ 1
; ð123Þ

and

r ¼ 16

ð2N þ 1Þ½1þ 4m2α
m2

P
ð2N þ 1Þ� ; ð124Þ

where N ¼ 60þ ΔN is the total number of inflationary e-
folds. Furthermore, Eq. (74) now reads

x2end ¼ 4
m2

m2
P
α; ð125Þ

while the increase in the number of e-folds is

ΔN ¼ 2þ 1

4
ln

 
1þ 4α m2

m2
P

m2

m2
P

!
: ð126Þ

The above is reduced to ΔN ¼ 2þ 1
2
lnðmP=mÞ when

jxendj ≪ 1.
In order to obtain the most accurate value for ΔN, one

can solve for m2=m2
P in Eq. (122) and use it in Eq. (126) to

obtain the equation

ΔN ¼ 2þ 1

4
ln

�ð121þ 2ΔNÞ2 þ 96απ2As

24π2As

�
: ð127Þ

Using the lower bound for alpha α ∼ 8.7 × 107, given by
Eq. (88), and the observational value for the amplitude of
the scalar power spectrum, given by Eq. (76), this equation
can be numerically solved to obtain

ΔN ¼ 8.103 ≃ 8; ð128Þ

which means that the total number of inflationary e-folds is

N ≃ 68: ð129Þ

Using this result in Eq. (123) immediately gives

ns ¼ 0.9708; ð130Þ

which is slightly larger than the upper 1σ bound in Eq. (77)
but could be easily accommodated by the 2σ bounds in
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Eq. (78). This can be understood as follows. From
Eq. (123), the number of e-folds in terms of ns reads

N ¼ 1

2

�
2

1 − ns
− 1

�
; ð131Þ

so that the 1σ bounds correspond to

N ∈ ½52; 66�: ð132Þ

Thus, the extra 6 e-folds at the upper bound could be
explained by a period of kination, although ΔN ¼ 8 would
be too large to be within the 1σ bounds.
The mass scalem2 is fixed by the amplitude of the power

spectrum in Eq. (76). For N ¼ 68, using Eq. (122), we
obtain

m2

m2
P
∈ ½2.518; 2.773� × 10−11; ð133Þ

so that m ∼ 10−11=2mP ∼ 1013 GeV. This range of values is
in agreement with what was obtained in Fig. 2.
Lastly, we have already obtained [see Eq. (88)] that as

long as

α > 8.7 × 107 ð134Þ

the observational bound r < 0.056 is satisfied. Indeed,
using the obtained values forN andm2 and the lower bound
for α in Eq. (124) gives

r ∈ ½0.050; 0.053�; ð135Þ

which is within observational bounds, as expected.
The results obtained in this subsection are summarized in

the r − ns graph in Fig. 8.
We can also obtain the displacement of the canonical

field in the Jordan frame φ, as was discussed at the end of
Sec. IVA. Using Eq. (120) with the obtained value for
m2=m2

P, the displacement of the inflaton field Δϕ ∼ 0.7mP,
in the limit when α ∼ 1010 (represented by the yellow color
in Fig. 8) corresponds to

Δφ ∼ 0.7mP: ð136Þ

In this limit Δφ behaves as Δϕ, in the sense that for
arbitrarily large α, Δφ becomes arbitrarily small. We
conclude that in this regime, the potential VðφÞ ¼
m2φ2=2 belongs to the small-field class of inflationary
models.
In the opposite regime, when α takes a value around its

lower bound α ∼ 108, the displacement of the inflaton
Δϕ ∼ 6mP [cf. Eq. (91)] corresponds to

Δφ ∼ 6mP: ð137Þ

To end this subsection, we can verify that the approx-
imations made above are valid. With the obtained values for
m2 and α, the value xend at the end of inflation is

x2end ¼ 4
m2

m2
P
α ¼ 0.0091 ⇒ xend ¼ 0.095; ð138Þ

and the approximation made in Eq. (74) is valid.
Finally, the potential (112) with the obtained values of

m2 and α is

V̄ðxendÞ ¼
m2m2

P

1þ 4α m2

m2
P

≃m2m2
P ∼ 2.5 × 10−11m4

P; ð139Þ

which is similar to the typical inflationary energy scale
V ∼ 10−13m4

P and in the last step we used Eq. (73).

D. n= 4

In this section we focus on the n ¼ 4 case, following the
same steps as in the last subsection. The potential in the
Jordan frame, remembering φ ≫ M during inflation, reads

VðφÞ ¼ λ4φ4: ð140Þ

Choosing n ¼ 4 in Eqs. (80)–(82), the inflationary
observables now read

As ¼
8

3π2
λ4ðN þ 1Þ3; ð141Þ

ns ¼ 1 −
3

N þ 1
; ð142Þ

and

r ¼ 16

ðN þ 1Þ½1þ 256αλ4ðN þ 1Þ2� ; ð143Þ

where N ¼ 60þ ΔN is the total number of inflationary e-
folds. Furthermore, Eq. (74) now reads

x2end ¼ 16λ2
ffiffiffi
α

p
; ð144Þ

while the increase in the number of e-folds is

ΔN ¼ 2þ 1

4
ln

�
1þ 256αλ4

64λ4

�
: ð145Þ

The above is reduced to ΔN ¼ 2 − lnð2 ffiffiffi
2

p
λÞ when

jxendj ≪ 1.
In order to obtain the most accurate value for ΔN, one

can solve for λ4 in Eq. (141) and use it in Eq. (145) to obtain
the equation
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ΔN ¼ 2þ 1

4
ln

�ð61þ ΔNÞ3 þ 96απ2As

24π2As

�
: ð146Þ

Using the lower bound for alpha α ∼ 1.18 × 108, given
by Eq. (88), and the observational value for the amplitude
of the scalar power spectrum, given by Eq. (76), this
equation can be numerically solved to obtain

ΔN ¼ 8.825 ≃ 9; ð147Þ

which means that the total number of inflationary e-folds is

N ≃ 69: ð148Þ

Using this result in Eq. (142) immediately gives

ns ¼ 0.9571; ð149Þ

which is outside the 1σ bounds in Eq. (77) but could be
accommodated by the 2σ bounds in Eq. (78).
Using the number of e-folds in Eq. (148) and the

observational value for the amplitude of the scalar power
spectrum in Eq. (76), it follows from Eq. (141) that the
value the coupling constant takes is

λ4 ∈ ½2.153; 2.371� × 10−14: ð150Þ

This range of values is in agreement with what was
obtained in Fig. 4.
As for the parameter α, we have already obtained [see

Eq. (88)] that as long as

α > 1.18 × 108; ð151Þ

the bound r < 0.056 is satisfied. Indeed, using the obtained
values for N, λ4 and the lower bound for α in Eq. (143)
gives

r ∈ ½0.0507; 0.0546�; ð152Þ

which is within observational bounds, as expected.
The results obtained in this subsection are summarized in

the r − ns graph in Fig. 10.
With these values for λ4 and α, the value xend at the end of

inflation is

x2end ¼ 16λ2
ffiffiffi
α

p ¼ 0.026 ⇒ xend ¼ 0.16; ð153Þ

and the approximation made in Eq. (74) is valid.
Finally, the potential (112) with the obtained values of λ4

and α is

V̄ðxendÞ ¼
64λ4m4

P

1þ 256αλ4
≃ 64λ4m4

P ∼ 10−12m4
P; ð154Þ

which is similar to the typical value of the inflationary
energy scale V ∼ 10−13m4

P and in the last step we used
Eq. (73).
It is important to emphasize that the results obtained

above are indicative only. The parameter n can assume
other order unity values, for example n ¼ 1 and n ¼ 3, or
even noninteger values in between. In Figs. 7 and 9 the
cases n ¼ 1 and n ¼ 3 are also considered. We find that the
best results are obtained for n ≃ 2–3, which suggests that
modeling the inflationary plateau as a power law is a
successful choice.

VI. QUINTESSENTIAL SECTOR

We have already analyzed inflation and kination in this
model. In this section we focus on the positive branch of the
modified Peebles-Vilenkin potential in Eq. (63) to study
quintessence.
The kinetic term in the action (46) for the field φ in the

Einstein frame, at large field values φ ≫ M, reads

1
2
ð∇̄φÞ2

1þ 4α
m4

P
VðφÞ ≃

1
2
ð∇̄φÞ2

1þ 4αλn

mn
P

Mnþq

φq

: ð155Þ

It can be made canonical by means of the transformation

dϕ¼ dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αλn

mn
P

Mnþq

φq

q ¼
�
4αλnMnþq

mn
P

�
1=q dyffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þy−q
p ; ð156Þ

where we have defined

y≡
�

mn
P

4αλnMnþq

�
1=q

φ; ð157Þ

and ϕ can be identified as the quintessence field, or, in other
words, as the inflaton field at large positive values in
field space.
The potential in the Einstein frame reads

V̄ ¼ VðφÞ
1þ 4α

m4
P
VðφÞ ¼

λnMnþq=mn−4
P φq

1þ 4αλn

mn
P

Mnþq

φq

¼ m4
P

4α

y−qðϕÞ
1þ y−qðϕÞ ¼

m4
P

4α

1

yqðϕÞ þ 1
: ð158Þ

Note that in order to obtain an expression of the potential
in terms of the inflaton V̄ðϕÞ we need to solve Eq. (156) to
obtain y ¼ yðϕÞ and then plug this result in Eq. (158).

A. Corrections coming from the matter action

In this section we study the influence of the coupling
between the inflaton and the matter action in the Einstein
frame [cf. Eq. (46)], following the results obtained in
Sec. III A. After making the field redefinition given by
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Eq. (156), the equation of motion for the inflaton reads,
using Eqs. (60), (61), and (58),

ϕ̈þ 3H̄ _ϕþV̄ 0ðϕÞ þ dφ
dϕ

2α

m4
P

∂VðφÞ
∂φ

ρ̄m
1þ 4α

m4
P
VðφÞ ¼ 0;

ð159Þ

where we have taken into account that during this era
w̄ ¼ 0. Using Eq. (156), this equation can be recast as

ϕ̈þ 3H̄ _ϕþV̄ 0ðϕÞ þ 2αρ̄m
m4

P

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

m4
P
VðφÞ

q ∂VðφÞ
∂φ ¼ 0:

ð160Þ

Furthermore, the third term on the left-hand-side can be
written as, using again Eqs. (156) and (158),

V̄ 0ðϕðφÞÞ¼dφ
dϕ

∂V̄ðφÞ
∂φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

m4
P
VðφÞ

s
∂VðφÞ
∂φ

×

 
1

1þ 4α
m4

P
VðφÞ−

4α

m4
P

VðφÞ
½1þ 4α

m4
P
VðφÞ�2

!
: ð161Þ

Putting everything together, Eq. (160) now reads

ϕ̈þ 3H̄ _ϕþ
�
1þ 2αρ̄m

m4
P

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α
m4

P
VðφÞ

q ∂VðφÞ
∂φ

−
4α

m4
P

VðφÞ
½1þ 4α

m4
P
VðφÞ�3=2

∂VðφÞ
∂φ ¼ 0 ð162Þ

The second term inside the parentheses, coming from the
coupling of the inflaton in the matter action in the Einstein
frame is Planck suppressed and, unless α is unrealistically
large,8 is many orders of magnitude smaller than unity [see
below the discussion concerning Eq. (223) in relation to
experimental constraints]. Thus, the equation of motion for
the inflaton during the quintessence era reads

ϕ̈þ 3H̄ _ϕþV̄0ðϕÞ ≃ 0; ð163Þ

where we have used Eq. (161) to combine back together the
derivatives of VðφÞ.
We conclude the coupling in the matter action is

negligible during the quintessence era and is ignored in
what follows. Furthermore, note that this conclusion also
holds for the matter dominated era. Indeed, the difference
between both eras is that during the matter dominated era
the matter energy density is the dominant contribution to
the total energy density of the Universe, while during the

quintessence era it is a subdominant component (account-
ing for ∼30% of the total energy density). However, in both
cases w̄ ¼ 0, whether the energy density of the quintes-
sence field dominates the Universe or not, and the second
term in the parentheses in Eq. (162) is negligible in both
cases. Furthermore, during kination and during the radia-
tion dominated era w̄ ¼ 1=3, so that the coupling term
[given by Eq. (58)] vanishes. Lastly, Sm½gμν;ψ � ¼ 0 during
inflation. Thus, the nonminimal coupling with the inflaton
in the matter action in the Einstein frame does not affect the
dynamics of the inflaton throughout the whole cosmologi-
cal history of the Universe.
As for the Friedmann equation in the Einstein frame,

remembering R ¼ −T=m2
P from the trace equation (8), it is

easy to show that Eq. (62) takes the form

3H̄2m2
P ¼ T00 þ

αT
m4

P

�
T00 þ

T
4

�
þ α2T3

2m8
P
; ð164Þ

where

T00 ¼
1

2
_ϕ2 þ V̄ðϕÞ þ ρm ð165Þ

and

T ¼ _ϕ2 − 4V̄ðϕÞ − ρm: ð166Þ

Remember barred quantities are calculated using the metric
in the Einstein frame (41) and dots represent d=dt̄.
Working to first order in Oð1=m2

PÞ, the Friedmann
equation reads

3H̄2m2
P ≃ T00 ¼

1

2
_ϕ2 þ V̄ðϕÞ þ ρm ≃ V̄ðϕÞ þ ρm; ð167Þ

where in the last step we have taken into account that we
work with thawing quintessence and the scalar field is only
starting to roll down its potential today.
Thus, the new effective matter sources that appear due to

the treatment of our fðRÞ function in the Palatini formalism
(the terms proportional to powers of α) are negligible
compared to T00 unless α is unrealistically large, and the
usual Friedmann equation is recovered.

B. Frozen inflaton

In this section we calculate the value at which the
canonically normalized field ϕ freezes after the period of
kination. It is important to mention that, although there
exist other reheating mechanisms, such as instant preheat-
ing [10,43], curvaton reheating [44–46], Ricci reheating
[47,48] or considering warm quintessential inflation
[9,49,50], in the present work we consider gravitational
reheating [51–53]. The reason is twofold. First, it simplifies
the calculations and allows for the reader to have a clearer8α > m4

P
ρ̄m

≳ ð mP
1 eVÞ4 ∼ 10108.
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picture of the mechanisms behind quintessential inflation in
Palatini fðRÞ gravity. Second, this reheating mechanism
propels the field the furthest after kination, so that it freezes
at a value such that the residual potential energy easily fits
the observed vacuum energy density. Note that gravita-
tional reheating corresponds to the lowest possible value for
Treh, so that the increment in the number of e-folds given by
Eq. (113) is maximized. In this way, another reheating
mechanism would correspond to a lower value of ΔN and,
specifically, the results obtained for n ¼ 2 would be closer
to the 1σ bounds for the scalar spectral index [see
Eqs. (128)–(132)].
As it was found above [see Eqs. (101)–(104)], the

equations of motion during kination read

ϕ̈þ 3H _ϕ ¼ 0; ð168Þ

where

H̄2 ¼ ρϕ
3m2

P
¼

1
2
_ϕ2

3m2
P
: ð169Þ

This can be solved by making the reasonable assumption
(remember ρϕ ∝ a−6) that _ϕðtÞ ≪ _ϕend when t ≫ tend, to
obtain

ϕðtÞ ¼ ϕend þ
ffiffiffi
2

3

r
mP ln

�
t

tend

�
; ð170Þ

where ϕend is the value the inflaton takes at the end of
inflation. At some point (at reheating) radiation takes over.
Then, even though Eq. (168) continues to hold, the Hubble
parameter becomes H̄ ¼ 1=ð2tÞ. Solving its equation of
motion during this epoch, the evolution of the inflaton reads

ϕðtÞ ¼ ϕreh þ 2

ffiffiffi
2

3

r
mP

�
1 −

ffiffiffiffiffiffiffi
treh
t

r �
: ð171Þ

It follows that for late times t ≫ tend the inflaton is
frozen at

ϕF ¼ ϕreh þ 2

ffiffiffi
2

3

r
mP: ð172Þ

We can obtain ϕreh by evaluating Eq. (170) at reheating
and at the moment at which radiation is created, which, in
the case of gravitational reheating, is at the end of inflation.
Thus,

ϕreh ¼ ϕend þ
ffiffiffi
2

3

r
mP ln

�
treh
tend

�
; ð173Þ

so that

ϕF ¼ ϕend þ
ffiffiffi
2

3

r
mP

�
2þ ln

�
treh
tend

��
: ð174Þ

The ratio treh=tend can be estimated as follows. First, note
that radiation scales as ρr ∝ a−4 while the background
density during kination scales as ρ ∝ a−6 so that

Ωr ¼
ρr
ρ
¼ a2: ð175Þ

Furthermore, during kination [see Eq. (100)] a ∝ t1=3.
Thus, taking into account that radiation is the dominant
contribution to the energy density budget at reheating, we
have

1 ¼ Ωreh
r ¼ Ωend

r

�
areh
aend

�
2

¼ Ωend
r

�
treh
tend

�
2=3

⇒
treh
tend

¼ ðΩend
r Þ−3=2: ð176Þ

Plugging this result in Eq. (174) gives

ϕF ¼ ϕend þ
ffiffiffi
2

3

r
mP

�
2 −

3

2
lnΩend

r

�
: ð177Þ

In order to obtain an expression for the radiation density
parameter at the end of inflation Ωend

r we remember that the
density of particles created by the event horizon in de Sitter
space at the end of inflation reads

ρendr ¼ q
π2

30
ggr�

�
Hend

2π

�
4

∼ 10−2H4
end; ð178Þ

where q ∼ 1 and ggr� ¼ Oð100Þ is the effective relativistic
degrees of freedom. Dividing this expression by the
Friedmann equation ρend ¼ 3H2

endm
2
P gives

Ωend
r ¼ ρendr

ρend
∼ 10−2

�
Hend

mP

�
2

∼ 10−2
VðϕendÞ
m4

P
; ð179Þ

where in the last step we assumed that the slow-roll
approximation is valid at the end of inflation. Plugging
Eq. (179) in Eq. (177) finally gives

ϕF¼ϕendþ
ffiffiffi
2

3

r
mP

�
2þ3ln10−

3

2
ln

�
VðϕendÞ
m4

P

��
: ð180Þ

Using the obtained an expression for VðϕendÞ given by
Eq. (112) we have
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ϕF ¼ ϕend þ
ffiffiffi
2

3

r
mP

�
2þ 3 ln 10

−
3

2
ln

�
nnλn

2n=2 þ 4αnnλn

��
: ð181Þ

When α takes a value close to its lower bound, using
Eqs. (73) and (114), this equation is simplified as

ϕF ¼ ϕend þ
ffiffiffi
2

3

r
mP

�
2þ 3 ln 10þ 3n

2
ln

� ffiffiffi
2

p

nλ

��
: ð182Þ

Note that in order to obtain ϕend we need to solve the
(generally complicated) integral (65) and plug the resulting
x ¼ xðϕÞ in the equation for xend given by (74). However,
in most cases ϕend is negligible compared to the second
term in the right-hand side of Eq. (181). To illustrate this we
can choose the simplest case for which Eq. (65) can be
solved, i.e., for n ¼ 2. Indeed,

dϕ ¼ mP

λð4αÞ1=2
dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ⇒ ϕ ¼ mP

λð4αÞ1=2 sinh
−1x: ð183Þ

Thus,

ϕend ¼
mP

λð4αÞ1=2 sinh
−1xend

≃
mP

λð4αÞ1=2 xend ¼
ffiffiffi
2

p
mP; ð184Þ

where we have used Eq. (74) and taken into account that
unless α≳ 1011, jxendj ≪ 1. Then, remembering [see
Eq. (133)] that inflation fixes 2λ2 ¼ m2=m2

P ∼ 10−11 and
taking α ∼ 108, the inflaton freezes at

ϕF ¼ −
ffiffiffi
2

p
mP þ

ffiffiffi
2

3

r
mPð2þ 3 ln 10þ 15 ln 10Þ

¼ −
ffiffiffi
2

p
mP þ 36mP ≃ 35mP ≫ ϕend: ð185Þ

Notice that the above is a super-Planckian displacement of
the canonical inflaton ϕ and not of φ, which appears in the
scalar potential of this model, in Eq. (63).

C. Residual potential energy

If we were to obtain the residual potential energy for a
general qwewould need to solve Eq. (156) in order to obtain
y ¼ yðϕÞ and substitute it in the potential (158) to finally use
the value at which the inflaton is frozen after kination, given
by Eq. (181). Although Eq. (156) is in general difficult to
solve, we can take into account that when the inflaton stops
being kinetically dominated, i.e., when it freezes, the
potential energy has become many orders of magnitude
smaller than the Plank scale (we are on the quintessential
tail). In this way, we are in the regime where

4αVðφÞ ≪ m4
P ⇔ 4αλnMnþq ≪ mn

Pφ
q ⇔ y−q ≪ 1; ð186Þ

where we have used Eq. (157). Thus, Eq. (156) can be
approximated by

dϕ ¼
�
4αλnMnþq

mn
P

�
1=q
�
1 −

1

2
y−q
�
dy: ð187Þ

This equation can be immediately integrated to obtain,
for q ≠ 1,

ϕðyÞ ¼
�
4αλnMnþq

mn
P

�
1=q

y

�
1þ 1

2ðq − 1Þyq
�
: ð188Þ

Raising the above to the power of q and using the
approximation (186) again we have

ϕqðyÞ ¼ 4αλnMnþq

mn
P

�
yq þ q

2ðq − 1Þ
�
: ð189Þ

Therefore, the analytical expression for yðϕÞ, in the
regime defined by Eq. (186), is

yqðϕÞ ¼ mn
Pϕ

q

4αλnMnþq −
q

2ðq − 1Þ : ð190Þ

Evaluating this expression at ϕF and plugging it in
Eq. (158), after some algebra, we obtain the residual
potential density

V̄ðϕFÞ
m4

P
¼
�

mn
Pϕ

q
F

λnMnþq þ
2αðq − 2Þ
q − 1

�−1
; ð191Þ

where ϕF is given by Eq. (181). Note that for most values of
α, and for q ≠ 1, such that the limit mn

Pϕ
q
F ≫ 2αλnMnþq

holds, the potential can be approximated to first order as

V̄ðϕFÞ ¼
λnMnþq

mn−4
P ϕq

F

�
1 −

2ðq − 2ÞαλnMnþq

ðq − 1Þmn
Pϕ

q
F

�
: ð192Þ

Also note that to zeroth order this is the same as the
original Peebles-Vilenkin potential [8] in the Jordan frame
in the limit φ ≫ M, only with φF replaced by ϕF. Of
course, this was expected since we assumed the limit in
Eq. (186) in the first place.

1. q = 1

Before calculating the residual potential energy density
for specific values of n and q we focus on the special case
q ¼ 1. Equation (187) now reads

dϕ ¼ 4αλnMnþ1

mn
P

�
1 −

1

2y

�
dy: ð193Þ
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Integrating, we have

ϕ ¼ 4αλnMnþ1

mn
P

�
y −

1

2
ln y

�
: ð194Þ

It is not possible to obtain an analytic expression for
y ¼ yðϕÞ. However, in the limit y ≫ 1, to a good approxi-
mation

yðϕÞ ≃ mn
Pϕ

4αλnMnþ1
; ð195Þ

so that the residual potential energy reads

V̄ðϕFÞ ≃
λnMnþ1

mn−4
P ϕF

: ð196Þ

Note this coincides with the zeroth order approximation
in Eq. (192). Of course, the approximation made in
Eq. (195) is equivalent to neglecting the second term in
Eq. (190). We can conclude that similar results to the ones
obtained for a general q are obtained for q ¼ 1.

D. q= 2 and n= 2

An exception for the treatment given above is q ¼ 2.
Note that in this case the corrections in Eq. (192) cancel out
and the form of the potential for ϕ is the same as for the
noncanonical field φ. Furthermore, an analytical expression
for yðϕÞ can be obtained. It reads, using n ¼ 2,

dϕ ¼ 2
ffiffiffi
α

p
λM2

mP

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y−2

p ⇒ ϕ ¼ 2
ffiffiffi
α

p
λM2

mP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
:

ð197Þ

Solving for y we have

y2F ¼ m2
Pϕ

2
F

4αλ2M4
− 1; ð198Þ

so that the potential at the value of the frozen inflaton reads

V̄ðϕFÞ ¼
m4

P

4α

4αλ2M4

m2
Pϕ

2
F

¼ λ2M4

1225
∼ 10−14M4; ð199Þ

where we have used ϕF ≃ 35mP [see Eq. (185)] and that
inflation fixes 2λ2 ¼ m2=m2

P ∼ 2.6 × 10−11 [see Eq. (133)].
Note that the residual potential energy is independent of α.
The vacuum energy density today is ρ0 ∼ 10−120m4

P, so
that the mass scale M is fixed to be

M ∼ 3.5 × 10−26mP ∼ 8.5 × 10−8 GeV: ð200Þ

E. q = 4 and n= 2

In this section we study the case where q ¼ 4 and n ¼ 2.
We consider the lower bound α ∼ 108, the fact that inflation
fixes 2λ2 ¼ m2=m2

P ∼ 2.6 × 10−11 and the value at which
the inflaton freezes ϕF ≃ 35mP. Thus, using the approxi-
mation obtained for the potential in Eq. (192), we have

V̄ðϕFÞ ¼
λ2m2

PM
6

ϕ4
F

�
1 −

4αλ2M6

3m2
Pϕ

4
F

�

¼ 8.7 × 10−18
M6

m2
P

�
1 − 10−9

M6

m6
P

�
: ð201Þ

The residual potential energy should be comparable to
the vacuum energy density today ρ0 ∼ 10−120m4

P. In this
way the mass scale M is fixed by

8.7 × 10−18
M6

m2
P

�
1 − 10−9

M6

m6
P

�
¼ 10−120m4

P: ð202Þ

It is straightforward to solve this quadratic equation to
obtain

M ∼ 10−17mP ∼ 10 GeV: ð203Þ

VII. CONSTRAINTS COMING FROM
EXPERIMENTAL TESTS

fðRÞ theories in the Palatini formalism should be treated
in the same way as general relativity, in the sense that they
should agree with experiments and observations on all
scales in order to be viable. In this way, fðRÞ theories
proposed to explain cosmic speedup should coincide with
the dynamics of the Solar System and laboratory experi-
ments. In this section we summarize the most salient results
found in the literature, mainly following Ref. [35].
In scales comparable to that of the Solar System the

Universe does not behave as a perfect fluid (as opposed to
cosmological scales), and it makes sense to make a
distinction between the interior and exterior of matter
sources. Outside of matter sources ρm ¼ 0 and, in the
thawing quintessence scenario we consider, the inflaton
freezes at ϕF so that VðϕFÞ accounts for the vacuum
energy density measured today.9 Thus, the Ricci scalar
today outside of matter sources reads [cf. Eq. (32)]

9Remember that during the quintessence era ϕ ≃ φ to a very
good approximation [cf. Eq. (190)]. Also, we are ignoring the fact
that quintessence is thawing so, technically, it is unfreezing at
present, which means that it has a nonzero kinetic energy density,
which, however, is subdominant 1

2
_ϕ2 ≪ VðϕÞ ≃ VðϕFÞ.
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Rout ≡ Rð0Þ ¼ 4VðϕFÞ
m2

P
¼ constant: ð204Þ

This means that the Einstein equations in the exterior of
matter sources reduce to the form

Gμν ¼
1

m2
PfR

Tμν − Λeffgμν; ð205Þ

as suggested by Eq. (15) with fRðRÞ ¼ constant, where
Tμν ¼ −gμνVðϕFÞ and Λeff is given by Eq. (17)

Λeff ¼
1

2
Rout −

1

2

fðRoutÞ
fRðRoutÞ

: ð206Þ

In the above, in view of Eqs. (20), (22), and (204) we have

fðRoutÞ≡ fð0Þ ¼ 4VðϕFÞ
m2

P
þ 8αV2ðϕFÞ

m6
P

¼ 4VðϕFÞ
m2

P

�
1þ 2αVðϕFÞ

m4
P

�
; ð207Þ

and

fRðRoutÞ≡ fRð0Þ ¼ 1þ 4αVðϕFÞ
m4

P
: ð208Þ

Since VðϕFÞ ≃ 10−120m4
P accounts for the vacuum energy

density today and assuming that α is not unrealistically
large, we have 4αVðϕFÞ ≪ m4

P. Thus, the effective cos-
mological constant is simplified to

Λeff≃
2VðϕFÞ
m2

P
−
2VðϕFÞ
m2

P

�
1þ2αVðϕFÞ

m4
P

��
1−

4αVðϕFÞ
m4

P

�

≃
4αV2ðϕFÞ

m6
P

: ð209Þ

Considering the 00 component of the Einstein equations
in Eq. (205) we obtain the Friedman equation, which
reads

3H2m2
P ¼ T00

fR
þm2

PΛeff

≃ VðϕFÞ
�
1 −

4αVðϕFÞ
m4

P

�
þ 4αV2ðϕFÞ

m4
P

¼ VðϕFÞ: ð210Þ

Thus, the vacuum density is VðϕFÞ, which is much larger
than m2

PΛeff since

VðϕFÞ
m2

PΛeff
¼ m4

P

4αVðϕFÞ
≫ 1: ð211Þ

This means that VðϕFÞ=m2
P is the “true” cosmological

constant, as we assumed in the previous section, while the
contribution due to Palatini gravity m2

PΛeff is negligible. In
the following we redefine Λeff as Λeff ¼ VðϕFÞ=m2

P.

A. Solar System

In Sec. II we found [see Eq. (16)] that the vacuum
equations of motion in Palatini fðRÞ theories are equivalent
to those of GR with a cosmological constant, given by
Eq. (17). Furthermore, we found that in the quintessential
inflation scenario with the fðRÞ function given by

fðRÞ ¼ Rþ α

2m2
P
R2; ð212Þ

the equations of motion are also equivalent to those of GR
with a cosmological constant, now given by Λeff ¼
VðϕFÞ=m2

P. It follows that, if one considers a spherically
symmetric nonrotating mass distribution, such as the Sun,
the metric outside is the Schwarzschild–de Sitter solution

ds2 ¼ −AðrÞdt2 þ dr2

AðrÞ þ r2dΩ2; ð213Þ

where AðrÞ ¼ 1–2GM=r − Λeffr2=3, with M identified as
the mass of the star andΛeff is the cosmological constant. In
the vacuum case, some authors [54,55] conclude that
Palatini fðRÞ theories are compatible with Solar System
observations, based on the fact that for a suitable region in
the parameter space of the theory Λeff can be made small
enough and predictions are virtually indistinguishable from
those of the Schwarzschild solution in general relativity
(which pass all experimental tests). In the quintessential
inflation case, Λeff ¼ VðφFÞ=m2

P is obviously very small
and the metric effectively takes the Schwarzschild form.
However, as it is pointed out in Ref. [35], Eq. (15)

departs from GR with an effective cosmological constant in
the regions of space where R, and therefore fR, is no longer
constant [and the ∂fR in the right-hand side of Eq. (15) are
no longer zero], such as in the interior of stars. In this way,
the transition from the interior to the exterior solution is, in
general, not as simple as in GR, due to the modified
dynamics in the interior of the sources.
We now give a brief overview of the study of the transition

from the interior to the exterior solution in Palatini fðRÞ
theories. The reader is referred toRef. [35] for further details.

It is convenient to perform a conformal transformation gμν →

hμν ¼ γðTÞgμν ≡ fRðTÞ
fRð0Þ gμν under which Eq. (15) reads10

10Note Eq. (214) is the same as Eq. (18), only with ḡμν replaced
by hμν, fRðTÞ by γðTÞ andmP by m̃P. Indeed, ḡμν ¼ fRð0Þhμν, but
the Einstein tensor is invariant under constant rescalings of the
metric GμνðḡÞ ¼ GμνðfRð0ÞḡÞ.
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GμνðhÞ ¼
1

m̃2
PγðTÞ

Tμν − Λ̃ðTÞhμν; ð214Þ

where we have relabeled fRout
≡ fRð0Þ [see Eq. (208)],

m̃2
P ¼ m2

PfRð0Þ and Λ̃ðTÞ¼ ðRfR−fÞ=ð2fRð0Þγ2Þ, so
that Λ̃ð0Þ¼Λeff .
We now focus on spherically symmetric pressureless

bodies, for which an analytical solution for an arbitrary
fðRÞ can be obtained [56] by using the ansatz

ds2 ¼ gμνdxμdxν ¼
1

γðTÞ hμνdx
μdxν

¼ 1

γðTÞ
�
−BðrÞe2ΦðrÞdt2 þ 1

BðrÞ dr
2 þ r2dΩ2

�
: ð215Þ

The explicit form of BðrÞ and ΦðrÞ, obtained from the
field equations (214), can be found in Ref. [56]. For our
current purposes it suffices to say that both functions are
well defined and provide a complete solution for a non-
rotating, pressureless, spherically symmetric body.
Furthermore, in the exterior of matter sources, where
γð0Þ ¼ 1, the line element in Eq. (215) is the same as
the Schwarzschild–de Sitter one given by Eq. (213), just by
absorbing the e2Φ factor with a time coordinate redefinition
and identifying AðrÞ with BðrÞ. As for the interior of the
body, the usual GR expressions are recovered by choosing
γ ¼ 1 and Λ̃ ¼ 0. In this way, the Newtonian limit of the
general solution (215) can be studied. In particular, we
focus on the time-time component of the metric11

gtt ¼ −
1

γðTÞ
�
1 −

2G̃MðrÞ
r

�
e2ðΦðrÞ−Φ0Þ: ð216Þ

The conclusions presented in Ref. [35] imply that, for a
Palatini fðRÞ theory to be viable, the function fðRÞ has to be
chosen such that γðTÞ [or fRðTÞ] is not very sensitive to
density variations over the range of densities accessible to the
corresponding experiments. In other words, γðTÞ must be
almost constant since then, with a simple constant rescaling
of the metric, the constant γðTÞ ≃ γ0 þ corrections can be
brought to the form γ̃ðTÞ ¼ 1þ corrections. This, in turn,
implies that the metric has the standard form gμν ¼ ημνþ
corrections.
From a more analytical perspective, we require that a

changeΔγ relative to γ induced by a changeΔρ relative to ρ
must be small

���� ργ ∂γ∂ρ
���� ¼
���� ρfR

∂fR
∂ρ
���� ≪ 1: ð217Þ

This condition is equivalent to [57]

���� ρ

m2
PRfR

����
���� 1

1 − fR=ðRfRRÞ
����≪ 1: ð218Þ

We now have the tools to determine whether our fðRÞ
function, given by

fðRÞ ¼ Rþ α

2m2
P
R2; ð219Þ

satisfies Solar System bounds or not. Using Eqs. (22), (23),
and (37) we have the following expressions inside the
matter sources:

fðTÞ ¼ 1

m2
P
½ρm þ 4VðφFÞ� þ

α

2m6
P

½ρm þ 4VðφFÞ�2

≃
ρm
m2

P

�
1þ αρm

2m4
P

�
; ð220Þ

fRðTÞ ¼ 1þ α

m4
P
½ρm þ 4VðφFÞ� ≃ 1þ α

m4
P
ρm; ð221Þ

and

fRRðTÞ ¼
α

m2
P
; ð222Þ

where we have taken into account that VðφFÞ ≪ ρm inside
matter sources. Plugging these results in Eq. (217) gives

αρm
m4

P
≪ 1: ð223Þ

It is obvious that this bound is satisfied for most values of
the coupling constant α, and in particular for the lower
bounds given by Eq. (88). For example, the density of the
Sun is ρ ¼ 1.41 g=cm3 ¼ 1.3 × 10−91m4

P, so that

10−91α ≪ 1: ð224Þ

We conclude that our model passes the Solar System
constraints. However, this is not the end of the story: We
have overlooked one important subtlety by taking the
approximation that the considered matter distributions
are perfectly homogeneous. Indeed, the real structure of
matter is discrete and our results could be modified.
Specifically, the condition that γðTÞ has to be almost
constant does not necessarily hold when one considers
microscopic experiments, since it would be always possible
to find regions of space where γðTÞ could take any
possible value.11We have redefined BðrÞ ¼ 1–2G̃MðrÞ=r.
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B. Microscopic experiments

In this section we make use of the results found in
Refs. [35,58,59]. The first experimental constraint is
obtained by considering the nonrelativistic Schrödinger
equation for an electron in an external electromagnetic
field, derived from the equation for a Dirac field in curved
space-time. It is found that the γðTÞ term in the metric in
Eq. (215) induces a mismatch in m̃≡mγ−1=2, where m is
the mass of the electron, calculated in vacuum and in the
interior of sources. This mismatch in turn corresponds to a
change in the potential in the outermost part of the atom,
which could induce a probability flux towards infinity
reducing its half-life. In order for the mismatch to be small
enough, any viable fðRÞ theory must have a negligible [58]

Δm ¼ m0

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
fRð∞Þ
fRð0Þ

s
− 1

�
; ð225Þ

where m0 is a constant of the order of the mass of the
electron m and fRð∞Þ is fR evaluated in the regions of
space where the matter energy density is much larger than
the vacuum energy density. From the results obtained in the
previous section, we have

Δm ¼ m0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αρe

m4
P

r
− 1

�
≃
m0αρe
2m4

P
: ð226Þ

Since the vacuum-density scalem2
P=α is much larger than

any matter-density scale that the wave function of the
electron can reach, unless α is unrealistically large, we
conclude that our choice for the fðRÞ function is compat-
ible with experiments related to the stability of the hydro-
gen atom.
Another constraint was obtained in Ref. [59] from the

variation in the energy levels of hydrogen, for models in
which the constraint given by Eq. (225) is satisfied, i.e., Δm
is negligibly small, such as ours. It reads���� fRRð0ÞH2

0

fRð0Þ
���� ≤ 4 × 10−40: ð227Þ

Using the results obtained in the previous section and the
first Friedmann equation we obtain���� αρ03m4

P

���� ≤ 4 × 10−40; ð228Þ

where ρ0 is the energy density of the Universe today, which
value is

ρ0 ≃ 8.5 × 10−30
g

cm3
≃ 10−120m4

P: ð229Þ

The bound in Eq. (228) is obviously satisfied unless,
again, α is unrealistically large.

This concludes the section about constraints coming
from experimental tests. We have found that our choice for
fðRÞ passes the constraints coming from both Solar System
and microscopic experiments. Furthermore, they are com-
patible with the bound in Eq. (151) coming from infla-
tionary dynamics.

VIII. DISCUSSION AND CONCLUSIONS

The emphasis in this work is put on investigating
quintessential inflation in the context of an Rþ R2

Palatini modified gravity theory. In the Palatini formalism,
Rþ R2 gravity does not introduce an extra dynamical
degree of freedom (the scalaron) as is the case in the metric
formalism. Instead, inflation is driven by an explicitly
introduced inflaton field. What the Palatini setup does is it
“flattens” the scalar potential leading to an effective infla-
tionary plateau even though the original inflaton potential
might be steep. As such, we have shown that a theory with
e.g., V ∝ φ2 is successful in accounting for the inflationary
observables.
However, thus far this is not a new result, as inflation in

the Palatini context has been studied before. In our work we
have also investigated other implications of our Palatini
modified gravity theory after inflation. During radiation
domination R ¼ 0, which implies that our Rþ R2 Palatini
modified gravity does not really differ from standard
Einstein gravity. However, this is not true during kination
and subsequently during the recent history of the Universe,
after the end of the radiation era. In principle, these periods
may be affected and we have studied this in detail. We have
shown that the Palatini corrections are largely subdominant
to negligible during the kination era if the coupling α of the
R2 term in our theory is not too large.12 We also showed
that, as far as the Universe dynamics is concerned, the
recent matter era is also unaffected.
There is an additional level on which our Palatini setup

outperforms Rþ R2 modified gravity theory in the metric
setup, and it has to do with constraints from experimental
tests on the coupling α of the R2 term. The inflationary
observables are satisfied when α ≳ 108 or so. In the metric
formalism, such values are excluded by Solar System
observational constraints and other microscopic experi-
mental tests. The tightest constraint comes from time-delay
effect of the Cassini tracking for the Sun, enforcing a
stringent bound on post-Newtonian parameter jγ − 1j <
2.3 × 10−5 [26]. This implies α < 5.8 × 10−6. However,
this is not so in the Palatini formalism, where experimental
tests allow for large values of α without problems. Thus,
Rþ R2 quintessential inflation is possible only in the
context of the Palatini and not the metric formalism.

12Recall that the Lagrangian density of gravity is actually
L ¼ 1

2
m2

PRþ 1
4
αR2.

QUINTESSENTIAL INFLATION IN PALATINI fðRÞ … PHYS. REV. D 103, 043533 (2021)

043533-23



To obtain specific predictions and demonstrate the
analytic treatment of quintessential inflation in our
Palatini modified gravity theory, we have investigated a
family of models based on a generalized version of the
original Peebles-Vilenkin quintessential inflation model
[8], introduced in Eq. (63). This model is not to be taken
too seriously though. The reason is that only two small
regions of the scalar potential are really relevant. During
inflation, the observable part of the scalar potential corre-
sponds to the region traversed in slow roll of the canonical
inflaton field ϕ in no more than about 10 e-folds. For the
noncanonical field φ [cf. Eq. (65)], this region is even
smaller. For thawing quintessence, the region traversed
corresponds to the field unfreezing and starting to roll. This
region is again rather small. The model approximates the
two regions as power laws, with a positive power n for
inflation and a negative power −q for quintessence.
For inflation, we have shown that the correct spectral

index of the primordial curvature perturbation is obtained
when n ¼ 2–3, in the case when reheating is due to
gravitational particle production. This is the least effective
mechanism for reheating, which corresponds to about
N ≃ 68 e-folds of remaining inflation when the cosmo-
logical scales exit the horizon. The problem of gravitational
reheating is that the subsequent kination period is so long
that the amplification of primordial gravitational waves
challenges the process of big bang nucleosynthesis. A more
efficient mechanism would reduce N somewhat down to
N ≃ 65 or so. This would mean that n ≃ 2 or even less. The
observed amplitude of the primordial curvature perturba-
tion determines the value of the constant λ. When n ¼ 2 we
find that λ ∼ 10−6. Finally, regarding the generated pri-
mordial tensors, we find that we are within the observa-
tional limits if α≳ 108. If we are near this value, the
produced primordial tensors are within reach of observa-
tions in the near future (e.g., by the BICEP3 or Simons
observatories).
For quintessence, we have shown that coincidence can

be achieved by avoiding the extreme fine-tuning ofΛCDM.
Indeed, for q ¼ 4 we found M ∼ 10 GeV, which is rather
reasonable. We have shown that this value substantially
grows if q becomes larger (M ∼ 10−7 GeV when q ¼ 2).

However, the negative power q cannot be much larger
because the barotropic parameter of thawing quintessence
today would be too large [9], the observational bound being
−1 ≤ w < −0.95 [39]. Future observations (e.g., Euclid or
the Nancy Grace Roman missions), will pinpoint w further,
resulting in a better estimate of q. It will be interesting if
w ¼ −1 was excluded and ΛCDM was in trouble. We
should note that the power-law approximations of the scalar
potential in the inflation and quintessence regions are only
indicative. In this sense, one can envisage noninteger
powers.
After inflation there is a period of kination where the

inflaton field is oblivious of the scalar potential. Our
treatment of kination within the Palatini setup is therefore
independent of the specific model chosen for the scalar
potential. We found that the canonical field ϕ is propelled
over super-Planckian distances. However, the noncanonical
field φ for both inflation and quintessence [cf. Eqs. (65) and
(156)] is expected to vary much less, as is the case of α-
attractors [9]. This means that the radiative stability of the
quintessential tail is protected and the fifth force problem of
quintessence is overcome [10].
Summing up, we have investigated quintessential infla-

tion in the context of an Rþ R2 Palatini modified gravity
theory. We have shown that inflation is successful with a
quadratic scalar potential for the inflaton field, while
quintessence is successful with a quartic inverse power-
law potential without the extreme fine-tuning of ΛCDM.
We have found that the Palatini setup introduces subdomi-
nant corrections to the kination and quintessence periods
and does not lead to violations on experimental tests of
gravity. Our treatment is able to provide concrete predic-
tions for the primordial tensors and the barotropic param-
eter of dark energy, which will be tested in the near future.
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