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We present a new method, called x-cut cosmic shear, which optimally removes sensitivity to poorly
modeled scales from the two-point cosmic shear signal. We show that the x-cut cosmic shear covariance
matrix can be computed from the correlation function covariance matrix in a few minutes, enabling a
likelihood analysis at virtually no additional computational cost. Further we show how to generalize x-cut
cosmic shear to galaxy-galaxy lensing. Performing an x-cut cosmic shear analysis of the Dark Energy
Survey Year 1 (DESY1) shear data, we reduce the error on S8 ¼ σ8ðΩm=0.3Þ0.5 by 32% relative to a
correlation function analysis with the same priors and angular scale cut criterion, while showing our
constraints are robust to different baryonic feedback models. Largely driven by information at small
angular scales, our result, S8 ¼ 0.734� 0.026, yields a 2.6σ tension with the Planck Legacy analysis of the
cosmic microwave background. As well as alleviating baryonic modeling uncertainties, our method can be
used to optimally constrain a large number of theories of modified gravity where computational limitations
make it infeasible to model the power spectrum down to extremely small scales.

DOI: 10.1103/PhysRevD.103.043531

I. INTRODUCTION

Over the coming decade weak lensing will provide some
of the tightest constraints on the mass of the neutrino
and the dark energy equation of state. Data from
Stage IV experiments including Euclid [1,2], the Nancy
Grace Roman Space Telescope [3,4] and the Rubin
Observatory [5] will revolutionize the field, increasing
the number of observed galaxies by more than an order
of magnitude. Extracting cosmological information from
these next generation surveys in a precise and unbiased way
presents a formidable challenge. To take advantage of this
data, methodologies must first be honed on current state-of-
the-art Stage III surveys which include the Dark Energy
Survey (DES) [6], the Kilo-Degree Survey (KiDS) [7] and
the Subaru Hyper Suprime-Cam Lensing Survey [8].
One particular challenge is dealing with modeling

uncertainties at small scales. Cosmic shear is sensitive
to poorly modeled scales—down to 7 hMpc−1 [9] in the
matter power spectrum and sub-megaparsec scales in
configuration space. While it is not yet possible to derive
accurate analytic predictions for these scales [10], one
can model nonlinear structure growth using an emulator
[11–13] (or halo model [14]) trained (calibrated) on a suite

of Oð100Þ [12] high resolution N-body simulations, run
over cosmological parameter space.
Simulations must be run with more than a trillion

particles to meet the percent-level matter power spectrum
accuracy requirements of upcoming surveys [15].
Emulators and halo models with varying degrees of
accuracy have been trained for Lambda cold dark matter
(LCDM) [11,14], w0 cosmologies [12] and a small subset
of theories of popular theories of modified gravity (see
e.g., [13,16]). However, to test all theories of modified
gravity (see [17] for a review), without throwing away
information, we would need a suite of high resolution
simulations for each theory. This sets a formidable and
potentially unachievable task.
Baryonic physics further complicates the problem of

accurately modeling structure growth at small scales. If not
accounted for correctly, baryonic feedback will signifi-
cantly bias cosmological parameter constraints [18,19].
To make matters worse, the impact of baryonic pro-
cesses cannot be extracted from high resolution N-body
simulations. Discrepancies between different “subgrid
prescriptions” would have a large impact on parameter
constraints [19].
Several methods to mitigate nonlinear and baryonic

modeling uncertainties at small scales have been proposed.
Some approaches are*peterllewelyntaylor@gmail.com
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(i) Taking naïve angular scale cuts. This corresponds to
cutting large angular wave modes (small angular
scales), l, from the lensing power spectrum, Cl, in
harmonic space or small angles, θ, from the two-
point correlation function, ξ�ðθÞ, in configuration
space. This method is always employed, whether
explicitly or not, since no analysis uses all angular
scales between zero and infinity. Used appropriately
this technique yields unbiased yet imprecise param-
eter constraints.

(ii) Reweighting the data with a carefully constructed
transform before taking scale cuts. Complete orthogo-
nal sets of E/B-integrals (COSEBIs) [20–22] and k-cut
cosmic shear [23] both fall into this category. For
COSEBIs a new data vector is computed as an integral
transform of correlation functions before taking a cut
in discrete wave number. Meanwhile in k-cut cosmic
shear, the lensing power spectrum is reweighted to
make the relationship between angular and physical
scales more precise, before taking an angular scale
cut. This paper is concerned with the configuration
space analog of k-cut cosmic shear. Reweighted
statistics can be used in combination with other
baryonic mitigation strategies listed below.

(iii) Performing a principal component analysis to se-
lectively remove linear combinations of the data
vector which are most severely impacted by bar-
yonic physics [24,25].

(iv) Using a physically motivated halo model [14] or
fitting formula [26] to capture the baryonic feedback
which can then be marginalized out during a like-
lihood analysis. This is the approach used in [8].

(v) Calibrating physically motivated halo models on
external observations [27,28]. This will require
additional targeted observations with dedicated tele-
scope time.

Ultimately some combination of the approaches listed is
likely optimal.
In this paper we present a new method, which we refer to

as x-cut cosmic shear, to cut sensitivity to poorly modeled
scales—while preserving useful information.
This work is very similar to the recently proposed k-cut

cosmic shear method presented in [23,29] (a similar
method to remove sensitivity to small scales was given
in [30]). k-cut cosmic shear technique works by taking the
Bernardeau-Nishimichi-Taruya (BNT) [31] transform (see
[32] for a further application of the BNT transform) which
reorganizes the information making the relationship
between the angular scale, l, and the structure scale, k,
much clearer compared to standard cosmic shear power
spectra—before cutting large angular wave numbers that
correspond to small poorly modeled scales. k-cut cosmic
shear has also recently been shown to minimize the impact
of the reduced shear approximation [29] and forecasts for
the Euclid survey have been provided in [33].

The key difference is that the method presented in
this paper works in configuration space. This has several
advantages over harmonic space. There is no need to
deconvolve the mask which could lead to a loss of
information [34]. Furthermore, it is more natural to take
a cut in configuration space as nonlinear structure which is
restricted to the center of halos, and compact in configu-
ration space, is spread over a large range of k-modes in
Fourier space.
We will show how to construct the x-cut statistic as a

simple transformation of correlation functions. Further
we show how to compute the x-cut covariance from the
correlation function covariance matrix on a single CPU in a
few minutes. Performing an x-cut likelihood analysis of the
DESY1 shear data, we will demonstrate that x-cut cosmic
shear yields more precise constraints than a correlation
function analysis while remaining robust to baryonic
feedback modeling uncertainty.
The structure of this paper is the following. In Sec. II,

we review the standard cosmic shear formalism before
presenting the x-cut cosmic shear method in Sec. III.
A review of the data and public covariance used in the
DESY1 cosmic shear analysis [6] (hereafter D18) is given
in Sec. IV. The baryonic feedback models used in this work
are presented in Sec. V. Our results and the x-cut cosmic
shear parameter constraints are given in Sec. VI before
discussing the future prospects for the method and con-
cluding in Sec. VII.
We assume a LCDM cosmology with a free neutrino

mass throughout. We compute the BNT transform and
produce all figures assuming the baseline cosmology
where: ðΩm; h0;Ωb;Ωνh20; ns; S8Þ are taken to be (0.275,
0.7, 0.046, 0.004, 0.993, 0.78).

II. COSMIC SHEAR FORMALISM

A. The lensing spectrum

The lensing power spectrum contains the two-point
information of the shear field. Under the Limber [35,36],
spatially flat universe [37], flat-sky [36], reduced shear
[38,39] and Zeldovich [40] approximations it is given by:

Cij
GGðlÞ ¼

Z
χH

0

dχ
qiðχÞqjðχÞ

χ2
P

�
lþ 1=2

χ
; χ

�
; ð1Þ

where χ is the radial comoving distance, P is the matter
power spectrum, χH is the distance to the horizon, and qðχÞ
is the lensing efficiency kernel:

qiðχÞ ¼ 3

2
Ωm

�
H0

c

�
2 χ

aðχÞ
Z

χH

χ
dχ0niðχ0Þ χ

0 − χ

χ0
; ð2Þ

Here H0 is the Hubble parameter, Ωm is the fractional
matter density parameter, c is the speed of light, a is the
scale factor and niðχ0Þ is probability distribution of the
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effective number density of galaxies as a function of
comoving distance. In what follows we use CosmoSIS

[41] to compute the lensing spectrum using CAMB [42]
to generate the linear power spectrum and HALOFIT [43] to
generate the nonlinear power spectrum.

B. Correlation functions

Is it often more convenient to work in configuration
space to avoid the need to deconvolve the survey mask
using the pseudo-Cl method [44–46], for example. In this
case the two-point information is contained in the corre-
lation functions which are defined as:

ξij�;GGðθÞ ¼
1

2π

Z
dllCij

GGðlÞJ�ðlθÞ; ð3Þ

where JþðlθÞ is the zeroth order Bessel function of the first
kind and J−ðlθÞ is the fourth order Bessel function of the
first kind. We use NICEA [47] to compute the correlation
functions.

C. Intrinsic alignments

In addition to cosmic shear, the ellipticity of galaxies is
influenced by intrinsic alignments (IA) [48] as galaxies
tidally align with nearby dark matter halos. This leads to
two additional contributions to the correlation functions:

ξij�ðθÞ ¼ ξij�;IIðθÞ þ ξij�;GIðθÞ þ ξij�;GGðθÞ: ð4Þ

An “II term” accounts for the intrinsic tidal alignment
of galaxies around massive dark matter halos. Meanwhile
the “GI term” accounts for the anticorrelation between
tidally aligned galaxies at low redshifts and weakly lensed
galaxies at high redshift.
As in D18, we follow the linear intrinsic alignment

model originally given in [49] and used in [50], allowing
the amplitude of the alignments to vary as a function of
redshift, as in [51]. In this model the theoretical expression
for II and GI correlation functions are

ξij�;II=GIðθÞ ¼
1

2π

Z
dllCij

II=GIðlÞJ�ðlθÞ; ð5Þ

where the II spectrum, Cij
IIðlÞ, is given by:

Cij
IIðlÞ ¼

Z
χH

0

dχ
niðχÞnjðχÞ

χ2
PII

�
lþ 1=2

χ
; χ

�
; ð6Þ

where the II matter power spectrum is

PIIðk; zÞ ¼ F2ðzÞPðk; zÞ ð7Þ

and

FðzÞ ¼ −AI

�
1þ z
1þ z0

�
η

C1ρcrit
Ωm

DðzÞ : ð8Þ

Here ρcrit is the critical density of the Universe, z0 is
the median redshift of the survey, which for DESY1 is
z0 ¼ 0.62, DðzÞ is the growth factor and C1 ¼
5 × 10−14 h−2M−1

⊙ Mpc3 is chosen so that the fiducial
value of the intrinsic alignment amplitude, AI , is unity [52].
Meanwhile the GI matter power spectrum is

Cij
GIðlÞ ¼

Z
χH

0

dχ
niðχÞqjðχÞ

χ2
PGI

�
lþ 1=2

χ
; χ

�
; ð9Þ

and the GI spectrum is

PGIðk; zÞ ¼ FðzÞPðk; zÞ: ð10Þ

D. Systematics

As in D18, we include two systematics which change the
theoretical expectation of ξ�ðθÞ. For multiplicative biases
fmi;mjg in bins fi; jg, the correlation functions become:

ξij�ðθÞ → ð1þmiÞð1þmjÞξij�ðθÞ: ð11Þ

We also assume a linear photometric redshift bias, Δzi, so
that the radial distribution function is shifted:

niðzÞ → niðz − ΔziÞ: ð12Þ

Multiplicative and redshift biases are treated as nuisance
parameters and marginalized out at the end of the like-
lihood analysis. The choice of priors is informed by the
measurement process. This is discussed further in Sec. IV.

III. x-CUT COSMIC SHEAR

A. Motivating the Bernardeau-Nishimichi-Taruya
(BNT) transformation

To motivate the need for a transformation of the data, we
plot the lensing efficiency kernels, qiðχÞ, in the middle row
of Fig. 1 for three separate cases. These are

(i) Left: The four DESY1 tomographic bins considered
in D18.

(ii) Middle: 10 tomographic bins with an equal number
of galaxies per bin drawn from:

nðzÞ ∝ ðz=zeÞ2 expð−ðz=zeÞ3=2Þ; ð13Þ

with ze ¼ 0.9=
ffiffiffi
2

p
, smoothed by the Gaussian

kernel:

pðzjz0Þ ¼ 1ffiffiffiffiffiffi
2π

p
σðz0Þ exp

�
−
ðz − z0Þ2
2σðz0Þ2

�
; ð14Þ
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to account for photometric redshift uncertainty, with
σðz0Þ ¼ 0.05ð1þ z0Þ [53]. This is representative of a
typical Stage IV survey.

(iii) Right: Same as the previous case but with perfect
redshift knowledge.1

What is noticeable in all three cases, is that the lensing
efficiency kernels are broad in redshift and there is
significant overlap between kernels. This makes it very
difficult to disentangle scales using the traditional two-
point estimators (ξ� and Cl).
In particular, tomographic bins at high redshift are

sensitive to structure at both high and low redshifts, so
that an angular scale, θ, does not correspond to a unique
physical scale, x, in the intervening lensing structure.
Additionally, since the lensing kernels have significant

overlap, different tomographic bins probe the same under-
lying structure. This motivates the Bernardeau-Nishimichi-
Taruya (BNT) transformation, which makes the lensing
kernels narrower in redshift, as well as reducing overlap
between kernels.

B. The BNT transformation

The BNT transformation is a linear transformation, M,
which makes the lensing kernels compact in redshift. The
new BNT reweighted kernels, q̃iðχÞ, are given by:

q̃iðχÞ ¼ MijqjðχÞ ð15Þ

For any three sequential discrete source planes j ¼ i − 2;
i − 2; i in a spatially flat universe, at comoving distances,
χi−2 < χi−1 < χi, it was show in [31] that:

FIG. 1. Top row: the radial distribution of galaxies inside tomographic bins. Middle row: lensing efficiency kernels, qiðχÞ, for
tomographic bin i (the peak is normalized to 1). These are broad in redshift and there is significant overlap between bins. Bottom row:
the BNT reweighed lensing effeciency kernel, q̃iðχÞ, (the peak is normalized to 1). These are narrow in redshift compared to the
unweighted case and there is less overlap between bins. For each tomographic bin this makes it possible to relate physical structure
scales, x, to angles, θ, as well as reducing correlations between bins. Left column: the 4 tomographic bins used in the DESY1 analysis.
Middle column: 10 tomographic bins representative of a Stage IV experiment. Right column: same as the middle column, but with
no photometric redshift error. The BNT transform works best—in the sense that transformed kernels are narrow and have minimal
overlap—for a large number of tomographic bins with small photometric redshift error.

1This would be relevant for a kinematic weak lensing survey
(see [54] for more details).
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Xi

j¼i−2
Mij ¼ 0 ð16Þ

and

Xi

j¼i−2

Mij

χj
¼ 0 ð17Þ

ensures that the lensing kernel is zero outside the range
½χi−2; χi�. This is generalized to the continuous case by
defining:

Bj ¼
Z

zmax

zmin

dz0
njðz0Þ
χðz0Þ ð18Þ

and solving:

Xi

j¼i−2
Mij ¼ 0 ð19Þ

and

Xi

j¼i−2
MijBj ¼ 0: ð20Þ

This is an underconstrained system of linear equations, so
we take Mii ¼ 1 (for all i). The elements of M can then be
computed iteratively considering sequential triplets of
tomographic bins, going from lowest to highest redshift.
With the choice Mii ¼ 1, the first tomographic bin is
unchanged.
For the four DESY1 tomographic bins, the BNT matrix

M, is

M ¼

0
BBB@

1 0 0 0

−1 1 0 0

0.85 −1.85 1 0

0 0.25 −1.25 1

1
CCCA: ð21Þ

We plot the resulting BNT lensing efficiency kernels
(normalized so that the max value is 1) in the bottom
left of Fig. 1. Corresponding kernels are also shown for
tomographic bins from a representative Stage IV survey
with and without photometric redshift uncertainty. We see
that the BNT transformation performs better—in the sense
that kernels have small overlap and are compact in z—for
deep surveys, with a large number of tomographic bins and
accurate photometry.

The BNT transform is a function of the background
geometry, and hence, the cosmology. However the analytic
solution to Eqs. (19)–(20) are formed from ratios of Bj, so
in practice the transformation has very little cosmological
dependence as found in [31]. For the DESY1 tomographic
bins, we individually perturb h0 and Ωm by �20% relative
to the baseline cosmology, to the test the response in the
BNT matrix. For h0, one matrix element of M changes by
2%, but the change in all other matrix elements is less than
1%. In light of this, we fixM for the remainder of this work.
The result that the BNT transform is effectively indepen-
dent of cosmology is survey specific and should be
rechecked each time the BNT transformation is used. In
any case, the transformation is applied to data and the
theory vector consistently, so it will not lead to bias.

C. x-cut cosmic shear

By transforming the two lensing efficiency kernels
appearing in equation (1), the BNT transformation can
also be applied at the level of the two-point statistics.
We note M is constant so it can be “pulled through” nested
integrals. Hence, the BNT transformation of the correlation
functions defined in Eq. (4) is

xij�ðθÞ ¼ Mikξkl�ðθÞðMTÞlj; ð22Þ

where repeated indices are summed over and T denotes
the transpose. This new statistic can be directly related to
CijðlÞ using Eqs. (3) and (4). The intrinsic alignment terms
have different kernels from the GG term leading to some
suboptimality in the transformation. However, IA contri-
butions account for only ∼10% of the signal, so this is a
small effect.
We refer to xij�ðθÞ as the x-cut statistic. Since the BNT

matrix is always lower triangular with ones along the
main diagonal, it can be shown with repeated application of
the Laplace determinant expansion that the determinant
of, M, is always one. Hence, the BNT transformation is
invertible and from Eq. (22) one can transform freely
between xij�ðθÞ and ξij�ðθÞ. This implies in the absence of
scale cuts, after appropriately transforming the covariance,
that cosmological information is preserved. This is con-
firmed in Sec. VI A.
The x-cut statistic enables one to remove sensitivity to

structure below some physical scale, x. To see this we note
that because the lensing kernels are now narrow in z, we
can define a typical angular diameter distance diA for each
bin i. This can be the peak or mean value of the kernel,
q̃iðχÞ. Then, to remove sensitivity to scales below some
physical scale, x, for tomographic bins i, j we cut all
angular scales, θ, such that:

θ < minfx=diA; x=djAg: ð23Þ
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FIG. 2. Solid black curves denote θxij�ðθÞ and θξij�ðθÞ (normalized so that the max value is unity) computed using the dark matter only
power spectrum from HALOFIT. Tomographic bin numbers are indicated in the top left hand corner of each box. The same functions are
computed using power spectra from four different baryonic feedback models (see Sec. V). For each model we plot 10ΔðsimÞ=σdata
where σdata is the error on the data defined as the square root of the diagonal of the covariance matrix (see Section IV D for more details)
and ΔðsimÞ ¼ dsim − dDM, where dDM is the value of the correlation function or the x-cut statistic computed using the dark matter-only
power spectrum and dsim is the value when baryonic feedback is included. Grey shaded regions denote scales which are excluded from
our likelihood analysis because baryonic modeling uncertainties exceed 5% of the constraining power of the survey (this is formalized in
Sec. VI B). Because the baryonic modeling uncertainty is concentrated at small scales in the lowest redshift bin, fewer data points must
be cut when using xij�ðθÞ.
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This is the configuration space analog of k-cut cosmic shear
[23] where we cut angular wave number l > kr to remove
sensitivity to small structure scales with wave numbers
greater than k.
One could choose the physical scale x to be some

fraction of r200 of a “typical” cluster. However, in this
paper, rather than removing sensitivity to some predefined
physical scale, x, we instead choose to cut scales where the

discrepancy between baryonic feedback models is large.
This is made precise in Sec. VI B.
In Fig. 2 we plot the theoretical correlation functions,

ξij�ðθÞ, and the x-cut cosmic shear statistics, xij�ðθÞ, for the
4 DESY1 tomographic bins. In the x-cut case, the majority
of the information lies in the tomographic autocorrelation
data points since the BNT transformation removes cross-
bin correlations by construction.

FIG. 3. Solid black curves denote θxij�ðθÞ and θξij�ðθÞ (normalized so that the max value is unity) computed using the full nonlinear
dark matter only power spectrum from HALOFIT. The orange curve denotes the 1-halo (nonlinear) matter power spectrum contributions
(computed using CAMB), while the blue curve give the 2-halo (linear) contributions. For the x-cut statistic the 2-halo contribution is
dominant down to smaller values of θ, compared to the correlation function case making it easier to separate (easy to model) linear and
(hard to model) nonlinear contributions. However, at present, baryonic feedback dominates modeling uncertainty at small scales [6].
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Wegenerate the functions xij�ðθÞ and ξij�ðθÞ (normalized so
that their max value is unity) using the darkmater onlymatter
power spectrum from HALOFIT. We also compute the same
functions using matter power spectra from four different
baryonic feedback scenarios (see Sec. V) and plot a measure
of difference between the baryonic and dark matter only
case relative to the survey error. Specifically we show
10ΔðsimÞ=σdata where σdata is the error on the data defined
as the square root of the diagonal of the covariance matrix
(see Sec. IV D for more details) and ΔðsimÞ is given by:

ΔðsimÞ ¼ dsim − dDM; ð24Þ

where dDM is the value of the correlation function or the x-cut
statistic computed using the darkmatter-only power spectrum
and dsim is the value when baryonic feedback is included.
Immediately it can be seen that in the x-cut case, the bias

between the baryonic and dark matter becomes concen-
trated in the lowest redshift bin autocorrelation at small
angles. Meanwhile the correlation function residuals are
large at small angles for every tomographic bin pair.
Because x-cut cosmic shear sorts information by physical
scale, fewer data points must be removed allowing us to
place tighter cosmological constraints, while remaining
robust to baryonic modeling uncertainties. This can be seen
by comparing the area of the grey shaded regions which
denote scales where baryonic modeling uncertainties
exceed 5% of the constraining power of the survey (this
is formalized in Sec. VI B).
In Fig. 3 we show the 1-halo (orange) and 2-halo (blue)

contributions for both ξij�ðθÞ and xij�ðθÞ. For the x-cut
statistic, the 2-halo contribution is dominant down to
smaller values of θ, making it easier to separate (easy to
model) linear and (hard to model) nonlinear contributions
than in the correlation function case.
We make our code to compute the BNT transform and an

x-cut CosmoSIS module available at [55].

D. x-cut galaxy-galaxy lensing

Information from the cross-correlation between fore-
ground galaxies and background shear can reduce the
impact of systematics and tighten parameter constraints.
The signal is called galaxy-galaxy lensing. The tangential
shear in the angular frame between the foreground and
background, γijt ðθÞ, is used as an estimator for the two-
point information. It is given by:

γijt ðθÞ ¼ ð1þmjÞ
Z

dll
2π

J2ðlθÞ
Z

dχ
qiδgð

lþ1=2
χ ; χÞqjðχÞ
χ2

× P

�
lþ 1=2

χ
; zðχÞ

�
; ð25Þ

where mj is the multiplicative shear bias, J2 is the
2nd-order Bessel function and

n̄ig ¼
Z

dznigðzÞ: ð26Þ

The clustering kernel, qiδgðk; χÞ, is defined by:

qiδgðk; χÞ ¼ biðk; zðχÞÞ n
i
gðzðχÞÞ
n̄ig

dz
dχ

; ð27Þ

and biðk; zðχÞÞ is the galaxy bias.
Since a lensing efficiency kernel, qj, appears only once

in the above expression, the appropriate BNT-reweighted
tangential shear estimator, xt, is

xikt ðθÞ ¼ γijt ðθÞðMTÞjk: ð28Þ

Similar expressions for galaxy-galaxy estimators in har-
monic space can be easily derived. One can then take
angular scale cut as before. We focus on the weak lensing
only case for the remainder of the paper.

E. x-cut cosmic shear covariances, likelihoods
and the likelihood sampling method

Computing a valid inverse covariance matrix, Ĉ−1, is one
of the main challenges when using any new statistic to
perform parameter inference with real data. Covariances
can be computed analytically, carefully accounting for the
super-sample covariance (SSC) and non-gaussian (NG)
terms or using forward simulations. The former approach is
theoretically demanding, while the second approach is
numerically expensive because a large number of simu-
lations are needed to compute an unbiased estimate of the
inverse covariance [56,57].
In the future the x-cut covariance could be computed

directly from the matter power spectrum and survey
geometry, but we now describe a method, which we refer
to as the likelihood sampling method, to sidestep these
usual approaches and rapidly generate a covariance matrix
for the x-cut cosmic shear statistic. The key idea is to
sample from the likelihood of the correlation functions,
which is known a priori. This is, in effect, an extremely
rapid way to generate mock simulations of the x-cut cosmic
shear statistic which can then be used to compute the
covariance matrix in the usual way.
This method makes two well motivated approximations:
(i) There already exists a valid estimate of the corre-

lation functions covariance, Ĉξ. This is true for most
surveys.

(ii) The likelihood of the correlation functions is
Gaussian. It was shown that at the level of precision
of a Stage IV cosmic shear experiment, assuming the
likelihood of the correlation functions is Gaussian,
leads to unbiased parameter constraints [58]. A
similar result for the unmasked lensing power
spectrum was shown in [59].
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Under these assumptions, the steps of the likelihood
sampling method are as follows:

(i) Generate mock realizations of ξ�ðθÞ − hξ�ðθÞi by
drawing samples from the normal distribution with
mean zero and covariance Ĉξ, so that:

ðξ�ðθÞ − hξ�ðθÞiÞ ∼N ð0; ĈξÞ: ð29Þ

(ii) Apply the BNT transformation to the samples:

½ξ�ðθÞ − hξ�ðθÞi� → Mðξ�ðθÞ − hξ�ðθÞiÞMT

¼ ½x�ðθÞ − hx�ðθÞi� ð30Þ

to generate mock realizations of the x-cut cosmic
shear statistic relative to its mean.

(iii) Then an estimate of the x-cut cosmic shear covari-
ance, Ĉx, is given by:

Ĉx ¼ h½x�ðθÞ − hx�ðθÞi�½x�ðθÞ − hx�ðθÞi�Ti ð31Þ

A similar method can be used to generate a k-cut cosmic
shear covariance matrix.
Since the x-cut cosmic shear statistic is just a set of linear

transformation of the correlation functions (potentially with
cut scales), its likelihood, Lx is also Gaussian and can be
written:

lnLxðpÞ ¼ −
1

2

X
a;b

½Da − TaðpÞ�Ĉ−1
x;ab½Db − TbðpÞ�; ð32Þ

where Da is the data vector composed of the observed x̂ij�
[see Eq. (34)], TaðpÞ is formed from the theoretical
prediction of xij� given parameters, p, and Ĉ−1

x;ab is the
inverse of the covariance matrix. Sampling from this
likelihood using common codes, such as EMCEE [60] or
MultiNest [61], allows us to infer cosmological parameters.

IV. DES YEAR 1 DATA AND COVARIANCE

A. Shape catalog

We use the DESY1 METACALIBRATION shear catalogs
[62], applying the same selection cuts as in D18. Shapes
were initially measured using NGMIX [63] before being self-
calibrated with METACALIBRATION. This catalog contains
approximately 26 million galaxies over 1321 deg2 with a
number density 5.5 galaxies per arcmin2 [6].
METACALIBRATION works by taking a noisy shear

estimator, applying artificial shears and remeasuring the
shape [64,65]. This gives the shear response, R, which is
used to find unbiased estimates of two-point correlation
functions [64]. While METACALIBRATION can deal with
most sources of bias, blending of galaxy induces a
multiplicative bias [62]. We account for this by taking

the same prior on the multiplicative biases, mj, suggested
in [62] and used in D18.

B. Photometric redshift catalog

We use the photometric redshift estimates and priors on
the redshift biases, Δzi, found in [66]. Photometric redshifts
(photo-zs) were estimated using the Bayesian photometric
redshift (BPZ) code calibrated on high photometric-reso-
lution images from the 30-band COSMOS survey field [67].
It is worth noting that [68,69] find that calibrating directly

on spectroscopic data, rather than the high-photometric
resolution COSMOS fields leads to lower estimates of S8
and hence a larger tension with the Planck measurements in
the S8 −Ωm plane. We choose to use the COSMOS-
calibrated photo-zs to maintain consistency with D18.

C. Data vector

The shear two-point correlation functions are defined
as the sum (or difference) of the tangential, γt, and
perpendicular, γ×, shear autocorrelations:

ξij� ¼ hγitγjti � hγi×γj×i: ð33Þ

In D18, the correlation functions were estimated from the
catalog by:

ξ̂ij�ðθÞ ¼
P

ab½êia;tðθÞêjb;tðθÞ � êia;×ðθÞêjb;×ðθÞ�
hRiihRji ; ð34Þ

where hRii is the average response over the bin (see [64] for
more details) and the sum is over all pairs of galaxies a, b.
In practice we use the publicly available DESY1 extended-
scales data vector [70] used in the D18 analysis with 20
bins between 2.5 and 250 arcmins.
An estimate for the x-cut cosmic shear statistic, x̂ij�, is

found by BNT-transforming the correlation function esti-
mator so that:

x̂ij�ðθÞ ¼ Mikξ̂kl�ðθÞðMTÞlj: ð35Þ

D. Covariance matrix

We use the publicly available DESY1 covariance matrix
used in D18. This is computed using a halo model approach
and details of the calculation are given in [71].
The corresponding correlation matrix2 is plotted at the

top of Figure 4. The matrix is sorted into four large block
matrices which give the autocorrelations, ðξþ; ξþÞ and
ðξ−; ξ−Þ, for the blocks along the main diagonal and the
cross-correlations ðξþ; ξ−Þ for the blocks off the diagonal.

2For covariance matrix, C, the correlation matrix is Cij=ffiffiffiffiffiffi
Cii

p ffiffiffiffiffiffiffi
Cjj

p
.
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Inside these blocks, sub-blocks are ordered to the right
(upward) by increasing redshift bin pair index ij with ij.
Angular scales increase to the right (upward) within
each block.
To validate the likelihood sampling method presented

in Sec. III E, we use it to recompute the correlation function
covariance matrix. Taking 106 samples from the likelihood at
the fiducial cosmology with the Python numpy.random.
mulitivariate_normal function, the covariance
matrix is recomputed in a few seconds. As a sanity check we
ensure that the matrix is semi-positive definite by confirming
the eigenvalues are all positive. The residuals between this
estimate and the public ξ-correlation matrix are shown in
middle column of Fig. 4. Typical residuals are less than
0.5%. The impact of these residuals in cosmological
parameter space is tested in Sec. VI A.
We also compute the x-cut covariance matrix directly

from the DESY1 covariance using the likelihood sampling
method. This takes slightly less than 3 minutes on a 2019
Macbook Pro. The computation time is dominated by
applying the BNT transformation to the correlation func-
tion realizations. The corresponding correlation matrix
is shown in the bottom row of Fig. 4. We note that inside
each tomographic bin block, the off-diagonal correlations
are small compared to the ξ-correlation matrix. This is
because the BNT transformation has sorted scales, as
intended. Given that the structure of the covariance matrix
has dramatically changed, the accuracy requirements on
the covariance matrix for upcoming surveys will also
change (see e.g., [72]). This must be investigated further
in the future.

V. BARYONIC PHYSICS

A. Baryonic physics modeling

We consider four baryonic feedback models from
four separate N-body simulations with different subgrid-
physics prescriptions. These are the OWLS simulation suite
with AGN feedback [73,74] (OWLS-AGN), the Eagle
simulation [75,76], the Illustris simulation [77] and the
MassiveBlack-II Simulation [78,79] (MB2). A detailed
summary of the physical assumptions, box size and
resolution of each simulation is given in [25].
For cosmological parameters, p, we compute the tem-

porally evolving matter power spectrum, Pðk; z;pÞ, as:

Pðk; z;pÞ ¼ PHalofitðk; z;pÞ
�
Psimðk; zÞ
PDMðk; zÞ

�
; ð36Þ

where PHalofitðk; z;pÞ is the prediction from HALOFIT and
Psimðk; zÞ=PDMðk; zÞ is the ratio between the power spec-
trum from full baryonic simulations and dark matter only
simulations, with matched initial conditions. We have
assumed that baryonic feedback is the same at each point
in cosmological parameter space. For our purposes this is a

FIG. 4. Top: the public DESY1 correlation matrix for ξij�ðθÞ.
The full ordering of the tomographic bin pairs, denoted by tick
marks on the axes, is (11), (12), (13), (14), (22), (23), (24) etc.
Middle: the residuals between the public correlation matrix and a
correlation matrix recomputed using the likelihood sampling
method presented in Sec. IV D. Typical residuals are less than
0.5%. Bottom: an x-cut cosmic shear correlation matrix com-
puted using the likelihood sampling method. The correlation
matrix becomes nearly block diagonal since the BNT reweighted
kernels have less overlap than before. This implies that dark
matter structure at different redshifts induces the signal breaking
the correlations between different tomographic bins.
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good assumption since the variation in baryonic feedback
over cosmological parameter space is expected to be
much smaller than between models. This can be seen by
comparing Fig. 2 of [80] with Fig. 5.
Making use of the publicly available data at [25,81],

we compute the ratios, Psimðk; zÞ=PDMðk; zÞ, at different
redshift slices. We use a bivariate spline to interpolate
between points in ðk; zÞ-space.
Using this procedure, the baryonic feedback is plotted in

Fig. 5. Weak lensing is primarily sensitive to scales in the
range 10−1 hMpc−1 ≤ k ≤ 10 hMpc−1, with peak sensi-
tivity near 1 hMpc−1 [9]. Over most of this range, baryonic
feedback suppresses structure but in some models, power
is enhanced by the radiative cooling of gas at very small
scales. Discrepancies between models can be as large as
∼20%, much larger than the percent-level requirements of
upcoming Stage IV surveys.

B. A note about amplitudes: σ8, S8, As and Ap

The variance of the linear overdensity field on R ¼
8 h−1Mpc scales, σ8, is defined as:

σ28 ¼
Z

dkPlinðkÞWðk; RÞ ð37Þ

where Plin is the linear power spectrum and

Wðk; RÞ ¼ 3k2

2π2ðkRÞ ½sinðkRÞ − kR cosðkRÞ�: ð38Þ

Hence σ8 is not a physical as the lensing two-point signal
is sensitive to the full nonlinear power spectrum Pðk; zÞ of
the Universe including baryonic feedback corrections.

FIG. 5. The ratio of the time evolving baryonic matter power spectrum, relative to the dark matter only case, for the four baryonic
feedback models consider in this work (see Sec. V for more details). We make the simplifying assumption that baryonic feedback is
independent of the cosmological model. This is well motivated since differences over parameter space are expected to be much smaller
than between models (see [80] Fig. 2). Weak lensing is primarily sensitive to scales in the range 10−1 hMpc−1 ≤ k ≤ 10 h Mpc−1, with
peak sensitivity near 1 hMpc−1 [9]. Baryonic feedback suppresses power over most of this range, but in some models it is increased by
the radiative cooling of gas at very small scales. There are occasional discrepancies of up to ∼20% between models.
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Since computing the variance of the nonlinear overdensity
field including baryonic corrections is a model dependent
quantity, one may wish to use the spectral amplitude, As as
the physical quantity instead of σ8 (or S8). Motivated
by the definition of S8, we also propose a new model
independent primordial amplitude parameter, Ap, which we
define as:

Ap ¼ AsðΩm=0.3Þ2: ð39Þ

This breaks the degeneracy between As and Ωm, and as we
show in the remaining sections, is also constrained by
cosmic shear. We plot our results in terms of S8, As and Ap

for the remainder of the paper.

VI. RESULTS

In this section we compare cosmological constraints
from x-cut cosmic shear and correlation function analyses.
The likelihood is sampled using MultiNest [61]. In all
cases we assume the same priors as in D18, except we
place a Gaussian prior on the Hubble parameter [50],
h0 ∼N ð0.7; 0.15Þ, centered approximately halfway
between local and high redshift measurements [82,83].
This prior choice ensures the background geometry does
not fluctuate over the chain so that x-cut shear method
removes sensitivity to the desired scales (see the discussion
in Sec. II). Cosmic shear in not particularly sensitive to h0,
and we check to ensure this does not impact the parameter
constraints presented in this work. The priors are summa-
rized in Table I for convenience.

A. Verification of the likelihood sampled covariance

To validate the covariance matrices generated with the
likelihood sampling method, we first perform likelihood
analyses using the public DESY 1 ξ-covariance, our
recomputed ξ-covariance and our derived x-cut cosmic
shear covariance, with no scale cuts on a simulated data
vector. To produce a synthetic correlation function data
vector, we draw a random sample fromN ð0; ĈξÞ, as in the
covariance calculation, before adding this to the theo-
retical expectation at our baseline cosmology. The x-cut
data vector is produced by taking the BNT transform
of the synthetic correlation function data vector. The
results are shown in Fig. 6. We find excellent agreement
between the three likelihood chains and we recover the
input cosmology confirming the fidelity of the computed
covariances.

B. Robustness to baryonic modeling uncertainty

Inaccurate models of baryonic physics can lead to
biased parameter estimates—even at the precision of
today’s experiments. To see this, we perform two correla-
tion function likelihood analyses of the DESY1 data,
without taking any scale cuts. In the first chain we use a
dark matter only power spectrum and in the second, we use
the Illustris baryonic feedback model. The resulting param-
eter constraints are shown in the top row of Fig. 7.
Although the two models give very similar constraints in
the amplitude parameter Ap, we find biases in ns and S8.
Despite being poorly constrained, ns is particularly affected
because baryonic feedback suppresses high k-modes more
than low k-modes, changing the inferred tilt of the matter
power spectrum.
This bias is typically avoided by taking conservative

angular scale cuts, but as we have argued this also removes
useful information. In D18, data points were excluded from
the analysis if the difference between a dark matter only
model and the OWLS-AGN model exceeded 2%.
Next we perform an x-cut cosmic shear analysis. This

time we conservatively remove data points where the
standard deviation between the four baryonic feedback
models, σsim, is less than 5% of the error on the data,
σdata, where σdata is computed by taking the square root of the
diagonal of the covariance matrix so that: σsim=σdata < 0.05,
corresponding to the grey shaded region in Fig. 2.
Parameter constraints inferred using a dark matter only

model and the Illustris feedback model are compared in
Fig. 7. Despite removing an extremely limited number of
data points, the x-cut cosmic shear technique removes the
majority of the bias between the Illustrius and dark matter
only ns and S8 constraints. The remaining bias is due to the
fact that cut scales were chosen by considering 4 baryonic
feedback models, not just Illustrius. Given that of the
14 baryonic feedback models consider in [25], the Illustris
model is by far the most extreme, with the largest

TABLE I. The parameter ranges and priors used in all like-
lihood analyses. These choices match D18 exactly except we
take a Gaussian prior on h0, as in [50]. This ensures that the
background geometry does not change significantly over param-
eter space so that the x-cut method removes sensitivity to poorly
modeled scales, as intended.

Parameter Range Prior

Asð×109Þ [0.5, 5.0] Flat
Ωm [0.1, 0.9] Flat
Ωb [0.03, 0.07] Flat
Ωνh2 [0.0006, 0.01] Flat
h0 [55, 90] N ð0.7; 0.015Þ
ns [0.87, 1.07] Flat
m1—m4ð×102Þ [−10, 10] N ð1.2; 2.3Þ
Δz1ð×102Þ [−10, 10] N ð0.1; 1.6Þ
Δz2ð×102Þ [−10, 10] N ð−1.9; 1.3Þ
Δz3ð×102Þ [−10, 10] N ð0.9; 1.1Þ
Δz4ð×102Þ [−10, 10] N ð−1.8; 2.2Þ
A [−5.0, 5.0] Flat
η [−5.0, 5.0] Flat
z0 0.62 Fixed
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FIG. 6. A comparison of parameter constraints from a synthetic data realization using the DESY1 public covariance, a ξ-covariance
computed using the likelihood sampling method and an x-cut cosmic shear covariance with no scale cuts. The dotted cross indicates the
input cosmology of the synthetic data. There is excellent agreement between the three likelihood chains and the input cosmology is
recovered, confirming the accuracy of the computed covariances. Results are shown in the S8 − Ωm, As − Ωm and Ap − Ωm planes. We
have motivated this choice in Sec. V B, where Ap is also defined. All contour plots are produced with CHAINCONSUMER [84].

FIG. 7. Top: parameter constraints from a standard correlation function analysis using the full DESY1 cosmic shear data vector
with no scale cuts i.e. 20 angular bins between 2.5 and 250 arcmins. We generate the theory vectors using a dark matter only power
spectrum and with the Illustris baryonic feedback model. While there is no bias in the amplitude parameter Ap, we find discrepancies
in ns and S8. Bottom: an x-cut cosmic shear analysis. Data points are cut from the analysis when the modeling uncertainty exceeds
5% of the error in the data. This reduces bias in ns and S8. These constraints are robust to baryonic feedback uncertainties since of all
14 baryonic feedback models considered in [25], Illustris led to the most suppression in power (usually by more than 10% in the
range 10−1 hMpc−1 ≤ k ≤ 10 hMpc−1).
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suppression in power, the bias using other baryonic feed-
back models will be much smaller.
We take the dark matter only x-cut analysis as our

fiducial case. In the next section we compare these results
to the D18 constraints and a correlation function analysis
with the same scale cut criterion as before.

C. Parameter constraints

In Fig. 8 we compare our fiducial x-cut cosmic shear and
correlation function parameter constraints. In both cases we
have used the criterion from the last section, and cut all
scales where the standard deviation of the data point over
the four baryonic feedback models exceeds 5% of the error

(estimated from the covariance). The resulting confidence
regions are very similar, except in S8. Here the x-cut cosmic
shear constraints are shifted down by ∼1σ and the sym-
metric error is 32% smaller. This is driven by the inclusion
of small angular scales which must be cut from the
correlation function analysis. It is worth remembering that
while this is a very modest improvement in constraining
power, this is expected to improve in future surveys as x-cut
cosmic shear works better relative to correlation functions
for deep surveys, with a large number of tomographic bins
and precise photo-z’s.
In Fig. 9 we plot our fiducial x-cut constraints against the

D18 results and the Planck Legacy [TT;TE;EEþ lowEþ
baryonic acoustic oscillations ðBAOÞ] confidence regions

FIG. 8. A comparison of the ξ and x-cut 68% and 95% confidence limits. In both cases scales are cut when the standard deviation of
the data point over the four baryonic feedback models considered in this work exceed 5% of the error, estimated from the covariance.
The main difference is the discrepancy in S8. This is driven by the inclusion of small angular scales which must be excluded from the
correlation function analysis because of baryonic modeling uncertainty. The symmetric error on S8 is reduced by 32% when using x-cut
cosmic shear. Since x-cut cosmic shear performs best for deep surveys, with a large number of tomographic bins and precise photo-z’s,
we expect the relative difference in constraining power between the two methods to become larger in future surveys.

FIG. 9. A comparison of the x-cut cosmic shear constraints against the D18 correlation function fiducial constraints, and the Planck
Legacy constraints. Since the x-cut analysis takes a different prior on h0 and uses a different angular scale cut criterion, the reader should
refer to Fig. 8 to make a fair comparison between correlation functions and x-cut cosmic shear. Driven by the inclusion of small angular
scales in the x-cut cosmic shear analysis, the tension with Planck increases to 2.6σ. It is interesting to note that there is no tension in the
primordial amplitudes As and Ap, so that the S8 tension must be induced through degeneracy with other parameters affecting structure
growth in the late Universe.
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[83]. x-cut cosmic shear places noticeably tighter con-
straints on all parameters and the symmetric error on S8 is
reduced by 9%. As we have shown, these results are
robust to baryonic modeling uncertainty. Driven by the
inclusion of small angular scales in the x-cut cosmic shear
analysis, the tension with Planck increases to 2.6σ. This is
similar to the COSEBI constraints presented in [20] which
also includes information from small angular scales while

remaining robust to baryons. It is interesting to note that
there is no tension in the primordial amplitudes As and Ap,
so that the S8 tension must be induced through degeneracies
with other parameters affecting structure growth in the
late Universe.
A summary of the parameter constraints discussed in this

section are given in Table II and the fiducial x-cut analysis
cosmological parameter constraints are shown in Fig. 10.

FIG. 10. Cosmological parameter constraints from the fiducial x-cut analysis, after marginalizing over the redshift biases, Δzi, and the
multiplicative biases, mi.

TABLE II. Final parameter constraints. S8 is computed using the dark matter only power spectrum from HALOFIT. All error bars in this
paper are computed using CHAINCONSUMER with no kernel density estimation (KDE). Instances where CHAINCONSUMER fails to
compute errors are indicated with an NC. Legacy results are displayed below the dividing line at the middle of the table.

Model S8 Ωm As ð×109Þ Ap ð×109Þ
x-cut 0.737þ0.022

−0.029 0.290þ0.054
−0.044 ð21.5þ9.1

−7.3Þ × 10−10 ð22.4þ4.6
−3.3 Þ × 10−10

ξ new cuts 0.802þ0.020
−0.048 0.288þ0.028

−0.059 ð26.9þ9.3
−11.2Þ × 10−10 NC

ξ DES cuts 0.781þ0.028
−0.027 0.255þ0.070

−0.035 NC ð20.7þ6.4
−4.7 Þ × 10−10

Planckþ BAO 0.831þ0.013
−0.012 ð315.9þ6.3

−8.4 Þ × 10−3 ð210.1þ2.8
−3.3Þ × 10−11 ð23.1� 1.0Þ × 10−10
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VII. CONCLUSIONS AND FUTURE PROSPECTS

We have presented a new method called x-cut cosmic
shear. This technique optimally removes sensitivity to small
poorly modeled scales and is the configuration space
analog of k-cut cosmic shear [23].
We show how to compute the x-cut covariancematrix from

a correlation function covariance matrix in a few minutes
on a single CPU. This method could be used to compute
a k-cut covariance matrix from a Cl covariance matrix.
Using our derived covariance matrix, we perform an

x-cut cosmic shear likelihood analysis of the DESY1 shear
data. Since the information has been sorted by scale, we
take more aggressive cuts than would be possible in a
correlation function analysis, tightening constraints on S8
relative to the correlation function analysis. By comparing
parameter constraints found using an extreme baryonic
physics model to the dark matter only case, we ensure our
results are robust to baryonic modeling uncertainties.
The tension with Planck and BAO measurements in S8

increases to 2.6σ. This is driven by the inclusion of data at
small angular scales but could be due to previously unex-
plored systematics. It is worth noting that the photometric
redshifts in this analysis are calibrated on 30 photometric
band COSMOS data and previous studies find that the
tension with Planck increases if the photo-zs are calibrated
on spectroscopic data [68,69].
As photometric redshift estimation and the number of

tomographic bins increases, the performance of the method
will actually improve. This is because the BNT reweighted
lensing efficiency kernels, q̃iðχÞ, will have less overlap.
In future surveys, efforts should be made to estimate, ξ�ðθÞ
down to very small angular scales. x-cut cosmic shear will
enable the extraction of useful information from these scales.
Even after the BNT transformation, constraining power

is degraded by the scale cut. This transformation just makes
the cut less suboptimal than a traditional Cl or ξ� analysis.
For this reason it remains important to model the baryonic
physics as accurately as possible.
Calibrating the baryonic feedback models using external

observations [27,28] is a promising approach. But ulti-
mately, some combination of baryonic feedback mitigation
strategies (see e.g., [14,24–26]), improved modeling and
x=k-cut cosmic shear will likely be warranted.
Beyond helping alleviate baryonic modeling uncertain-

ties, x-cut cosmic shear will help constrain theories of
modified gravity. Although it may be computationally
infeasible to emulate the matter power spectrum at per-
cent-level accuracy down k ∼ 10 hMpc−1, for all theories,
our method ensures that information lost to cut scales will
at least be minimal.
Compared to correlation functions, the x-cut cosmic

shear method (and x-cut cosmic shear galaxy-galaxy
lensing in 3 × 2-point analyses) has multiple advantages.
We have shown this comes at virtually no additional
computational cost—easily slotting into existing pipelines.

For these reasons we advocate for the use of x-cut cosmic
shear in upcoming surveys.

The key parts of our code are made publicly available
https://github.com/pltaylor16/x-cut.
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