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We test a model associated with the Einstein gravity modified by using the linear Nash perturbations of
the background metric. By means of a Markov chain Monte Carlo (MCMC) modeling, we combine the
recent Dark Energy Survey (DES Y1) with the baryon acoustic oscillations (BAO) measurements and a
larger datasets of “Gold 2018” growth data, the Planck 2018=ΛCDM parameters on the cosmic microwave
background (CMB), the Pantheon Supernovae type Ia and the Hubble parameter data with redshift ranging
from 0.01 < z < 2.3 to derive the related constraints on the model parameters. We use the Jeffreys’ scale to
perform the Akaike information criterion (AIC) to ascertain the statistical viability of the model in
comparison with the standard ΛCDM model. We find a mild reduction of the σ8 discrepancy between the
best-fit values of growth-rate amplitude factor and the matter content ðσ8 − ΩmÞ of the observations from
CMB and large scale structure (LSS) probes. Due to the degeneracy of the model parameters, this situation
may be improved. Oppositely, in the ΛCDM context, the situation is aggravated. For the considered large
dataset, the discrepancy of best-fit values persists in both ðσ8 − ΩmÞ and ðh − ΩmÞ planes and reinforces
the mismatch of the Hubble parameter in CMB and BAO probes.
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I. INTRODUCTION

In the face of the great challenges of gravitation, the
possibility that the Universe might be embedded in extra
dimensions reveals an interesting direction to follow. In
particular, in a search of understanding the why of gravity is
so weak in comparison with the other gauge fundamental
interactions, the idea of extra dimensions criticizes the
Planck regime that represents a very unpleasant combina-
tion of Newtonian gravity, special relativity and quantum
mechanics. In the Newtonian context, gravity corresponds
to the weak gravitational limit of general relativity theory
(GR) and some indications tell that it holds up to 10−3 cm,
with strong hints that it breaks down at 10−4 cm sub-
millimeter scale [1–5]. In spite of these theoretical and
experimental objections, the Planck regime is still regarded
as an unshakable character of physical reality. In 1998, a
new objection was risen by the seminal works of Arkani-
Hamed, Dvali and Dimopolous (ADD) with the extra-
dimensional ADDmodel [6], stating that the Planck regime
lacks experimental support, i.e., it is not a verifiable
hypothesis. This statement also applies to GR, to string
theory loop quantum gravity, and many other models of
quantum gravity. It seems that the simplest and most
consistent way out of this dilemma is to change the

Planck scale itself by modifying the Newtonian gravita-
tional constant G in the rhs of Einstein’s equations.
Another seemingly unshakable landmark of standard

gravitational physics is the Riemann geometry introduced
in 1854. Let the tangent vectors be U and V, the Riemann
curvature was defined by the linear transformation
RðU;VÞW ¼ ½∇U;∇V �W −∇½U;V�W, where ½U;V� is the
Lie brackets of the aforementioned tangent vectors. It
characterizes the curvature of a manifold as compared
with a flat manifold defined by RðU;VÞ ¼ 0. However, the
definition RðU;VÞ ¼ 0 is ambiguous and quoted Riemann
himself as saying “arbitrary cylindrical or conical surfaces
(manifolds) count as equivalent to a plane” [7,8].
Fortunately, such ambiguity does not exist in GR

because the Minkowski space-time is truly flat (i.e., a
plane), as a consequence of the Poincaré symmetry. The
importance of this stems from the fact that in GR the
eigenvalues of the curvature tensor are the observables of
the gravitational field, as compared with the Minkowski flat
geometry. More than two decades ago, such comfortable
situation changed, when observational evidences showed
that there is a nonzero cosmological constant Λ. In
cosmology, the simplest proposal for the explanation of
the current accelerated regime is the well-known dark
energy hypothesis, consisting in a sort of cosmological
energy with negative pressure that speeds up the Universe.
This is one of the pillars of the ΛCDM model regarded as
the concordance cosmological model that considerably fits*abecapistrano@gmail.com
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well the most of the recent observations [9,10]. Even
though its success, the lack of a fundamental understanding
of its basic components, i.e, the cosmological constant Λ
and the cold dark matter (CDM) constitute one of the
cornerstone problems of this model [11–17].
To propose a different direction, the modified gravity by

the extra-dimension corrections gives a different landscape
of interesting possibilities. Most of these models have been
Kaluza-Klein or/and string inspired, such as, for instance,
the seminal works of the Arkani-Hamed, Dvali and
Dimopolous (ADD) model [6], the Randall-Sundrum
model [18,19] and the Dvali-Gabadadze-Porrati (DPG)
model [20]. For instance, in the original DGP model, the
space-time is a flat (4þ 1)-dimensional flat Minkowski and
only gravity accesses the extra dimensions in the bulk
space. The matter is trapped in the embedded space-time,
the braneworld. The gravity is induced in a way that the
DGP action relies on the addition of a five-dimensional
bulk to a four-dimensional Einstein-Hilbert action. In
particular, this scenario attracted much attention due to
the possibilities to deal with, e.g., the accelerated expansion
of the Universe and the hierarchy problem of fundamental
interactions. In the self-accelerating branch, also known as
sDGP, the DPG model is not coupled to any dark energy
component but in the linearized theory, the model presents
critical instabilities. In another direction, the normal branch
(nDGP) associates the braneworld dynamics with a dark
energy component to fit the observations with an advantage
that the resulting models are ghost-free [21–25].
All in all, in those models and variants, the embedding of

geometries is not properly developed. It is commonly fixed
to a boundary in most models or particular conditions are
needed to obtain their dynamics. On the other hand, several
authors have been exploring the embedding of space-times
as a promising mathematical structure for a physical theory
[26–39]. Differently from ΛCDM and DPG models, the
innovation of our proposal resides in a fully geometric
mechanism based on the very foundations of differential
geometry with a revival interest of curvature’s concepts and
on the necessity of a profound discussion of these founda-
tions to the construction of a more general physical theory.
The current problems posed by the contemporary cosmology
are also related to the ΛCDM paradigm as a standard
explanation for the accelerated expansion of the Universe.
On the other hand, the presence of the cosmological constant
Λ per se is an impediment to the existence of Minkowski
space-time as a solution of Einstein’s equations, representing
the unique ground state of the gravitational field, favoring the
de Sitter ground state. In addition, now we are faced to this
ground state ambiguity that has its origin in the definition of
the Riemann curvature. In a search of solving this ambiguity,
we look at the conditions for the existence of the embedding
of the space-time itself. The Nash-Greene [40,41] theorem is
used to guarantee the geometrical stability as a solution of
the embedding integrability conditions denoted by the

Gauss, Codazzi and Ricci equations. The bulk acts as a
reference geometry for the embedding. Hence, the dynamics
is induced by the Nash-Greene perturbations of embedded
space-time metric. The extrinsic curvature acts as a normal
component for the gravitational field that accesses extra
dimensions. This procedure is valid for any D dimensions
[27–29]. For a physical model, this may lead to the necessary
gravitational (amplified) sign of the classical Einstein’s
gravity; nonetheless a quantum approach of this model
requires further development [29].
In this paper, we use the Nash-Greene embedding

theorem [27–29,32–39] to develop a model under cosmo-
logical perturbations. We test the model by using a large
pack of data to investigate the observed discrepancy of the
best-fit points on the σ8 contours revealed by the incom-
patibility of the data inferred from Planck CMB radiation
and the large scale structure (LSS) observations. The σ8
quantity measures the root-mean-square matter fluctuation
within an enclosed mass of a sphere of radius R ∼
8h Mpc−1 [42]. To constrain the cosmological parameters,
we perform the Markov chain Monte Carlo (MCMC)
sample technique as a tool for analyzing fit-to-data from
a publicly available code [43–45] written in Wolfram
Mathematica™ software. The joint likelihood is performed
from the latest data on cosmic microwave background
(CMB) radiation from Planck 2018 probe [10] compilation
of the (TT;TE;EEþ lowEþ lensing) spectra within the
68% intervals for the best-fit parameters, the largest dataset
of Pantheon SNIa [46] with redshift ranging from
0.01 < z < 2.3, the Hubble parameter as a function of
redshift HðzÞ [47–52], the baryonic acoustic oscillations
(BAO) and growth rate from using the data points of SDSS
[53–55], 6dFGS [56], IRAS [57,58], 2MASS [57,59],
2dFGRS [60], GAMA [61], BOSS [62], WiggleZ [63],
Vipers [64], FastSound [65], BOSS Q [66], the 2018 SDSS-
IV [67–69] and the recent Dark Energy Survey one-year
(DES Y1) based on galaxy clustering and weak gravita-
tional lensing observations [70,71].
The paper is organized as follows: in the second section,

we review the theoretical framework and its resulting
cosmological model. In the third section, the main per-
turbed equations and the resulting growth equation are
presented in a conformal Newtonian frame. The fourth
section presents the outcomes and discussions from the
comparisonof the presentmodelwithΛCDMof their cosmic
growth expansion. The MCMC chain results are classified
by the Akaike information criterion (AIC) [72] using the
Jeffreys’ scale for model selection. In the final section, we
concludewith our remarks and future prospects. Concerning
notation, we adopt the Landau timelike convention
ð− − −þÞ for the signature of the four-dimensional
embedded metric and speed of light c ¼ 1. Capital Latin
indices run from 1 to 5. Small case Latin indices refer to the
only one extra dimension considered. All Greek indices refer
to the embedded space-time counting from 1 to 4.
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II. GEOMETRICAL ASPECTS

We start with the definition of the gravitational action in
a D-dimensional ambient space (bulk) that has the form

S ¼ −
1

2κ2D

Z ffiffiffiffiffiffi
jGj

p
RdDx −

Z ffiffiffiffiffiffi
jGj

p
L�
mdDx; ð1Þ

where κ2D is the fundamental energy scale on the embedded
space, R denotes de Ricci scalar of the bulk and L�

m is the
confined matter Lagrangian. Hence, the variation of
Einstein-Hilbert action in Eq. (1) with respect to the bulk
metric GAB leads to the Einstein equations for the bulk

RAB −
1

2
GAB ¼ α⋆T AB; ð2Þ

where α⋆ is energy scale parameter and T AB is the energy-
momentum tensor for the bulk [28,29,32].
Let us consider a Riemannian manifold V4 with a

nonperturbed metric ḡμν being locally and isometrically
embedded in an n-dimensional Riemannian manifold Vn
given by a differentiable and regular map X∶V4 → Vn
satisfying the embedding equations [40,41]

XA
;μXB

;νGAB ¼ ḡμν; ð3Þ

XA
;μη̄

B
aGAB ¼ 0; ð4Þ

η̄Aa η̄
B
bGAB ¼ ḡab; ð5Þ

where GAB denotes the metric components of Vn in
arbitrary coordinates and η̄ denotes a nonperturbed unit
vector field orthogonal to V4. This set of equations
represents the isometry condition Eq. (3), in Eq. (4) sets
the orthogonality between the embedding coordinates X
and η̄, and also, in Eq. (5), one has the vector normalization
η̄ and ḡab ¼ ϵaδab with ϵa ¼ �1 that the signs represent the
signatures of the extra dimensions. In this particular case,
we have a model with only one extra dimension. Hence, the
integration of the system of equations [Eqs. (3)–(5)] sets the
embedding map X .
The nonperturbed extrinsic curvature k̄μν of V4 is defined

as the projection of the variation of η̄ onto the tangent plane,

k̄μν ¼ −XA
;μη̄

B
;νGAB ¼ XA

;μνη̄
BGAB; ð6Þ

where the comma denotes the ordinary derivative.
To obtain the embedded four-dimensional equations in a

five-dimensional space-time, one can take Eq. (2) written
in the Gaussian frame embedding veilbein fXA

μ ; η̄Aag.
This reference frame is composed by a regular and differ-
entiable coordinate fXA

μg and a unitary normal vector fη̄Aag.
Accordingly, they define the basis of the embedded
geometry and one can obtain the embedded four-
dimensional field equations for the background,

Rμν −
1

2
Rgμν þ Q̄μν ¼ 8πGT̄μν; ð7Þ

k̄ρμ;ρ − h;μ ¼ 0; ð8Þ

where G denotes the Newtonian gravitational constant. In
Eq. (8) we have the trace of Codazzi equations and the
mean Gaussian curvature is denoted by h ¼ ḡμνk̄μν and
h2 ¼ h:h. The semicolon denotes the ordinary covariant
derivative. The background energy-momentum tensor is
denoted by T̄μν. The D-dimensional case was discussed in
former works as in Refs. [27–32,39].

A. Background equations and results

The Friedmann-Lemaître-Robertson-Walker (FLRW)
metric in coordinates ðr; θ;ϕ; tÞ gives the evolution of an
embedded four-dimensional cosmology as

ds2 ¼ dt2 − a2½dr2 þ f2κðrÞðdθ2 þ sin2 θdφ2Þ�; ð9Þ
where a≡ aðtÞ is the scale expansion factor and
fðrÞκ ¼ sin r, r,sinh r. Moreover, κ corresponds to spatial
curvature ð1; 0;−1Þ. In this paper, we consider a flat universe
with κ ¼ 0 in accordance with recent observations [10].
The four-dimensional nonperturbed energy-momentum

tensor of a perfect fluid T̄μν is defined in comoving
coordinates as

T̄μν ¼ ðp̄þ ρ̄ÞUμUν þ p̄ḡμν; Uμ ¼ δ4μ; ð10Þ
where Uμ is the comoving four-velocity and the related
conservation equation is given by

ρ̄þ 3Hðρ̄þ p̄Þ ¼ 0; ð11Þ

where ρ and p denote nonperturbed matter density and
pressure, respectively. The Hubble parameter is defined as
usual in terms of the expansion factor a as H ≡HðtÞ ¼ _a

a.
The dot symbol denotes the ordinary time derivative. It is
important to stress that the related matter gauge interactions
are confined in the embedded four-dimensional space-time
[73–75]. As a result of the embedding, the nonperturbed
deformation tensor Q̄μν is an entirely geometrical term
given by

Q̄μν ¼ ḡρσ k̄μρk̄νσ − k̄μνh −
1

2
ðK2 − h2Þḡμν; ð12Þ

where the term K2 ¼ k̄μνk̄μν is the Gaussian curvature. It is
important to note that the deformation tensor Qμν is
conserved in such a way:

Q̄μν;ν ¼ 0: ð13Þ

From the spatially flat FLRWmetric in Eq. (9), we obtain
a solution of Eq. (8) with the following components:
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k̄ij ¼
b
a2

ḡij; i; j ¼ 1; 2; 3; k̄44 ¼
−1
_a

d
dt

b
a
;

where a is the usual expansion parameter and bðtÞ≡ b ¼
k11 is the bending function. Analogously to the definition
of the Hubble parameterH, we define the extrinsic function
B≡ BðtÞ ¼ _b=b. From Ref. [32], we summarize the back-
ground quantities by direct calculation of Eqs. (7) and (8) as

k̄44 ¼ −
b
a2

�
B
H

− 1

�
; ð14Þ

K2 ¼ b2

a4

�
B2

H2
− 2

B
H

þ 4

�
; h ¼ b

a2

�
B
H

þ 2

�
ð15Þ

Q̄ij ¼
b2

a4

�
2
B
H

− 1

�
ḡij; Q̄44 ¼ −

3b2

a4
; ð16Þ

Q̄ ¼ −ðK2 − h2Þ ¼ 6b2

a4
B
H
; ð17Þ

where in Eq. (16), we have denoted i; j ¼ 1…3, with no
sum on indices. Thus, the bending function bðtÞ can be
written as

bðtÞ ¼ α0aβ0 ; ð18Þ

where α0 and β0 denote integration constants. With
additional information gained by means of calculating
Q̄ij;i ¼ 0, assuming B=H ¼ constant, and using the
FLRW coordinates, one obtains the Friedman equation
modified by the extrinsic curvature as

�
_a
a

�
2

¼ 8

3
πGρ̄þ α0a2β0−4: ð19Þ

When α0 → 0, the GR limit is obtained with the repro-
duction of the standard first Friedmann equation. The
ΛCDM limit is also obtained with α0 → 0 plus the
consideration of the vacuum energy density ρΛ in the total
energy density. In this study, we consider the total energy
density ρ̄ is given by ρ̄ ¼ ρ̄mat þ ρ̄rad, where we denote the
matter ρmat and radiation energy ρrad densities, respectively.
Based on previous cosmography tests [32,34–36,38], the
parameter β0 measures the range of the magnitude of the
deceleration parameter qðzÞ in function of the redshift z,
where the standard relation with the expansion parameter
a ¼ 1

1þz applies. Thus, the resulting model is defined by
Hubble evolution HðzÞ as

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmðzÞ þ ΩradðzÞ þ ΩextðzÞ

p
; ð20Þ

whereHðzÞ is theHubble parameter in terms of redshift z and
H0 is the current value of the Hubble constant. The matter
density parameter is denoted by ΩmðzÞ ¼ Ωm0ð1þ zÞ3,

ΩradðzÞ ¼ Ωrad0ð1þ zÞ4 with Ωrad0 ¼ Ωm0zeq and the term
ΩextðzÞ ¼ Ωext0ð1þ zÞ4−2β0 stands for the density parameter
associated with the extrinsic curvature. The subscript “0”
indicates the present value of any quantity. The equivalence
number for the expansion factor aeq given by

aeq ¼
Ωγ þ Ων

Ωm0

; ð21Þ

where Ωγ is the photon density distribution given by

Ωγ ¼
π2

30
gγ

T4

ρcr
; ð22Þ

where the critical density ρcr ¼ 8.098 × 10−11h2 eV4 and
the CMB temperature is adopted for the value Tcmb ¼
2.7255K, with one Kelvin K ¼ 8.621738 × 10−5 eV, and
the factor gγ ¼ 2. The neutrino species are denoted by Ων:

Ων ¼ Neff
7

8

�
4

11

�
4=3

Ωγ; ð23Þ

where Neff is the effective number of neutrinos and the
adopted value is Neff ¼ 3.046.
The current extrinsic contribution Ωext0 is given by the

normalization condition for redshift at z ¼ 0 that results in

Ω0
ext ¼ ð1 − Ωm0 −Ωrad0Þ: ð24Þ

Hence, we can write the dimensionless Hubble parameter
EðzÞ for a flat universe as

E2ðzÞ ¼ Ωm0ð1þ zÞ3 þ Ωrad0ð1þ zÞ4
þ ð1 −Ωm0 −Ωrad0Þð1þ zÞ4−2β0 : ð25Þ

The ΛCDM analogy is obtained with setting β0 ¼ 2.
Hereon, the present model is referred to as β-model only
to facilitate the referencing.

III. PERTURBED EQUATIONS IN CONFORMAL
NEWTONIAN GAUGE

In longitudinal conformal Newtonian gauge, the metric
in Eq. (9) is given by

ds2 ¼ a2½ð1þ 2ΦÞdη2 − ð1 − 2ΨÞδijdxidxj�; ð26Þ

where Φ ¼ Φðx⃗; ηÞ and Ψ ¼ Ψðx⃗; ηÞ denotes the
Newtonian potential and the Newtonian curvature, respec-
tively. The conformal time η is related with physical time
as dt ¼ aðηÞdη.
The perturbed field equations of Eqs. (7) and (8) can be

written as

δGμν þ δQμν ¼ 8πGδTμν; ð27Þ
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δkμν;ρ ¼ δkμρ;ν: ð28Þ

Hereon the background quantities are represented by the
tilde symbol.
To obtain the explicit form for perturbed field equations

in Eqs. (27) and (28), we need to determine both perturbed
metric δgμν and perturbed extrinsic curvature δkμν. Using
the main result of the Nash-Greene theorem [40,41] that
warrants the perturbations of the embedded space-time
through a smoothing differentiable process and the bulk
stability, one can use the relation

δgμν ¼ −2k̄μνδy; ð29Þ

where δy denotes an infinitesimal displacement of the extra
dimension y in the bulk space. It is important to point out
that the y variable is not considered in the line elements like
that of rigid embedding models [18–20] since it is implic-
itly applied in the perturbation process. To see how it
happens, consider a linear perturbation of a new geometry
gμν is given by gμν ¼ ḡμν þ δgμν that can be written as

gμν ¼ ḡμν − 2δyk̄μν; ð30Þ

and the related perturbed extrinsic curvature

kμν ¼ k̄μν − 2δyḡσρk̄μσ k̄νρ; ð31Þ

where we can identify δkμν ¼ −2δyḡσρk̄μσ k̄νρ. Using the
Nash relation δgμν ¼ −2k̄μνδy, we obtain

δkμν ¼ ḡσρk̄μσδgνρ: ð32Þ

From Eqs. (12) and (32), one obtains the perturbation of the
deformation tensor Qμν:

δQμν ¼ −
3

2
ðK2 − h2Þδgμν: ð33Þ

Like the nonperturbed conservation of Q̄μν in Eq. (13), the
perturbed δQμν is also independently conserved in a sense
that δQμν;ν ¼ 0. Accordingly, using the background rela-
tions in Eqs. (14)–(17), it is straightforward to determine
the components of δQμν:

δQij ¼ γ0a2β0−2Ψδij; ð34Þ

δQi4 ¼ 0; ð35Þ

δQ44 ¼ γ0a2β0−2Φδ44; ð36Þ

where we denote γ0 ¼ k0α0. The term k0 is an integration
constant and α0 is a constant originated from integrating the
bending function bðtÞ in Eq. (18).

As a preliminary study on cosmic perturbations of the
present model, we do not consider an anisotropic fluid-
pressure contribution to analyze a clean gravitational sign
originated from the extrinsic part. Hence, likewise GR, for a
pressureless and null anisotropic matter stresses, we obtain
the simplest condition for perturbations for the potentials in
such an equality Ψ ¼ Φ. As a result, one obtains the
following set of equations in the wave number k-space of
Fourier modes simply as

k2Φkþ3HðΦ0
kþΦkHÞ¼−4πGa2δρkþ9γ0a2β0Φk; ð37Þ

Φ00
k þ 3HΦ0

k þ ðH2 þ 2H0ÞΦk ¼ 9γ0a2β0Φk;

where H≡ aH. In the aforementioned equations, when
γ0 → 0, the standard GR equations are restored. Moreover,
we obtain a relation of Φk and δm as

k2Φk ¼ −4πGeffa2ρ̄δm; ð38Þ

where Geff is the effective Newtonian constant and is
given by

Geffða; kÞ ¼
G

1 − γ0
k2 a

2β0
; ð39Þ

where G is the Newtonian gravitational constant.
The corresponding equation of evolution of the contrast

matter density δmðηÞ in conformal longitudinal Newtonian
frame can be written as

δ00m þHδ0m − 4πGeffa2ρ̄δm ¼ 0; ð40Þ

where the prime symbols denote derivatives with respect to
conformal time η. Alternatively, one obtains the contrast
matter density δmðaÞ in terms of the expansion factor aðtÞ as

δ̈mðaÞ þ
�
3

a
þ

_HðaÞ
HðaÞ

�
_δmðaÞ −

3Ωm0Geff=G
2ðH2ðaÞ=H2

0Þ
δmðaÞ ¼ 0;

ð41Þ

where the dot symbols denote derivatives with respect to
scale factor a.

IV. OBSERVATIONAL CONSTRAINTS:
ANALYSIS AND RESULTS

A. Statistical considerations on the data

In this section, we summarize the main statistical tools
used for analyzing the observational data on growth
fluctuations, CMB Planck 2018 data, BAO with additional
DES Y1 data and the large Pantheon SNIa. A complete set
and description of these formulas can be found in detail in
Refs. [43–45,76,77].
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1. Growth-rate fluctuations

The data on growth-rate fluctuations is used by working
with the σ8 parameter that measures the growth of rms
fluctuations on the 8h−1 Mpc scale. This is performed by
the definition of the quantity

fσ8ðaÞ≡ fðaÞ σ8ðaÞ; ð42Þ

where fðaÞ ¼ ln δ
ln a is the growth rate and the growth factor

δðaÞ is given by Eq. (41). To compatibilize the data
dependence from the fiducial cosmology and another
cosmological survey, it is necessary to rescale the
growth-rate data by the ratio rðzÞ of the Hubble parameter
HðzÞ and the angular distance dAðzÞ by the quantity

rðzÞ ¼ HðzÞdAðzÞ
HfðzÞDfAðzÞ

; ð43Þ

where the subscript “f” corresponds to some quantity of
fiducial cosmology. Accordingly, the angular distance
dAðzÞ is defined as

dAðzÞ ¼
c

ð1þ zÞ
Z

0

z

1

Hðz0Þ dz
0: ð44Þ

Likewise, the regulation of the χ2 statistics is also necessary
that relies on a general definition

χ2ðΩm0; w; β0; γ0; σ8Þ ¼ ViC−1
ij Vj; ð45Þ

where Vi ≡ fσ8;i − rðziÞfσ8ðzi;Ωm0; w; β0; γ0; σ8Þ denotes
a set of vectors that go up to ith data points at redshift zi for
each i ¼ 1…N. N is the total number of data points of a
related collection of data. The set of fσ8;i data points comes
from theoretical predictions [43]. The set of C−1

ij denotes
the inverse covariance matrix. A final important correction
concerns the necessity to disentangle the data points related
to the WiggleZ dark energy survey which are at first
correlated. Then, the covariant matrix Cij [63] is given by

Cwigglez
ij ¼ 10−3

0
BB@

6.400 2.570 0.000

2.570 3.969 2.540

0.000 2.540 5.184

1
CCA; ð46Þ

and the resulting total matrix Ctot
ij

Ctot
ij ¼ 10−3

0
BB@

σ21 0 0 � � �
0 Cwigglez

ij 0 � � �
0 0 � � � σ2N

1
CCA; ð47Þ

where the set of σ2 ’s denotes the N variances.

2. CMB radiation from Planck 2018 data

For the CMB radiation data, we used the Planck 2018
released [10] with χ2 statistics:

χ2CMB ¼ XT
Planck2018C

−1
CMBXPlanck2018; ð48Þ

where the covariant matrix for the parameters for
R; lA;Ωb0h2 is given by

XPlankc2018 ¼

0
B@

R − 1.7502

lA − 301.471

ωb − 0.02236

1
CA; ð49Þ

where ωb ¼ Ωb0h2. The two shift parameters R and lA are
defined as the scale distance and acoustic scale,

R ¼
ffiffiffiffiffiffiffiffiffi
Ωm0

p
c

dAðzCMBÞð1þ zCMBÞ; ð50Þ

lA ¼ πdAðzCMBÞð1þ zCMBÞ
rsðzCMBÞ

; ð51Þ

where the angular distance dA is given by Eq. (44) and the
related redshift at recombination zCMB is given by

zCMB ¼ 1048½1þ 0.00124ðΩbh2Þ−0.738�½1þ g1ðΩm0h2Þg2 �;
ð52Þ

and the parameters g1, g2 are defined accordingly, as

g1 ¼
0.0783ðΩbh2Þ−0.238
1þ 39.5ðΩbh2Þ0.763

; g2 ¼
0.560

1þ 21.1ðΩbh2Þ1.81
:

ð53Þ

The comoving sound horizon rsðzÞ is given by

rsðzÞ ¼ c
Z

∞

z

csðz0Þ
Hðz0Þ dz

0; ð54Þ

and the related sound speed cs

csðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ R̄b=ð1þ zÞÞ
p ; ð55Þ

with R̄b ¼ 31500Ωb0h2ðTCMB=2.7KÞ−4. Moreover, the
inverse of the covariant matrix C−1

CMB for the parameters
for la; R;Ωb0h2 is given by C−1

CMB ¼ σiσjC, with σi ¼
ð0.0046; 0.090; 0.00015Þ for the normalized covariance
matrix given by

C ¼

0
B@

1.00 0.46 −0.66
0.46 1.00 −0.37
−0.66 −0.33 1.00

1
CA: ð56Þ
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3. BAO joint data

In a similar manner, we summarize some the useful
formulas to work with BAO from the set of probes on SDSS
[53–55], 6dFGS [56], IRAS [57,58], 2MASS [57,59],
2dFGRS [60], GAMA [61], BOSS [62], WiggleZ [63],
Vipers [64], FastSound [65], BOSS Q [66] and additional
points from the 2018 SDSS-IV [67–69].
We use the χ2 statistics for WiggleZ in a form

χ2WiggleZ ¼ ðĀobs − ĀthÞC−1
WiggleZðĀobs − ĀthÞT; ð57Þ

where Āobs ¼ ð0.447; 0.442; 0.424Þ refers to the data vec-
tors at z ¼ ð0.44; 0.60; 0.73Þ and the acoustic scale param-
eter Āth ¼ ðz; piÞ as defined in [78], is calculated as

Āth ¼ DVðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0H2

0

p
cz

; ð58Þ

and does not depend on a related dark energy model. The
dilation scale DV was defined by [78] and is a geometric
mean between the transverse and radial directions used to
distinguish the BAO features separately in angular and
radial line-of-sight directions since from galaxy redshift
surveys these features are mostly mixed up [79]. Then, the
dilation scale DV is given by the relation

DVðzÞ ¼
1

H0

�
ð1þ zÞ2dAðzÞ2

cz
EðzÞ

�
1=3

: ð59Þ

Moreover, the inverse of the covariant matrix C−1
WiggleZ is

C−1
WiggleZ ¼

0
B@

1040.3 −807.5 336.8

−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

1
CA: ð60Þ

Like the previous case, we adopt the same analysis on
SDSS data such as

χ2SDSS ¼ ðd̄obs − d̄thÞC−1
SDSSðd̄obs − d̄thÞT; ð61Þ

where d̄obs ¼ ð0.1905; 0.1097Þ refers to the data vectors
at z ¼ ð0.2; 0.35Þ. The quantity d̄th denotes a model-
independent quantity given by the ratio

d̄th ¼
rsðzdÞ
DVðzÞ

; ð62Þ

where the related comoving sound horizon rsðzÞ and
dilation scale DVðzÞ were given previously by Eqs. (54)
and (59), respectively. Such distance redshift relation is
important to constrain BAO measurements from galaxy
surveys as standard rulers. In addition, the drag redshift is
defined as

zdrag ¼
1291ðΩmh2Þ0.251

1þ 0.659ðΩmh2Þ0.828
½1þ b1ðΩmh2Þb2 �; ð63Þ

where b1 ¼ 0.313ðΩmh2Þ−0.419½1þ 0.607ðΩmh2Þ0.674� and
b2 ¼ 0.238ðΩmh2Þ0.223. It is important to point out that the
so-called drag epoch marks the photons and baryons
decoupling from the last scattering of CMB photons and
the related zdrag marks when the baryon-drag optical depth
equals unity. The inverse of the covariant matrix C−1

SDSS is
given by

C−1
SDSS ¼

�
30124 −17227
−17227 86977

�
: ð64Þ

For the DES Y1 data [70,71], the likelihood LDESðαÞ ∝
e−χ

2ðαÞ=2 is calculated directly from the angular scale dAðzÞ
and the comoving sound horizon rsðzÞ by the scale dilation
α-parameter that accounts for deviations from the fiducial
cosmology such as

α ¼ dAðzeffÞrfidðzdragÞ
dfidA ðzeffÞrðzdragÞ

; ð65Þ

where rðzdragÞfid ¼ 153.44 Mpc and for the Y1 measure-
ments, the effective redshift zeff ¼ 0.81 and dAðzeffÞ=
rðzdragÞ ¼ 10.75� 0.43 adding three data point numbers
to the overall BAO contribution. The total χ2BAO is obtained
from the sum of the individual χ2 of each dataset.

4. The Pantheon supernova type Ia data

We determine the theoretical distance modulus μthðzÞ to
obtain the constraints from SNIa given by

μthðzÞ ¼ 5 log10ðdLðzÞÞ þ μ0; ð66Þ

where μ0 ¼ 42.38 − 5 log10 h and h ¼ 0.672. The lumi-
nosity distance dL related to the Hubble expansion rate is
given by

dLðzjs; μ0Þ ¼ ð1þ zÞ
Z

z

0

du
EðujsÞ ; ð67Þ

where s denotes the free parameters of a model. We use the
prior for the density parameter of visible baryonic matter
Ωb0 ¼ 2.236=100h2. The χ2 statistics are used in a form

χ2SnIaðsjμ0Þ ¼
Xn
i¼1

½μth;iðs; μ0jziÞ − μobs;iðziÞ�
σ2μi

; ð68Þ

where n ¼ 1048 is the number of events of the Pantheon
SNIa data [46], the distance modulus obtained from
observations is denoted by μobs;iðziÞ, and σμi is the total
uncertainty of the observational data.
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B. Results and discussion

The methodology used in this paper relies on the Markov
chain Monte Carlo (MCMC) sample technique adapted
from the publicly available code of a modified

MetropolisHastings algorithm [44,45] to infer the param-
eter likelihoods. We perform our analysis using the joint
likelihood of kinematical probes on the CMB Planck 2018
data [10] of the (TT;TE;EEþ lowEþ lensing) spectra
within the 68% intervals of the best-fit parameters as
shown in Table I, the Pantheon SNIa [46] with redshift
ranging from 0.01 < z < 2.3, the Hubble parameter HðzÞ
as a function of redshift [47–52], BAO and growth-rate
compilation using data points of SDSS [53–55], 6dFGS
[56], IRAS [57,58], 2MASS [57,59], 2dFGRS [60],
GAMA [61], BOSS [62], WiggleZ [63], Vipers [64],
FastSound [65], BOSS Q [66], the SSSD-IV 2018 data
[67–69] and three more data points from the DES Y1
collaboration [70,71].
To apply our χ2-statistics, we extract the data points from

the Pantheon SNIa, CMB, BAO, Hubble parameter and
growth,with the amount of 1048, 3, 12, 36and25data points,
respectively, with a total of 1124 data points. In order to keep
the analysis on the subhorizon linear scale, we set the
minimum value of expansion parameter as amin ¼ 0.001
and k ¼ 300H0 ∼ 0.1h Mpc−1. We use the parameter vec-
tors for the β-model as fΩm0; 100Ωbh2; h; β0; γ0; σ8g with
the adopted priors fð0.001; 1Þ; ð0.001; 0.08Þ; ð0.4; 1Þ; ð1.9;
2.001Þ; ð0.999; 1.001Þ; ð0.1; 1.8Þg. For ΛCDM, we set the
vectors and priors fΩm0; 100Ωbh2; h; σ8g with w ¼ −1 and
fð0.001; 1Þ; ð0.001; 0.08Þ; ð0.4; 1Þ; ð0.1; 1.8Þg. To the CMB
temperature, we adopt a reference value ofTcmb ¼ 2.7255K.
Moreover, the joint analysis was also implemented by the
product of the particular likelihoods L for each data set

Ltot ¼ LPantheon:LBAO:LCMB:LHðzÞ:Lgrowth ð69Þ

and the sum of individual χ2 to get the total χ2:

χ2tot ¼ χ2Pantheon þ χ2BAO þ χ2CMB þ χ2HðzÞ þ χ2growth: ð70Þ

The list of full values for theHðzÞ data can be found in Tables
(1) and (2) of Ref. [45]. Moreover, in Tables III and IV, we
present the best-fit andmedianvalues for the studiedmodels.
To proceed further, more information can be obtained

by the contours of the main cosmological parameters. In
Fig. 1, we show the results of contours from the MCMC
chains of the cosmological parameters for the ΛCDM
model with the related probability density function

TABLE I. CMB Planck 2018=ΛCDM cosmological parameters
of the 68% intervals from TT;TE;EEþ lowEþ lensing spectra
[10].

Parameter Best fits

Ωm0 0.3153� 0.0073
Ωb0h2 2.237� 0.015
H0 ½kms−1 Mpc−1� 67.36� 0.540
σ8 0.8111� 0.0060

TABLE II. Data points of the “extended Gold-2018” growth-
rate compilation [43] with additional points from BOSS Q [66]
and SSSD-IV [67–69].

Dataset Redshift fσ8ðzÞ Ωm

6dFGSþ SnIa 0.02 0.428� 0.0465 0.3
SnIaþ IRAS 0.02 0.398� 0.065 0.3
2MASS 0.02 0.314� 0.048 0.266
SDSS-veloc 0.10 0.370� 0.130 0.3
SDSS-MGS 0.15 0.490� 0.145 0.31
2dFGRS 0.17 0.510� 0.060 0.3
GAMMA 0.18 0.360� 0.090 0.27
GAMMA 0.38 0.440� 0.090 0.27
SDSS-LRG-200 0.25 0.3512� 0.0583 0.25
SDSS-LRG-200 0.37 0.4602� 0.0378 0.25
BOSS-LOWZ 0.32 0.384� 0.095 0.274
SDSS-CMASS 0.59 0.488� 0.060 0.30711
WiggleZ 0.44 0.413� 0.080 0.27
WiggleZ 0.60 0.390� 0.063 0.27
WiggleZ 0.73 0.437� 0.072 0.27
Vipers PDR-2 0.60 0.550� 0.120 0.3
Vipers PDR-2 0.86 0.400� 0.110 0.3
FastSound 1.40 0.482� 0.116 0.270
BOSS-Q 1.52 0.426� 0.077 0.31
SDSS-IV 1.52 0.420� 0.076 0.26479
SDSS-IV 1.52 0.396� 0.079 0.31
SDSS-IV 0.978 0.379� 0.176 0.31
SDSS-IV 1.23 0.385� 0.099 0.31
SDSS-IV 1.526 0.342� 0.070 0.31
SDSS-IV 1.944 0.364� 0.106 0.31

TABLE III. A summary of best-fit values of the background parameters calculated by using MCMC chains with
the resulting χ2 values. The χ2bf denotes the χ

2 best-fit values from MCMC chains and χ2red refers to reduced χ
2 from

the value of the total χ2 of minimizing all data and the related degrees of freedom. Errors were obtained directly from
the covariant matrix of the MCMC chains.

Model Ωm0 100Ωb0h2 h σ8 Parameters χ2red χ2bf

ΛCDM 0.311� 0.006 2.242� 0.014 0.679� 0.005 0.759� 0.034 w ¼ −1 0.972 1088.29

β-model 0.312� 0.007 2.240� 0.014 0.680� 0.006 0.765� 0.027
β0 ¼ 1.999� 0.025

0.973 1088.34
γ0 ¼ 1.001� 0.016
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(PDF). Particularly, the ðσ8 −ΩmÞ and (h − Ωm) planes
show a discrepancy between the obtained median values
(black points) of the ΛCDM model and the best-fit values
from the Planck 2018 (TTþ TEþ EEþ LowEþ lensing)
spectra. In both cases, the red points lie close to the 3-σ
contour border. Hence, when overplotting different fits, it
will lead the observed tension of the Hubble parameter
values from CMB and BAO [9,10] and also with the values

of Ωm [80–83]. Moreover, the points in the ðσ8 − hÞ plane
also evince this discrepancy.
For the β-model, the situation is dramatically different

when compared with the ΛCMD model as shown in Fig. 2.
The related (σ8 − Ωm) plane exhibits the reduction of the
point distances in the contours from 2-σ to roughly 1-σ
contour. The related PDFs of β0 and γ0 parameters show the
degeneracies of their values which may reduce even more

TABLE IV. A summary of median values of background parameters calculated by using MCMC chains of the
main parameters.

Model Ωm0 100Ωb0h2 h σ8 Parameters

ΛCDM 0.311� 0.004 2.242� 0.010 0.679� 0.003 0.754� 0.020 w ¼ −1

β-model 0.316� 0.005 2.244� 0.010 0.673� 0.004 0.760� 0.020
β0 ¼ 1.961� 0.020
γ0 ¼ 1.022� 0.013

FIG. 1. Contour regions for ΛCDM at 1-σ, 2-σ and 3-σ with 68.3%, 95.4% and 99.7% confidence levels, respectively. Red points
and vertical black dashed lines (in the PDF plots) connote the best-fit values from the CMB Planck 2018 data of the
(TT;TE;EEþ lowEþ lensing) spectra. Black points refer to the median values of the parameters resulting from MCMC chains.
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the point distances in the contours. Interestingly, on the
contrary what happens in the aforementioned ΛCDM case,
there is no discrepancy in the (h − Ωm) plane with a good
accommodation of the parameters to data. On the other
hand, in the (σ8 − h) plane the best-fit values from the
Planck 2018 lie at 2-σ contour. Hence, the overplotting
contours from different fits will lead a mild discrepancy
(tension) of data from different probes.
To complement the analysis, it is important to check the

statistical relevance of the models as compared to obser-
vations. Most of the cosmology papers commonly adopt
the AIC classifiers [84,85] as a first inference for model
selection to estimate the difference between data fitting and
particular models. The main idea is that the model with
higher AIC tends to aggravate the tension between com-
peting models (in a search of the “true” model compatible
with observations) when more parameters are allowed.

The model with more free parameters is generally penal-
ized accordingly. We first adopt the errors from the data
regarded as Gaussian and use AIC to evaluate the fit to data
for small sample sizes using the following expression:

AIC ¼ χ2bf þ 2kþ 2kðkþ 1Þ
N − k − 1

; ð71Þ

where χ2bf is the best-fit χ2 of the model (maximum like-
lihood), k represents the number of the uncorrelated (free)
parameters and N is the number of the data point in the
adopted dataset. The difference jΔAICj ¼ AICmodelð2Þ −
AICmodelð1Þ follows the Jeffreys’ scale [86] that measures
the intensity of the tension between two competing models
and raises evidence against the complex one. Higher values
for jΔAICj denote more tension between models and the
more statistically uncorrelated they are. In this sense,wehave

FIG. 2. Contour regions for the β-model for six parameters at 1-σ, 2-σ and 3-σ with 68.3%, 95.4% and 99.7% confidence levels,
respectively. Red points and vertical black dashed lines (in the PDF plots) connote the best-fit value from the CMB Planck 2018 data of
the (TT;TE;EEþ lowEþ lensing) spectra. Black points refer to the median values of the β-model parameters resulting from MCMC
chains.
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that for jΔAIC ≤ 2j the models are statistically consistent
with a considerable level of empirical support. For 4 <
ΔAIC < 7 it indicates a positive tension against the model
with a higher value of AIC. For jΔAIC ≥ 10j it defines a
strong evidence against the model with a higher AIC. This
criterion focuses on the penalty of free parameterswhich is an
Occam’s razor realization to avoidmodel complexity. Rather
than just limiting the model classification to their parameters
using AIC, the Bayesian evidence focuses on priors and
seems to be a better tool to balance the model selection.
Unfortunately, we were not able to numerically integrate the
MCMC chains that revealed much sensitive to the choice of
certain parameters. For the present application, we have the
results of ΔAIC as shown in Table V that indicate a positive
evidence against the β-model. This happens due to the fact
that the β-model has two extra parameters when compared
to ΛCDM.
As pointed out in [43,44], the analysis of the Jeffreys’

scale from ΔAIC must be taken with caution to avoid
misleading. It reveals a symptom of Jeffreys’ scale sensi-
tivity that can induce false positives or false negatives. This
can be critical for cosmological models in which several
probes of cosmic data present a significant level of tension
between them, and the adoption of a complexity or over-
simplified models is not a trivial task to decide [87–91]. On
these terms, the results presented in Table V show that the
β-model presents an additional unnecessary extra param-
eter. As indicated in Tables III and IV, the γ0 parameter is
tightly constrained by the MCMC chains with the value
γ0 ∼ 1. This indication allows us to test the β-model setting
γ0 ¼ 1 or equivalently setting the integration constant k0 ¼
1
α0
[see Eq. (34)]. This assumption still obeys the big bang

nucleosynthesis constraints on Geff of Eq. (39), i.e.,
jGeff=GN − 1j ≤ 0.2 [92]. We stress that the ΛCDM=GR
limit (i.e., Geff ¼ G) is obtained by the zeroth order of
Taylor series on Geff .

To run the code, we adopt the parameter vectors for the
β-model as fΩm0; 100Ωbh2; h; β0; σ8g for γ0 ¼ 1 as pre-
viously defined. Hence, we adopted the following priors
fð0.001;1Þ; ð0.001;0.08Þ; ð0.4;1Þ; ð1.9;2.001Þ; ð0.1;1.8Þg.
In Table VI, we present the results of the MCMC chains
with the best-fit and median values in the first and second
rows, respectively. Interestingly, the resulting contour plots
in Fig. 3 show a slight overall improvement and a reduction
of distance of the median values of the β-model and the
Planck 2018 best-fit of σ8 parameter. Hence, it may induce
a decrease of tension when overplotting different contour
fits of disjoint data. Moreover, the degeneracies on the β0
parameter are still observed in the corresponding PDF
panels. Hence, with only one extra parameter, as shown in
Table VII, we have the results of ΔAIC values that indicate
a weak evidence against the β-model. Moreover, a self-
contained information can be obtained from the σ-distances
Dσ [93] which are computed by

Dσ ¼
ffiffiffi
2

p
Inverf

�
0; 1 − Γ

�
1;
Δχ2

2

��
; ð72Þ

where Inverf(x) is the inverse of the error function

ErffðxÞ and Γð1; Δχ2
2
Þ is the incomplete gamma function,

with Δχ2 ¼ χ2modelð2Þ − χ2modelð1Þ. Taking the χ2bf values in

Tables III and VI of the β-model with a different number of
extra parameters, the resulting σ-distance Dσ ¼ 0.006.
It shows a very small distance indicating that the models
are statistically equivalent, in other words, the γ0 parameter
can be set to 1 without loss of generality. Moreover, in
Table VII, the resulting ΔAIC indicates that the β-model for
just one extra parameter is preferred as compared to the
ΛCDM model.
In Fig. 4, we compare the growth rate of the models and

present the numerical plot of the growth density equation.
By the quantity δm

δmðz¼0Þ in function of redshift z in Eq. (41),
we use the median values presented in Table III and the
growth-rate fσ8ðzÞ data in Table II. In the panels, the solid
line denotes the ΛCDM model and the dashed line
represents the β-model pattern. In both cases, we have
very close curves of the models with a slight superimposed
β-model curve (with or without two extra parameters) over
the ΛCDM curve.

TABLE V. The obtained values of AIC and ΔAIC for the
studied models as applied to the Jeffreys’ scale.

Model AIC ΔAIC Evidence against the model

ΛCDM 1096.33 0 Null
β-model 1100.42 4.09 Positive

TABLE VI. A summary of best-fit (first row) and median values (second row) of the background parameters
calculated by using MCMC chains with the resulting χ2 values for the β-model with five parameters. Errors were
obtained directly from the covariant matrix of the MCMC chains. The results of χ2red and χ2bf were 0.973 and
1088.33, respectively.

Ωm0 100Ωb0h2 h σ8 Parameters

0.312� 0.006 2.244� 0.014 0.679� 0.005 0.762� 0.030 β0 ¼ 1.991� 0.023
0.315� 0.004 2.245� 0.010 0.674� 0.004 0.764� 0.020 β0 ¼ 1.965� 0.017
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V. REMARKS

In this paper, using a geometric independent model
based on the Nash-Greene embedding theorem we con-
fronted the present model to the popular ΛCDM model
through a joint analysis on recent pack of datasets on the
CMB Planck collaboration, the Pantheon SNIa, BAO,

cosmic growth rate and the Hubble HðzÞ evolution with
addition of DES Y1 to BAO. We used a Markov chain
Monte Carlo analysis (MCMC) from a modified
MetropolisHastings algorithm to determine the cosmic
parameters and found a nearly statistical equivalence at
1-σ contour with the ΔAIC values roughly around 2
between ΛCDM and the β-model with one extra parameter
constrained by the data. Moreover, the observed distance
discrepancy of best-fit points of the CMB Planck 2015 and
the growth-rata data was reduced to the 1-σ contour limits
when testing the β-model with the CMB Planck 2018 data.
This situation may be improved with a reduction within the
1-σ contour by the appearance of the β-model degeneracy
values consistent with the behavior of fσ8. Motivated by
the Jeffreys’ scale, the β-model prefers only one extra
parameter and with the addition of DES Y1 to the larger

FIG. 3. Contour regions for the β-model with five parameters at 1-σ, 2-σ and 3-σ with 68.3%, 95.4% and 99.7% confidence levels,
respectively. Red points and vertical black dashed lines (in the PDF plots) connote the best-fit value from the CMB Planck 2018 data of
the (TT;TE;EEþ lowEþ lensing) spectra. Black points refer to the median values of the β-model parameters resulting from MCMC
chains.

TABLE VII. The obtained values of AIC and ΔAIC for the
studied models as applied to the Jeffreys’ scale.

Model AIC ΔAIC
Evidence against

the model

ΛCDM 1096.33 0 Null
β-model 1098.38 2.06 Weak
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dataset, and favors a better settlement of the cosmological
parameters for this model and avoids overfitting. More-
over, the extra-parameter reduction does not compromise
the ΛCDM=GR limit and the big bang nucleosynthesis
constraints on Geff . Hence, this turns the β-model capable
of analyzing within a reasonable range of confidence level
a more complete joint data apart from systematics for
future datasets. As prospects, we intend to investigate the
behavior of the viscosity parameter and growth-index rate
and its signature on the integrated SachsWolfe (ISW)

effect. This process is in due course and will be reported
elsewhere.
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[67] Héctor Gil-Marín et al., Mon. Not. R. Astron. Soc. 477,

1604 (2018).
[68] J. Hou et al., Mon. Not. R. Astron. Soc. 480, 2521 (2018).
[69] G.-B. Zhao et al., Mon. Not. R. Astron. Soc. 482, 3497

(2019).
[70] T. M. C. Abbott et al., Phys. Rev. D 98, 043526 (2018).
[71] T. M. C. Abbott et al., Mon. Not. R. Astron. Soc. 483, 4866

(2019).
[72] H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974).
[73] S. K. Donaldson, Am. Math. Soc. 35, 201 (1984).
[74] C. H. Taubes, Amer. Math. Soc. 35, 493 (1984).
[75] C. S. Lim, Prog. Theor. Exp. Phys. 2014, 2A101 (2014).
[76] A. B. Rivera and J. E. García-Farieta, Int. J. Mod. Phys. D

28, 1950118 (2019).
[77] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998).
[78] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005).
[79] W. Sutherland, Mon. Not. R. Astron. Soc. 426, 1280 (2012).
[80] E. Aubourg et al. (BOSS Collaboration), Phys. Rev. D 92,

123516 (2015).
[81] S. Alam et al. (BOSS Collaboration), Mon. Not. R. Astron.

Soc. 470, 2617 (2017).
[82] E. Macaulay et al. (DES Collaboration), Mon. Not. R.

Astron. Soc. 486, 2184 (2019).
[83] G. Alestas, L. Kazantzidis, and L. Perivolaropoulos, Phys.

Rev. D 101, 123516 (2020).
[84] N. Sugiura, Commun. Stat. A 7, 13 (1978).
[85] A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007).
[86] H. Jeffreys, Theory of Probability, 3rd ed. (Oxford

University Press, Oxford, 1961).
[87] A. R. Liddle, Mon. Not. R. Astron. Soc. 351, L49 (2004).
[88] R. Trotta, Mon. Not. R. Astron. Soc. 378, 72 (2007).
[89] M. Vardanyan, R. Trotta, and J. Silk, Mon. Not. R. Astron.

Soc. 413, L91 (2011).
[90] S. Nesseris and J. Garcia-Bellido, J. Cosmol. Astropart.

Phys. 08 (2013) 036.
[91] M. Trashorras, S. Nesseris, and J. Garcia-Bellido, Phys.

Rev. D 94, 063511 (2016).
[92] C. J. Copi, A. N. Davis, and L. M. Krauss, Phys. Rev. Lett.

92, 171301 (2004).
[93] J. C. B. Sanchez, S. Nesseris, and L. Perivolaropoulos, J.

Cosmol. Astropart. Phys. 11 (2009) 029.

ABRAÃO J. S. CAPISTRANO PHYS. REV. D 103, 043527 (2021)

043527-14

https://doi.org/10.1103/PhysRevD.82.103506
https://doi.org/10.1103/PhysRevD.82.103506
https://doi.org/10.1016/S0370-2693(01)00495-6
https://doi.org/10.1016/S0375-9601(02)00182-2
https://doi.org/10.1088/0264-9381/22/9/010
https://doi.org/10.1088/1126-6708/2007/04/047
https://doi.org/10.1088/1126-6708/2007/04/047
https://doi.org/10.1016/j.physletb.2007.04.008
https://doi.org/10.1016/j.physletb.2007.04.008
https://doi.org/10.1088/0264-9381/26/15/155007
https://doi.org/10.1088/0264-9381/26/15/155007
https://doi.org/10.1007/s10714-011-1192-8
https://doi.org/10.1016/j.aop.2012.08.002
https://doi.org/10.1016/j.aop.2012.08.002
https://doi.org/10.1016/j.aop.2014.05.013
https://doi.org/10.1016/j.aop.2014.05.013
https://doi.org/10.1093/mnras/stv052
https://doi.org/10.1093/mnras/stv052
https://doi.org/10.1088/0264-9381/33/24/245006
https://doi.org/10.1088/0264-9381/33/24/245006
https://doi.org/10.1016/j.aop.2017.03.006
https://doi.org/10.1016/j.aop.2017.03.006
https://doi.org/10.1002/andp.201700232
https://doi.org/10.1002/andp.201700232
https://doi.org/10.1103/PhysRevD.100.064049
https://doi.org/10.2307/1969989
https://doi.org/10.1090/memo/0097
https://doi.org/10.1086/311031
https://doi.org/10.1086/311031
https://doi.org/10.1103/PhysRevD.96.023542
https://doi.org/10.1103/PhysRevD.96.023542
https://doi.org/10.1103/PhysRevD.98.023516
https://doi.org/10.1103/PhysRevD.98.023516
https://doi.org/10.1103/PhysRevD.99.043516
https://doi.org/10.1103/PhysRevD.99.043516
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.1088/1674-4527/14/10/002
https://doi.org/10.1088/1475-7516/2010/02/008
https://doi.org/10.1088/1475-7516/2012/08/006
https://doi.org/10.1088/1475-7516/2012/08/006
https://doi.org/10.1093/mnras/stt1290
https://doi.org/10.1093/mnras/stt1290
https://doi.org/10.1093/mnrasl/slv037
https://doi.org/10.1093/mnrasl/slv037
https://doi.org/10.1051/0004-6361/201423969
https://doi.org/10.1051/0004-6361/201423969
https://doi.org/10.1111/j.1365-2966.2011.20169.x
https://doi.org/10.1111/j.1365-2966.2011.20169.x
https://doi.org/10.1093/mnras/stu2693
https://doi.org/10.1103/PhysRevLett.115.011301
https://doi.org/10.1103/PhysRevLett.115.011301
https://doi.org/10.1088/1475-7516/2017/05/015
https://doi.org/10.1088/1475-7516/2017/05/015
https://doi.org/10.1088/2041-8205/751/2/L30
https://doi.org/10.1088/2041-8205/751/2/L30
https://doi.org/10.1111/j.1365-2966.2011.20050.x
https://doi.org/10.1111/j.1365-2966.2011.20050.x
https://doi.org/10.1111/j.1365-2966.2011.18362.x
https://doi.org/10.1111/j.1365-2966.2011.18362.x
https://doi.org/10.1088/1475-7516/2009/10/004
https://doi.org/10.1088/1475-7516/2009/10/004
https://doi.org/10.1093/mnras/stt1791
https://doi.org/10.1093/mnras/stu342
https://doi.org/10.1093/mnras/stu342
https://doi.org/10.1111/j.1365-2966.2012.21473.x
https://doi.org/10.1051/0004-6361/201630295
https://doi.org/10.1093/pasj/psw029
https://doi.org/10.1093/mnras/sty506
https://doi.org/10.1093/mnras/sty506
https://doi.org/10.1093/mnras/sty453
https://doi.org/10.1093/mnras/sty453
https://doi.org/10.1093/mnras/sty1984
https://doi.org/10.1093/mnras/sty2845
https://doi.org/10.1093/mnras/sty2845
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1093/mnras/sty3351
https://doi.org/10.1093/mnras/sty3351
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1090/conm/035
https://doi.org/10.1090/conm/035
https://doi.org/10.1093/ptep/ptt083
https://doi.org/10.1142/S0218271819501189
https://doi.org/10.1142/S0218271819501189
https://doi.org/10.1086/305424
https://doi.org/10.1086/466512
https://doi.org/10.1111/j.1365-2966.2012.21666.x
https://doi.org/10.1103/PhysRevD.92.123516
https://doi.org/10.1103/PhysRevD.92.123516
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stz978
https://doi.org/10.1093/mnras/stz978
https://doi.org/10.1103/PhysRevD.101.123516
https://doi.org/10.1103/PhysRevD.101.123516
https://doi.org/10.1080/03610927808827599
https://doi.org/10.1111/j.1745-3933.2007.00306.x
https://doi.org/10.1111/j.1365-2966.2004.08033.x
https://doi.org/10.1111/j.1365-2966.2007.11738.x
https://doi.org/10.1111/j.1745-3933.2011.01040.x
https://doi.org/10.1111/j.1745-3933.2011.01040.x
https://doi.org/10.1088/1475-7516/2013/08/036
https://doi.org/10.1088/1475-7516/2013/08/036
https://doi.org/10.1103/PhysRevD.94.063511
https://doi.org/10.1103/PhysRevD.94.063511
https://doi.org/10.1103/PhysRevLett.92.171301
https://doi.org/10.1103/PhysRevLett.92.171301
https://doi.org/10.1088/1475-7516/2009/11/029
https://doi.org/10.1088/1475-7516/2009/11/029

