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We present a new action which reproduces the cosmological sector of general relativity in both the
Friedmann-Lemaître-Robertson-Walker and Bianchi models. This action makes no reference to the scale
factor and is of a frictional type first examined by Herglotz. We demonstrate that the extremization of this
action reproduces the usual dynamics of physical observables, and the symplectification of this action is the
Einstein-Hilbert action for cosmological models. We end by discussing some of the increased explanatory
power produced by considering the reduced physical ontology resulting from eliminating scale.
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I. INTRODUCTION

Modern cosmology takes as its foundation symmetry
reduced models of general relativity, typically treating
space as homogeneous (and often isotropic). Such reduc-
tions take a system of partial differential equations and
produce a set of simple ordinary differential equations in
their place. The dynamics of these models is encoded in
variables that describe the size of the universe, invoking the
use of a fiducial cell when dealing with noncompact
manifolds. The evolution of this size, represented by the
scale factor, is the basis of most descriptions.
It is well known that the scale factor alone, despite its

apparent central role, carries no physical meaning. It is only
a relative change in the size which it represents that has any
effect upon physical observables. For example, the temper-
ature of the cosmic microwave background observed by the
Planck satellite is a simple product of its temperature when
the universe first became transparent, shortly after the time
of recombination, and the ratio of the scale factor today to
that at the time of this transparency. The Friedmann
equations

H2þ k
a2

¼8πGρ
3

and _HþH2¼−
4πG
3

ðρþ3PÞ ð1:1Þ

relate the expansion rate H ¼ _a=a to the energy density, ρ,
and pressure, P, of the matter present. These are insensitive
to a change in which a → λa, k → λ2k. Furthermore, the
equations of motion for the matter variables are also
insensitive to the overall value of the scale factor. As an
example the continuity, or fluid, equation

_ρþ 3Hðρþ PÞ ð1:2Þ

is indifferent to the scale factor. This turns out to be a
general feature of all minimally coupled matter models and
should be considered unsurprising. In fact, the property is
much more general than this—any coupling to scale can be
treated similarly through the introduction of new kinetic
terms, as we shall see later. For simplicity of exposition we
will restrict ourselves to the case of minimally coupled
matter in this paper. The geometry of a spacetime is inferred
from the behavior of matter within it, and thus to an
observer who inhabits such a universe transformations of
the geometry that have no effect on the behavior of the
matter within it will be indistinguishable. In the case of a
noncompact spatial slice all measurements of the scale
factor are made with respect to a fiducial cell and physics
should be indifferent under changes of such a cell.
Commonly attributed to Leibniz, the principle of the

identity of indiscernibles (PII) states that two mathematical
entities O and O0 which give rise to the same set of
observations should be considered to be a single physical
system [1]. To quoteWeyl, when considering amap between
two such entities, “Only such relations will have objective
meaning as are independent of the mapping chosen and
therefore remain invariant under deformations of the map”
[2]. As such we should consider two cosmological models
whose only differences are the value of the scale factor (and
curvature k) at some event to describe the same physical
system, and only invariants of this transformation should
have physical meaning. Thus in the mathematical repre-
sentation of cosmology the choice of scale factor constitutes
a redundancy. On the surface level, this may seem unpro-
blematic—the redundancy would appear to be no impedi-
ment to describing a large set of cosmological solutions, and
indeed can be used to aid our intuitive understanding.
However, there are ontological consequences of this extra-
neous structure. The counting of models as being distinct
through differing scale factors leads to an infinite measure
on the space of Friedmann-Lemaître-Robertson-Walker*d.sloan@lancaster.ac.uk
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(FLRW) cosmologies, and thus notions of typicality or
probability become ill-defined [3–7], leading to interesting
behavior on relational spaces [8–10]. Further, the physical
intuition we gain from associating the scale factor with size
becomes problematic as we approach a singularity where
typically this becomes zero. This is the root cause of
systems becoming nonpredictive at the big bang, and it has
recently been shown that working in systems without the
scale factor these solutions can be continued predictively
beyond this point [11]. Finally, the intuition we gain from
introducing the scale factor is tempered by its making
cosmological systems conservative. As we shall see, work-
ing without it we can understand cosmological dynamics as
being frictional, and thus thermodynamically richer in
explanatory power than their conservative counterparts.
The scale factor is a vestigial structure left over from the
geometric description of general relativity. The question
then arises as to whether we can reproduce cosmological
dynamics from an action that makes no reference to such a
structure.
In fact, a complete dynamics of the cosmological system

can be derived from an action principle that makes no
reference to the scale factor at all. Let us consider the case
of matter described by a LagrangianLm which is minimally
coupled, in the context of a flat FLRW cosmology. This
will be generalized in later sections to include curvature and
anisotropies. Then the action principle is to minimize the
action, SðtÞ, at some time where

SðtÞ ¼ S0 þ
Z

t

0

�
3S2

2
þ 4πGLm

�
dt0; ð1:3Þ

subject to initial conditions for the variables. In other
words, the action, S, obeys

_S ¼ 3S2

2
þ 4πGLmðq⃗; _q⃗Þ: ð1:4Þ

To reproduce the cosmological dynamics we identify S
with the minus of the Hubble parameter, S ¼ −H.
Extremizing this action we find the equations of motion
for the matter fields, q⃗, are given as

d
dt

�∂Lm

∂ _qi

�
−
∂Lm

∂qi þ 3H
∂Lm

∂ _qi
¼ 0; ð1:5Þ

which are the same equations of motion as are found from
the Einstein-Hilbert action minimally coupled to matter.
For example, taking Lm to describe a scalar field with a
potential we would recover the usual Klein-Gordon equa-
tion familiar to inflationary cosmology. Further, since
S ¼ −H, Eq. (1.4) is the equation of motion for the
Hubble parameter given by the Einstein-Hilbert action.
Thus the dynamics of the physically observable quantities

(the Hubble parameter and the matter content) are identical
to those derived from general relativity.
There are several things of note about this action. The

first, and most striking, is that the evolution of the action is
dependent upon the value of the action itself. This stands in
stark contrast to the usual Euler-Lagrange formulations of
physics and is a generalization that was first considered by
Herglotz. We examine such actions in more detail in Sec. II.
The second thing of note is that Eq. (1.4) is the
Raychaudhuri equation, and thus our principle is that we
minimize the Hubble parameter subject to this. This
suggests an extension beyond cosmological systems—
the minimization of the extrinsic curvature of a spatial
slice subject to the Raychaudhuri equation. A third area of
interest is that the equation of motion (1.4) depends on an
odd number of variables—the matter configuration varia-
bles, their velocities, and the action itself. This does not
allow for a symplectic description of the theory as any
phase space is even dimensional. As we will show, there
exists a symplectification of the theory which turns out to
be the usual Einstein-Hilbert action adapted to Robertson-
Walker metrics. However, when working with the action
directly we see that the variables live on a contact manifold.
These are described in further detail in Sec. II.
This paper is laid out as follows: In the following section

(Sec. II) we describe a general form of action dependent
Lagrangians, which we will call “Herglotz Lagrangians.”
We will examine the general behavior of these, their
extension through “symplectification” to a system that
recovers a conservative description by introducing more
degrees of freedom, and give an example in the form of a
damped harmonic oscillator. In Sec. III we show how this
applies to the action described above, and how this can
include curvature terms. The extension to anisotropic
cosmologies is given in Sec. IV, which details the action
principle for Bianchi models. In Sec. V we show how the
dynamical similarity of cosmological systems can be used
to reveal our action from the usual Einstein-Hilbert action,
and we discuss the implications of our findings in Sec. VI.

II. HERGLOTZ’S PRINCIPLE

In this section we will briefly recap Herglotz’s varia-
tional principle and some pertinent results relating to the
contact manifolds on which dynamics takes place. There
are several extant papers describing these in greater detail,
so here we will simply cover the necessary material to
describe cosmological systems. Throughout we will work
with a damped harmonic oscillator as an example of a
system that can be described this way and demonstrates the
features that emerge from our cosmological system.
Herglotz considered a generalization of Lagrangian dynam-
ics in which the evolution of the system could depend on
the action itself. This is a necessity in studying some
nonconservative systems, as it was proved by Bauer that the
normal action principles of Euler and Lagrange cannot have
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dissipative terms proportional to a velocity. Herglotz
examined systems whose evolutions can be expressed as

_S ¼ LHðqi; _qi; SÞ; ð2:1Þ

wherein we draw attention to the close relation to
Lagrangian theories by noting that the evolution of S is
a Herglotz Lagrangian through the H.1 Note that unlike the
usual Lagrangian, to find LH we require not only the
tangent bundle over the configuration space, TM, but also
its extension which forms an odd-dimensional contact
space [12,13]. We note that if LH is independent of S,
then a trivial integration over time shows that S forms a
normal action principle with LH its Lagrangian. In this
generalized system the equations of motion are derived by
extremizing the action S at some time, subject to Eq. (2.1)
and initial conditions. To find the equations of motion that
arise from this extremization, consider the more general
action A where we integrate the Herglotz Lagrangian and
enforce Eq. (2.1) through a Lagrange multiplier λwhich is a
general function of time:

Aðq; _q; S; _S; tÞ ¼
Z

ðLH þ λðLH − _SÞÞdt: ð2:2Þ

It is clear that when Eq. (2.1) is satisfied, A ¼ S and so the
extremization of Awill extremize S. The extremization of A
gives the usual Euler-Lagrange equations for q and S in
terms of the Lagrange multiplier:

d
dt

�
ð1þλÞ∂L

H

∂ _q
�
¼ð1þλÞ∂L

H

∂q
dλ
dt

¼−ð1þλÞ∂L
H

∂S : ð2:3Þ

Combining these using the second to replace _λ in the first,
and noting that, since λ is a Lagrange multiplier, 1þ λ is
generally nonzero, we find the equation of motion

d
dt

�∂LH

∂ _qi

�
−
∂LH

∂qi −
∂LH

∂S
∂LH

∂ _qi
¼ 0: ð2:4Þ

These equations reduce to the expected Euler-Lagrange
equations when LH is independent of S.
Typically a Herglotz Lagrangian is used to describe

nonconservative systems by introducing friction. As an
example consider the system described by

LH ¼ m_x2

2
−
kx2

2
−
μS
m

: ð2:5Þ

From this we find the equation of motion for a damped
harmonic oscillator,

mẍþ μ_xþ kx ¼ 0: ð2:6Þ

Thus we see that the additional term we have introduced
has caused the system to be nonconservative. In cosmo-
logical terms this makes more precise that nature of
“Hubble friction”—the analogy is direct. The conservative
nature of typical Lagrangian systems is captured by the
existence of a conserved Hamiltonian. It is interesting to
note that typically to introduce friction into a Hamiltonian
system we would need to have a reservoir or second
physical system into which energy can be exported. The
conservative nature of these means that any loss from one
system would be gained by the second, and thus the overall
description would remain conservative. This is a particu-
larly important point which we will describe in more detail
when considering the cosmological implications, as the
universe is broadly considered to be an isolated system. We
see that the equivalent of the Hamiltonian derived from this
Herglotz Lagrangian, a contact Hamiltonian, is not con-
served. To find the contact Hamiltonian we perform a
Legendre transform on the Herglotz Lagrangian. In doing
so, we move our description from the tangent bundle to the
cotangent bundle in the usual manner for the variables
q; _q → q, p ¼ ∂LH

∂ _q , but retain S unchanged. Thus the
contact Hamiltonian, Hc, is given as

Hc ¼ p _q − LH: ð2:7Þ

We note here that we are using the symplectic structure of
T�M in this construction. Also we will consider here only
the case where this transformation is well-defined due to
the form of LH. Generalizations are simple in the case of
first and second class constraints, which we will leave to
more technical descriptions such as [14–16]. Thus in our
contact Hamiltonian system dynamics takes place on a
contact manifold, C� ¼ R × T�M on which we can take S,
q, p as coordinates. The equations of motion for such
systems in these Darboux coordinates are given [17] as

_q¼∂Hc

∂p ; _p¼−
∂Hc

∂q −p
∂Hc

∂S ; _S¼p
∂Hc

∂p −Hc; ð2:8Þ

wherein we note that the equation for _S reproduces the
Herglotz Lagrangian, and to generalize to multiple varia-
bles should be summed over all the momenta— _S ¼P

i pi
∂Hc

∂pi
−Hc. The equations for _q and _p reduce to the

usual Hamilton’s equations when Hc is independent of S.
The presence of the second term in the equation for _p is the
manner through which friction is manifest in the system.
Together these can be used to show that the contact
Hamiltonian is not time independent except when it is
zero (or independent of S),

1Herglotz considered a more general, time dependent case
wherein LH could also depend on t. However, we will not require
this level of generality and thus stay with the simpler case
described here.
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_Hc ¼ −Hc ∂Hc

∂S ; ð2:9Þ

and hence we see the nonconservative nature of the system
in general in terms of energy loss. For the damped
harmonic oscillator example introduced above we see that
this results in

_Hc ¼ −μHc → Hc ¼ Ee−
μt
m ð2:10Þ

for some constant E. Cosmological systems are contained
within the exception here, however, since the contact
Hamiltonian is constrained to be zero.
A second way in which the nonconservative nature of

these systems is manifest is through the evolution of a
volume form on C�. For regular Hamiltonian systems,
Liouville’s theorem states that the symplectic structure ω is
preserved under time evolution. Hence on T�M a volume
form composed by taking ω∧n, wherein n is the number of
configuration variables, retains its size under the
Hamiltonian flow. However, C� is an odd dimensional
manifold, and since ω is a two-form, it is not possible to
create a volume form in the same manner. The analogue of
these structures is the contact form, expressed in Darboux
coordinates as η ¼ −dSþ pdq. This is a one-form and
bears a striking resemblance to the symplectic potential, θ,
where ω ¼ dθ. A canonical choice of volume form on C� is
Ω ¼ η ∧ dη∧n, and the corresponding Liouville-type theo-
rem is that

_Ω ¼ −ð1þ nÞ ∂H
c

∂S Ω: ð2:11Þ

Hence we see that over time solutions can focus on areas of
C�—called attractors. The behavior of these is described at
length in [18].
One can embed a contact systemwithin a conservative one

through symplectification. To do so first let us form the
symplectic manifold by extending the contact manifold. The
contact form η is defined only up to a choice of overall scale,
and an equivalent form can thus be produced by taking
η0 ¼ yη, for y ∈ R. We can then promote y to a coordinate
and form the extended symplectic system R × C� with
symplectic structure ω¼ dðyηÞ¼ dS∧ dyþdðypÞ∧ dq.
Hence the new momentum conjugate to q on this manifold
is π ¼ yp. This construction is equivalent to taking the
product of the configuration manifold withR (coordinatized
through y) and finding the cotangent bundle. Then we form
the Hamiltonian on this manifold by takingH ¼ yHc.2 The
dynamical system described by this Hamiltonian is exactly
that of the contact system, but we recover conservation of the

Hamiltonian and Liouville’s theorem as the extra variable,
y acts to compensate for the nonconservative nature of the
contact system. It is a straightforward exercise to show that
Hamilton’s equations for the variables p, q, and S are the
same as those we derive from the contact Hamiltonian, and
that these form an autonomous system; although we have
introduced y as a coordinate, we could evolve the system
without evermaking reference to it, simply by expressing the
equations of motion for p, q, and S. Since we have
constructed this system beginning with the equation of
motion for S, it should be unsurprising to note that this does
indeed return the Herglotz Lagrangian, LH. We can finally
take this Hamiltonian and perform a Legendre transform and
thus obtain a Lagrangian on the tangent bundle over the
extended coordinate space.
In the damped harmonic oscillator this construction is

performed by taking π ¼ yp and forming the symplectic
structure ω ¼ dS ∧ dyþ dπ ∧ dx. The Hamiltonian for
this system is then

H ¼ yHc ¼ π2

2my
þ ykx2

2
þ yμS

m
; ð2:12Þ

and thus we find the equations of motion from Hamilton’s
equations,

_x ¼ π

my
; _π ¼ −kyx; _y ¼ μy

m
;

_S ¼ π2

2my2
−
kx2

2
−
μS
m

; ð2:13Þ

which we can express in terms of p, q, and S,

_x¼ p
m
; _p¼−kx−

μp
m

; _S¼ p2

2m
−
kx2

2
−
μS
m

: ð2:14Þ

Thus as advertised x, p, and S form an autonomous system.
Further, since our system is linear in S, this can be evolved
without reference to S, and reproduce mẍþ μ_xþ kx ¼ 0.
We also obtain y ¼ y0e

μt
m where y0 is a constant. This final

equation taken together with Eq. (2.10) demonstrates the
conservation of the Hamiltonian, H. Further we note that
within this construction, as stated above, the equation of
motion for S is exactly that of Eq. (2.5).
Once we have found the Hamiltonian for our system, it is

simply a matter of performing the Legendre transform
again to recover a Lagrangian on the tangent bundle over
the extended configuration manifold. From the symplecti-
fication of the contact Hamiltonian and the definitions of
the new momenta as represented in symplectic potential
derived from the contact form, one can show directly that
such a Lagrangian is

L ¼ y

�
LHðq; _q; SÞ þ S

_y
y

�
; ð2:15Þ

2In fact, any power of y, including none at all, is sufficient to
form an equivalent Hamiltonian with a differing lapse. In this
construction we have explicitly chosen to keep the same time
parametrization.
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and a direct application of the Euler-Lagrange equations
gives the same equations of motion. The new coordinate, y,
has a simple equation of motion; we can see from the
construction that

_y ¼ −y
∂LH

∂S ; ð2:16Þ

and thus so long as this is invertible the Lagrangian given in
Eq. (2.15) will reproduce all of our equations of motion. In
this form it is simple to see that the Lagrangian is linearly
proportional to y, and hence changing y by a factor will
rescale the action, but leave the equations of motion for the
variables q; _q, and S unchanged. This is an example of
dynamical similarity [18,19]. Dynamical similarities are
symmetries of a theory that are not standard canonical
transformations [19], under which the equations of motion
for an autonomous system of physical observables are
retained despite the rescaling of some quantities such as the
Lagrangian, Hamiltonian, and symplectic structure. A
mathematical framework for how one can identify such
symmetries and use them to construct the autonomous
systems was given in [18], a mathematical description of
their nature and the induced Noether type symmetries were
discussed in [19], and a pedagogical explanation of their
nature and implications for understanding physics is
explored in [20].
In our example life is a little more complicated since the

Hamiltonian is linear in S, and hence the equation of
motion for y is linear. However, this is easily resolved by
noting that the equation of motion allows us to replace y by
its time evolution. As such for the damped harmonic
oscillator we see that the Lagrangian can be rendered in
time dependent form following the Legendre transform,
and is

L ¼ e
μt
m

�
m_x2

2
−
kx2

2

�
: ð2:17Þ

The Euler-Lagrange equation for x gives us back the initial
damped harmonic oscillator.
In this section we have begun with an action principle

following Herglotz, where the Lagrangian depends on the
action as well as the tangent bundle over the configuration
manifold. Through a Legendre transform we found the
contact Hamiltonian, which we then symplectified to find a
Hamiltonian representation of the same system in a larger
space. This was then Legendre transformed again to give a
Lagrangian with an interesting symmetry on the tangent
bundle over an extended configuration manifold. This
entire process can be performed in reverse; we can begin
with a Lagrangian which has a dynamical similarity and
end up with a contact Hamiltonian and Herglotz action. In
the following section we will show how this applies to the
action of equation (1.4) and gives us the Einstein-Hilbert

action on flat FLRW cosmology, and how it can be
extended to include curvature. In Sec. V we describe the
inverse of this process.

III. EQUIVALENCE WITH FLRW COSMOLOGY

The Friedmann-Lemaître-Robertson-Walker cosmologi-
cal models are homogeneous, isotropic solutions to
Einstein’s equations. The geometry of these models is
encoded in the line element,

ds2 ¼ −dt2 þ a2
�

dr2

1 − kr2
þ r2dΩ2

�
: ð3:1Þ

The time evolution of the geometry is thus encoded through
a single variable, the scale factor a, and a constant the
curvature k. It is well established that physics is insensitive
to the value of the scale factor at any given time. It is typical
to choose a specific event, such as the present time, to set
the value of a to one, and thus fix this ambiguity. However,
this is simply a matter of convention; no physical observ-
able is affected by this choice. Thus there is within the
description of physics a redundancy in this choice. One of
the key aims of this section will be to show how we can
remove this redundancy and work with a smaller set of data
which still reproduces the behavior of all the observables.
For simplicity, we will take here the matter component to be
described by a Lagrangian density for a single field, q. This
is trivial to generalize but a single field will serve to
illustrate our point.
The Lagrangian for a FLRW cosmological system can be

found by beginning with the Einstein-Hilbert action and
restricting the set of spacetimes to those described by
Eq. (3.1). In doing so, we will choose to work with the
volume v ¼ a3 since this cleans up the algebra somewhat.
Up to boundary terms which we will ignore as they do not
play a role in bulk dynamics we find that the Lagrangian
density is given as

L ¼ −1
24πG

_v2

v
þ vLmðq; _qÞ − Nv

1
3: ð3:2Þ

Here N is a constant which is zero in the case of a flat
spatial slice, which is the first case we will consider.
Let us now follow the procedure outlined in the previous

section in the cosmological case. Our Herglotz Lagrangian
is given by Eq. (1.4) and thus can be symplectified by
introducing a new coordinate and extending the contact
space to the tangent bundle over this extended coordinate
space. In doing so we see that Eq. (2.16) gives

_y
y
¼ −3S; ð3:3Þ

and hence we identify y with the volume v, up to a free
choice of scale. We can find the Lagrangian that results
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from our symplectification, following Eq. (2.15) and see
that it is indeed

L ¼ yLH þ S_y ¼ v

�
−

_v2

6v2
þ 4πGLm

�
; ð3:4Þ

which is, up to an overall factor, that given in Eq. (3.2).
Thus we arrive at a key result: The Lagrangian derived from
the Einstein-Hilbert action is equivalent to the symplecti-
fication of the Herglotz Lagrangian given in Eq. (1.4). This
establishes that the observable content of both formulations
are identical, yet the ontological setting of the Herglotz case
is simpler, having one fewer degree of freedom in the
description.
In the case of nonflat spatial slices it would appear that

there is an explicit dependence on v, and hence this would
seem to require the reintroduction of the scale factor.
However, it turns out that this is not the case. Our dynamics
exhibits friction, and thus any kinetic term in the Herglotz
Lagrangian will decay even in the absence of a correspond-
ing potential. In particular, adding an extra term to LH

proportional to _z−2, where LH is independent of z,
reproduces the effect of curvature. This can be seen in
the Euler-Lagrange equation for _z:

d
dt

�∂LH

∂ _z
�
−
∂LH

∂S
∂L
∂ _z ¼ 0 → _z ¼ _z0e

−
R

Sdt; ð3:5Þ

and hence _z would have the same evolution as the scale
factor. Thus we can include the effect of curvature by
introducing a new kinetic only variable. This is general-
izable to cover any apparent dependence on the scale factor
by taking different powers of the kinetic term.
At this point it may seem that we have gained little by

our exchanging the scale factor for a new kinetic term; it
would appear that we have removed a degree of freedom
just to reintroduce it in a different form. However, we
should recall that in the standard picture we need to specify
not just the value of the scale factor at a given time, but also
the value of k, the curvature. Thus we have taken two pieces
of data required to evolve our system (one initial condition,
a0, and one constant, k) and replaced them by a single
initial condition z0. Further we should note that in the
standard picture any constant such as k can be replaced by a
kinetic term with no conjugate position dependence in the
Lagrangian, as this trivially gives rise to a constant
evolution. Thus we can consider the role of initial con-
ditions and constants interchangeable. In this manner we
can replace any constant coupling to the unobservable scale
factor with a kinetic term and initial condition for that term,
both of which require the same amount of information to
specify.

IV. EXTENSION TO BIANCHI MODELS

The Bianchi models are a natural extension of the FLRW
spacetimes considered thus far, as they relax the
assumption of isotropy, allowing for different expansion
rates along each of three spatial directions. The set of
spatial slices (three-dimensional homogeneous metrics)
was mapped out by Bianchi. These models will serve a
dual purpose for us. In the first instance they allow us to
examine the evolution of geometric degrees of freedom
other than just scale. In the second, it is believed that such
models better capture the dynamics of general relativity in
the neighborhood of singularities [21–24].
The Bianchi models are characterized by their Killing

vector fields, ξi. There must exist three of these as our
spatial manifold is three dimensional and homogeneous.
We distinguish models by the Lie bracket of the ξi:

½ξi; ξj� ¼ Ck
ijξk: ð4:1Þ

We further decompose the structure constants Ck
ij through

Ck
ij ¼ ϵijlnkl þ αiδ

k
j − αjδ

k
i ; ð4:2Þ

wherein ϵ is the alternating tensor and δ the Kronecker
delta. nij is a diagonal tensor which we can describe in
terms of its eigenvalues ni. When nonzero, these in turn can
be set equal to �1 without loss of generality through
rescaling their lengths. The models for which αi ¼ 0 are
called the class A models; these are the models for which a
Hamiltonian description exists, and those with which we
will concern ourselves here.3 Thus for the models we are
interested in there exists a coframe σi compatible with the
symmetries, for which

dσ1 ¼ −n1σ2 ∧ σ3; dσ2 ¼ −n2σ3 ∧ σ1;

dσ3 ¼ −n3σ1 ∧ σ2: ð4:3Þ

The line element is parametrized in terms of this coframe,

ds2 ¼ −dt2 þ a2ðe−ϕ1−
2ϕ2ffiffi

3
p ðσ1Þ2

þ e−ϕ1þ2ϕ2ffiffi
3

p ðσ2Þ2 þ e2ϕ1ðσ3Þ2Þ: ð4:4Þ

The Ricci scalar on the spatial manifold for such a metric
can be decomposed into the product of a term dependent on
the scale factor and a term that depends on the ϕi and the ni,

3R ¼ Vsðϕ1;ϕ2; n⃗Þ
a2

; ð4:5Þ

3The class B models, for which αi ≠ 0, are not believed to be
physically relevant in the vicinity of singularities and are of
limited physical significance [25].
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wherein we shall call Vs the shape potential. This is
determined by the structure constants and the anisotropies,
ϕ1 and ϕ2. Following Uggla [26], this is

Vs ¼
1

2
e4ϕ1h2− þ n1e−2ϕ1hþ þ 1

2
n21e

−8ϕ1 ð4:6Þ

with

h� ¼ n2e2
ffiffi
3

p
ϕ2 � n3e−2

ffiffi
3

p
ϕ2 : ð4:7Þ

Hereafter we shall drop the n⃗ in the shape potential for
simplicity, as this will be a constant on each spacetime. The
Herglotz Lagrangian for this system is then

LH ¼ 3S2

2
þ

_ϕ2
1

2
þ

_ϕ2
2

2
−
V3
sðϕ1;ϕ2Þ

_z2
þ 4πGLm: ð4:8Þ

There are several notable features of this. The first is that
following the relaxation of isotropy, LH remains closely
related to that given in Eq. (1.4). This is a not entirely
surprising, as in the usual symplectic case the Lagrangians
for the FLRWand Bianchi spacetimes are similar. However,
as with the coupling to matter, the interaction between the
anisotropic parts and the mean extrinsic curvature is not
enacted through the action itself, rather than through the
minimal coupling. In other words, the reason that this
system does not separate into two independent systems is
because both contribute to the S2 term, which in turn acts
frictionally on both parts. The second thing to note is that
the form of the shape potential Vs. This is the scalar
curvature of the unit spatial three-manifold with anisotro-
pies ϕ1 and ϕ2. In the Herglotz Lagrangian this appears in a
term V3

s=_z2. On an initial, surface level, inspection one
might suspect that this would give a distinct evolution from
the symplectic case. However, this is not the case, as is
verified by considering the equation of motion for _z. From
the general form of the Herglotz equations [Eq. (2.4)]
we see

d
dt

�
V3
s

_z3

�
¼ −3S

V3
s

_z3
; ð4:9Þ

which can be solved to find the dynamics of _z,

_z ¼ _z0Vse
−
R

Sdt; ð4:10Þ

and hence Vs=_z takes on the same role as the scale factor
would in the symplectic version.
To show that Eq. (4.8) is equivalent to the Einstein-

Hilbert action restricted to homogeneous spacetimes, we
follow the prescription of Eq. (2.15). Again identifying the
new coordinate introduced in symplectification with the
volume, v, we find

L¼ vLH þ S_v¼ v
�
−

_v2

6v2
þ

_ϕ1
2

2
þ

_ϕ2
2

2
−
V3
s

_z2
þ 4πGLm

�
:

ð4:11Þ

Again this might initially appear different from the usual
Lagrangian due to the presence of _z. However, the Euler-

Lagrange equation for _z tells us that vV3
s

_z3 is a constant, and

hence Vs=_z is proportional to v1=3. Upon replacing the _z
term in Eq. (4.11) using this, we recover the correct form.

V. REVEALING THE CONTACT SYSTEM FROM
THE EINSTEIN-HILBERT ACTION

In this paper we have presented the action in Eq. (1.4)
and shown that its symplectification is the Einstein-Hilbert
action. This symplectification gives rise to a symmetry of
the system under changing of the scale factor—this is a
dynamical similarity between solutions. Here we will show
how this action can be found beginning with the Einstein-
Hilbert action. The general procedure for this was laid out
in [18], and here we will apply it in the specific contexts of
interest—the FLRW and Bianchi cosmologies. This is a
three step process: First we identify the dynamical similarity
in either the Lagrangian or the Hamiltonian formulation.
Thenwe use this to provide the contact system by expressing
the Hamiltonian in terms of invariants of these transforma-
tions and thus constructing a contact Hamiltonian and
contact form from these invariants. Finally we perform a
Legendre transform to return the Herglotz Lagrangian.
We begin with the Einstein-Hilbert Lagrangian, L, given

in Eq. (3.2). It is apparent from the form of L that there is a
symmetry of this Lagrangian under which L → λL. Under
the transformation D which is given as

D∶ fv; Ng → fλv; λ2
3Ng; D∶ L → λL; ð5:1Þ

we see that the physical observables (H ¼ _v
3v ; q; _q) are

unchanged and the Lagrangian retains its form but is
multiplied by an overall factor. The reason for this is
related to the freedom to set the value of the scale factor at
an event. Since different choices of the scale factor do not
lead to distinct cosmological solutions, this transformation
cannot affect the physical observables. The equations of
motion come from extremizing the action. Since D has not
changed any of the physical observables, their evolution
remains unchanged under this transformation. Hence D
describes a map between solutions which are not physically
distinguishable and spans a one-dimensional curve through
the space of v; _v; q; _q;N. Any observer within the cosmol-
ogy could not locate their position on this curve. We could
also describe D as determining an equivalence class of
cosmological solutions γi with equivalence relation ∼
under which γ1 ∼ γ2 if all observables of γ1 and γ2 agree.
The invariants of D are simple to identify—they are the
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matter variables q; _q, the Hubble parameter, H, and a

combination of N and v, X ¼ N
3
2

v .
Let us now construct the Hamiltonian for our theory. In

this we note that the matter Lagrangian, Lm, is multiplied
by v throughout; hence for our Legendre transform the
conjugate momentum to q will be

Π ¼ ∂L
∂ _q ¼ v

∂Lm

∂ _q ¼ vp ð5:2Þ

since the matter Lagrangian is minimally coupled and
hence independent of v, and wherein we denote by p the
conjugate momentum to q of the uncoupled Lagrangian. If
we denote by Hm the Hamiltonian obtained from the
noncoupled Lagrangian, Lm, alone it is simple to show
that the Hamiltonian is

H ¼ v

�
−6πP2

v þHm

�
q;
Π
v

�
þ Nv−

2
3

�
; ð5:3Þ

where Pv ¼ − H
4π. The symplectic structure is

ω ¼ dPv ∧ dvþ dΠ ∧ dq. We can then express D as a
vector field D on phase space,

D ¼ v
∂
∂vþ Π

∂
∂Πþ 2

3
N

∂
∂N : ð5:4Þ

The action of D is to change both the Hamiltonian and the
symplectic structure in a way that preserves their forms and
hence does not affect the equations of motion—it is a
nonstrictly canonical transformation [27,28],

LDH ¼ H; LDω ¼ ω: ð5:5Þ

Hence again we see that points on phase space connected
by integral curves of D represent indistinguishable cosmo-
logical solutions,

LDH ¼ LDq ¼ LDp ¼ LDX ¼ 0: ð5:6Þ

We are now almost in position to find the contact
Hamiltonian following [18]. However, we note that one
of our invariants, X is composed of a product of a constant
and a dynamical variable, and as such will have a time
evolution. In [18] we have treated D as mapping between
different points on phase space, but in this case it also
changes the values of constants. To alleviate this, let us
promote X ¼ N

3
2 to be a momentum with no conjugate

position. As such, Hamilton’s equations tell us that it will
be a constant in time, and thus this is an equivalent
formulation of the problem. We thus extend the symplectic
structure to include dX ∧ dz in which z is a dummy
configuration variable that has no physical meaning.
Then we can form the contact Hamiltonian through

Hc ¼ H
v
¼ −6πP2

v þHmðq; pÞ þ X
2
3 ð5:7Þ

with contact form

η ¼ ιDω

v
¼ −dPv þ pdqþ Xdz: ð5:8Þ

From these we can find the equations of motion for our
variables. These differ from Hamilton’s equations as the
system involves friction—the general form of the equations
of motion for a contact Hamiltonian with contact form
−dAþP

i yidxi are

_xi ¼ ∂Hc

∂yi ; _yi ¼−
∂Hc

∂xi − yi
∂Hc

∂A ; _A¼ yi
∂Hc

∂yi −Hc;

ð5:9Þ

and hence we find our equations of motion are

_q¼ ∂Hm

∂p ; _p¼ −
∂Hm

∂q þ 12πPvp; _X ¼ 12πPvX;

ð5:10Þ

_Pv ¼ p
∂Hm

∂p −Hm þ 6πP2
v −

X
2
3

3
; _z ¼ 2

3X
1
3

: ð5:11Þ

Within this we see that the equation of motion for Pv
contains a term that is the Legendre transform of the
uncoupled matter Lagrangian Lm. Further, as we note the
equation of motion for Pv is the Legendre transform
of the coupled system—it is precisely the Herglotz
Lagrangian LH given in Eq. (1.4), with the curvature term
added. We can thus rewrite this in terms of the velocities _q
and _z to recover:

_Pv ¼ 6πP2
v þ Lm −

3

4_z2
; ð5:12Þ

which is the Herglotz Lagrangian of Eq. (1.4) if we identify
S ¼ 4πPv, i.e., S ¼ −H.

VI. DISCUSSION

We have shown that a complete description of cosmo-
logical systems can be obtained from an action principle
that makes no reference to the scale factor. Thus we can
construct all the observables of cosmology, in the usual
FLRWand Bianchi models, without ever making reference
to size. Whilst it is true that one can always embed such
systems in models in which scale is made explicit, this is
never strictly necessary in finding the evolution of physical
observables. The action principle employed is of the type
discussed by Herglotz, and thus describes a contact system
which is inherently a frictional system. We have shown that
the symplectification of this action reproduces exactly the
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Einstein-Hilbert action for cosmological systems, and thus
we reproduce exactly the dynamics of relativistic cosmol-
ogy and all physical observables thereon.
It is interesting to note that the cosmological dynamics of

a matter system can be obtained by beginning with the
matter Hamiltonian (or Lagrangian) and “contactifying” it.
Here we closely follow a construction given by Arnold
[17]. Consider the cotangent bundle over configuration
space, T�M. We can construct the “contactification” by
taking a bundle with fibers R over the base space of T�M.
This is isomorphic to the space C on which the FLRW
dynamics takes place. In local coordinates we can express
this as a direct product R × T�M with coordinates S, p, q.
If the symplectic form is exact (i.e., there exists a
symplectic potential θ), then we can give a canonical
contact form α ¼ θ − dS. Then we recover cosmological
dynamics by taking Hc ¼ Hm − κS2. We can then resym-
plectify this system in exactly the way described in
Sec. III—introducing a new coordinate to parametrize
the space of contact form. In other words, if we take a
matter system and introduce a quadratic friction term by
first extending the phase space by taking its product with
the reals, then adding an extra term proportional to a
coordinate on this fiber squared, together with taking a
contact form from the symplectic potential and an exact
form on this fiber, we reproduce the dynamics of an
expanding universe. Thus the usual Einstein-Hilbert action
and the dynamics of FLRW geometry are introduced by
taking a matter system, contactifying it to introduce
friction, then resymplectifying the result.
On the one hand, it should be somewhat unsurprising

that we can formulate cosmology without ever referencing
scale. After all, the scale factor is known to play no direct
role in physics, and it has long been understood that there
are multiple representations of the same physical system
that differ only by the choice of scale factor at a given event
(a choice that can be made exactly once per representation).
Since in many cases this is measured with reference to a
fiducial cell, the size of which is also an arbitrary choice, it
is clear that physics should have no dependence upon this
choice. On the other hand, general relativity, from which
our cosmological systems are derived, is the dynamics of
geometry. It would seem apparent that this geometry should
contain a notion of scale. If our cosmological conclusions
carry over to an action for general relativity in full
generality, this would indicate quite strongly the distinction
between size, as measured through the determinant of a
metric on a spatial manifold, say, and shape measured in
terms of relative shear. It is not a priori obvious that this
should be the case; the homogeneity that we impose in
cosmological models forces there to be no distinction
between points on a spatial manifold and therefore no
two distinguishable points between which a notion of
distance could be established. When this assumption is
relaxed, it is clear that such a notion can be well-defined,

for example in terms of the distance between the ends of the
metre des archives in Paris. Nonetheless, there exists a
transformation rescaling all such distances between points
(together with definitions of a second and values of the
fundamental constants) which preserves the form of the
Einstein-Hilbert action; therefore it seems likely such a
reduced system will exist.
The removal of scale from our ontology has several

important consequences. It has allowed us to construct a
more parsimonious theory, requiring one fewer initial
datum to provide a complete evolution. This follows the
recently coined “principle of essential and sufficient
autonomy” (PESA) which posits that when considering
two (or more) viable models, if all else is equal, then the
one which requires fewer external inputs is to be preferred
[20]. To quote Ismael and van Fraasen [29], “Formalisms
with little superfluous structure are nice, of course, because
they reflect cleanly the structure of what they represent;
they have fewer extra mathematical hooks on which to hang
the mental structures that we project onto the phenomena.”
The new action, being independent of the scale factor, has
eliminated one such hook.
The FLRW Lagrangian, shown in Eq. (3.2), involves the

fields v and q and their time derivatives, and the standard
Euler-Lagrange equations give rise to the usual dynamics.
These are given as

d
dt

�∂Lm

∂ _q
�
þ _v
v
∂Lm

∂ _q −
∂Lm

∂q ¼ 0; ð6:1Þ

1

12πG

�
v̈
v
þ _v2

v2

�
þ Lm −

N

3v
2
3

¼ 0: ð6:2Þ

At this point it would appear that we require five pieces
of information to reproduce a solution to the system—the
fields, their time derivatives, and the value of N. This
system is subject to a constraint—the Hamiltonian must
vanish. Thus we should expect we need to specify four
quantities to uniquely determine a physical solution.
However, we have shown that if we restrict our interests
to be only the evolution of physical observables it will
suffice to set only three.
The notions of typicality or probability in cosmology are

reliant upon the formulation of a measure by which the
number of distinct spacetimes can be counted. As we have
argued in the past [7], spacetimes which are distinguished
only by the choice of scale factor at a given time should not
be considered separate entities, and thus measures that
involve either directly or indirectly an integral over scale
factors are multiply counting solutions. In the standard
framework of general relativity, this leads to an ambiguity
as this direction is unbounded and cutoffs must be
employed to render any counting finite. However, the
imposition of such cutoffs does not commute with the
time evolution of the system; hence measures focus or
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unfocus as the universe expands.4 A measure on the contact
space, however, inherits its finiteness (or lack thereof) in
large part from that of the matter component. The Liouville
measure on contact space [15] when pulled back to a
surface of constant Hubble becomes the Liouville measure
on the matter component evaluated at a given energy. This
in turn avoids the infinities associated with integrals over
the scale factor.
The role of friction in measure focusing provides new

perspectives on the problems of the initial state of the
universe [30]. Friction is by its very nature a time
asymmetric process. At a generic point in the evolution
of a system there is a direction of time in which the
mechanical energy is increasing, and one in which it is
decreasing. Similarly there is a direction of time in which
measures are focusing and one in which they are not. Thus
from the frictional behavior of our system we can infer an
arrow of time. Further, since measures are not preserved
under time evolution the problem of the low entropy state
of the early universe is alleviated.
As we have recently proven [11,31,32], the mathematical

barrier to extending classical cosmological solutions
beyond the initial singularity lies in the failure of the
system of equations to be Lifschitz continuous, and hence
satisfy the conditions of the Picard-Lindelöff theorem. This
problem is alleviated when the scale is removed from the
system; it is only the evolution of the scale factor that is ill-
defined. Hence a scale free system has a unique, deter-
ministic classical evolution through the big bang. Thus
reports of general relativity predicting its own demise may
be greatly exaggerated. This has been established through
considering the relational evolution of Bianchi systems
[11], including those with inflationary matter [31] and
FLRW cosmologies with scalar fields [32]. The initial
singularity may be thought of as a point at which dynamical
evolution reaches the boundary of the description of
spacetime in terms of a four-dimensional Riemannian
manifold. From the perspective of expansion as friction
we gain a different intuition; it is the point at which an
infinite amount of mechanical energy has been added to the
system.While this would appear to be also problematic as it
again invokes infinities, when rendered in relational terms
this can be considered as potential terms being subdomi-
nant to kinetic terms, and thus motion becoming geodesic
on a relational space.
In this paper we have considered homogeneous cosmo-

logical solutions. A more accurate description of our
universe must also include inhomogeneities. A full con-
sideration of inhomogeneities would require a field theory
equivalent to that of general relativity. However, as a part-
way stage one can consider models which have an isometry

group smaller than that imposed for homogeneity. Gowdy
cosmologies [33] are an interesting example of such
models. With a two-parameter spacelike isometry group,
these generalize vacuum homogeneous solutions to provide
enough freedom to accommodate gravitational waves while
being simple enough to allow for analysis. Here we will
examine the case in which space is taken to be a three-torus
which is perhaps the simplest example. Here the metric is

ds2 ¼ e
τ−λ
2 ðdχ2 − e2τdτ2Þ þ e−τðePðdσþQdδÞ2 þ e−Pdσ2Þ;

ð6:3Þ

where P, Q, and λ are functions of τ and χ. We will denote
derivatives with respect to τ and χ with subscripts. The
equations of motion for P and Q are

Pττ − e−2τPχχ − e2PðQ2
τ − e−2τQ2

χÞ ¼ 0;

Qττ − e−2τQχχ þ 2ðPτQτ − e−2τPχQχÞ ¼ 0; ð6:4Þ

and λ satisfies

λτ ¼ P2
τ þ e−2τP2

χ þ e2PðQ2
τ þ e−2τQ2

χÞ;
λχ ¼ 2ðPχPτ þ e2PQχQτÞ: ð6:5Þ

It should be noted here that since the equations for P andQ
are independent of λ, we can solve Eqs. (6.4) and then
calculate λ from Eqs. (6.5). Equations (6.4) can be derived
from an action:

I ¼
Z Z

½P2
τ þ e2PQ2

τ − e−2τðP2
χ þ e2PQ2

χÞ�dχdτ: ð6:6Þ

Of particular interest to us here is that the action I above can
be rescaled in a similar manner to that employed in
Eq. (5.1) under which P → Pþ β and Q → Qe−β for real
numbers β. It is relatively straightforward to check that this
leaves invariant the equations of motion. Thus we see a
similar scaling symmetry to that used in the FLRW and
Bianchi cases applies to these Gowdy cosmologies. While
this is far from a proof, it appears therefore likely that a
similar new action can be found.
The evolution of the scale factor plays a central role in

quantum approaches to cosmology. Both the Wheeler-
DeWitt quantization and loop quantum cosmology take
as one of their physical observables a term representing the
volume of the universe, as measured against a fiducial cell.
As our action principle has no such terms within it, this
suggests that an alternative quantization may be performed.
The action of Eq. (1.4) is frictional, and therefore may be
amenable to alternative quantizations. It is of particular
interest to examine the quantization of frictional systems
following, for example, the Lindblad equation.

4This is a somewhat subtle issue and often overlooked as
Liouville’s theorem is invoked without considering the evolution
of cutoffs.
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