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The scalar-induced secondary gravitational wave as the stochastic gravitational background is a useful
tool to study the physics in the early universe. We study the scalar-induced tensor perturbations at second-
order during matter domination in seven different gauges. We obtain the results in six other gauges from
that in the Newtonian gauge using the gauge transformation law of the scalar-induced tensor perturbation.
We find that the kernel functions Iχ in the synchronous and comoving orthogonal gauges are the same if the
residual gauge modes in these two gauges are eliminated. By identifying the oscillating terms sin x and
cos x in the scalar-induced tensor perturbations as the scalar-induced secondary gravitational waves, we
find that its energy density is actually gauge independent. The energy density ρGW ∝ a−4, or ΩGW ∝ a−1 in
the matter-dominated era, and the scalar-induced secondary gravitational waves behave as radiation.
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I. INTRODUCTION

The discovery of gravitational waves (GWs) from
mergers of black holes (BHs) and neutron stars (NS) by
the Laser Interferometer Gravitational-Wave Observatory
(LIGO) Scientific Collaboration and Virgo Collaboration
[1–13] has marked the beginning of the era of astronomy of
GWs. There are also GWs with cosmological origins, such
as the primordial GWs generated during inflation, the
second-order GWs induced by primordial scalar perturba-
tion, as well as GWs generated from a cosmic phase
transition [14–61]. The power spectrum of primordial
curvature perturbations at large scales is nearly scale-
invariant with the amplitude As ¼ 2.1 × 10−9 at the pivot
scale k ¼ 0.05 Mpc−1 [62], while the small-scale ones
remain to be explored. If the primordial scalar perturbations
at small scales are large enough (the amplitude of the power
spectrum needs to be at least 0.01), then a sizable amount
of secondary GWs will be induced during the radiation
domination (RD) and the matter domination (MD) due to
the mixing of tensor and scalar perturbations. The scalar
induced GWs (SIGWs) at second-order contribute to the
stochastic gravitational-wave background, so it is possible
to extract the information about small scale primordial
scalar perturbations from the detection of SIGWs. In other
words, SIGWs can be used to probe the thermal history
of the universe and to understand the physics during
inflation [42,51,63].

In contrast to tensor perturbations at the first order, the
second-order tensor perturbations are gauge-dependent, so
SIGWs may depend on the gauge choice [36,38,43,45,47,
64–67], even though many choices of the gauge-invariant
tensor perturbation at second order can be constructed in a
specific gauge [36,64,68–77]. This means that we need
to calculate the second-order tensor perturbations in each
gauge. However, the production of SIGWs was usually
discussed in the Newtonian gauge. It is necessary to discuss
SIGWs in other gauges. During RD, the energy densities
of SIGWs in the Newtonian, synchronous, and uniform
curvature gauge were found to be the same [36,38,47]. The
energy density of SIGWs in the synchronous gauge during
both RD and MD was discussed in [47]. For a general
background with the constant equation-of-state w, particu-
larly, for RD with w ¼ 1=3, and MD with w ¼ 0, the
SIGWs were calculated in the Newtonian, comoving, and
uniform curvature gauges [43]. In the previous paper [45],
we derived a general formula for the calculation of SIGWs
during RD in an arbitrary gauge and obtained the results for
SIGWs in the uniform curvature gauge, the synchronous
gauge, the comoving gauge, the comoving orthogonal
gauge, the uniform density gauge, and the uniform expan-
sion gauge from the result in the Newtonian gauge using
the coordinate transformation. As expected, the energy
density of SIGWs in different gauge is not invariant in
general. But a physical observable like SIGWs should not
depend on the gauge choice.
To resolve the problem of the gauge-dependence of

SIGWs, we recall the property of GWs to distinguish
SIGWs from the second-order tensor perturbation. In gene-
ral relativity, GWs propagate at the speed of light, and the
freely propagating GWs oscillate like sinðkηÞ or cosðkηÞ
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and their energy densities decay as a−4, so only the terms
with oscillating behaviors like sinðkηÞ or cosðkηÞ in the
scalar-induced tensor perturbations should be identified as
SIGWs. The terms behave other than sinðkηÞ and cosðkηÞ
are not SIGWs, and they arise because of the mixing of
tensor and scalar perturbations. This point of view was
adopted in [47] to show SIGWs in the Newtonian and
synchronous gauges are the same. Similarly, by arguing
that the source of SIGWs is not active for modes deep
inside the horizon, it was shown that the energy density
for SIGWs at small scales is well behaved and invariant
under a set of reasonable gauge transformation in general
cosmological backgrounds except MD [77]. If we con-
sider the contribution from terms oscillating as sinðkηÞ and
cosðkηÞ only, then, using the results obtained in Ref. [45], it
is easy to show that SIGWs during RD are the same in
the uniform curvature gauge, the synchronous gauge, the
comoving gauge, the comoving orthogonal gauge, the
uniform density gauge, the uniform expansion gauge,
and the Newtonian gauge. In a general cosmological
background with a constant equation-of-state w ≠ 0, the
Newtonian potential oscillates with the oscillation fre-
quency

ffiffiffiffi
w

p
k and decays as η−3ð1þwÞ=ð1þ3wÞ inside the

horizon in the Newtonian gauge. However, the MD with
w ¼ 0 is a special case. During MD, the Newtonian
potential is a constant in all scales and does not decouple
from the tensor perturbation at the second order. Therefore,
SIGWs in MD deserve to be further investigated.
In this paper, we discuss the energy density of SIGWs

during MD in seven various gauges and show that SIGWs
with the oscillating behaviors sinðkηÞ and cosðkηÞ are the
same in these gauges. The paper is organized as follows.
The basic formulas used to calculate SIGWs and discuss
the gauge transformation are given in Sec. II. We also
provide the prescription to obtain the expressions in
other gauges from the Newtonian gauge result by using
the gauge transformation of the second-order tensor per-
turbation in MD. In Sec. III, we derive the kernels Iðu; v; xÞ
analytically in different gauges. Then we calculate the
energy density of SIGWs with the behaviors sinðkηÞ or
cosðkηÞ in the seven gauges and discuss the gauge
independence of the result. The summary of our results
is presented in Sec. IV.

II. FORMULATION OF SIGWS AND GAUGE
TRANSFORMATIONS

In this section, we discuss the formalism of the second-
order SIGWs. We begin with the following perturbed
metric

ds2 ¼ −a2ð1þ 2ϕÞdη2 þ 2a2B;idxidη

þ a2
�
ð1 − 2ψÞδij þ 2E;ij þ

1

2
hTTij

�
dxidxj; ð1Þ

where the metric perturbations include the first-order
scalar perturbations ϕ, ψ , B, and E, and the second-order
tensor perturbation hTTij , which is transverse and traceless:
hTTii ¼ ∂ihTTij ¼ 0. The first-order tensor perturbation and
the vector perturbations are not taken into account because
we discuss SIGWs only. In the forthcoming derivations
of SIGWs, we assume that the production of induced GWs
begins long before the horizon reentry.

A. The generation of SIGWs

The equation of motion for the transverse traceless
tensor mode hTTij at the second-order can be derived
straightforwardly from the perturbed Einstein’s equation
Gμν ¼ 8πGTμν as

hTT00ij þ 2HhTT0ij −∇2hTTij ¼ 4T lm
ij slm; ð2Þ

where the prime stands for the derivative with respect to the
conformal time η,H ¼ a0ðηÞ=aðηÞ is the comoving Hubble
parameter, and slm is the source term given below in
Eq. (12). The projection tensor T lm

ij acting on the source
term extracts the transverse and traceless part and will be
discussed below. In this paper, we consider the production
of SIGWs in MD only, where a ¼ η2 and H ¼ 2=η.
The Fourier components of the transverse and traceless

parts of the tensor perturbations in terms of the polarization
tensors are defined as

hTTij ðy; ηÞ ¼
Z

d3k

ð2πÞ3=2 e
ik·y½hþk ðηÞeþij þ h×k ðηÞe×ij�; ð3Þ

where y are spatial coordinates. In terms of the orthonormal
bases e and ē orthogonal to the wave vector k, with k · e ¼
k · ē ¼ e · ē ¼ 0 and jej ¼ jēj ¼ 1, the plus and cross
polarization bases are defined as

eþij ¼
1ffiffiffi
2

p ½eiej − ēiēj�;

e×ij ¼
1ffiffiffi
2

p ½eiēj þ ēiej�: ð4Þ

The polarization tensors (4) are transverse and traceless as
kie

þ
ij ¼ kie×ij ¼ 0 and eþii ¼ e×ii ¼ 0. In the Fourier space,

the projection tensor is expressed as

T lm
ij ¼ ½eþijeþlm þ e×ije

×lm�; ð5Þ

and the solution to Eq. (2) for either polarization etij reads

htkðηÞ ¼ 4

Z
x

0

dx̃
aðη̃Þ
aðηÞ

1

k
Gkðη; η̃ÞStk; ð6Þ

where the Green’s function Gkðη̃; ηÞ to Eq. (2) in MD is
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Gkðη̃; ηÞ ¼
ð1þ xx̃Þ sinðx − x̃Þ − ðx − x̃Þ cosðx − x̃Þ

kxx̃
; ð7Þ

x̃ ¼ kη̃, x ¼ kη, the source Stk ¼ etijs
ijðk; ηÞ for either

polarization t ¼ þ or × is

StkðηÞ ¼
Z

d3p

ð2πÞ3=2 ζðpÞζðk − pÞetijpipjfðu; v; xÞ; ð8Þ

ζðkÞ is the primordial curvature perturbation, u ¼ p=k, v ¼
jk − pj=k and fðu; v; xÞ will be given below in the next
subsection. For convenience we introduce the integral
kernel [15,16]

Iðu; v; xÞ ¼
Z

x

0

dx̃
aðη̃Þ
aðηÞ kGkðη; η̃Þfðu; v; x̃Þ; ð9Þ

to express the solution htkðηÞ,

htkðηÞ ¼ 4

Z
d3p

ð2πÞ3=2 e
t
ijp

ipjζðpÞζðk − pÞ 1
k2

Iðu; v; xÞ:

ð10Þ

For free propagating GWs without the source, we get the
decaying oscillating solution

htkðηÞ ¼
3ðsin x − x cos xÞ

x3
; ð11Þ

with the initial condition htkð0Þ ¼ 1.

B. The source term for SIGWs

The second-order source term sij for SIGWs in Eq. (2)
that comes from the first-order scalar perturbation is [45]

sij ¼ −ψ ;iψ ;j − ϕ;iϕ;j þ σ;ijðϕ0 þ ψ 0 −∇2σÞ − ðψ 0
;iσ;j þ ψ 0

;jσ;iÞ þ σ;ikσ;jk − 2ψ ;ijðϕþ ψÞ

−
2

H0 −H2
ðψ 0 þHϕÞ;iðψ 0 þHϕÞ;j þ 2ψ ;ij∇2E − 2E;ijðψ 00 þ 2Hψ 0 −∇2ψÞ

− 2ðψ ;jkE;ik þ ψ ;ikE;jkÞ þ 2Hðψ ;iE0
;j þ ψ ;jE0

;iÞ þ ψ 0
;iE

0
;j þ ψ 0

;jE
0
;i þ ψ ;iE00

;j þ ψ ;jE00
;i

þ E0
;ikE

0
;jk − E;iklE;jkl − 2E0

;ijψ
0 − E;ijkðE00 þ 2HE0 −∇2EÞ;k; ð12Þ

where the anisotropic stress tensor Πij of the matter fluid is assumed to be zero, the terms proportional to δij are omitted
because they do not contribute to the transverse and traceless part, σ ¼ E0 − B is the shear potential, and ρ0 and P0 are the
background values of energy density and pressure for the matter fluid. The detailed discussion of these variables is
presented in the Appendix. In gauges with E ¼ 0, the above equation (12) reduces to that given in [36,49,65] with vanishing
anisotropic stress. In general, we need to use Eq. (12) instead. Particularly, we should include all the terms involvingE in the
synchronous gauge.
Come back to the function fðu; v; xÞ in Eq. (8) which contains the source information and is gauge-dependent. The

explicit expression of the source function fðu; v; xÞ is

fðu; v; xÞ ¼ 1

2
×

9

25
ðf̃ðu; v; xÞ þ f̃ðv; u; xÞÞ; ð13Þ

where

f̃ðu; v; xÞ ¼ TψðuxÞTψ ðvxÞ − TϕðuxÞTϕðvxÞ −
v
u
TσðuxÞ½T�

ϕðvxÞ þ T�
ψðvxÞ þ TσðvxÞ� − 2

u
v
T�
ψðuxÞTσðvxÞ

−
1 − u2 − v2

2uv
TσðuxÞTσðvxÞ þ 2TψðuxÞTϕðvxÞ þ 2TψðuxÞTEðvxÞ −

1 − u2 − v2

2uv
T�
EðuxÞT�

EðvxÞ

þ 2
u2

v2
TEðvxÞ

�
T��
ψ ðuxÞ þ 2H

ku
T�
ψðuxÞ þ TψðuxÞ

�

þ 2

H2 −H0 ½kuT�
ψ ðuxÞ þHTϕðuxÞ�½kvT�

ψðvxÞ þHTϕðvxÞ�

þ 4
H
kv

TψðuxÞT�
EðvxÞ þ 4

u
v
T�
ψ ðuxÞT�

EðvxÞ þ 2Tψ ðuxÞT��
E ðvxÞ þ 2

�
1 − u2 − v2

v2

�
Tψ ðuxÞTEðvxÞ

−
�
1 − u2 − v2

2uv

�
2

TEðuxÞTEðvxÞ −
1 − u2 − v2

2u2
TEðuxÞ

�
T��
E ðvxÞ þ 2

H
kv

T�
EðvxÞ þ TEðvxÞ

�
; ð14Þ
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where T�ðxÞ ¼ dTðxÞ=dx and the transfer functions TðxÞ
which relate the scalar perturbations to its primordial
curvature perturbation are defined as [47]

σðk; xÞ ¼ 3

5
ζðkÞ 1

k
TσðxÞ; ð15Þ

Eðk; xÞ ¼ 3

5
ζðkÞ 1

k2
TEðxÞ; ð16Þ

Bðk; xÞ ¼ 3
5
ζðkÞ 1k TBðxÞ; ð17Þ

ψðk; xÞ ¼ 3
5
ζðkÞTψ ðxÞ; ð18Þ

ϕðk; xÞ ¼ 3
5
ζðkÞTϕðxÞ: ð19Þ

From Eq. (13), it is obvious that the source function
fðu; v; xÞ is symmetric in u and v.

C. The power spectrum of SIGWs

The primordial curvature perturbation induces GWs in
the MD era, and the energy density of SIGWs is

ρGW ¼ 1

32πG
1

4a2
hh0ijh0iji: ð20Þ

We see that the contribution to the energy density from a
constant hij is zero due to the time derivative. By using the
tensor power spectrum Ph defined as

hht1k1ðηÞh
t2
k2
ðηÞi ¼ 2π2

k31
δt1t2δ

3ðk1 þ k2ÞPhðk1; ηÞ; ð21Þ

we get the energy density parameter ΩGWðk; xÞ of
SIGWs as

ΩGW ¼ dρGW
ρcd ln k

¼ 1

24

�
x
2

�
2

Phðk; xÞ; ð22Þ

where ti ¼ þ;×, an overbar stands for oscillatory average
and ρc ¼ 3H2=8πG is the critical energy density of the
universe. In deriving the second equality in Eq. (22), we
use the fact that either polarization contributes equally to
the energy density and GWs are null waves, so we make the
replacement jh0kðηÞj2 ¼ k2jhkðηÞj in the subhorizon limit
with k ≫ H [63].
Combining Eqs. (10) and (21), we get [29,32]

Phðk; xÞ ¼ 4

Z
∞

0

du
Z

1þu

j1−uj
dvI2ðu; v; xÞPζðukÞ

× PζðvkÞ
�
4u2 − ð1þ u2 − v2Þ

4uv

�
2

; ð23Þ

where Pζ is the primordial scalar power spectrum.

D. Newtonian gauge

To calculate the energy density explicitly, we need to
choose a gauge. The SIGWs in Newtonian (Poisson)
gauge during MD were studied in [16,18,32,43,47,65],
we review the result in this subsection. We introduce
the transfer function T to separate the time evolution by
defining ϕðk; ηÞ ¼ ϕðk; 0ÞTðηÞ. In the Newtonian gauge
where B ¼ E ¼ 0, and ignoring anisotropic stress, we have
ϕN ¼ ψN ¼ Φ ¼ Ψ, in which the Bardeen’s potentials Φ
and Ψ defined in (A11) and (A12) are given by Φ ¼ Ψ ¼
3ζ=5 on superhorizon scales. Therefore, ϕNðk; 0Þ ¼
3ζðkÞ=5 and TNðxÞ ¼ 1. The subscript “N” indicates that
these quantities are evaluated in the Newtonian gauge.
In the Newtonian gauge, the source function in terms of

the transfer functions TN for the gravitational potential ϕN
reads

fNðv;u; xÞ ¼
6

5
TNðvxÞTNðuxÞ þ

3

25
uvx2T�

NðvxÞT�
NðuxÞ

þ 6

25
½vxT�

NðvxÞTNðuxÞ þ uxT�
NðuxÞTNðvxÞ�:

ð24Þ
Using TNðxÞ ¼ 1, we obtain

fNðu; v; xÞ ¼
6

5
: ð25Þ

Combining Eqs. (9), (7), and (25), we get the explicit
expression for the kernel INðu; v; xÞ [32]

INðu; v; xÞ ¼
6

5
þ 18ðx cos x − sin xÞ

5x3
: ð26Þ

Since INðu; v; x → ∞Þ ¼ 6=5, Eq. (23) tells us that at late
times Ph is a constant and the energy density of SIGWs is
proportional to x2. Thus ΩGWðk; x → ∞Þ ∝ a if we use
Eq. (22). However, from Eq. (10), we see that the constant
6=5 in Eq. (26) contributes a constant to hk, so the
contribution to h0k and the energy density is zero. This
means that we should use the definition (20) to calculate
ΩGW, otherwise the constant 6=5 will be mistakenly
accounted for if we use Eq. (22). Therefore, the constant
6=5 in Eq. (26) does not contribute to the energy density
ΩGW. In other words, the constant in Eq. (26) does not
represent a wave and GWs come from those terms
oscillating as sin x and cos x. After dropping the constant
6=5, we have INðx → ∞Þ ∝ cos x=x2 ¼ cos x=a leading to
ΩGW ∝ a−1 and ρGW ∝ a−4, which behaves, as expected, as
radiation in MD era. In [77], the authors obtained the above
result by gauging away the constant term. In summary, only
the terms oscillating as sin x and cos x account for SIGWs.

E. The gauge transformation

Now we discuss the gauge transformation and how
the energy density in other gauges can be derived from
the result in the Newtonian gauge [45]. We start from the
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infinitesimal coordinate transformation xμ → xμ þ ϵμ with
ϵμ ¼ ðα; δij∂jβÞ. For the discussion of SIGWs, we do not
consider the vector degrees of freedom for the coordinate
transformation, and the scalars α and β are of first order.
Since the gauge transformation of tensor modes does not
depend on the coordinate transformation of the same order,
we do not need to consider the second-order gauge trans-
formation. For the second-order tensor perturbation, we
have [45,68,73]

hTTij → hTTij þ χTTij ; ð27Þ

where

χTTij ðx; ηÞ ¼
Z

d3k

ð2πÞ3=2 e
ik·xðχþk ðηÞeþij þ χ×k ðηÞe×ijÞ; ð28Þ

χtkðηÞ ¼
4

k2

Z
d3p

ð2πÞ3=2 e
t
ijp

ipjζðpÞζðk − pÞIχðu; v; xÞ;

ð29Þ

and

Iχðu; v; xÞ ¼ −
9

100uv

�
2TαðuxÞTσðvxÞ þ 2TαðvxÞTσðuxÞ þ 2TαðuxÞTαðvxÞ

− 4

�
u
v
Tψ ðuxÞTβðvxÞ þ

v
u
TψðvxÞTβðuxÞ

�

þ 1 − u2 − v2

uv
ðTβðuxÞTEðvxÞ þ TβðvxÞTEðuxÞ þ TβðuxÞTβðvxÞÞ

þ 8

x

�
1

v
TαðuxÞTEðvxÞ þ

1

u
TEðuxÞTαðvxÞþ

1

v
TαðuxÞTβðvxÞ þ

1

u
TβðuxÞTαðvxÞ

��
: ð30Þ

We have symmetrized Iχðu; v; xÞ under the interchange
u ↔ v. The transfer functions Tα and Tβ for the scalar parts
α and β of the infinitesimal coordinate transformation ϵμ to
the first order are

αðk; xÞ ¼ 3

5
ζðkÞ 1

k
TαðxÞ; ð31Þ

βðk; xÞ ¼ 3

5
ζðkÞ 1

k2
TβðxÞ: ð32Þ

From the gauge conditions, it is not hard to find out the
coordinate transformation between two gauges and the
solutions for α and β. With the gauge transformation (27)
and the result for SIGWs in the Newtonian gauge, it is
straightforward to derive the semianalytic expression for
SIGWs in other gauges without performing the detailed
calculation in that gauge. In particular, combining Eqs. (3),
(10), (27), (28), and (29), we get the following gauge
transformation [45]

htk → htk þ χtk

¼ 4

k2

Z
d3p

ð2πÞ3=2 e
t
ijðkÞpipjζðpÞζðk − pÞ

× ðIðu; v; xÞ þ Iχðu; v; xÞÞ: ð33Þ

This powerful transformation rule allows us to quickly
transform the solution of second-order tensor perturbation
in one gauge to other gauges with the replacement of

Iðu; v; xÞ by Iðu; v; xÞ þ Iχðu; v; xÞ. By setting the initial
gauge to be the Newtonian gauge, we obtain Iχðu; v; xÞ in
other gauges as

INðu; v; xÞ → INðu; v; xÞ þ Iχðu; v; xÞ; ð34Þ

where

Iχðu; v; xÞ ¼ −
9

100uv

�
2TαðuxÞTαðvxÞ

− 4

�
u
v
TNðuxÞTβðvxÞ þ

v
u
TNðvxÞTβðuxÞ

�

þ 8

x

�
1

v
TαðuxÞTβðvxÞ þ

1

u
TβðuxÞTαðvxÞ

�

þ 1 − u2 − v2

uv
TβðuxÞTβðvxÞ

�
: ð35Þ

Iχ can be obtained by substituting the transfer functions
Tσ ¼ TE ¼ 0 and Tψ ¼ TN in the Newtonian gauge
into Eq. (30). The coordinate transformations from the
Newtonian gauge to the other gauges give the transfer
functions Tα and Tβ.

III. THE KERNEL IN DIFFERENT GAUGES

The goal of this section is to compute the analytic
expressions for the kernel Iχ in six different gauges from
the Newtonian gauge by using Eq. (34).
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A. Synchronous gauge

In this subsection, we first calculate the kernel directly
by using Eq. (9) and then confirm that it is the same as that
obtained from the gauge transformation with Eq. (34).
In the synchronous gauge, ϕ ¼ B ¼ 0. The equation for

the transfer function TE in the synchronous gauge is

x3T����
E þ 8x2T���

E þ 8xT��
E − 8T�

E ¼ 0: ð36Þ

The general solution for the transfer function TE is

TEðxÞ ¼ C1 þ
x2

2
C2 −

C3
x
−

C4
3x3

; ð37Þ

where Ci are integration constants. Note that there are two
gauge modes in Eq. (37) because of the residual gauge
freedom in the synchronous gauge [78–82]. To identify
these two gauge modes, we take the residual gauge trans-
formation [79,80]

α ¼ C5
x2

;

β ¼ −
C5
x
þ C6; ð38Þ

and after that we are still in synchronous gauge where
ϕ ¼ B ¼ 0. From the transformation (A5), we see that the
constant C6 term in β contributes to the integration constant
C1 in Eq. (37) and the C5 term in β contributes to the 1=x
term in Eq. (37). Therefore, C1 and C3 terms in Eq. (37) are
just pure gauge modes and we can eliminate them by
substituting C1 ¼ C3 ¼ 0. Now we determine the remaining
integration constants from the initial condition. At the
initial time x ¼ 0, assume that TEð0Þ is finite, we get
C4 ¼ 0. Then we use the initial condition of the gauge-
invariant Bardeen potential to fix the constant C2. The
gauge-invariant Bardeen potential in synchronous gauge is

Φ ¼ −HE0 − E00; ð39Þ

so the transfer function TΦ is TΦ ¼ −3C2. From the initial
condition TΦð0Þ ¼ TN ¼ 1, we derive C2 ¼ −1=3. After
eliminating the gauge modes, we get the transfer function
TE as [47]

TEðxÞ ¼ −
x2

6
: ð40Þ

The transfer function Tψ is [47,82]

Tψ ðxÞ ¼ −T��
E ðxÞ − 4

x
T�
EðxÞ ¼

5

3
: ð41Þ

Substituting Eqs. (41) and (40) into Eq. (9), we get

Isynðu; v; xÞ ¼
x2

400
ð−88þ ð−1þ u2 þ v2Þx2Þ

þ 6ðx3 − 3 sin xþ 3x cos xÞ
5x3

: ð42Þ

Next we derive the kernel by using the gauge trans-
formation. The coordinate transformation from the
Newtonian gauge to the synchronous gauge is

αðk; xÞ ¼ 3

5
ζðkÞ 1

k
TαðxÞ;

βðk; xÞ ¼ 3

5
ζðkÞ 1

k2
TβðxÞ; ð43Þ

where

TαðxÞ ¼ −
x
3
;

TβðxÞ ¼ −
x2

6
: ð44Þ

Substituting Eq. (44) into Eq. (35), we get

Iχðu; v; xÞ ¼
x2

400
½−88þ ð−1þ u2 þ v2Þx2�: ð45Þ

We confirm that Isyn ¼ IN þ Iχ . In the next subsections,
we derive the kernels by using the gauge transformation
(34) only.
It is noteworthy that in Eq. (45), there is no oscillating term

to represent GWs. Therefore, the kernel Iχðu; v; xÞ does not
contribute to SIGWs andΩGW in both the Newtonian gauge
and the synchronous gauges are the same.

B. Comoving orthogonal gauge

In the comoving gauge, δV ¼ 0 and B ¼ 0 [73]. This
gauge also retains a residual coordinate transformation
β ¼ C which corresponds to arbitrary choice of the origin of
the spatial coordinates. For the time coordinate trans-
formation, the variable α is given by

α ¼ HϕN þ ϕ0
N

H0 −H2
: ð46Þ

From the above expression, we get the transfer function

TαðxÞ ¼ −x=3: ð47Þ

The general solution of the transfer function Tβ is

TβðxÞ ¼ −
x2

6
þ C: ð48Þ

The last constant C term is a pure gauge mode, we can
choose C ¼ 0 so that Tβðx ¼ 0Þ ¼ 0. Combining Eqs. (35),
(47) and (48), we get
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Iχðu; v; xÞ ¼
x2

400
½−88þ ð−1þ u2 þ v2Þx2�: ð49Þ

It is interesting to note that the kernel in the comoving
orthogonal gauge is identical with that in synchronous
gauge and there is no oscillation, so this kernel does not
contribute to SIGWs. For SIGWs, ΩGW in the comoving
orthogonal gauge is the same as those in the Newtonian and
synchronous gauges.

C. Uniform curvature gauge

The uniform curvature gauge demands ψ ¼ E ¼ 0. The
coordinate transformation from the Newtonian gauge to the
uniform curvature gauge is

α ¼ ϕN

H
¼ 3

5
ζðkÞ 1

k
TαðxÞ; ð50Þ

β ¼ 0; ð51Þ

where the transfer function Tα is

Tα ¼ xTN=2: ð52Þ

Substituting these results of the transfer functions into
Eq. (35), we get

Iχðu; v; xÞ ¼ −
9x2

200
: ð53Þ

This term is a growing mode and there is no oscillation, so
it does not contribute to SIGWs. For SIGWs, we find that
ΩGW in the uniform curvature gauge is the same as that in
the Newtonian gauge.

D. Comoving gauge (total matter gauge)

The comoving gauge (also referred as the total matter
gauge [73]) is defined by the condition, δV ¼ E ¼ 0. The
transfer functions for the coordinate transformation from
the Newtonian gauge to the comoving gauge are

TαðxÞ ¼ −
x
3
; ð54Þ

and TβðxÞ ¼ 0. Substituting Eq. (54) into Eq. (35), we get

Iχðu; v; xÞ ¼ −
x2

50
: ð55Þ

This term is a growing mode and there is no oscillation, so
it does not contribute to SIGWs. For SIGWs, we obtain
the same ΩGW in the total matter gauge as that in the
Newtonian gauge.

E. Uniform density gauge

The uniform density gauge is defined by the condition,
δρ ¼ E ¼ 0. The transfer functions for the coordinate
transformation from the Newtonian gauge to this gauge are

TαðxÞ ¼ −
12xþ x3

36
; ð56Þ

and TβðxÞ ¼ 0. Substituting Eq. (56) into Eq. (35), we get

Iχðu; v; xÞ ¼ −
x2ð12þ u2x2Þð12þ v2x2Þ

7200
: ð57Þ

This term is also a growing mode without oscillation, so it
does not contribute to SIGWs. For SIGWs, we find that
ΩGW in the uniform density gauge is the same as that in the
Newtonian gauge.

F. Uniform expansion gauge

At last, we consider the uniform expansion gauge,
3ðHϕþ ψ 0Þ þ k2σ ¼ 0 and E ¼ 0 [65]. The transfer func-
tions for the coordinate transformation from the Newtonian
gauge to this gauge are

TαðxÞ ¼ −
6x

18þ x2
; ð58Þ

and TβðxÞ ¼ 0. Substituting Eq. (58) into Eq. (35), we get

Iχðu; v; xÞ ¼ −
162x2

25ðu2x2 þ 18Þðv2x2 þ 18Þ : ð59Þ

At late times, this kernel is a decaying mode without
oscillation, so it does not contribute to SIGWs. For SIGWs,
we obtain the sameΩGW in the uniform expansion gauge as
that in the Newtonian gauge.

G. Monochromatic power spectrum

For the monochromatic power spectrum, Pζ ¼
Aζδðln k − ln k�Þ, the energy density for free SIGWs in
MD is

ΩGWðk; xÞ ¼
1

48x2
A2
ζ

�
1 −

�
k
2k�

�
2
�

2

Θð2k� − kÞ

∝ 1=a; ð60Þ

where ΘðxÞ is the Heaviside theta function, and k� is the
wave-number of the peak in the power spectrum. Since
the energy density of matter decays as a−3 and the energy
density of SIGWs decays as a−4, so ΩGW decays as 1=a
in MD.
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IV. CONCLUSION

In this paper, we study the solutions to scalar-induced
tensor perturbations in various gauges during MD. Since
the time dependence of SIGWs htkðηÞ lies in the integral
kernel Iðu; v; xÞ, we explicitly calculate the analytical
expressions for the kernels IN in the Newtonian and Isyn
in the synchronous gauges. We also derive the relation
between the kernels in different gauges under the coor-
dinate transformation and use the results to obtain the
analytical expressions for the kernels in six other gauges,
namely the synchronous gauge, the comoving orthogonal
gauge, the uniform curvature gauge, the total matter gauge,
the uniform density gauge and the uniform expansion
gauge. The direct calculation of Isyn in the synchronous
gauge confirms that it is the same as that obtained from IN
using the gauge transformation. There are two residual
gauge modes in the synchronous gauge and one residual
gauge mode in the comoving orthogonal gauge. After
identifying and eliminating the gauge modes, we find that
the kernels in the synchronous gauge and the comoving
orthogonal gauge are the same.
Although the derived kernels are different in different

gauges, the difference is from either growing or decaying
modes with the behavior xn or an=2. For SIGWs with the
oscillating behaviors sin x and cos x, we find that at late
times ρGW ∝ a−4, and ΩGW ∝ a−1 in all seven gauges, i.e.,
SIGWs behave the same as radiation in MD. With the
analytical expression for the kernel, we give the analytical
result of the energy density ΩGW for the monochromatic
power spectrum. In conclusion, SIGWs are gauge inde-
pendent, and it is convenient to calculate ΩGW in the
Newtonian gauge in practice. Our results are helpful
for the probe of the thermal history of the universe
with SIGWs.
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APPENDIX: GAUGE TRANSFORMATION

1. The energy-momentum tensor

A perfect fluid has the stress energy-momentum tensor
of the form

Tμν ¼ ðρþ PÞUμUν þ Pgμν þ Πμν; ðA1Þ

where the anisotropic stress Πμν is assumed to be zero. The
first-order perturbations of the velocity Uμ, the energy

density, the pressure, and the anisotropic stress are δUμ, δρ,
δP, and δΠij, respectively. The first-order velocity pertur-
bation δUμ is decomposed via δUμ ¼ a½δV0; δV;i þ δVi�
with δVi;i ¼ 0. Notice δV we defined here relates to the
perturbations vM and BM in Ref. [73] by δV ¼ vM þ BM.

2. Gauge transformations

One may perform a gauge transformation of the form
xμ → x̃μ ¼ xμ þ ϵμðxÞ under the general infinitesimal coor-
dinate transformation, with ϵμ ¼ ½α; δij∂jβ�. The first-order
gauge transformations are written as

ϕ̃ ¼ ϕþHαþ α0; ðA2Þ

ψ̃ ¼ ψ −Hα; ðA3Þ

σ̃ ¼ σ þ α; ðA4Þ

B̃ ¼ B − αþ β0; ðA5Þ

Ẽ ¼ Eþ β; ðA6Þ

δρ̃ ¼ δρþ ρ00α; ðA7Þ

δP̃ ¼ δPþ P0
0α; ðA8Þ

δṼ ¼ δV − α; ðA9Þ

δΠ̃ ¼ δΠ; ðA10Þ

where Π is the scalar part of the (trace-free) anisotropic
stress. One can obtain two gauge-invariant Bardeen poten-
tials by using the above gauge transformation [83]

Φ ¼ ϕ −Hσ − σ0; ðA11Þ

Ψ ¼ ψ þHσ: ðA12Þ

The gauge transformation for the SIGWs under the infini-
tesimal coordinate transformation is hTTij → hTTij þ χTTij ,
where

χij ¼ 2

��
H2 þ a00

a

�
α2 þHðαα0 þ α;kϵ

kÞ
�
δij

þ 4½αðC0
ij þ 2HCijÞ þ Cij;kϵ

k þ Cikϵ
k
;j þ Cjkϵ

k
;i�

þ 2ðBiα;j þ Bjα;iÞ þ 4Hαðϵi;j þ ϵj;iÞ − 2α;iα;j

þ ðϵi;jk þ ϵj;ikÞϵk þ ϵi;kϵ
k
;j þ ϵj;kϵ

k
;i þ ϵ0iα;j þ ϵ0jα;i;

þ 2ϵk;iϵ
k
;j þ αðϵ0i;j þ ϵ0j;iÞ ðA13Þ

and Cij ¼ −ψδij þ E;ij.
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