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Recent work on the Szekeres inhomogeneous cosmological models uncovered a surprising rotation
effect. Hellaby showed that the angular ðθ;ϕÞ coordinates do not have a constant orientation, while
Buckley and Schlegel provided explicit expressions for the rate of rotation from shell to shell, as well as the
rate of tilt when the 3-space is embedded in a flat 4-d Euclidean space. We here investigate some properties
of this embedding, for the quasispherical recollapsing case, and use it to show that the two sets of results are
in complete agreement. We also show how to construct Szekeres models that are closed in the “radial”
direction, and hence have a “natural” embedded torus topology. Several explicit models illustrate the
embedding as well as the shell rotation and tilt effects.

DOI: 10.1103/PhysRevD.103.043510

I. PREVIOUS WORK

Since its discovery, the Szekeres inhomogeneous cos-
mological model has always intrigued relativists, having no
Killing vectors on the one hand, and yet still being silent on
the other hand. However, the study of this metric has been
limited by its relative complication, and, in the cases of the
planar and hyperboloidal models, with ϵ ≠ þ1, lack of a
Newtonian analogy from which to derive physical under-
standing. Still, precisely because it is one of the most
realistic inhomogeneous exact solutions of Einstein’s field
equations, which gives it much potential for application in
modeling relatively complex cosmological structures on a
range of scales, a fuller description of the geometry and the
evolution of this spacetime is indispensable to a proper
physical understanding.
Szekeres models can be viewed as distortions of

Lemaître-Tolman and Ellis models. The three arbitrary
functions of the Lemaître-Tolman-Ellis metrics appear in
the Szekeres metric playing essentially the same physical
roles, but there are three more arbitrary functions that
control the deviation from spherical, planar, or pseudos-
pherical (hyperboloidal) symmetry. All 6 arbitrary func-
tions depend on the coordinate r, which is a sort of “radial”
coordinate label for comoving 3-surfaces in the quasi-
spherical case, and, in the quasiplanar and quasihyperbo-
loidal cases, whatever the appropriate equivalent happens
to be.

It was obvious from the beginning that the constant r
2-surfaces (on each time slice) were not arranged “con-
centrically,” and in Szekeres’ original paper [1] he
described the 3-spaces as “a set of displaced or ‘non-
concentric’ spheres, planes and pseudospheres.”
This nonconcentric arrangement was understood and

taken into account when slices through Szekeres models
were plotted, for example [2–10]. Again, because of the
relative complication of doing this, it has not been
attempted very often. Since the native Szekeres coordinates
are stereographic, the calculation of slices typically
involved converting to angular r-θ-ϕ coordinates, and then
projecting into Cartesian-style X-Y-Z coordinates.
However, this method depends on the unstated assumption
that the θ-ϕ coordinates maintain a “constant” orientation
in some sense.
So it came as a considerable surprise when it was

discovered, only recently, that, in the θ-ϕ representation,
the constant r shells are also rotated relative to each other,
except in highly specialized cases. In 2013, Buckley and
Schlegel [11] stated that the constant r shells are rotated
relative to each other by specific amounts, but did not
explain how this was obtained. Unaware of this, Hellaby, in
2017 [12], questioned whether the θ & ϕ coordinates
represent a constant orientation, and by studying the
variation of a suitable orthonormal tetrad, showed that
they do not. We refer to this paper as “FR.” Two years
later, Buckley and Schlegel [13] provided rigorous
support for their relative rotation of adjacent shells by
developing a local embedding, which required not only the
previously stated rotations, but also higher dimensional
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rotations (or “tilts”) in the embedding space. In particular,
it demonstrated that these rotations straighten up geodesics.
Clearly, this effect must be incorporated into graphical
routines for generating slices through Szekeres models, and
methods for doing this were presented. We refer to this
paper as “PG.”
Confirming that the PG shell rotation and embedding

result does indeed explain the origin of the frame rotations
found in FR, would be a confirmation of both papers, and a
useful validation of the new understanding of the Szekeres
geometry, as well as the correct way to plot it graphically.
Further, the consideration of embeddings opens up the

question of whether less obvious topologies are possible.

II. BACKGROUND

A. The Lemaître-Tolman spacetime

The Lemaître-Tolman (LT) spacetime [14,15] represents
a spherically symmetric cloud of dust particles that is
inhomogeneous in the radial direction; both the density and
the rate of expansion or contraction can vary with radius. Its
metric is

ds2 ¼ −dt2 þ R02dr2

1þ f
þ R2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where R ¼ Rðt; rÞ is the areal radius, and f ¼ fðrÞ is a
geometry-energy factor. From the Einstein field equations
(EFEs), the evolution equation and the density are

_R2 ¼ 2M
R

þ f þ ΛR2

3
; ð2Þ

κρ ¼ 2M0

R2R0 ; ð3Þ

where M ¼ MðrÞ is the total gravitational mass interior to
each constant r shell, and Λ is the cosmological constant.
When Λ ¼ 0, the evolution equation (2) has parametric
solutions, for example when f < 0,

R¼ M
ð−fÞ ð1− cosηÞ; t¼ aþ M

ð−fÞ3=2 ðη− sinηÞ; ð4Þ

and a ¼ aðrÞ is the local “bang time”; the time on each
constant r worldline at which Rðt; rÞ ¼ 0 is t ¼ a. The
factors

L ¼ M
ð−fÞ and T ¼ M

ð−fÞ3=2 ð5Þ

can be thought of as a scale length and a scale time for
the worldline at r; 2L is the maximum areal radius
reached, and 2πT is the duration from bang to crunch.
The derivative R0 that appears in the metric can be
expressed parametrically as

R0 ¼ M0

ð−fÞ ð1−ϕ1Þð1− cosηÞ− f0M
f2

�
3

2
ϕ1 − 1

�
ð1− cosηÞ

− ð−fÞ1=2a0ϕ2ð1− cosηÞ; ð6Þ

where ϕ1 ¼
sin ηðη − sin ηÞ
ð1 − cos ηÞ2 ; ϕ2 ¼

sin η
ð1 − cos ηÞ2 : ð7Þ

TheEllis [16]metrics are equivalents of theLTcase, having
planar and hyperboloidal (pseudo-spherical) symmetry.

B. The Szekeres spacetime

The Szekeres (S) spacetimes [1,17] can be thought
of as distortions of the LT and Ellis ones. In addition to
the free functions fðrÞ, MðrÞ and aðrÞ they have 3 more
functions SðrÞ, PðrÞ and QðrÞ that specify the deviation
from symmetry—spherical, planar, or hyperboloidal. The
metric is

ds2 ¼ −dt2 þ ðR0 − RE0
E Þ2dr2

ϵþ f
þ R2

E2
ðdp2 þ dq2Þ; ð8Þ

where ϵ ¼ þ1; 0;−1, and

E ¼ S
2

�ðp − PÞ2
S2

þ ðq −QÞ2
S2

þ ϵ

�
: ð9Þ

Since S ¼ 0 is not possible for a regular metric, we assume
S > 0. In fact the last term in (8) is R2 times the 2-metric for
a unit sphere, pseudosphere, or plane, depending on
whether ϵ is þ1, −1, or 0. Thus the 3-spaces are foliated
by a collection of symmetric 2-spaces, but they are not
arranged symmetrically, as we shall see. By the EFEs,
Rðt; rÞ obeys exactly the same evolution equation (2), while
the density ρ is more complicated,

κρ ¼ 2ðM0 − 3ME0
E Þ

R2ðR0 − RE0
E Þ : ð10Þ

For more information about the Szekeres metric, see for
example [11,13,18–22].

C. Angular form of the Szekeres metric

The standard stereographic mapping, for the ϵ ¼ þ1
case,

p¼PþScot

�
θ

2

�
cosϕ; q¼QþScot

�
θ

2

�
sinϕ; ð11Þ

transforms the metric into a more complicated, nondiagonal
form,
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ds2 ¼
�

1

ϵþ f

�
R0 þ R

S
fS0 cos θ þ sin θðP0 cosϕþQ0 sinϕÞg

�
2

þ R2

S2
fS0 sin θ þ ð1 − cos θÞðP0 cosϕþQ0 sinϕÞg

þ R2

S2
fð1 − cos θÞ2ðP0 sinϕ −Q0 cosϕÞg

�
dr2 −

R2

S
fS0 sin θ þ ð1 − cos θÞðP0 cosϕþQ0 sinϕÞgdr dθ

−
R2 sin θ

S
fð1 − cos θÞ2ðP0 sinϕ −Q0 cosϕÞgdr dϕþ R2ðdθ2 þ sin2θ dϕ2Þ: ð12Þ

For each ðt; rÞ 2-sphere, it is sometimes convenient to
define a local Cartesian frame by

x ¼ R sin θ cosϕ

y ¼ R sin θ sinϕ

z ¼ R cos θ: ð13Þ

D. The Szekeres dipole

The factor D ¼ E0=E that appears in both the metric (8)
and the density (10) controls the deviation from spherical,
hyperboloidal or planar symmetry, and for ϵ ≠ 0 it behaves
like a dipole. The dipole has maximum value and ori-
entation

Dm¼
E0

E

����
m
¼J
S
; pm−P¼P0SfϵS0−Jg

H2
;

qm−Q¼Q0SfϵS0−Jg
H2

; where

J¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2S02þϵðP02þQ02Þ

q
; H¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P02þQ02

p
: ð14Þ

The locus E0 ¼ 0 lies on the ðp; qÞ circle
�ðp−PÞS0

S
þP0

�
þ
�ðq−QÞS0

S
þQ0

�
¼P02þQ02þ ϵS02:

ð15Þ

For the quasispherical case, ϵ ¼ þ1, the dipole function
can be written as

D ¼ E0

E
¼ −

S0 cos θ þ sin θðP0 cosϕþQ0 sinϕÞ
S

; ð16Þ

and it is evident that E0=E ranges between opposite
extremes, passing through zero on an “equatorial” circle.
Note that here E0 still represents the r derivative at constant
p & q. The angular position of the dipole maximum is
found from

sinθm¼
−H
J

; cosθm¼
−S0

J
; cosϕm¼P0

H
; sinϕm¼Q0

H
;

ð17Þ

or, expressed in local Cartesian coordinates, the position of
the maximum on the ðx; y; zÞ unit sphere is

xm ¼ sinθm cosϕm ¼ −P0

J
; ym ¼ sinθm sinϕm ¼ −Q0

J
;

zm ¼ cosθm ¼ −S0

J
; ð18Þ

while the E0 ¼ 0 locus is in the plane

P0xþQ0yþ S0z ¼ 0: ð19Þ

The dipole has two obvious effects—in the grr component
of (8) it creates a nonuniform separation between adjacent
2-spheres of constant r, and in (10), it creates a variation of
the density distribution around each sphere. These effects
are in addition to the r-dependent inhomogeneity of the
underlying LT model.

E. The rotations

Relative to the angular form of the Szekeres metric (12),
there is another more subtle effect of S, P&Q. The angular
coordinates θ & ϕ of (12) do not in fact represent a constant
orientation, and their cardinal directions do not parallel
transport from one shell to the next. Adjacent 2-spheres
have a relative rotation: the sphere at rþ δr is rotated

by
Q0

S
δr about the x axis ð20aÞ

and by
−P0

S
δr about the y axis; ð20bÞ

relative to the one at r [11]. Four justifications for this were
given in [13]. First, there is an argument about nearest
points on the two spheres, explained in PG, Sec. V. B and
Fig. 4. Second, it was shown that geodesics look much
straighter once these rotations are incorporated into plots.
Third was the calculation in PG Appendix C, perhaps not
entirely rigorous, that added displacements and rotations to
the LT metric, ending up with the S metric. Fourth, an
embedding of any given constant t 3-space of the angular S
metric for ϵ ¼ þ1, into a 4-d space that is flat or has
constant curvature, turned out to require the above-stated
rotations.
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III. EMBEDDINGS

A. Global embedding of positively
curved LT 3-spaces

Let E4 be a 4-d Euclidean space with Cartesian coor-
dinates, X, Y, Z, W, and let the LT 3-spaces have positive
curvature, −1 ≤ f ≤ 0. At a fixed time t, R becomes a
function of r only. We define a 3-surface Σ by

X ¼ RðrÞ sin θ cosϕ; ð21aÞ

Y ¼ RðrÞ sin θ sinϕ; ð21bÞ

Z ¼ RðrÞ cos θ; ð21cÞ

W ¼
Z

r

0

R0ðrÞαðrÞdr; ð21dÞ

so then

dX ¼ R0 sin θ cosϕ drþ R cos θ cosϕ dθ − R sin θ sinϕ dϕ;

ð22aÞ

dY ¼ R0 sin θ sinϕ drþ R cos θ sinϕ dθ þ R sin θ cosϕ dϕ;

ð22bÞ

dZ ¼ R0 cos θ dr − R sin θ dθ; ð22cÞ

dW ¼ R0αðrÞ: ð22dÞ

Here RðrÞ is the LT areal radius Rðt; rÞ at a particular time,
and α is

α ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞ

1þ fðrÞ

s
: ð23Þ

Now in [23] the function f was interpreted as f ¼ − cos2 ψ
where ψ is the angle of the tangent cone to the embedded
surface at r, and in this notation, then, α ¼ cotψ :

tanψ ¼ dR
dW

¼ R0

jR0
ffiffiffiffiffiffiffi
−f
1þf

q
j
¼ �

ffiffiffiffiffiffiffiffiffiffiffi
1þ f
−f

s
¼ 1

α
ð24Þ

→ cosψ ¼
ffiffiffiffiffiffi
−f

p
; sinψ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þf

p
; cotψ ¼ α: ð25Þ

Since f ≤ 0, closed models are quite likely, in which case
there will be at least one point rm that is a maximum (or
minimum) in R where R0 ¼ 0, f ¼ −1, but R0=

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
is

finite [23,24]. As a spatial extremum is approached and
traversed, R0, ψ and α change sign, R0 and ψ passing

through zero and α diverging. This ensures dW=dr retains a
constant sign.1

Using this embedding, (21) and (22) show that the metric
of the 3-surface becomes

dX2þdY2þdZ2þdW2¼R02dr2

1þf
þR2ðdθ2þ sin2θdϕ2Þ

ð26Þ

which is the spatial part of the LT metric, dt ¼ 0.
In the case that

R¼K sinr; R0 ¼K cosr; f¼−sin2r; K constant;

ð27Þ

we find

R02dr2

1þ f
þ R2ðdθ2 þ sin2θ dϕ2Þ

¼ K2ðdr2 þ sin2rðdθ2 þ sin2θ dϕ2ÞÞ ð28Þ

and Σ becomes the 3-sphere.

B. Buckley and Schlegel’s local Szekeres embedding

For quasispherical S models with f < 0, their constant t
3-spaces can be embedded in a 4-d flat space, but for
general f, one must embed in a 4-space of constant
curvature [13]. We here consider the former case. Let E4

be a 4-d Euclidean space with Cartesian coordinates, X, Y,
Z, W. In this 4-space, a 3-surface is constructed from a
sequence of 2-spheres, by expanding, shifting and rotating
a unit sphere, as a function of parameter r. Suitable choices
of the expansion, shift and rotation functions ensure the
intrinsic metric of the 3-surface is identical with the
positively curved, quasispherical Szekeres 3-spaces of
constant t. While an embedding is primarily a visualisation
tool, in this case it also provides a clear confirmation of
Buckley and Schlegel’s rotations, given in Eq. (20).
It is also convenient to define local Cartesian coordi-

nates, x, y, z, w near each constant r shell. In these
coordinates, the 2-spherical shell lies in the w ¼ 0 3-space,
according to (13), so the accumulated displacements and
rotations are ignored, and the focus is on the local rate of
displacement and rotation.
Buckley and Schlegel’s embedding equation is

Vðr; θ;ϕÞ ¼ RðrÞATðrÞUðθ;ϕÞ þ ΔðrÞ; ð29Þ

where V is a point in E4 and U is a unit sphere,

1This is not essential, and other choices could lead to different
valid embeddings.
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V ¼

0
BBB@

X

Y

Z

W

1
CCCA; U ¼

0
BBB@

sin θ cosϕ

sin θ sinϕ

cos θ

0

1
CCCA; ð30Þ

while the rotation matrix A, and the displacement vectorΔ, are functions of r that satisfy the following differential equations
(DEs)

A0ðrÞ ¼ Ω0ðrÞAðrÞ ¼

0
BBBBB@

0 0 P0
S

P0
S α

0 0 Q0
S

Q0
S α

− P0
S − Q0

S 0 S0
S α

− P0
S α − Q0

S α − S0
S α 0

1
CCCCCAAðrÞ; ð31Þ

Δ0ðrÞ ¼ ATðrÞD0ðrÞ ¼ ATðrÞ

0
BBBBB@

R P0
S

R Q0
S

R S0
S

R0α

1
CCCCCA; ð32Þ

where α is given by (23), and here too one may specify that it have the same sign as R0. The intrinsic 3-metric of the
embedded 3-surface is derived from the differential of V, using (29)–(32),

ds2 ¼ gðdV; dVÞ ¼ dVTdV ð33Þ

dV ¼ ðR0drÞATU þ RððATÞ0drÞU þ RATðUθdθ þUϕdϕÞ þ Δ0dr ð34Þ

¼ R0ATUdrþ RðATðΩ0ÞTÞUdrþ RATðUθdθ þ UϕdϕÞ þ ATD0dr ð35Þ

¼ AT ½ðR0U þ RðΩ0ÞTU þD0Þdrþ RUθdθ þ RUϕdϕ� ð36Þ

ds2 ¼ ½ðR0UT þ RUTΩ0 þ ðD0ÞTÞdrþ RUT
θ dθ þ RUT

ϕdϕ�½ðR0U þ RðΩ0ÞTU þD0Þdrþ RUθdθ þ RUϕdϕ� ð37Þ

¼ dr2fR02UTU þ RR0½UTðΩ0ÞTU þUTΩ0U� þ R0½UTD0 þ ðD0ÞTU�
þ R2UTΩ0ðΩ0ÞTU þ R½UTΩ0D0 þ ðD0ÞTðΩ0ÞTU� þ ðD0ÞTD0g
þ drdθfRR0½UTUθ þUT

θU� þ R2½UTΩ0Uθ þUT
θ ðΩ0ÞTU� þ R½ðD0ÞTUθ þ UT

θD
0�g

þ drdϕfRR0½UTUϕ þ UT
ϕU� þ R2½UTΩ0Uϕ þ UT

ϕðΩ0ÞTU� þ R½ðD0ÞTUϕ þUT
ϕD

0�g
þ dθ2fR2UT

θUθg þ dθdϕfR2½UT
θUϕ þUT

ϕUθ�g þ dϕ2fR2UT
ϕUϕg ð38Þ

where

Uθ ¼

0
BB@

cos θ cosϕ

cos θ sinϕ

− sin θ

0

1
CCA; Uϕ ¼

0
BB@

− sin θ sinϕ

sin θ cosϕ

0

0

1
CCA ð39Þ

Evaluating the various matrix products, we find

ROTATION, EMBEDDING, AND TOPOLOGY FOR THE … PHYS. REV. D 103, 043510 (2021)

043510-5



0 ¼ UTΩ0U ¼ UTðΩ0ÞTU ¼ UTUθ ¼ UT
θU

¼ UTUϕ ¼ UT
ϕU ¼ UT

θUϕ ¼ UT
ϕUθ ð40aÞ

1 ¼ UTU ¼ UT
θUθ ð40bÞ

UT
ϕUϕ ¼ sin2θ ð40cÞ

ðD0ÞTU ¼ UTD0 ¼ R
S
fsinθðP0 cosϕþQ0 sinϕÞ þ S0 cosθg

ð40dÞ

ðD0ÞTðΩ0ÞTU¼UTΩ0D0

¼ R
S2

fS0 sinθðP0 cosϕþQ0 sinϕÞ
− ðP02þQ02Þcosθg

þR0α2

S
fsinθðP0 cosϕþQ0 sinϕÞþ cosθS0g

ð40eÞ

ðD0ÞTD0 ¼ R2

S2
fP02 þQ02 þ S02g þ R02α2 ð40fÞ

UTΩ0ðΩ0ÞTU ¼ α2

S2

�
fS0 cosθþ sinθðP0 cosϕþQ0 sinϕÞg2

þ sin2θ
S2

fP0 cosϕþQ0 sinϕg2

þ cos2θfP02 þQ02g
�

ð40gÞ

UTΩ0Uθ ¼ UT
θ ðΩ0ÞTU ¼ −

fP0 cosϕþQ0 sinϕg
S

ð40hÞ

UTΩ0Uϕ ¼ UT
ϕðΩ0ÞTU ¼ cos θ sin θfP0 sinϕ −Q0 cosϕg

S
ð40iÞ

ðD0ÞTUθ ¼UT
θD

0 ¼ R
S
fcosθðP0 cosϕþQ0 sinϕÞ− S0 sinθg

ð40jÞ

ðD0ÞTUϕ ¼ UT
ϕD

0 ¼ −
R sin θ

S
fP0 sinϕ −Q0 cosϕg ð40kÞ

and we recover the metric (12) of the angular form of the
quasispherical Szekeres metric.

C. Visualizing the local embedding geometry

Although there is no physical significance to the embed-
ding of a given spacetime into one of higher dimension, it
can be very helpful for visualizing the spacetime geometry,
and that is what we explore here.

We note that the constant w projection of D0, (32), is
antiparallel to the ðx; y; zÞ direction of the dipole maximum,
(18). For the local rate-of-rotation matrixΩ0, the fixed point
locus is a 2-plane,

Ω0V ¼ 0 → Vfp ¼

0
BBB@

S0λ

S0μ

−ðP0λþQ0μÞ
ðP0λþQ0μÞ

α

1
CCCA;

λ; μ independent parameters; ð41Þ

which makes Ω0 the derivative of a simple rotation (not a
double or isoclinic rotation). The constant w projections of
D0 and Vfp are orthogonal. This last fact ensures the
maximum tilt-displacements occur along the dipole axis
(where the max and min are located)—see Fig. 1—and thus
enables the following argument.
In the local ðx; y; z; wÞ frame, the constant r 2-sphere lies

in the x-y-z 3-space, and the direction o ¼ ð0; 0; 0; 1Þ is
orthogonal to that space. In going from the 2-sphere at r to
the 2-sphere at rþ δr, the displacement of the sphere
centres is D0δr; the rate of perpendicular displacement is
R0α, and the rates of sideways displacement are RP0=S,
RQ0=S, and RS0=S, toward the þve x, y, and z directions.2

The slant angle, between o and the line of centers, is

FIG. 1. Sketch of the displacement and tilt effects in the
embedding, with one dimension suppressed. Because the sketch
shows finite displacements, instead of infinitesimal ones, the
distances shown are not exact. The green shows the embedding of
the underlying LT model—the shells at r (lower) and rþ δr
(upper) and the local tangent cone. The blue vectors show the w
displacement between the two shells and the radial expansion of
the second shell (assumed positive here). The cyan shows the
displaced and tilted shell at rþ δr of the Szekeres model. The red
vectors show the sideways displacement of the shell center, and
the down or up displacement due to the tilt. The dipole maximum
is located at the left side, and the minimum at the right. The
E0 ¼ 0 locus, the “widest” part of the 2-sphere at rþ δr is shifted
by δd1; this is consistent—a tilted slice through the LT cone has a
displaced “greatest width.” The tilt axis is the magenta dashed
line, and it is perpendicular to the red displacement δd1. The θ-ϕ
rotation is not shown.

2We here assume that P0, Q0, and S0 are positive. Where the
opposite sign occurs, the relevant direction is changed in the
obvious way.
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cos γ ¼ o ·
D0

jD0j ¼
R0αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2D2
m þ R02α2

p ð42Þ

which we could rewrite as “component” angles3

tanγx ¼
RP0

R0αS
; tanγy ¼

RQ0

R0αS
; tanγz ¼

RS0

R0αS
: ð43Þ

Since the total rotation used in (29) is AT , we see from (31)
that the local rotation-rate matrix to examine is ðΩ0ÞT . The
components of the local rate-of-shell-rotation are thus

ω0
xzδr¼

−P0

S
δr; ω0

yzδr¼
−Q0

S
δr; ω0

xyδr¼ 0; ð44Þ

with senses as noted above, and the components of rate-of-
tilt are

ζ0xwδr¼
−P0α
S

δr; ζ0ywδr¼
−Q0α
S

δr; ζ0zwδr¼
−S0α
S

δr:

ð45Þ

Therefore the rates of tilt are α=R times the rates of
sideways displacement, and a 3-plane parallel to w ¼ 0
is tilted down on the −x, −y, and −z sides by ζxw, ζyw, and
ζzw, respectively.
Both these effects, the center displacement and the tilt,

decrease the shell separation where D has the same sign as
R0 (the “closing edge”) and increase it where D has the
opposite sign (the “opening edge”). The no-shell-crossing
conditions ensure the separation stays positive all round
each sphere. Figure 1 illustrates the arrangement for the
case when R0 > 0. Although finite displacements are
shown, one should think of δr as infinitesimal, so that
only first order effects are relevant. The four displacements
shown are

thew-separation of shell centers ¼ δw0 ¼ R0αδr; ð46aÞ

the increase in shell radius ¼ δd0 ¼ R0α tanψδr ¼ R0δr;

ð46bÞ

the tilt down displacement whereD is max

¼ δw1 ¼ Rζ0δr ¼ RαDmδr; ð46cÞ

the dipole displacement of the shell center¼ δd1 ¼RDmδr:

ð46dÞ

Interestingly, δd0 and δw0 make the same angle as δd1
and δw1. This angle coincidence is possibly the reason why

the calculation in Appendix C of PG actually works—
because the displaced and tilted shell at rþ δr more or
less lies on the LT tangent cone to the 3-surface at r, to
first order.
Looking at the next shell pair, at rþ δr and rþ 2δr,

the local LT tangent cone is now tilted by ζ, and the rþ 2δr
shell is tilted further. The slant angle γ is also tilted
by ζ.
A reflection in the bottom plane gives an idea of the

R0 < 0 case. Where R0 < 0, α also flips sign andDm goes to
−Dm in (46a)–(46d).

D. Origins, extrema, and self-intersections

Using the expressions in (46), we examine the limiting
values of these embedding quantities near origins and
spatial extrema. We assume there are no shell crossings.
If there are, then R0 and α do not always flip signs together.
We also assume a well-behaved r coordinate, with R finite
and nonzero everywhere except at an origin, r ¼ ro, and R0
finite and nonzero everywhere except at a spatial
extremum, r ¼ re. We further assume “generic” arbitrary
functions, so that, for example, R0 and D go linearly
through zero at an extremum.4 The results are gathered
in Table 1.
Now, at an origin, where Rðt; roÞ → 0 ∀ t, we see that

the dipole slant does not disappear, but the tilt rate must
disappear.
In contrast, at a spatial extremum, where R0ðt;reÞ→0∀t,

the dipole slant must disappear, whereas the tilt rate does
not disappear.
The condition for no local self-intersection (of adjacent

shells), referring to Fig 1 and (46), is just:

jδw1j < jδw0j;
RαDmδr < jR0αδrj;

Dm <

����R0

R

����: ð47Þ

Interestingly, this is just the no-shell-crossing conditions
for S, P, and Q [18,19].

E. Center-line curvature

We now consider the locus of 2-sphere centers in the
embedding space; that is, in the ðX; Y; Z;WÞ frame. (The
previous section mostly used the local ðx; y; z; wÞ frame.)
For simplicity, we will consider a model in which P0 ¼

Q0 ¼ 0 everywhere. Between r and rþ δr, the slant angle
between o and the line of centers changes by γ0zδr. Part of
this change is due to the fact that in the same span, the

3These “components” are the projections of γ onto the x-w,
y-w, and z-w planes, such that tan2γ¼ tan2γxþtan2γyþtan2γz.

4One may intentionally choose functions that give other
behavior at specific locations, such as R0 orD going quadratically
to zero and not changing sign.
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2-spheres of constant r undergo a tilt in the same direction
by an angle ζ0zwδr, and o’s angle changes along with them
by the same amount. The rest must be due to the change in
the angle of the line of centers itself. See Fig. 2. If we
denote this change of the line-of-centers angle by δξ, we
can write

δξ ¼ γ0zδrþ ζ0zwδr; ð48Þ

Eq. (45) gives ζ0zw directly. We can calculate γ0z from
Eq. (43) as follows:

γ0zsec2γz ¼ γ0zð1þ tan2γzÞ

¼ 1

α

S0

S
−
RR00

R02α
S0

S
−

Rα0

R0α2
S0

S
þ R
R0α

�
S0

S

�0
ð49Þ

γ0z ¼
R02α S0

S − RR00α S0
S − RR0α0 S0S þ RR0αðS0SÞ0

R2ðS0SÞ2 þ R02α2
; ð50Þ

and this can be reexpressed in terms of ζ0zw,

γ0zsec2γz¼ γ0zð1þ tan2γzÞ

¼−
ζ0zw
α2

þ RR00

R02α2
ζ0zwþ2

Rα0

R0α3
ζ0zw−

R
R0α2

ζ00zw ð51Þ

γ0z ¼
−R02α2ζ0zw þ RR00α2ζ0zw þ 2RR0αα0ζ0zw − RR0α2ζ00zw

R2ζ02zw þ R02α4
:

ð52Þ

Locally about any point, the line of centers can be
approximated as following a section of a circle. The radius
of this circle is determined by dividing the length traversed
in a small span by the corresponding change in angle δξ.
We therefore need to express δξ in terms of path length
along the line, rather than in terms of δr. The distance δl
between the center of shell r and that of shell rþ δr follows
from the displacement components given in Eqs. (46a)
and (46d):

δl ¼ δr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

�
S0

S

�
2

þ R02α2
s

ð53Þ

The local radius of curvature of the line of centers
is then

TABLE I. The behavior of embedding displacements near origins and spatial extrema. See (46) and the illustration
in Fig. 1.

Flips sign
with Dm → −Dm

Flips sign
with R0 Behavior at R0 → 0 ← 1=α Behavior at R → 0

R R → const → 0 as ðr − roÞ
R0 R0 → 0 as ðr − reÞ → const ≠ 0
α α → ∞ as ðr − reÞ−1 → 0 as ðr − roÞ
Dm Dm → 0 as ðr − reÞ → const (or 0)

δw0 No No R0α → const → 0 as ðr − roÞ
δd0 No Yes R0 → 0 as ðr − reÞ → const ≠ 0
δw1 Yes Yes RαDm → const → 0 as ðr − roÞ2
δd1 Yes No RDm → 0 as ðr − reÞ → 0 as ðr − roÞ
dipole slant δd1=δw0 Yes No ðRDmÞ=ðR0αÞ → 0 as ðr − reÞ → const
tilt rate δw1=R Yes Yes αDm → const → 0 as ðr − roÞ

FIG. 2. A diagram of the contributions to the centre line
curvature. Solid lines represent values at r, and dashed lines
represent values at rþ δr. The green lines show the shells’
orientations. The blue lines are the vectors o orthogonal to the
shells, and the change between them is the rate of tilt, ζ0zw. The red
lines are the tangent vectors of the line of centers, which changes
by δξ. The angles between the two, written in purple, are the
slant angles γz. Looking at the solid blue line and the dashed red
line, we can see that the total angle between them is equal to
γ þ δξ, but also equal to ζ0zwδrþ γz þ γ0zδr, giving the result
δξ ¼ γ0zδrþ ζ0zwδr.
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ρzw ¼ δl
δξ

¼ ½R2ðS0SÞ2 þ R02α2�3=2
R02ðα − α3Þ S0S − RR00α S0

S − RR0α0 S
0
S þ RR0αðS0SÞ0 − R2αðS0SÞ3

: ð54Þ

The relationship between the two contributions, the rate
of tilt γ0z and the rate of change of slant ζ0zw, is somewhat
complicated, but becomes much simpler near an extremum
in R. Starting from Eq. (51), replace R0 by R2ðr − reÞ
(where R2 is the value of R00 at re), α by αe

r−re
, and α0 by

− αe
ðr−reÞ2. This gives

γ0zsec2γz ¼ −
ζ0zw
α2e

ðr − reÞ2 −
R

R2α
2
e
ζ0zw −

R
R2α

2
e
ðr − reÞζ00zw:

ð55Þ
Since by Table 1 ζ0zw approaches a constant at the spatial
extremum, ζ00zw is small there, so we can drop the last term,
as well as the first. The middle term dominates, and its sign
depends only on R2 and ζ0zw. Therefore, γ0z and ζ0zw have the
same sign near maxima, where R00 is negative, and opposite
signs near minima, where R00 is positive. Consequently, the
slant and tilt effects both increase the curvature of the line
of centers near a spatial maximum, but oppose each other
near a spatial minimum.5

IV. COMPARISON OF ROTATIONS
IN PG AND FR

In order to connect the shell rotations found in PG with
the frame rotation effect found in FR, let us now set up
the orthonormal basis of FR, within the E4 of Sec. III B.
Since the basis orientation is time-independent, we will
only look at spatial components. Thus there will be 3
vectors intrinsic to the embedded surface, and one
perpendicular to it. We shall need to refer to 3 different
fames; the Cartesian coordinates of E4, the Szekeres
angular coordinates, and the orthonormal tetrad of the
embedded surface. Our index convention is

i; j; k; � � � − Szekeres coordinates r; θ;ϕ

s; u; v; � � � − 4-d flat coordinatesX; Y; Z;W

ðaÞ; ðbÞ; ðcÞ; � � � − orthonormal basis indices

ðθÞ; ðϕÞ; ðnÞ; ðNÞ: ð56Þ

A. Orthonormal basis

From (36), the mapping between ðr; θ;ϕÞ and V ¼
ðX; Y; Z;WÞ consists of

∂V
∂r ¼ ATðR0U þ RðΩ0ÞTU þD0Þ;
∂V
∂θ ¼ ATRUθ;

∂V
∂ϕ ¼ ATRUϕ; ð57Þ

→ Λs
i ¼

∂ðX; Y; Z;WÞ
∂ðr; θ;ϕÞ ¼

�∂V
∂r

∂V
∂θ

∂V
∂ϕ

�
ð58Þ

which also constitute vectors in the 3-surface along the r, θ
and ϕ directions. Thus one may easily find a vector
orthogonal to that 3-surface,

N̄ ¼ AT

0
BBB@

α sin θ cosϕ

α sin θ sinϕ

α cos θ

−1

1
CCCA; ð59Þ

and consequently a third surface vector orthogonal to the θ
and ϕ directions (as well as N̄) is

n̄ ¼ AT

0
BBB@

sin θ cosϕ

sin θ sinϕ

cos θ

α

1
CCCA: ð60Þ

Normalizing these, we obtain an orthonormal basis and
its dual, with components in E4; the components of eðcÞ are
in the columns of (61), and the basis order is ðθÞ, ðϕÞ,
ðnÞ, ðNÞ,

euðcÞ ¼ AT

0
BBB@

cos θ cosϕ − sinϕ
ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
sin θ cosϕ

ffiffiffiffiffiffi
−f

p
sin θ cosϕ

cos θ sinϕ cosϕ
ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
sin θ sinϕ

ffiffiffiffiffiffi
−f

p
sin θ sinϕ

− sin θ 0
ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
cos θ

ffiffiffiffiffiffi
−f

p
cos θ

0 0
ffiffiffiffiffiffi
−f

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p

1
CCCA ¼ ATēuðcÞ; ð61Þ

5This was first observed in numerical output, which also indicates the tilt rate is the larger contribution in determining the center-line
curvature.
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eðbÞs ¼

0
BBB@

cos θ cosϕ cos θ sinϕ − sin θ 0

− sinϕ cosϕ 0 0ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
sin θ cosϕ

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
sin θ sinϕ

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
cos θ

ffiffiffiffiffiffi
−f

p
ffiffiffiffiffiffi
−f

p
sin θ cosϕ

ffiffiffiffiffiffi
−f

p
sin θ sinϕ

ffiffiffiffiffiffi
−f

p
cos θ −

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p

1
CCCAA ¼ ēðbÞsA: ð62Þ

Equation (62) gives the flat-space components of eðbÞ in E4.

B. Variation of the embedded basis

Consider a path parametrized by λ, within the embedded
3-surface, which is also a 3-space of constant time in the
Szekeres metric, so that r ¼ rðλÞ, θ ¼ θðλÞ, ϕ ¼ ϕðλÞ. The
tangent vector is vj ¼ dxj=dλ, and the path in E4 is
V ¼ VðrðλÞ; θðλÞ;ϕðλÞÞ. Along this path, the variation of
the flat space basis vector eðbÞ within E4 is

∇veðbÞ ¼ vs∇esðeðbÞueuÞ ¼ vsðeðbÞu;seu þ eðbÞu∇eseuÞ
¼ vseðbÞu;seu; ð63Þ

so that the frame rotation matrix of FR is [see Eq. (21) of
that paper]

VðcÞðbÞ ¼ ð∇veðbÞÞðeðcÞÞ ¼ ðvseðbÞu;seuÞðevðcÞevÞ
¼ vseðbÞu;seu

ðcÞ ¼ viΛs
i eðbÞ

u
;seu

ðcÞ ¼ vieðbÞu;ieu
ðcÞ:

ð64Þ

We have

eðbÞu;r ¼ ēðbÞuA0 þ ēðbÞu;rA ¼ ðēðbÞuΩ0 þ ēðbÞu;rÞA
eðbÞu;θ ¼ ēðbÞu;θA; eðbÞu;ϕ ¼ ēðbÞu;ϕA; ð65Þ

so that

VðcÞðbÞ ¼vieðbÞu;ieu
ðcÞ

¼f_rðēðbÞuΩ0þ ēðbÞu;rÞþ _θēðbÞu;θþ _ϕēðbÞu;ϕgAATēuðcÞ

¼f_rðēðbÞuΩ0þ ēðbÞu;rÞþ _θēðbÞu;θþ _ϕēðbÞu;ϕgēuðcÞ:
ð66Þ

The basis derivatives with respect to Szekeres angular
coordinates are

ēðbÞs;r ¼
f0

2

0
BBBBB@

0 0 0 0

0 0 0 0
sin θ cosϕffiffiffiffiffiffiffi

1þf
p sin θ sinϕffiffiffiffiffiffiffi

1þf
p cos θffiffiffiffiffiffiffi

1þf
p −1ffiffiffiffiffi

−f
p

− sin θ cosϕffiffiffiffiffi
−f

p − sin θ sinϕffiffiffiffiffi
−f

p − cos θffiffiffiffiffi
−f

p −1ffiffiffiffiffiffiffi
1þf

p

1
CCCCCA; ð67aÞ

ēðbÞs;θ ¼

0
BBB@

− sin θ cosϕ − sin θ sinϕ − cos θ 0

0 0 0 0ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
cos θ cosϕ

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
cos θ sinϕ −

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
sin θ 0ffiffiffiffiffiffi

−f
p

cos θ cosϕ
ffiffiffiffiffiffi
−f

p
cos θ sinϕ −

ffiffiffiffiffiffi
−f

p
sin θ 0

1
CCCA; ð67bÞ

ēðbÞs;ϕ ¼

0
BBB@

− cos θ sinϕ cos θ cosϕ 0 0

− cosϕ − sinϕ 0 0

−
ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
sin θ sinϕ

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
sin θ cosϕ 0 0

−
ffiffiffiffiffiffi
−f

p
sin θ sinϕ

ffiffiffiffiffiffi
−f

p
sin θ cosϕ 0 0

1
CCCA: ð67cÞ
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Using Eqs. (67a)–(67c) and (61)–(62) in (66) above, we find that

VðθÞðnÞ ¼
−fS0 sin θ − ½ð1þ fÞ − f cos θ�fP0 cosϕþQ0 sinϕgvrffiffiffiffiffiffiffiffiffiffiffi

1þ f
p

S
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
vθ; ð68aÞ

VðϕÞðnÞ ¼
½1 − ð1þ fÞð1 − cos θÞ�fP0 sinϕ −Q0 cosϕgvrffiffiffiffiffiffiffiffiffiffiffi

1þ f
p

S
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
sin θvϕ; ð68bÞ

VðϕÞðθÞ ¼
−ðP0 sinϕ −Q0 cosϕÞ sin θ

S
vr þ cos θvϕ: ð68cÞ

Equations (68a)–(68c) agree with FR(25)-(27), confirm-
ing that the frame rotation effects found in [12] are fully
consistent with, and therefore explained by, the shell
rotations and tilts uncovered in [11,13].

V. TOROIDAL AND ROTATING EMBEDDINGS

As an illustration of the rotations and tilts described
in PG and FR, it would be interesting to see if one
can define a Szekeres model whose embedding
“naturally” bends round and closes on itself, i.e., the
embedded surface has the topology of a torus in the
4-d flat space, without any arbitrary identifications.
It does not have to be a Datt-Kantowski-Sachs (DKS)
type model [25,26], it could be a quasispherical model
that has both a spatial maximum and a minimum;
or multiple spatial maxima and minima. Of course
there is no physical significance to the embedding of a
spacetime,6 and the shape of the embedded surface
depends on the space it is embedded into. The point here
is to illustrate that the tilt can be continuously in the
same sense.
Where spatial extrema occur, the conditions for no

shell crossings or surface layers [18,19] require that
f ¼ −1, all 6 arbitrary functions have zero derivative,
0 ¼ M0 ¼ f0 ¼ a0 ¼ S0 ¼ P0 ¼ Q0, and R0, M0, α must
change sign together.
In order to achieve this, we require 3 things as r runs

from ri to rf: (i) the tilt/rotation matrix AðrÞmust run round
2π, relative to some “axis,” and return to the identity;
(ii) the locus of centersΔðrÞmust form a loop; (iii) the areal
radius RðrÞ and its derivative R0ðrÞ must return to their
starting values, so that the join is smooth—for example R
could be (multiply) periodic in r around this loop—and
this should hold at each constant t; (iv) ideally the 3-surface
should not intersect itself in the embedding, and there
should be no shell crossings.

A. Embedding DEs

The matrix DEs of (31) actually separate out into 4
identical sets of 4 linked DEs, but with different initial
conditions,

AðrÞ ¼

0
BBB@

ν1ðrÞ ν2ðrÞ ν3ðrÞ ν4ðrÞ
χ1ðrÞ χ2ðrÞ χ3ðrÞ χ4ðrÞ
λ1ðrÞ λ2ðrÞ λ3ðrÞ λ4ðrÞ
σ1ðrÞ σ2ðrÞ σ3ðrÞ σ4ðrÞ

1
CCCA; Að0Þ ¼ I;

ð69aÞ

ν0i ¼
P0

S
ðλiþασiÞ; χ0i ¼

Q0

S
ðλiþασiÞ;

λ0i ¼
−P0νi−Q0χiþS0ασi

S
; σ0i ¼−

αðP0νiþQ0χiþS0λiÞ
S

;

i¼ 1;2;3;4; ð69bÞ

ν1ð0Þ¼ 1; χ1ð0Þ¼ 0; λ1ð0Þ¼ 0; σ1ð0Þ¼ 0; ð69cÞ

ν2ð0Þ¼ 0; χ2ð0Þ¼ 1; λ2ð0Þ¼ 0; σ2ð0Þ¼ 0; ð69dÞ

ν3ð0Þ¼ 0; χ3ð0Þ¼ 0; λ3ð0Þ¼ 1; σ3ð0Þ¼ 0; ð69eÞ

ν4ð0Þ¼ 0; χ4ð0Þ¼ 0; λ4ð0Þ¼ 0; σ4ð0Þ¼ 1: ð69fÞ

Similarly, from (32), the initial value problem (IVP) for
the line of shell centers separates out into the same groups,

ΔðrÞ ¼

0
BBB@

XC

YC

ZC

WC

1
CCCA; Δð0Þ ¼ 0; ð70aÞ

ðΔiÞ0¼R
S
ðP0νiþQ0χiþS0λiÞþR0ασi; i¼1;2;3;4; ð70bÞ

making 4 identical sets of 5 DEs.6… unless it is a brane.
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B. Case with only S varying

Let us take the simple case of P0 ¼ 0 ¼ Q0, while f, M,
a, S are general.

(i) Then by (31)

A0ðrÞ ¼ Ω0ðrÞAðrÞ

¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 S0
S α

0 0 − S0
S α 0

1
CCCAAðrÞ ð71Þ

which integrates up to

A ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 cos ζ sin ζ

0 0 − sin ζ cos ζ

1
CCCA;

ζðrÞ ¼
Z

r

ri

S0α
S

dr: ð72Þ

Then from (72) and (23) we have

f ¼ −S2ζ02

ðS2ζ02 þ S02Þ ¼
−1

ð1þ S02
S2ζ02Þ

;

f ¼ −1 → S02 ¼ 0; ζ0 ≠ 0;

f ¼ −fa → S02 ¼ ð1 − faÞS2ζ02: ð73Þ

One may thus obtain all of fðrÞ, αðrÞ, SðrÞ or ζðrÞ
from specifying just two of them. It should be fairly
easy to make ζ run from 0 to 2π, because it does not
depend on time through R or R0. We show below that
f and hence α will be oscillatory, and we note that α
diverges where f goes to −1, so S0 ¼ 0 will be
needed here. Thus S0α=S needs to be non-negative,
which means S0 changes sign with α. Possible
functional forms for ζðrÞ, SðrÞ, fðrÞ, and αðrÞ will
be considered below.

(ii) Next by integrating (32), and requiring that the line
of centers closes up, we find

Δ0 ¼ ATD0 ¼ AT

0
BBB@

0

0

R S0
S

R0α

1
CCCA; ð74Þ

Z
rf

ri

Δ0dr¼0¼
Z

rf

ri

0
BBB@

0

0

cosζRS0
S−sinζR0α

sinζRS0
SþcosζR0α

1
CCCAdr: ð75Þ

Generically, R and R0 do not have the same time
dependence, so, in order for this to be true at all
times, we attempt to arrange thatZ

rf

ri

cos ζR
S0

S
dr ¼ 0 ¼

Z
rf

ri

sin ζR0αdr; ð76aÞ

Z
rf

ri

sin ζR
S0

S
dr ¼ 0 ¼

Z
rf

ri

cos ζR0αdr: ð76bÞ

In particular, if within 0 ≤ ζ ≤ π, one can arrange
that R goes max-to-min-to-max (or min-to-max-to-
min), in a manner that’s symmetric about ζ ¼ π=2,
then, however the time evolution goes, 2 copies of
this should join up nicely. Similarly, if within
0 ≤ ζ ≤ π=2, one can arrange that R goes max-to-
min-to-max (or min-to-max-to-min), symmetrically
about ζ ¼ π=4, then 4 copies of this should also join
up nicely. And so on.

(iii) To make R and R0 join nicely, so that the torus “tube”
joins itself smoothly, we could choose f, M and a
periodic; and of course f ¼ −1 is needed at the
extrema, so f must oscillate twice as fast.

(iv) Once a detailed model has been chosen, it can be
checked for shell crossings and self intersections,
and adjustments can be made as needed.

C. Case with only P varying

Next we consider the case S0 ¼ 0 ¼ Q0 (and general f,
M, a, P). Then by (69) and (70), the IVP becomes

ν0i ¼
P0

S
ðλi þ ασiÞ; λ0i ¼ −

P0

S
νi;

σ0i ¼ −
P0α
S

νi; i ¼ 1; 2; 3; 4; ð77aÞ

ν1ð0Þ ¼ 1; λ1ð0Þ ¼ 0; σ1ð0Þ ¼ 0; ð77bÞ

ν2ð0Þ ¼ 0; λ2ð0Þ ¼ 0; σ2ð0Þ ¼ 0; ð77cÞ

ν3ð0Þ ¼ 0; λ3ð0Þ ¼ 1; σ3ð0Þ ¼ 0; ð77dÞ

ν4ð0Þ ¼ 0; λ4ð0Þ ¼ 0; σ4ð0Þ ¼ 1; ð77eÞ

ðΔiÞ0 ¼ νi
RP0

S
þ σiR0α; Δð0Þ ¼ 0: ð77fÞ

Clearly χi ¼ 0 ¼ ν2 ¼ λ2 ¼ σ2 ¼ YC for all r.
Cyclic choices for the arbitrary functions similar to those

above should again ensure closure.

D. Model 1, S only

We choose ζ to be uniformly increasing, satisfying (i) by
construction, we fix P ¼ 0 ¼ Q, and we let S oscillate,
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ζ ¼ μr; ð78Þ

S ¼ S0 þ S1f1 − cosðnμrÞg; n ∈ N; ð79Þ

in which case, (72), (23) and (73) give7

f ¼ −1

1þ n2S2
1
sin2ðnμrÞ

ðS0þS1f1−cosðnμrÞgÞ2
; ð80Þ

→ α ¼ S0 − S1f1 − cosðnμrÞg
nS1 sinðnμrÞ

; ð81Þ

and the maxima of f are at

cosðnμrÞ ¼ S1
S0 þ S1

→ fm ¼ −1

1þ n2S2
1

S0ðS0þ2S1Þ
: ð82Þ

For the mass and bang time we choose

M ¼ M0 þM1f1 − cosðnμrÞg;
a ¼ a0 − a1f1 − cosðnμrÞg; ð83Þ

in accordance with requirement (iii).
The relevant no-shell-crossing requirements are that

−a0 and a0 þ 2πT 0 have the same sign as M0, and that
ðE0=EÞm ≤ jM0=ð3MÞj. The function f, which appears in
the denominator of T, defined by Eq. (5), oscillates twice as
fast as M does. Thus the amplitude of f’s variation in
Eq. (80) needs to be small. For the model considered here,
this means S1 should be small, which in turn means S does
not vary much.
Now the calculation of RðrÞ and R0ðrÞ on a constant time

slice is a numerical exercise; the t equation of (4) has to be
solved to get η at each r. But, using the parametric solution
(4) with zero Λ, we can instead integrate Δ0 on surfaces of
constant η; if the result is zero for every constant-η surface,
then it will be zero for every constant-t surface also. Using
constant η surfaces has the additional advantage that the
bang and crunch singularities are avoided. The integrals in
(76) are therefore modified to become

Z
rf

ri

cos ζR
S0

S
dr ¼ ð1 − cos ηÞ

Z
rf

ri

cos

�Z
r

ri

S0α
S

dr

�
MS0

ð−fÞS dr; ð84aÞ

Z
rf

ri

cos ζR0αdr ¼ ð1 − ϕ1Þð1 − cos ηÞ
Z

rf

ri

cos

�Z
r

ri

S0α
S

dr

�
M0α
ð−fÞ dr

−
�
3

2
ϕ1 − 1

�
ð1 − cos ηÞ

Z
rf

ri

cos

�Z
r

ri

S0α
S

dr

�
f0Mα

f2
dr

− ϕ2ð1 − cos ηÞ
Z

rf

ri

cos

�Z
r

ri

S0α
S

dr

�
ð−fÞ1=2a0αdr; ð84bÞ

with obvious variations for the other two. By symmetry
arguments, the 4 integrals of (76) clearly evaluate to zero
when the above choices are made, ensuring that (ii) is
satisfied. See Fig. 3 for a sample plot of one of the terms
in (84).
A particular example satisfying all requirements is

plotted in Fig. 4, for the parameter times η ¼ π=3 and
η ¼ 5π=3. The parameter values are n ¼ 2, μ ¼ π,
ri ¼ −1, rf¼1, S0¼1, S1 ¼ 0.1, M0 ¼ 0.1, M1 ¼ 0.05,
a0 ¼ 0, a1 ¼ 0.1. The no-shell-crossing conditions
[19,24] that are applicable here are ð−a0Þ=M0 ≥ 0,
ða0 þ 2πT 0Þ=M0 ≥ 0, ðE0=EÞm ≤ jM0=ð3MÞj; and it has
been checked that the chosen functions and parameter
values satisfy them, though not by much. The construction
used here puts strong limits on the variation of S. –0.002

–0.001

0.001

0.002

3211–2–3–

r

FIG. 3. The integrand cos ζðMf0α=f2Þð3ϕ1=2 − 1Þð1 − cos ηÞ
of (84) at η ¼ π=3, for the functions and parameter values given
in Sec. V D and also used in Fig 4.

7We could choose α to be the negative of the rhs of (81), which
would merely reflect the embedding in the W ¼ 0 plane.
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FIG. 4. An example of an embedded Szekeres model with a “natural” torus topology as described in Sec. V. The path of the sphere
centers (red), and a selection of sphere diameters (blue), are shown in the ðZ;WÞ plane. Each diameter represents a complete 2-sphere,
and the sequence of 2-spheres describes an embedded 3-surface in the flat 4-d ðX; Y; Z;WÞ space. The arbitrary functions and parameter
values of this model are listed in Sec. V D. The left plot is for η ¼ π=3, the middle one for η ¼ π, and the right one for η ¼ 5π=3. These
are not constant time plots, so they are indicative rather than precise.

FIG. 5. An embedded Szekeres torus model with 3 lobes, showing just its intersection with the ðZ;WÞ plane. The red curve is the path
of the sphere centers, and each black line is the diameter of a 2-sphere at a particular r value. The arbitrary functions and parameter
values of this model are listed in Sec. V E. The times of the plots are t ¼ 0.02, t ¼ 1, t ¼ 3, and t ¼ 5.
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E. Model 2, S only

This is a much wobblier version of the toroidal model, that has 3 lobes instead of 2. The key defining functions are

MðrÞ ¼ M0 þM1f1 − cosðnμ0rÞg;
fðrÞ ¼ −1þ f1f1 − cosð2nμ0rÞg;
aðrÞ ¼ 0;

ζ0 ¼ μ0f1þ μ1 cosðnμ0rÞg;
S0=S ¼ ζ0=α; ð85Þ

from which we find

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2f1sin2ðnμ0rÞ

p
ffiffiffiffiffiffiffi
2f1

p
sinðnμ0rÞ

; ζ ¼ μ0

�
rþ μ1 sinðnμ0rÞ

nμ0

�
S0

S
¼

ffiffiffiffiffiffiffi
2f1

p
μ0 sinðnμ0rÞð1þ μ1 cosðnμ0rÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2f1sin2ðnμ0rÞ
p

S ¼ S0 exp

�
−μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2f1sin2ðnμ0rÞ

p
ffiffiffiffiffiffiffi
2f1

p
n

	�ð1 − 2f1 þ 4f1cos2ðnμ0rÞÞ
2

ffiffiffiffiffiffiffi
2f1

p − cosðnμ0rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2f1sin2ðnμ0rÞ

q �
1=ð2nÞ

ð86Þ

We can choose the value of S0 to make S ¼ 1 at r ¼ 0. For the plots in Fig. 5, the parameters are

FIG. 6. Three views of a less symmetric embedded Szekeres torus model, in the ðX; Z;WÞ 3-space, at time t ¼ 1. The red curve is the
path of the sphere centers, each blue circle is the outline of a 2-sphere at a particular r value, and the green dots indicate the location of
θ ¼ 0 on the 2-sphere; the rotation of the ðθ;ϕÞ coordinates is not very large in this model. The arbitrary functions and parameter values
of this model are listed in Sec. V F.
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M0 ¼ 0.55; M1 ¼ 0.7; f1 ¼ 0.06; n ¼ 3;

μ0 ¼ 1; μ1 ¼ 0.8; t ¼ 1: ð87Þ

What is interesting here is that there are parts where
the tilt is changing more rapidly and parts where it is hardly
changing. Although the effect found in Sec. III E, that
the dipole displacement and the tilt have opposing effects
on the curvature of the path of centres near a spatial
minimum, is evident here, in the models we tried, after shell
crossings had been eliminated, the tilt curvature seems to
dominate.

F. Model 3, P only

For this model, the only nonsphericity function we
vary is P. By [27] we expect the line of centers to be
bent, and by Sec. II E, we expect there to be shell rotation. It
is defined by

MðrÞ ¼ M0 þM1f1 − cosðnμrÞg;
fðrÞ ¼ −1þ f1f1 − cosð2nμrÞg ¼ −1þ 2f1sin2ð2nμrÞ;
aðrÞ ¼ 0;

SðrÞ ¼ 1; QðrÞ ¼ 0;

ζ ¼ μr; P0=S ¼ ζ0=α;

→ α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2f1sin2ðnμrÞ

p
ffiffiffiffiffiffiffi
2f1

p
sinðnμrÞ ;

P0 ¼ μ
ffiffiffiffiffiffiffi
2f1

p
sinðnμrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2f1 sinðnμrÞ2
p ;

PðrÞ ¼ 1

2n
ln

�ð1 − 2f1f1 − 2cos2ðnμrÞgÞ
2

ffiffiffiffiffiffiffi
2f1

p

− cosðnμrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2f1sin2ðnμrÞ

q �
;

M0 ¼ 0.75; M1 ¼ 0.25; f1 ¼ 0.02; μ ¼ 1;

n ¼ 6; t ¼ 1: ð88Þ
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FIG. 7. Three views of the embedded Szekeres model 4, at time η ¼ π which corresponds to t ¼ 0. The blue circles represent
2-spheres of constant r; tilting relative to the line of sight makes some appear elliptical. The red curve is the center path—the locus of
sphere centers, and the green lines show the direction of θ ¼ 0 for each plotted sphere/circle. The Y coordinate is suppressed, and the
center path lies in Y ¼ 0.
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and is illustrated in Fig. 6.
Apart from the toroidal topology, the line of centers no longer lies in a 2-plane, and the direction of the “north pole”

θ ¼ 0, rotates between shells; however these variations are fairly small.

G. Model 4, P only

This model is not toroidal; it is a spatially closed model defined by

MðrÞ ¼ sin3ðμrÞfM0 þM1 sinðμrÞg;
fðrÞ ¼ −sin2ðμrÞ;

aðrÞ ¼ −πM
ð−fÞ3=2 ;

SðrÞ ¼ 1; QðrÞ ¼ 0;

PðrÞ ¼ sinðμrÞfP0 þ P1 sinðμrÞg;
→ α ¼ tanðμrÞ;
M0 ¼ 1; M1 ¼ 5; P0 ¼ 1; P1 ¼ 0.3; μ ¼ π; η ¼ 8π=5: ð89Þ

Figure 7 shows 3 views of the resulting embedding. The right hand view shows there is substantial rotation of the θ ¼ 0
direction.
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FIG. 8. Three views of the embedded RW-Szekeres model 5, showing it is actually a 3-sphere in very nonsymmetric coordinates. The
center path (red line) is bent round, and the “north” (green lines) show significant variation.
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H. Model 5, RW as Szekeres

The Szekeres models become homogeneous, despite the
nonsymmetric coordinates, if the LT functions f, M and a
take the RW form, regardless of the S, P and Q functions.8

Such a model is obtained with M ¼ M0 sin3ðμrÞ, f ¼
− sin2ðμrÞ, a ¼ 0, S ¼ 1, Q ¼ 0 and P ¼ P0 sinðμrÞðP0 þ
P1 sinðμrÞÞ, alongwith parameter valuesM0 ¼ 1,P0 ¼ 0.7,
P1 ¼ 0.09, μ ¼ π, and the result is shown in Fig. 8.
Although the overall embedded shape is clearly a

3-sphere, the slicing is not only non-parallel, it also has
shell rotation as shown by the variation of the “north”
direction.

VI. CONCLUSIONS

A correct understanding of the geometry of the Szekeres
metric is important both for physical interpretation, when it
is used for models of inhomogeneous gravitating structures,
and also for a more accurate graphical depiction of those
models. Though the “nonconcentric” property of constant r
shells was known from the start, it was only recently shown
there is a hidden shell rotation effect, that appears when the
usual angular coordinates are used. Hitherto, it was tacitly
assumed these coordinates had a constant orientation, as is
the case for Lemaître-Tolman (LT) models.
In this paper we have shown that two independent results

about Szekeres shell rotations are in full agreement. In FR
[12] it was shown, using the rotation rate of an orthonormal
tetrad, that the ðθ;ϕÞ coordinates of (12) do not in general
retain any kind of constant orientation. In [11] the relative
rotation of adjacent ðθ;ϕÞ shells was stated, and in PG [13]
this was explained in several ways, notably an embedding
that further introduced higher dimensional tilts. The forms
of the results in FR and PG are sufficiently different that an
alignment is called for. We have reviewed the embedding of

a f < 0 Szekeres model in flat 4-d Euclidean space, and
discussed its visualization. It is striking that the embedding
of a Szekeres model is locally the same to first order as that
of the underlying LT model at the corresponding r value.
By showing how to derive the FR results from the PG
results, we have confirmed the reality of these rotations and
tilts, and thereby their importance for graphing Szekeres
slices. Methods for this graphing are suggested in PG.
To illustrate the higher dimensional tilts, we have

constructed Szekeres models whose 3-spaces “naturally”
have the topology of a torus, when embedded in a 4-d
Euclidean flat space, without arbitrary identifications.
Explicit Szekeres models that are closed in the r direction,
with or without an arbitrary identification, had not been
previously considered. Models 1 and 2 had just S varying,
but nicely demonstrated the toroidal embedding as well as
nontrivial radius and tilt structure. Models 3 and 4 had just
P varying, and additionally demonstrated a nonplanar
curve of shell centers. Importantly, model 4 clearly exhib-
ited the shell rotation described in PG. Clearly, models in
which all 3 of the Szekeres functions S, P & Q vary could
produce even more interesting embedded shapes.
Some questions for future investigations are
(i) Can one find a different ðp; qÞ to ðθ;ϕÞ trans-

formation that incorporates the rotation, (20), found
by Buckley and Schlegel? Is it reasonably neat or too
complicated? Does the resulting metric look at all
useful or useable?

(ii) Can one apply or extend the embedding to the
DKS-type (“β0 ¼ 0”) Szekeres models?

(iii) Is there a reasonably simple or elegant embedding of
the ϵ ≠ þ1 Szekeres models?

(iv) Is it possible to create a quasispherical Szekeres
model in which the shell rotation turns the “north
pole” through 180 degrees? Can such a model be
given a toroidal topology, of any kind? That would
make the transformation to ðθ;ϕÞ coordinates
clearly inconsistent.
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